An embedding of l^2 -manifold pairs in l^2

Dedicated to Professor Kiiti Morita for his 60th birthday

By Katsuro SAKAI

(Received Nov. 20, 1974)

§0. Introduction.

An l^2 -manifold is a separable manifold modelled on the separable Hilbert space l^2 . A closed subset K of a space X is a Z-set in X if for each nonempty homotopically trivial open set U, U-K is non-empty and homotopically trivial. It is known that, in an l^2 -manifold pair (M, N), N is a Z-set in M if and only if N is a collared closed subset of M (collared in the sense of M. Brown). Then (M, N) may be considered as a manifold-with-boundary, N being the boundary.

R.D. Anderson raised the problem in [1]: Under what condition can M be embedded in l^2 such that N is the topological boundary under the embedding? In this paper, we give an answer to this problem:

THEOREM. Let (M, N) be an l^2 -manifold pair with N a Z-set in M. If one of the following conditions is satisfied, there exists a closed embedding $h: M \rightarrow l^2$ such that bd(h(M)) = h(N).

Condition I) M is contractible (then M is homeomorphic (\cong) to l^2).

Condition II) $N = N_0 \cup N_1$ where N_0 and N_1 are disjoint closed and N_0 is a deformation retract of M.

The author wishes to thank Prof. Y. Kodama for helpful comments.

§1. Techniques of infinite-dimensional topology.

Let α be an open cover of a space X. Then a map $f: X \to X$ is said to be α -limited provided that for each $x \in X$ there exists some $U \in \alpha$ such that x, $f(x) \in U$. If X is a metric space and K is a closed subset of X, then there exists an open cover α of X-K such that each α -limited embedding f: X-K $\rightarrow X-K$ can be extended to an embedding $f': X \to X$ such that $f' \mid K = id$ (Lemma 3 of [2]). Such a cover α of X-K is said to be normal (with respect to K).

In the following theorems, M and N are l^2 -manifolds.

OET (OPEN EMBEDING THEOREM): M can be embedded as an open subset of l^2 ([7] or Theorem 4 of [8]).

ST (STABILITY THEOREM): $M \times l^2 \cong M$ ([4] or [12]).

CT (CLASSIFICATION THEOREM): Every homotopy equivalence $f: M \rightarrow N$ is

homotopic (\simeq) to a homeomorphism (Corollary 3 of [7] or Theorem 6 of [8]).

HET (HOMEOMORPHISM EXTENSION THEOREM): For homotopic Z-embeddings $f \simeq g: X \rightarrow M$ (i. e. f(X), g(X) are Z-sets in M), there exists a homeomorphism $h: M \rightarrow M$ such that f = hg ([3] or Theorem 1 and 2 of [5]).

TAE (THEOREM OF APPROXIMATION BY EMBEDDINGS): Each continuous map $f: M \rightarrow N$ can be approximated by closed embeddings $g: M \rightarrow N$ and open embeddings $h: M \rightarrow N$ such that $f \simeq g \simeq h$ (Corollary 6 of [7] and Theorem C of [9]).

TNZ (THEOREM OF NEGLIGIBILITY OF Z-SETS): Any Z-set K in M is strongly negligible in M (i.e. for each open cover α of M, there exists an α -limited homeomorphism $h: M \rightarrow M - K$) ([2] or Corollary of [5]).

§2. Proof of Theorem.

Our theorem is based on the following Henderson's result in [6] for open subset of Hilbert space:

LEMMA. If U is an open subset of l^2 , then U is homeomorphic to an open subset V of l^2 such that

(a) $l^2 - V \cong l^2 - cl(V) \cong l^2$,

(b) $V \cong cl(V) \cong bd(V)$, and

(c) there is an open embedding $k: bd(V) \times R \rightarrow l^2$ such that k(x, 0) = x and $k(bd(V) \times (-\infty, 0)) = V$, where R is the real line.

We shall give the proof in the following three cases.

I) The case that M is contractible.

In this case, $M \cong l^2$ by the CT. Since N can be considered as an open subset of l^2 (by the OET), then by the lemma of Henderson, there exists an open subset V of l^2 such that

(a) $l^2 - V \cong l^2 - cl(V) \cong l^2$,

(b) $V \cong cl(V) \cong bd(V) \cong N$, and

(c) bd(V) is collared in $l^2 - V$ (then a Z-set in $l^2 - V$).

Let $f: M \to l^2 - V$ be a homeomorphism. Since f(N) and bd(V) are homeomorphic Z-sets in $f(M) = l^2 - V$ ($\cong l^2$), then there exists a homeomorphism $g: f(M) \to f(M) = l^2 - V$ such that $gf(N) = bd(V) = bd(l^2 - V) = bd(gf(M))$.

II)-i The case that N is a deformation retract of M.

This condition is equivalent to the condition which N is a strong deformation retract of M because M is an ANR (see [10]), that is, the inclusion $N \subset M$ is a homotopy equivalence.

By the OET, we can consider M as an open subset of l^2 . Then there exist an open subset V of l^2 and an open embedding $k: bd(V) \times R \rightarrow l^2$ such that

(a) $V \cong cl(V) \cong bd(V) \cong M$,

(b) k(x, 0) = x for each $x \in bd(V)$, and

(c) $k(bd(V)\times(-\infty, 0)) = V$ (hence $k(bd(V)\times(-\infty, 0]) = cl(V)$).

Let $f: M \to cl(V)$ be a homeomorphism and let $k_t: cl(V) \to cl(V)$ be defined by $k_t(x) = k(p_1k^{-1}(x), (1-t) \cdot p_2k^{-1}(x))$ where $p_1: bd(V) \times (-\infty, 0] \to bd(V)$ and $p_2: bd(V) \times (-\infty, 0] \to (-\infty, 0]$ are projections. By the TAE, there exists a closed embedding $g': N \to bd(V)$ such that $g' \simeq k_1 f | N$, then $g' \simeq k_0 f | N = f | N$ in cl(V). Since bd(V) is a Z-set in cl(V) and g'(N) is closed in bd(V), then g' < cl(V), then g' < log(V). By the HET, there exists a homeomorphism $g: cl(V) \to cl(V)$ such that gf | N = g'.

Let $d_t: M \to M$ be a strong deformation retraction of M to N. Since $k_1: cl(V) \to bd(V)$ is a retraction and $gfd_tf^{-1}g^{-1}: cl(V) \to cl(V)$ is a strong deformation retraction of cl(V) to $gf(N) = g'(N) \subset bd(V)$, then $k_1gfd_tf^{-1}g^{-1}|bd(V): bd(V) \to bd(V)$ is a strong deformation retraction of bd(V) to gf(N), that is, the inclusion $gf(N) \subset bd(V)$ is a homotopy equivalence. By the CT, there exists a homeomorphism $h': gf(N) \to bd(V)$ which is homotopic to the inclusion. Since gf(N) and bd(V) are Z-sets in cl(V), then there exists a homeomorphism $h: cl(V) \to cl(V)$ which is an extension of h' (by the HET). Then hgf(N) = bd(V). We obtain a desired embedding $hgf: M \to l^2$.

II)-ii. The case that $N = N_0 \cup N_1$ where N_0 and N_1 are disjoint closed and N_0 is a deformation retract of M.

Similarly as in the proof of the case II)-i, there exist an open subset V of l^2 and an open embedding $k: bd(V) \times R \rightarrow l^2$ such that

- (a) $l^2 V \cong l^2 cl(V) \cong l^2$,
- (b) $V \cong cl(V) \cong bd(V) \cong M$,
- (c) k(x, 0) = x for each $x \in bd(V)$, and
- (d) $k(bd(V)\times(-\infty, 0]) = cl(V)$.

Let $W = k(bd(V) \times [-1, 0])$, $W_0 = k(bd(V) \times \{0\}) = bd(V)$ and $W_1 = k(bd(V) \times \{-1\})$. Since $l^2 \times [0, 1] \cong l^2$ by Klee's theorem (Theorem III.1.3 of [11]), then by the ST, $W \cong bd(V) \times [-1, 0] \cong M \times [0, 1] \cong M \times l^2 \times [0, 1] \cong M \times l^2 \cong M$. Similarly as II)-i, there exists a homeomorphism $f: M \to W$ such that $f(N_0) = W_0$. We may assume that $f(N_1) \subset k(bd(V) \times [-1, -1/2])$. Let $r_t: [-1, 0] \to [-1, 0]$ be defined by

$$r_t(s) = \begin{cases} (1+t) \cdot s & \text{for } -1/2 \leq s \leq 0\\ (1-t) \cdot (s+1) - 1 & \text{for } -1 \leq s \leq -1/2 \end{cases}$$

and let $k_t: W \to W$ be defined by $k_t(x) = k(p_1k^{-1}(x), r_tp_2k^{-1}(x))$ where $p_1: bd(V) \times [-1, 0] \to bd(V)$ and $p_2: bd(V) \times [-1, 0] \to [-1, 0]$ are projections. By the TAE, there exists a closed embedding $g'': N_1 \to W_1$ such that $g'' \simeq k_1 f | N_1$, then $g'' \simeq k_0 f | N_1 = f | N_1$ in W. Let $g': N \to bd(W) = W_0 \cup W_1$ be defined by $g' | N_0 = f | N_0$ and $g' | N_1 = g''$. Since g'(N) and f(N) are Z-sets in W and since

g' is homotopic to f|N, then there exists a homeomorphism $g: W \to W$ such that gf|N=g' (by the HET), that is, $gf(N_0)=W_0$ and $gf(N_1)$ is a closed subset of W_1 .

Since W-gf(N) is open in W, then W-gf(N) is an l^2 -manifold and $W_1-gf(N_1)$ is a Z-set in W-gf(N). Let α be a normal cover of W-gf(N) with respect to gf(N). By the TNZ, there exists an α -limited homeomorphism $h': W-gf(N) \rightarrow (W-gf(N)) - (W_1-gf(N_1))$. Since α is normal, then h' has the extension $h: W \rightarrow W - (W_1-gf(N_1)) = (W-W_1) \cup gf(N_1)$ such that h|gf(N) = id. Let $H = (l^2 - V) \cup (W - W_1) \cup k(k^{-1}(gf(N_1)) \times (-\infty, -1])$ (note that $gf(N_1) \subset W_1 = k(bd(V) \times \{-1\})$). It is easy to see that each point of H has an open neighbourhood homeomorphic to l^2 , that is, H is an l^2 -manifold. Since H is homeotopically equivalent to $l^2 - V \cong l^2$, then $H \cong l^2$ by the CT. Let $j: H \rightarrow l^2$ be a homeomorphism. We obtain a desired embedding $jhgf: M \rightarrow l^2$.

References

- R. D. Anderson, Some open questions in infinite-dimensional topology, Proc. of the 3-rd Prague Top. Symp. 1971, 29-35.
- [2] R.D. Anderson, D.W. Henderson and J.E. West, Negligible subsets of infinitedimensional manifolds, Compositio Math., 21 (1969), 143-150.
- [3] R.D. Anderson and J.D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc., 25 (1970), 283-289.
- [4] R. D. Anderson and R. Schori, Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc., 142 (1969), 315-330.
- [5] T.A. Chapman, Deficiency in infinite-dimensional manifolds, General Topology and Appl., 1 (1971), 263-272.
- [6] D. W. Henderson, Open subsets of Hilbert space, Compositio Math., 21 (1969), 312-318.
- [7] D.W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Topology, 9 (1970), 25-33.
- [8] D.W. Henderson, Corrections and extensions of two papers about infinitedimensional manifolds, General Topology and Appl., 1 (1971), 321-327.
- [9] D. W. Henderson and R. Schori, Topological classification of infinite-dimensional manifolds by homotopy type, Bull. Amer. Math. Soc., 76 (1970), 121-124.
- [10] S-T. Hu, Theory of retracts, Wayne St. Univ. Press, 1965.
- [11] V. L. Klee, Convex bodies and periodic homeomorphism in Hilbert space, Trans. Amer. Math. Soc., 74 (1953), 10-43.
- [12] R. Schori, Topological stability for infinite-dimensional manifolds, Compositio Math., 23 (1971), 87-100.

Katsuro SAKAI Department of Mathematics Faculty of Education Kagawa University Takamatsu Japan

560