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Abstract

It is known that a syntactical embedding theorem of Nelson’s paraconsistent logic

N4 into the positive intuitionistic logic LJ is useful to show the cut-elimination

and decidability theorems for N4. In this paper, a semantical embedding the-

orem of N4 into LJ is shown. An alternative proof of the Kripke-completeness

theorem for N4 is obtained by combining both the syntactical and semantical

embedding theorems. Thus, the completeness, cut-elimination and decidability

theorems can uniformly be obtained from these embedding theorems. A single-

consequence Kripke semantics for N4 is also addressed based on a modification

of the semantical embedding theorem.

1. Syntactical embedding: A review

Nelson’s paraconsistent (four-valued) logic N4 (or equivalently N−) [12],
which is a paraconsistent variant of Nelson’s constructive (three-valued)
logic N3 (or equivalently N) [6], has been studied by many researchers (see
e.g. [2,13] for detailed information on Nelson’s logics and their variations).
It was shown by Odintsov [7] that N3 is embeddable into N4. Cut-free
Gentzen-type sequent calculi for Nelson’s logics have been studied (e.g.
[8,13,4,5]), and Kripke semantics for Nelson’s logics have also been studied
(e.g. [10,11,13]). A translation function from N3 into intuitionistic logic has
been proposed and studied by Gurevich [3], Rautenberg [9] and Vorob’ev
[12]. A similar translation function from N4 into positive intuitionistic logic
(called here LJ) can also be obtained. By using such a translation function,
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a syntactical embedding theorem of N4 into LJ and the cut-elimination and
decidability theorems for N4 can easily be obtained (see e.g. [4,5,14] for
some related works).

In this section, the standard sequent calculi for the underlying logics
are presented, and the syntactical embedding theorem and its consequences
(i.e. cut-elimination and decidability) are reviewed. In the next section,
the standard Kripke semantics for the underlying logics are presented, and
a semantical embedding theorem, which is a new result of this paper, is
shown. An alternative embedding-based proof of the Kripke-completeness
theorem for N4 is obtained by combining both the syntactical and seman-
tical embedding theorems. Thus, the completeness, cut-elimination and
decidability theorems can uniformly be obtained from these embedding
theorems. In the final section, a new single-consequence Kripke semantics
for N4 is introduced, and the equivalence between such a semantics and
the standard dual-consequence semantics is proved by modifying the proof
of the semantical embedding theorem.

Prior to the detailed discussion, the language used in this paper is in-
troduced below. The usual propositional language with the strong negation
connective ∼ and without falsity and truth constants is used in this pa-
per. Lower-case letters p, q, r, ... are used to denote propositional variables,
Greek lower-case letters α, β, γ, ... are used to denote formulas, and Greek
capital letters Γ,∆, ... are used to represent finite (possibly empty) sets of
formulas. A sequent is an expression of the form Γ⇒ γ. If a sequent S is
provable in a system L, then such a fact is denoted as L ` S.

Definition 1 (LJ). The initial sequents of LJ are of the form: p⇒ p for
any propositional variable p.

The structural inference rules of LJ are of the form:

Γ⇒ α α,Σ⇒ γ

Γ,Σ⇒ γ
(cut)

Γ⇒ γ

α,Γ⇒ γ
(w − l).

The logical inference rules of LJ are of the form:

Γ⇒ α β,∆⇒ γ

α→β,Γ,∆⇒ γ
(→l)

α,Γ⇒ β

Γ⇒ α→β
(→r)

α, β,Γ⇒ γ

α ∧ β,Γ⇒ γ
(∧l)

Γ⇒ α Γ⇒ β

Γ⇒ α ∧ β
(∧r)
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α,Γ⇒ γ β,Γ⇒ γ

α ∨ β,Γ⇒ γ
(∨l)

Γ⇒ α

Γ⇒ α ∨ β
(∨r1)

Γ⇒ β

Γ⇒ α ∨ β
(∨r2).

Definition 2 (N4). N4 is obtained from LJ by adding the initial sequents
of the form: ∼p⇒ ∼p for any propositional variable p, and the logical
inference rules of the form:

α,Γ⇒ γ

∼∼α,Γ⇒ γ
(∼∼l)

Γ⇒ α

Γ⇒ ∼∼α
(∼∼r)

α,∼β,Γ⇒ γ

∼(α→β),Γ⇒ γ
(∼→l)

Γ⇒ α Γ⇒ ∼β
Γ⇒ ∼(α→β)

(∼→r)

∼α,Γ⇒ γ ∼β,Γ⇒ γ

∼(α ∧ β),Γ⇒ γ
(∼ ∧ l)

Γ⇒ ∼α
Γ⇒ ∼(α ∧ β)

(∼ ∧ r1)
Γ⇒ ∼β

Γ⇒ ∼(α ∧ β)
(∼ ∧ r2)

∼α,∼β,Γ⇒ γ

∼(α ∨ β),Γ⇒ γ
(∼ ∨ l)

Γ⇒ ∼α Γ⇒ ∼β
Γ⇒ ∼(α ∨ β)

(∼ ∨ r).

The sequents of the form α⇒ α for any formula α are provable in LJ
and N4.

Definition 3. We fix a set Φ of propositional variables and define the set
Φ′ := {p′ | p ∈ Φ} of propositional variables. The language LN4 of N4 is
defined using Φ, →,∧,∨ and ∼. The language LLJ of LJ is obtained from
LN4 by adding Φ′ and deleting ∼.

A mapping f from LN4 to LLJ is inductively defined by:

1. for any p ∈ Φ, f(p) := p and f(∼p) := p′ ∈ Φ′,

2. f(α ◦ β) := f(α) ◦ f(β) where ◦ ∈ {→,∧,∨},
3. f(∼∼α) := f(α),

4. f(∼(α→β)) := f(α) ∧ f(∼β),

5. f(∼(α ∧ β)) := f(∼α) ∨ f(∼β),

6. f(∼(α ∨ β)) := f(∼α) ∧ f(∼β).

An expression f(Γ) denotes the result of replacing every occurrence of
a formula α in Γ by an occurrence of f(α).
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Theorem 4 (Syntactical embedding). Let Γ be a set of formulas in LN4, γ
be a formula in LN4, and f be the mapping defined in Definition 3. Then:

1. N4 ` Γ⇒ γ iff LJ ` f(Γ)⇒ f(γ),

2. N4 − (cut) ` Γ⇒ γ iff LJ − (cut) ` f(Γ)⇒ f(γ).

Corollary 5 (Cut-elimination). The rule (cut) is admissible in cut-free
N4.

Proof. Suppose N4 ` Γ⇒ γ. Then, we have LJ ` f(Γ)⇒ f(γ) by The-
orem 4 (1), and hence LJ − (cut) ` f(Γ)⇒ f(γ) by the cut-elimination
theorem for LJ. By Theorem 4 (2), we obtain the required fact N4 − (cut)
` Γ⇒ γ. Q.E.D.

Corollary 6 (Decidability). N4 is decidable.

Proof. By decidability of LJ, for each α, it is possible to decide if f(α)
is provable in LJ. Then, by Theorem 4, N4 is decidable. Q.E.D.

2. Semantical embedding

Definition 7. A Kripke frame is a structure 〈M,R〉 satisfying the follow-
ing conditions:

1. M is a nonempty set,

2. R is a reflexive and transitive binary relation on M .

Definition 8. A valuation |= on a Kripke frame 〈M,R〉 is a mapping
from the set Φ of propositional variables to the power set 2M of M such
that for any p ∈ Φ and any x, y ∈ M , if x ∈ |= (p) and xRy, then y ∈
|= (p). We will write x |= p for x ∈ |= (p). This valuation |= is extended
to a mapping from the set of all formulas to 2M by:

1. x |= α→β iff ∀y ∈M [xRy and y |= α imply y |= β],

2. x |= α ∧ β iff x |= α and x |= β,

3. x |= α ∨ β iff x |= α or x |= β.

The following hereditary condition holds for |=: for any formula α and
any x, y ∈M , if x |= α and xRy, then y |= α.
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Definition 9. A Kripke model is a structure 〈M,R, |=〉 such that

1. 〈M,R〉 is a Kripke frame,

2. |= is a valuation on 〈M,R〉.
A formula α is true in a Kripke model 〈M,R, |=〉 if x |= α for any x ∈M ,
and is LJ-valid in a Kripke frame 〈M,R〉 if it is true for every valuation
|= on the Kripke frame.

Definition 10. Paraconsistent valuations |=+ and |=− on a Kripke frame
〈M,R〉 are mappings from the set Φ of propositional variables to the power
set 2M of M such that for any ? ∈ {+,−}, any p ∈ Φ and any x, y ∈ M ,
if x ∈ |=? (p) and xRy, then y ∈ |=? (p). We will write x |=? p for x
∈ |=? (p). These paraconsistent valuations |=+ and |=− are extended to
mappings from the set of all formulas to 2M by:

1. x |=+ α→β iff ∀y ∈M [xRy and y |=+ α imply y |=+ β],

2. x |=+ α ∧ β iff x |=+ α and x |=+ β,

3. x |=+ α ∨ β iff x |=+ α or x |=+ β,

4. x |=+ ∼α iff x |=− α,

5. x |=− ∼α iff x |=+ α,

6. x |=− α→β iff x |=+ α and x |=− β,

7. x |=− α ∧ β iff x |=− α or x |=− β,

8. x |=− α ∨ β iff x |=− α and x |=− β.

The hereditary condition holds for |=+ and |=−.

Definition 11. A paraconsistent Kripke model is a structure 〈M,R, |=+,
|=−〉 such that

1. 〈M,R〉 is a Kripke frame,

2. |=+ and |=− are paraconsistent valuations on 〈M,R〉.
A formula α is true in a paraconsistent Kripke model 〈M,R, |=+, |=−〉 if
x |=+ α for any x ∈ M , and is N4-valid in a Kripke frame 〈M,R〉 if it is
true for every paraconsistent valuations |=+ and |=− on the Kripke frame.

Lemma 12. Let f be the mapping defined in Definition 3. For any paracon-
sistent Kripke model 〈M,R, |=+, |=−〉, there exists a Kripke model 〈M,R, |=〉
such that for any formula α and any x ∈M ,
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1. x |=+ α iff x |= f(α),

2. x |=− α iff x |= f(∼α).

Proof. Let Φ be a set of propositional variables and Φ′ be the set
{p′ | p ∈ Φ} of propositional variables. Suppose that 〈M,R, |=+, |=−〉
is a paraconsistent Kripke model where |=+ and |=− are mappings from Φ
to the power set 2M of M , and that the hereditary condition w.r.t. p ∈ Φ
holds for |=+ and |=−. Suppose that 〈M,R, |=〉 is a Kripke model where |=
is a mapping from Φ ∪ Φ′ to 2M , and that the hereditary condition w.r.t.
p ∈ Φ ∪ Φ′ holds for |=. Suppose moreover that these models satisfy the
following conditions: for any x ∈M and any p ∈ Φ,

1. x |=+ p iff x |= p,

2. x |=− p iff x |= p′.

Then, the lemma is proved by (simultaneous) induction on the com-
plexity of α.
• Base step:
Case α ≡ p ∈ Φ: For (1), we obtain: x |=+ p iff x |= p iff x |= f(p) (by

the definition of f). For (2), we obtain: x |=− p iff x |= p′ iff x |= f(∼p)
(by the definition of f).
• Induction step:
Case α ≡ β ∧ γ: For (1), we obtain: x |=+ β ∧ γ iff x |=+ β and

x |=+ γ iff x |= f(β) and x |= f(γ) (by induction hypothesis for 1) iff
x |= f(β) ∧ f(γ) iff x |= f(β ∧ γ) (by the definition of f). For (2), we
obtain: x |=− β ∧ γ iff x |=− β or x |=− γ iff x |= f(∼β) or x |= f(∼γ) (by
induction hypothesis for 2) iff x |= f(∼β) ∨ f(∼γ) iff x |= f(∼(β ∧ γ)) (by
the definition of f).

Case α ≡ β ∨ γ: Similar to the above case.
Case α ≡ β→γ: For (1), we obtain: x |=+ β→γ iff ∀y ∈ M [xRy and

y |=+ β imply y |=+ γ] iff ∀y ∈ M [xRy and y |= f(β) imply y |= f(γ)]
(by induction hypothesis for 1) iff x |= f(β)→f(γ) iff x |= f(β→γ) (by the
definition of f). For (2), we obtain: x |=− β→γ iff x |=+ β and x |=− γ
iff x |= f(β) and x |= f(∼γ) (by induction hypothesis for 1 and 2) iff
x |= f(β) ∧ f(∼γ) iff x |= f(∼(β→γ)) (by the definition of f).

Case α ≡ ∼β: For (1), we obtain: x |=+ ∼β iff x |=− β iff x |= f(∼β)
(by induction hypothesis for 2). For (2), we obtain: x |=− ∼β iff x |=+ β iff
x |= f(β) (by induction hypothesis for 1) iff x |= f(∼∼β) (by the definition
of f). Q.E.D.
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Lemma 13. Let f be the mapping defined in Definition 3. For any Kripke
model 〈M,R, |=〉, there exists a paraconsistent Kripke model 〈M,R, |=+,
|=−〉 such that for any formula α and any x ∈M ,

1. x |= f(α) iff x |=+ α,

2. x |= f(∼α) iff x |=− α.

Proof. Similar to the proof of Lemma 12. Q.E.D.

Theorem 14 (Semantical embedding). Let f be the mapping defined in
Definition 3. For any formula α, α is N4-valid iff f(α) is LJ-valid.

Proof. By Lemmas 12 and 13. Q.E.D.

Theorem 15 (Completeness). For any formula α, N4 ` ⇒ α iff α is
N4-valid.

Proof. N4 ` ⇒ α iff LJ ` ⇒ f(α) (by Theorem 4) iff f(α) is LJ-valid
(by the Kripke completeness theorem for LJ) iff α is N4-valid (by Theorem
14). Q.E.D.

3. Single-consequence semantics

Some modifications of Lemmas 12 and 13 give an alternative “single-con-
sequence” semantics for N4, which has a single valuation |=∗ instead of the
dual valuations |=+ and |=−.

Definition 16. Let Φ be the set of propositional variables and Φ∼ be the
set {∼p | p ∈ Φ}. A single paraconsistent valuation |=∗ on a Kripke frame
〈M,R〉 is a mapping from Φ∪Φ∼ to 2M such that for any p ∈ Φ∪Φ∼ and
any x, y ∈ M , if x ∈ |=∗ (p) and xRy, then y ∈ |=∗ (p). We will write
x |=∗ p for x ∈ |=∗ (p). The single paraconsistent valuation |=∗ is extended
to a mapping from the set of all formulas to 2M by:

1. x |=∗ α→β iff ∀y ∈M [xRy and y |=∗ α imply y |=∗ β],

2. x |=∗ α ∧ β iff x |=∗ α and x |=∗ β,

3. x |=∗ α ∨ β iff x |=∗ α or x |=∗ β,

4. x |=∗ ∼∼α iff x |=∗ α,

5. x |=∗ ∼(α→β) iff x |=∗ α and x |=∗ ∼β,
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6. x |=∗ ∼(α ∧ β) iff x |=∗ ∼α or x |=∗ ∼β,

7. x |=∗ ∼(α ∨ β) iff x |=∗ ∼α and x |=∗ ∼β.

The hereditary condition holds for |=∗.

Definition 17. A single paraconsistent Kripke model is a structure 〈M,R, |=∗ 〉
such that

1. 〈M,R〉 is a Kripke frame,

2. |=∗ is a single paraconsistent valuation on 〈M,R〉.
A formula α is true in a single paraconsistent Kripke model 〈M,R, |=∗〉 if
x |=∗ α for any x ∈ M , and is S-valid in a Kripke frame 〈M,R〉 if it is
true for every single paraconsistent valuation |=∗ on the Kripke frame.

Lemma 18. For any paraconsistent Kripke model 〈M,R, |=+, |=−〉, there
exists a single paraconsistent Kripke model 〈M,R, |=∗〉 such that for any
formula α and any x ∈M ,

1. x |=+ α iff x |=∗ α,

2. x |=− α iff x |=∗ ∼α.

Proof. Let Φ be a set of propositional variables and Φ∼ be the set
{∼p | p ∈ Φ}. Suppose that 〈M,R, |=+, |=−〉 is a paraconsistent Kripke
model where |=+ and |=− are mappings from Φ to the power set 2M of
M , and that the hereditary condition w.r.t. p ∈ Φ holds for |=+ and |=−.
Suppose that 〈M,R, |=∗〉 is a single paraconsistent Kripke model where |=∗
is a mapping from Φ ∪ Φ∼ to 2M , and that the hereditary condition w.r.t.
p ∈ Φ ∪ Φ∼ holds for |=∗. Suppose moreover that these models satisfy the
following conditions: for any x ∈M and any p ∈ Φ,

1. x |=+ p iff x |=∗ p,
2. x |=− p iff x |=∗ ∼p.
Then, the lemma is proved by (simultaneous) induction on the com-

plexity of α. The proof is similar to the proof of Lemma 12. Q.E.D.

Lemma 19. For any single paraconsistent Kripke model 〈M,R, |=∗〉, there
exists a paraconsistent Kripke model 〈M,R, |=+, |=−〉 such that for any
formula α and any x ∈M ,

1. x |=∗ α iff x |=+ α,

2. x |=∗ ∼α iff x |=− α.
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Proof. Similar to the proof of Lemma 18. Q.E.D.

Theorem 20 (Equivalence). For any formula α, α is N4-valid iff α is
S-valid.

Proof. By Lemmas 18 and 19. Q.E.D.

Theorem 21 (Completeness). For any formula α, N4 ` ⇒ α iff α is
S-valid.

Proof. By Theorems 20 and 15. Q.E.D.
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