
An Embedded True Random Number Generator for FPGAs
Paul Kohlbrenner
Lockheed Martin

3201 Jermantown Road
Fairfax, VA 22030, USA

Paul.W.Kohlbrenner@lmco.com

Kris Gaj
George Mason University

4400 University Drive
Fairfax, VA 22030, USA

kgaj@gmu.edu

ABSTRACT
Field Programmable Gate Arrays (FPGAs) are an increasingly
popular choice of platform for the implementation of
cryptographic systems. Until recently, designers using FPGAs
had less than optimal choices for a source of truly random bits.
In this paper we extend a technique that uses on-chip jitter and
PLLs to a much larger class of FPGAs that do not contain PLLs.
Our design uses only the Configurable Logic Blocks (CLBs)
common to all FPGAs, and has a self-testing capability. Using
the intrinsic jitter contained in digital circuits, we produce
random bits at speeds of up to 0.5 Mbits/second with good
statistical characteristics. We discuss the engineering challenges
of extracting random bits from digital circuits, and we report the
results of running standard statistical tests (NIST) on the output
generated by our system.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Random Number Generation;
E.3 [Data Encryption].

General Terms
Algorithms, Design, Experimentation, Security.

Keywords
RNG, TRNG, Cryptographic, Random numbers, FPGA.

1. INTRODUCTION
The need for random numbers in cryptographic processes is
ubiquitous. Initialization vectors, block padding, challenges,
nonces, and, of course, keys are some of the cryptographic
objects where a string of unpredictable bits is required. Often
the same Random Number Generator (RNG) supplies bits for all
of the above uses in a cryptographic system. Many of the bits
generated by the RNG are transmitted in the clear and thus a
passive attacker has ample opportunity to analyze the output of
the RNG and can leverage any weaknesses found there.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

FPGA’04, February 22–24, 2004, Monterey, California, USA
Copyright 2004 ACM 1-58113-829-6/04/0002…$5.00.

RNGs used for cryptographic processes must, therefore, be
considered a critical part of the cryptographic system. A
weakness or failure in the RNG can lead to a complete failure of
the system [4].
One well-known example of a successful attack on a weak RNG
is the infamous Netscape V2.0 browser attack [8]. The
engineers at Netscape used the system clock as a source of
randomness. This proved to be insecure. The RNG was used to
generate the keys needed for the SSL protocol and thus the
browser could not fulfill its promise of secure transfer of data.

1.1 Kinds of Random Number Generators
RNGs can be separated into two general categories [15]:

• Pseudo Random Number Generators (PRNGs):
These generators are algorithms, which are initialized
with an externally generated sequence and produce a
much longer sequence that appears to be random.
After being initialized with a seed value the internal
state of the generator completely determines the next
bit to be generated. Given the same seed value a
PRNG will always produce the same sequence.

• True Random Number Generators (TRNGs):
These generators base their output entirely on an
underlying random physical process. Unlike their
deterministic cousins there is no internal state kept in
the generator and the output is based only on the
physical process and not any previously produced bits.
Often the raw bits generated by the physical source
are biased (the probability of a '1' is not 0.5), and thus
some bias reduction is necessary.

In many cases it is possible to combine the two kinds of RNGs
and produce a useful hybrid [11] [20]. In cases where the output
rate of a physical source of random bits is lower then the desired
output bit rate of the RNG it is possible to periodically re-seed a
PRNG with bits from the TRNG to achieve an acceptable
output. As long as the PRNG's expansion of the physical bit
source is complex enough that an attacker cannot feasibly
reverse engineer it (e.g. a one-way hash function such as SHA1)
the hybrid is considered cryptographically secure.

2. PREVIOUS WORK
Electronically generating random bits has been attempted for
many years. In 1946 ATT was issued US patent 2406031 for a
device that produced random bits on five-bit paper tape. The

71

tapes were used to encrypt Teletype traffic (the source of
randomness was a large container of white and black balls).
The source of randomness for our TRNG is two ring oscillators.
Using free running oscillators as a source of randomness has a
long history. An early use was to produce the bits for the
RAND Corporation's 1955 book titled A Million Random Digits
with 100,000 Normal Deviates [17]. Other uses include the
TRNG described in [6] and modeling work covered in [16].
More recent examples of this technique include the TRNG built
into Intel PC chipsets [10] and the TRNG used in the VIA
Technologies Nehemiah processor core [2].

2.1 Field Programmable Gate Arrays
Field Programmable Gate Arrays (FPGAs) are emerging as an
attractive platform for cryptographic implementations. Now
fast enough and large enough to implement any cryptographic
algorithm they offer benefits such as:

• Near-ASIC encryption speeds

• Algorithm and resource efficiencies

• In service algorithm modification

• Low development costs

• Parameter and algorithm eraser on intrusion detection
Until recently, FPGA designs that included a cryptographic
component and required a source of random bits had limited
options. The designer could use any of a variety of special
purpose TRNG chips and make the necessary physical
connections. However, these external interconnections are weak
points that an attacker could observe and exploit. Or the
designer could implement a PRNG in the FPGA and suffer the
resulting degradation in security [1]. In [7] a third option was
introduced. By carefully engineering the frequency of two
clock signals the non-deterministic jitter present in all digital
signals could be extracted.
Jitter is defined by the ITU-T as the variations in the significant
instants of a clock or data signal [9]. Jitter in digital circuits has
many sources including semiconductor noise, cross talk, power
supply variations, and electro-magnetic fields in the operating
environment. Semiconductor noise is the non-deterministic
component that we based our construction on. There are several
ways to characterize jitter. Period jitter, which is the measure of
deviation in a clock's period from its average period, is shown in
Figure 1 [21].
The extraction technique presented in [7] is to use one clock
signal to sample the value of a second clock signal on each
cycle. If the two clock frequencies are slightly different, the
point sampled in the second signal will advance through the
second signal’s cycle. If the change is small enough it will
eventually sample the second signal in the jitter zone. Thus the
sampling will produce a large number of deterministic bits and
at least one uncertain bit taken in the jitter zone. XORing the
deterministic bits and the non-deterministic bit(s) produces a
single random bit.

 Average
Period

Jitter

Uncertainty
about the exact
timing of the
rising edge.

Figure 1 - Period Jitter
A Phase Locked Loop (PLL) present on Altera FPGAs was used
to produce the two clock signals used in this technique. The
PLL synthesized the new signals from the system clock. A PLL
is a device that contains an oscillator whose frequency is
adjusted such that there is no phase difference between it and
the input clock signal. PLLs in FPGAs have two primary uses:

• Reduce clock skew in large clock distribution nets.

• Frequency synthesis.
Frequency synthesis is accomplished by modifying the
oscillator signal before it is fed to the phase detector thereby
causing the internal oscillator to increase or decrease the
frequency of its output signal. Very fine control of the output
frequency of the PLL is possible.
Xilinx is the largest manufacturer of FPGAs. With a 44% [22]
share of the Programmable Logic Device (PLD) market segment
and a broad line of FPGAs and other programmable logic
devices Xilinx is often the choice of system architects.
Unfortunately (for our application), Xilinx FPGAs mostly
provide Delay Locked Loops (DLLs) instead of PLLs. A DLL
inserts delay elements into the path of the clock signal until the
phase difference of the incoming clock and a one cycle delayed
clock is zero. While DLLs work well to reduce clock skew
(their primary function), they cannot provide the fine control
over frequency synthesis necessary for our application. For this
technique to work the difference between the input and output
frequency must be on the order of 0.1%; this is not possible with
current DLL technology.
This paper seeks to extend the technique in [7] to PLL-less
FPGAs.

3. OUR PROPOSED DESIGN
3.1 Overview
Our proposed design as shown in Figure 2 consists of two
independent and identically configured ring oscillators, a
sampling circuit, and a control circuit.
The two ring oscillators each supply a stream of pulses to the
sampler unit. The frequency of the two clock signals is chosen
to be close but not identical. The sampler unit uses one clock
signal to sample the other clock signal. The stream of samples
consists of a run of ones and a gap of zeros. The length of this
run and gap is counted modulo 2 and output as a random bit.

72

 Ring Oscillator

Sampler

Ring Oscillator Clk1

Clk0

Controller

Enable Sample Reset

RandBitOut

BitReady

ReadAck

Figure 2 - Overall Design

3.2 The ring oscillators
The output from our ring oscillator is a stream of regular pulses.

D Q

G

D Q

G 1 1

ClkOut

Figure 3 - Ring Oscillator Components

Our ring oscillator consists of a buffer, two transparent latches,
and an inverter configured serially to feed back on itself. The
buffer and the transparent latches add propagation delay. The
sum of the propagation delays ip through the various elements

of the oscillator determines the nominal output frequency f of
the circuit.

∑
−

=

0
2

1

i
ip

f

By taking care to have the end-to-end propagation delay of the
circuit well above the inertial delays of the individual elements,
the stability of the circuit can be assured.
We tested several different configurations for our oscillator.
The output bit rate of our TRNG is directly related to the
frequency of the ring oscillator, thus a high oscillator frequency
was desirable. We believed that a target frequency for our
oscillator of 150MHz would allow us to easily create counters
and other control logic to test the design without the need for
substantial logic optimization while still providing reasonable

output bit rates. The ring oscillator propagation delay implied by
150MHz is:

ns3.3
000,000,150*2

1
=

The propagation delay through the average gate or latch is
approximately 0.4 ns and the wire delay from the output of the
CLB back to the input of the CLB is about 1.0 ns. Thus we
quickly settled on the design shown in Figure 3.
By design this configuration exactly fit in one Virtex CLB slice.
The output of both latches is routed externally from the output
of the CLB back to its inputs. The output of the oscillator is
taken from the output of the buffer.

C lk E n a b le

C lk R e s e t

A 4
A 3
A 2
A 1

L U T D

D = A 1

C lk O u t

L U T D

D = ~ A
1

F e e d B a c k 0

F e e d B a c k 1

A 4
A 3
A 2
A 1

D

G

Q

In i t

D

G

Q

In i t

Figure 4 - Ring Oscillator CLB Layout

The end-to-end propagation delay through this particular circuit
was found to be approximately 3.7 ns, which resulted in an
output frequency of 130MHz. We note that the individual
components of the circuit each experience a change of input
every 3.7 ns, which is almost an order of magnitude greater then
their inertial delays. In our testing, these ring oscillators were
found to be very reliable. CLB ring oscillators, such as the one
above, have an intrinsic natural difference in speed. These
differences are due to small variations in the physical
characteristics of the CLBs. We expand later in this paper on
the effects of placement of the ring oscillator CLBs on the
FPGA and the effects of temperature on the speed of the ring
oscillator.

3.3 The Sampler
The sampler circuit extracts the jitter contained in the signals
from the two ring oscillators.
As shown in Figure 5, at the input of the sampler circuit a D
type flip flop uses the CLK1 signal to sample the CLK0 signal.
The output of the sampling process (without jitter) is illustrated
in Figure 6. The signal S0 will be high so long as the rising
edges of CLK1 occur during the high portion of CLK0. Once
CLK1's rising edge starts sampling the low portion of CLK0 the
S0 signal will transition to a '0'.
Figure 7 shows what happens as the sampling point moves
through a signal with jitter. The jitter in the CLK0 signal will
be captured and expressed as a change in the cycle length of the
S0 signal. In our sampler circuit we set up a one-bit counter to

73

count cycles in the CLK1 signal (signal C0). By using the S0
signal to latch the value of the C0 counter we can convert the
Least Significant Bit of the length of the S0 signal to a single
random bit (RandOut). The S0 signal is also used to notify the
user of the TRNG that a new random bit is ready. One key
advantage to using this technique is that it captures the essential
random element (the cycle length uncertainty) and very simply
presents it as a single random bit without having to have a priori
knowledge of the frequencies involved.

D Q

D Q

D Q

D Q

CE

CE

Init

Init

Clk0

Clk1

S0

C0

1 BitReady

ReadAck

RandOut

E0 S0 R0

From/To Control
Figure 5 - Sampler Circuit Design

Clk1

Clk0

S0

0

C0

1 RandOut

Figure 6 - Wave Diagrams for the Sampler Circuit

3.4 The control circuits
The description in the previous section only considered the jitter
on the CLK0 signal. Since our ring oscillators are identically
constructed it is reasonable to assume that they have similar
amounts of jitter. In cases where the difference in the cycle
lengths of the two clock signals is very small it is possible for
the S0 signal to transition several times before settling down to a
stable value. Without the control circuit, the sizes of these small
S0 cycles will be counted and presented as (very correlated)
random bits.

S0

Clk1

Clk0

C0

RandOut

Uncertain cycle

0 1
Figure 7 – Sampler Circuit’s Behavior With Jitter

The output of the control circuit drives the Clock Enable (CE)
inputs of the control and output flip-flops. The control circuit
disables these devices immediately after a random bit is latched
into the output flip flop. The control circuit enables the clock
inputs on these two devices only after it has counted a preset
number of CLK1 cycles that have sampled the low portion of
the CLK0 signal. In this way it forces the sampler circuit to
ignore the short S0 cycles that occur on both the rising and
falling edge of S0.
The control circuit also resets the one bit counter after each
random bit is latched. We do this to eliminate any correlation
between successive bits.
An important secondary benefit of the control circuit is that it
prevents any output from the TRNG if the difference between
the cycle lengths of the two ring oscillators is too great. If the
difference in the cycle time of CLK0 and CLK1 is greater then
the width of the jitter zone then some S0 cycles will not contain
a sample that includes jitter. Larger cycle time differences also
produce fewer samples of CLK0. The control circuit will never
enable the output flip-flops if there are too few cycles of '0' in
the S0 signal. Detecting the failure of the internal source of
randomness is a required function of a TRNG [19].

4. RING OSCILLATOR ISSUES
4.1 Good Ratios
A result of our research was the discovery of a wide variation in
the intrinsic speed of ring oscillators in an FPGA. We found a
7% difference between the normalized speeds of the slowest
CLB and the fastest CLB. Our technique requires a pair of ring
oscillator with closely matched frequencies. Thus not all pairs
of ring oscillator are suitable. One difficulty in measuring the
speed of a ring oscillator is that they are very sensitive to the
temperature of the FPGA. We found that by simultaneously
measuring the speed of a reference ring oscillator and the ring
oscillator under test we could normalize the speeds and build a
database of CLB speeds. Using this database we can predict
which pairs of CLBs would produce ring oscillators with a
desired speed ratio.
The frequency of a ring oscillator tends to wander as the
temperature of the chip varies. Even on a mostly empty FPGA
there is a several second period in which the speed of the ring
oscillator decreases as the area around the ring oscillator CLB

74

heats up. In fact, this vary trait is used in [13] to measure the
temperature of various parts of an FPGA. It is important that
frequency of the two ring oscillators does not wander apart due
to temperature differences on the chip. For this reason we found
that it is important to place the two ring oscillators close to each
other.
In order to overcome this placement sensitivity we created a
design that consisted of four ring oscillators that were
individually sampled by a fifth ring oscillator. The four bits
produced by the sampler circuits were XOR’ed to produce a
single output bit. In a test that involved placing and testing the
circuit in 70 locations across the FPGA we saw evidence of poor
statistical properties in only four of the placements (a 95%
success rate). We expect that a larger number of ring oscillators
can further increase the probability of a successful first-time
placement.

4.2 Evidence of Jitter
During the development of this technique we considered the
possibility that the ring oscillators do not produce signals with
jitter. The apparent random output would then be just a
complicated, but deterministic, combination of the two signals.
Depending on the exact relationship of the signals from the two
ring oscillators the sampler circuit would either produce S0
cycles of a single length (resulting in an output of either all
zeros or all ones) or S0 cycles that alternated between two
lengths (resulting in both ones and zeros but in a repeating
pattern) [12]. To explore this argument we built the sampler
circuit described earlier and added a counter to record the full
length of the stream of S0 bits produced by the sampler flip flop.
The resulting analysis of this data is presented below. Using a
pair of ring oscillators with an average frequency of 130MHz
and a cycle difference of 35 ps we obtained the distribution of
cycle lengths shown in Figure 8.

0

500

1000

1500

2000

2500

3000

3500

21
1

21
3

21
5

21
7

21
9

22
1

Signal S0 Size

N
um

be
r o

f O
cc

ur
an

ce
s

Figure 8 - Signal S0 Cycle Lengths for a Frequency
Difference of 35ps
What is most striking about Figure 8 is that it contains nine
different cycle lengths.
A second set of data, presented in Figure 9, provides an even
more dramatic demonstration of the underlying randomness

being extracted. The distribution in Figure 9 was produced with
130MHz oscillator with a cycle length difference of 22ps.

0
200
400
600
800
1000
1200
1400
1600

32
5

32
7

32
9

33
1

33
3

33
5

33
7

33
9

34
1

34
3

Signal S0 Size

N
um

be
r o

f O
cc

ur
an

ce
s

Figure 9 - Signal S0 Cycle Lengths for a Frequency
Difference of 22ps

We note that the cycle length of the S0 signal in Figure 9 ranges
from 322 cycles to 342 cycles and is centered around 332
cycles. This kind of variation could only be produced by a
variation in the length of the ring oscillator cycles themselves
(aka jitter).

4.3 Bias in the Output
Ring oscillator combinations that produce a small number of
cycle length differences (such as in Figure 8 above) sometimes
have a detectable bias in the resulting random bit output. While
the bias is quite small (approximately 0.5%) this is enough to
cause failures in the standard randomness tests. The source of
bias is the limited number of different bit lengths of the S0
signal. Our extraction technique assigns a one to even length S0
cycles and a zero to odd length S0 cycles. Thus the ratio of odd
to even length S0 cycles is directly reflected in the bias of the
resulting random bit stream.
A second source of bias is the occasional meta-stable output
from the sampling flip-flop in the sampler circuit. When a flip-
flop is forced to latch a changing value its output sometimes
becomes metastable, that is it is neither a zero nor a one. This
property is a source of randomness in its own right and is being
investigated as the basis for a TRNG [5]. In our case it appears
the current state of the output flip-flop in the sampler circuit
influenced the resolution of the meta-stable state. By adding a
buffer to the S0 signal we were able to attenuate this source of
bias.
Cryptographically secure TRNGs should have no detectable
bias. Consequently we recommend all TRNGs constructed
using this technique use a bias reduction method.
There are several well-documented ways to reduce bias [3].
Two popular ones are:

• XOR Reduction – With this method successive pairs
of bits are XORed together. This will reduce the bias
of uncorrelated bits in the following way:

75

Assume the probability of a one is p and therefore

the probability of a zero is)1(p− . The probability
that the XOR process will produce a one is

222)1(2)1(ppppXP −=−==

and the probability that the XOR process will produce
a zero is:

122)1()0(222 +−=−+== ppppXP

Table 1 shows the power of this technique:

Table 1 - XOR Bias Improvement

Original Probability
 One Zero

New
Probability
One Zero

0.7 0.3 0.42 0.58

0.6 0.4 0.48 0.52

0.55 0.45 0.495 0.505

0.51 0.49 0.4998 0.5002

It is possible to XOR more than two bits and obtain an
even greater improvement. The downside of this
technique is that the output bit rate is reduced. If the
bits are correlated the XOR technique should not be
used as the output bias will be substantially increased.

• A von Neumann corrector [4] (a.k.a. a von Neumann
Whitener) – For this technique consecutive non-
overlapping pairs of bits are examined, if they are
different output the first bit, if they are the same
discard both and output nothing. This completely
eliminates the bias but at the cost of a potentially
significantly reduced output bit rate. It will also fail if
there are correlations between successive bits.

In our tests we saw no evidence of correlations in the output
stream and thus we used an XOR reduction technique [3].
Although we performed the bias reduction on the bits we
collected on the host computer, in future implementations we
will design this additional step into the hardware itself.

4.4 Bit generation speeds
Our technique is specifically designed to overcome the
variability of ring oscillator frequencies. By using the low-order
bit of the size of the S0 cycle as our random bit our machine
will work even as the speeds of the ring oscillator change. The
output rate of the TRNG is dependent on both the mean
frequency of CLK1 1cF and the difference between the cycle

times of the ring oscillator 0cT and 1cT .

 1
0

10
c

c

cc F
T

TT
OutputRate

 −
=

For example, a pair of 130MHz ring oscillator with a cycle time
difference of 35 ps:

 bps
ps

ps
523,591000,000,130

7692
35

=

Note that the XOR bias reduction will reduce this rate by a
factor of two.

5. TESTING
The design and testing of this TRNG was done on a SLAAC-1V
FPGA test system. The SLAAC-1V board contains three Xilinx
Virtex XCV1000 FPGAs, which can communicate with each
other and with the host computer. The SLAAC board host
machine is a Dell Optiplex running RedHat Linux. Our VHDL
development system is Windows based. We use Synplify V7.2
and the Xilinx ISE-4.2 tool set to produce bit streams for the
SLAAC board.
The ring oscillator pairs used to produce the graphs in the
previous section were each used to produce a 1Gbit (128
MByte) sample file of random bits.
There are several substantial test suites for testing TRNGs [14]
[18] [19].
We present results from the US National Institute of Standards
and Technology (NIST) Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic
Applications [18].
The NIST test suite produces a summary report for each file of
random bits it tests. The table that follows is a result of running
the NIST suite over the set of data produced by our TRNG. The
tables consist of ten columns labeled C1 through C10, A P-
VALUE column, a PROPORTION column, and a column
containing the name of the test for that row.
Each test in the NIST suite is run over a large number of sets of
bits from the file to be tested. The statistic that is generated
from each of these runs is called a P-Value and it represents ...
the probability that a perfect random number generator would
have produced a sequence less random than the sequence that
was tested. [18] For example, if you got a P-Value of 0.95 this
would mean that 95% of the sequences produced by an ideal
RNG would look less random than your sequence Thus, very
small P-values are bad.
With these kinds of tests one expects to get a range of P-values
(in fact, it is bad if you don't get a range). The range from 0 to 1
is divided into ten bins, labeled in this report C1 through C10.
The number in each of these columns represents the number of
tests that had a P-value in the corresponding range. We would
expect that a perfect RNG would have P-values evenly spread
over the range 0 to 1. The column labeled P-VALUE is a chi-

76

square test on the preceding spread of P-values over the range 0
to 1. It is a P-value of P-values. The documentation that
accompanies the suite indicates that: “If P-Value [the number in
the column labeled P-VALUE] >= 0.001, then the sequences
can be considered to be uniformly distributed”.

The PROPORTION column indicates the number of P-values
that were above the 0.01 confidence interval. It is acceptable
for a few individual tests to fail. The test suite will indicate a
problem by flagging the PROPORTION number with an "*".
In our case, none of these tests indicated failure

Table 2 - NIST Results
--

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

--

--

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

--

117 114 122 108 103 105 104 91 109 99 0.657545 0.9888 Frequency

114 90 120 113 106 101 107 120 108 93 0.452068 0.9879 Block-Frequency

118 107 113 130 97 112 93 106 99 97 0.278926 0.9888 Cusum

111 121 113 94 118 121 92 92 114 96 0.178887 0.9907 Cusum

121 89 101 116 112 93 118 118 111 93 0.198956 0.9944 Runs

108 115 108 97 105 115 99 122 100 103 0.789171 0.9907 Long-Run

102 113 116 107 101 85 119 119 99 111 0.381587 0.9916 Rank

 97 133 122 130 106 101 90 104 104 85 0.008761 0.9944 FFT

101 102 98 111 115 102 120 105 107 111 0.906423 0.9879 Aperiodic-Template

105 93 96 124 116 110 100 110 92 126 0.183510 0.9925 Periodic-Template

123 109 111 102 98 106 110 103 104 106 0.917455 0.9860 Universal

123 107 96 106 99 100 125 122 98 96 0.236353 0.9888 Apen

 67 65 71 60 60 63 70 53 59 65 0.890466 0.9842 Random-Excursion

 60 61 70 68 77 56 64 54 63 60 0.666838 0.9921 Random-Excursion-V

100 101 117 121 110 105 95 101 111 111 0.773062 0.9888 Serial

102 81 130 142 96 102 103 127 106 83 0.000105 0.9907 Lempel-Ziv

107 108 113 111 104 101 101 111 115 101 0.984963 0.9841 Linear-Complexity

6. FUTURE WORK
During the design of our TRNGs we noted several opportunities
to increase the bit rate of the device. One obvious change
would be to increase the speed of the ring oscillators. This has
the disadvantage of requiring oscillators more closely matched
in clock period. A second idea we had was to generate random
bits from both the rising edge of the S0 signal (as we do now)
and the falling edge of the signal. This would double the output
of the TRNG.
Increasing the number of ring oscillators that produce bits
appears likely to overcome the problem with finding matched
CLB slices. There is some shared logic in using groups of ring
oscillators and thus we found that each additional ring oscillator
added to a design consumes four CLB slices.
Finally, by adding a counter to the S0 signal it would be
possible to create a real-time “noise-failure” alarm that would

allow the TRNG to signal a failure in the randomness extraction
mechanism.

7. CONCLUSION
We believe that our construction is a useful addition to the
expanding use of FPGAs in cryptographic systems. Being able
to fully contain a TRNG within the FPGA increases the overall
security of the system. By not requiring special resources
within the FPGA (e.g. a PLL) we increase the universe of
designs that can make use of this way of extracting jitter to
make random bits.
Finally, our design has a built in mechanism to halt bit output on
failure of the source of randomness.

77

8. REFERENCES
[1] Chu, P., P., Jones, R., E., Design Techniques of FPGA

Based Random Number Generator, Military and Aerospace
Applications of Programmable Devices and Technologies
Conference, The Johns Hopkins University- Applied
Physics Laboratory, September 1999.

[2] Cryptography Research Inc., Evaluation of VIA C3
Nehemiah Random Number Generator. Technical Report,
Revision Dated: February 27,2003, Available at:
http://www.cryptography.com/resources/whitepapers/index
.html

[3] Davies, R., Exclusive Or (XOR) and Hardware Random
Number Generators. Feb 28, 2002, Available at:
http://www.robertnz.net.

[4] Eastlake, D., Crocker, S., Schiller, J., 1994. Randomness
Recommendations for Security - RFC 1750, Available at:
http://www.faqs.org.

[5] Epstein, M., Hars, L., Krasinski, R., Rosner, M., Zheng, H.,
Design and Implementation of a True Random Number
Generator Based on Digital Circuit Artifacts, Proceedings
of the 5th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2003), Springer-
Verlag, LNCS 2779 (2003).

[6] Fairfield, R., C., Mortenson, R., L., Coulthart, K., B., An
LSI random number generator (RNG), Advances in
Cryptology - Proceedings of Crypto 84, Springer-Verlag,
LNCS 196 (1985), Eds: G.R. Blakley and D. Chaum, pp.
203-230.

[7] Fischer, V., Drutarovský, M., True Random Number
Generator Embedded in Reconfigurable Hardware,
Proceedings of the 4th International Workshop on
Cryptographic Hardware and Embedded Systems (CHES
2002), Springer-Verlag, LNCS 2523 (2002).

[8] Goldberg, I., Wagner, D., Randomness And the Netscape
Browser, Dr. Dobb’s Journal, January 1996.

[9] International Telecommunication Union. Series G:
Transmission Systems and Media: Definitions and
terminology for synchronization networks - ITU-T
Recommendation G.810, (08/96).

[10] Jun, B., Kocher, P., The Intel Random Number Generator,
White Paper Prepared For Intel Corporation. by
Cryptography Research Inc. Available at:
http://www.cryptography.com/resources/whitepapers/index
.html

[11] Kelsey, J., Schneier, B., Ferguson, N., Yarrow-160: Notes
on the Design and Analysis of the Yarrow Cryptographic

Pseudorandom Number Generator, Sixth Annual Workshop
on Selected Areas in Cryptography, Springer-Verlag,
LNCS Volume 1758/2000.

[12] Kohlbrenner, P., The Design and Analyses of a True
Random Number Generator in a Field Programmable Gate
Array, MS Thesis, ECE Department, George Mason
University, Dec 2003, available from the author at
paul@pk40.com.

[13] Lopez-Buedo, S., Riviere, P., Pernas, P., Boemo, E., Run-
time Reconfiguration to Check Temperature in Custom
Computers: An Application of Jbits technology, Field-
Programmable Logic and Applications - Reconfigurable
Computing Is Going Mainstream 12th International
Conference, (FPL 2002), Springer-Verlag LNCS Volume
2438 / 2002

[14] Marsaglia, G., Diehard: A battery of tests for random
number generators, 1985,
http://stat.fsu.edu/~geo/diehard.html.

[15] Menezes, A., van Oorschot, P., Vanstone, S., Handbook of
Applied Cryptography, 1997, CRC Press.

[16] Petrie, C., S., Connelly, J., A., Modeling and simulation of
oscillator-based random number generators, IEEE
International Symposium on Circuits and Systems, 1996.
ISCAS '96 'Connecting the World', Volume: 4, May 1996
Pages: 324 -327 vol.4

[17] RAND Corporation, A Million Random Digits with
100,000 Normal Deviates., 1956, The Free Press.

[18] Rukhin et al., A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic
Applications, NIST Special Publication 800-22 (revised
May 15 2002).

[19] Schindler, W., Killmann, W., Evaluation Criteria for True
(Physical) Random Number Generators used in
Cryptographic Applications, Proceedings of the 4th
International Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2002), Springer-Verlag, LNCS
2523 (2002).

[20] Tsoi, K., H., Leung, K., H., Leong, P., H., W., Compact
FPGA-Based True and Pseudo Random Number
Generators, IEEE Symposium on FPGA-Based Custom
Computing Machines (FCCM 2003).

[21] Xilinx, 2002, Superior Jitter Management With DLLs.
Virtex Tech Topic, VTT013(v1.2).

[22] Xilinx, 2002, Annual Report and Form 10-k.
http://media.corporateir.net/media.les/NSD/XLNX/annual2
002/ar02/letter%.htm.

78

