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\S 0. Introduction.

An $l^{2}$-manifold is a separable manifold modelled on the separable Hilbert
space $l^{2}$ . A closed subset $K$ of a space $X$ is a Z-set in $X$ if for each non-
empty homotopically trivial open set $U,$ $U-K$ is non-empty and homotopically
trivial. It is known that, in an $l^{2}$ -manifold pair $(M, N),$ $N$ is a $Z$-set in $M$ if
and only if $N$ is a collared closed subset of $M$ (collared in the sense of M.
Brown). Then $(M, N)$ may be considered as a manifold-with-boundary, $N$ being
the boundary.

R. D. Anderson raised the problem in [1]: Under what condition can $M$

be embedded in $l^{2}$ such that $N$ is the toPological boundary under the embedding?
In this Paper, we give an answer to this problem:

THEOREM. Let $(M, N)$ be an $l^{2}$ -manifold Pair with $N$ a Z-set in M. If
one of the following conditions is satisfied, there exists a closed embedding
$h:M\rightarrow l^{2}$ such that $bd(h(M))=h(N)$ .

Condition I) $M$ is contractible (then $M$ is homeomorphic $(\cong)$ to $l^{2}$ ).

Condition II) $N=N_{0}\cup N_{1}$ where $N_{0}$ and $N_{1}$ are disjoint closed and $N_{0}$ is
a deformation retract of $M$.
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\S 1. Techniques of infinite-dimensional topology.

Let $\alpha$ be an open cover of a space $X$. Then a map $f:X\rightarrow X$ is said to
be $\alpha$ -limited provided that for each $x\in X$ there exists some $ U\in\alpha$ such that
$x,$ $f(x)\in U$ . If $X$ is a metric space and $K$ is a closed subset of $X$ , then there
exists an open cover $\alpha$ of $X-K$ such that each $\alpha$ -limited embedding $f:X-K$
$\rightarrow X-K$ can be extended to an embedding $f^{\prime}$ : $X\rightarrow X$ such that $f^{\prime}|K=id$ (Lemma

3 of [2]). Such a cover $\alpha$ of $X-K$ is said to be normal (with respect to $K$ ).

In the following theorems, $M$ and $N$ are $l^{2}$-manifolds.
OET (OPEN EMBEDING THEOREM): $M$ can be embedded as an open subset

of $l^{2}$ ([7] or Theorem 4 of [8]).

ST (STABILITY THEOREM): $M\times l^{2}\cong M$ ([4] or [12]).

CT (CLASSIFICATION THEOREM): Every homotopy equivalence $f:M\rightarrow N$ is
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homotopic $(\simeq)$ to a homeomorphism (Corollary 3 of [7] or Theorem 6 of [8]).

HET (HOMEOMORPHISM EXTENSION THEOREM): For homotopic $Z$-embeddings
$f\simeq g:X\rightarrow M$ ( $i$ . $e$ . $f(X),$ $g(X)$ are $Z$-sets in $M$ ), there exists a homeomorphism
$h:M\rightarrow M$ such that $f=hg$ ([3] or Theorem 1 and 2 of [5]).

TAE (THEOREM OF APPROXIMATION BY EMBEDDINGS): Each continuous
map $f:M\rightarrow N$ can be apprOximated by closed embeddings $g:M\rightarrow N$ and oPen
embeddings $h:M\rightarrow N$ such that $f\simeq g\simeq h$ (Corollary 6 of [7] and Theorem $C$

of [9]).

TNZ (THEOREM OF NEGLIGIBILITY OF Z-SETS): Any Z-set $K$ in $M$ is strongly
negligible in $M(i$ . $e$ . for each open cover $\alpha$ of $M$, there exists an $\alpha$ -limited
homeomorphism $h:M\rightarrow M-K$ ) ([2] or Corollary of [5]).

\S 2. Proof of Theorem.

Our theorem is based on the following Henderson’s result in [6] for open
subset of Hilbert space:

LEMMA. If $U$ is an open subset of $l^{2}$ , then $U$ is homeomorphic to an open
subset $V$ of $l^{2}$ such that

(a) $l^{2}-V\cong l^{2}-cl(V)\cong l^{2}$ ,
(b) $V\cong cl(V)\cong bd(V)$ , and
(c) there is an open embedding $k:bd(V)\times R\rightarrow l^{2}$ such that $k(x, O)=x$ and

$k(bd(V)\times(-\infty, 0))=V$, where $R$ is the real line.
We shall give the proof in the following three cases.

I) The case that $M$ is contractible.
In this case, $M\cong l^{2}$ by the CT. Since $N$ can be considered as an open

subset of $l^{2}$ (by the OET), then by the lemma of Henderson, there exists an
open subset $V$ of $l^{2}$ such that

(a) $l^{2}-V\cong l^{2}-cl(V)\cong l^{2}$ ,
(b) $V\cong cl(V)\cong bd(V)\cong N$, and
(c) $bd(V)$ is collared in $l^{2}-V$ (then a Z-set in $l^{2}-V$ ).

Let $f:M\rightarrow l^{2}-V$ be a homeomorphism. Since $f(N)$ and $bd(V)$ are homeomor-
phic Z-sets in $f(M)=l^{2}-V(\cong l^{2})$ , then there exists a homeomorphism $g:f(M)$

$\rightarrow f(M)=l^{2}-V$ such that $gf(N)=bd(V)=bd(l^{2}-V)=bd(gf(M))$ .
$II)-i$ The case that $N$ is a deformation retract of $M$.

This condition is equivalent to the condition which $N$ is a strong deforma-
tion retract of $M$ because $M$ is an ANR (see [10]), that is, the inclusion $N\subset M$

is a homotopy equivalence.
By the OET, we can consider $M$ as an open subset of $l^{2}$ . Then there exist

an open subset $V$ of $l^{2}$ and an open embedding $k:bd(V)\times R\rightarrow l^{2}$ such that
(a) $V\cong cl(V)\cong bd(V)\cong M$,



Embedding of $l^{2}$-manifold pairs in $l^{2}$ 559

(b) $k(x, O)=x$ for each $x\in bd(V)$ , and
(c) $k(bd(V)\times(-\infty, 0))=V$ (hence $k(bd(V)\times(-\infty, 0$]) $=cl(V))$ .

Let $f:M\rightarrow cl(V)$ be a homeomorphism and let $k_{t}$ : $cl(V)\rightarrow cl(V)$ be defined by
$k_{t}(x)=k(p_{1}k^{-1}(x), (1-t)\cdot P_{2}k^{-1}(x))$ where $p_{1}$ ; $bd(V)\times(-\infty, 0$] $\rightarrow bd(V)$ and
$P_{2}$ : $bd(V)\times(-\infty, 0$] $\rightarrow(-\infty, 0$] are projections. By the TAE, there exists a
closed embedding $g^{\prime}$ : $N\rightarrow bd(V)$ such that $g^{\prime}\simeq k_{1}f|N$, then $g^{\prime}\simeq k_{0}f|N=f|N$ in
$cl(V)$ . Since $bd(V)$ is a Z-set in $cl(V)$ and $g^{\prime}(N)$ is closed in $bd(V)$ , then
$g^{\prime}(N)$ is a Z-set in $cl(V)$ . By the HET, there exists a homeomorphism $g:cl(V)$

$\rightarrow cl(V)$ such that $gf|N=g^{\prime}$ .
Let $d_{t}$ : $M\rightarrow M$ be a strong deformation retraction of $M$ to $N$. Since

$k_{1}$ : $cl(V)\rightarrow bd(V)$ is a retraction and $gfd_{t}f^{-1}g^{-1}$ : $cl(V)\rightarrow cl(V)$ is a strong de-
formation retraction of $cl(V)$ to $gf(N)=g^{\prime}(N)\subset bd(V)$ , then $k_{1}gfd_{t}f^{-1}g^{-1}|bd(V)$ :
$bd(V)\rightarrow bd(V)$ is a strong deformation retraction of $bd(V)$ to $gf(N)$ , that is,

the inclusion $gf(N)\subset bd(V)$ is a homotopy equivalence. By the CT, there
exists a homeomorphism $h^{\prime}$ : $gf(N)\rightarrow bd(V)$ which is homotopic to the inclusion.
Since $gf(N)$ and $bd(V)$ are Z-sets in $cl(V)$ , then there exists a homeomorphism
$h:cl(V)\rightarrow cl(V)$ which is an extension of $h^{\prime}$ (by the HET). Then $hgf(N)=$

$bd(V)$ . We obtain a desired embedding $hgf:M\rightarrow l^{2}$ .
$II)-ii$ . The case that $N=N_{0}\cup N_{1}$ where $N_{0}$ and $N_{1}$ are disjoint closed and $N_{0}$

is a deformation retract of $M$.
Similarly as in the proof of the case $II$ ) $-i$ , there exist an open subset $V$ of

$l^{2}$ and an open embedding $k:bd(V)\times R\rightarrow l^{2}$ such that
(a) $l^{2}-V\cong l^{2}-cl(V)\cong l^{2}$ ,

(b) $V\cong cl(V)\cong bd(V)\cong M$,
(c) $k(x, 0)=x$ for each $x\in bd(V)$ , and
(d) $k(bd(V)\times(-\infty, 0$]) $=cl(V)$ .

Let $W=k(bd(V)\times[-1,0]),$ $W_{0}=k(bd(V)\times\{0\})=bd(V)$ and $W_{1}=k(bd(V)\times\{-1\})$ .
Since $l^{2}\times[0,1]\cong l^{2}$ by Klee’s theorem (Theorem III.1.3 of [11]), then by the
ST, $W\cong bd(V)\times[-1, 0]\cong M\times[0,1]\cong M\times l^{2}\times[0,1]\cong M\times l^{2}\cong M$. Similarly as
$II)-i$ , there exists a homeomorphism $f:M\rightarrow W$ such that $f(N_{0})=W_{0}$ . We may
assume that $f(N_{1})\subset k(bd(V)\times[-1, -1/2])$ . Let $r_{t}$ : $[$ –1, $0]\rightarrow[-1,0]$ be defined
by

$r_{t}(s)=\left\{\begin{array}{l}(1+t)\cdot s\\(1-t)\cdot(s+1)-1\end{array}\right.$

for $-1/2\leqq s\leqq 0$

for $-1\leqq s\leqq-1/2$

and let $k_{t}$ : $W\rightarrow W$ be defined by $k_{t}(x)=k(p_{1}k^{-1}(x), r_{t}p_{2}k^{-1}(x))$ where $p_{1}$ ; $bd(V)$

$\times[-1, 0]\rightarrow bd(V)$ and $p_{2}:bd(V)\times[-1,0]\rightarrow[-1,0]$ are projections. By the
TAE, there exists a closed embedding $g^{\prime\prime}$ : $N_{1}\rightarrow W_{1}$ such that $g^{\prime\prime}\simeq k_{1}f|N_{1}$ ,

then $g^{\prime\prime}\simeq k_{0}f|N_{1}=f|N_{1}$ in $W$ . Let $g^{\prime}$ : $N\rightarrow bd(W)=W_{0}\cup W_{1}$ be defined by
$g^{\prime}|N_{0}=f|N_{0}$ and $g^{\prime}|N_{1}=g^{\prime\prime}$ . Since $g^{\prime}(N)$ and $f(N)$ are Z-sets in $W$ and since
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$g^{\prime}$ is homotopic to $f|N$, then there exists a homeomorphism $g:W\rightarrow W$ such
that $gf|N=g^{\prime}$ (by the HET), tnat is, $gf(N_{0})=W_{0}$ and $gf(N_{1})$ is a closed subset
of $W_{1}$ .

Since $W-gf(N)$ is open in $W$ , then $W-gf(N)$ is an $l^{2}$ -manifold and
$W_{1}-gf(N_{1})$ is a Z-set in $W-gf(N)$ . Let $\alpha$ be a normal cover of $W-gf(N)$

with respect to $gf(N)$ . By the TNZ, there exists an $\alpha$ -limited homeomorphism
$h^{f}$ : $W-gf(N)\rightarrow(W-gf(N))-(W_{1}-gf(N_{1}))$ . Since $\alpha$ is normal, then $h^{f}$ has
the extension $h:W\rightarrow W-(W_{1}-gf(N_{1}))=(W-W_{1})\cup gf(N_{1})$ such that $h|gf(\Lambda^{\gamma})$

$=id$ . Let $H=(l^{2}-V)\cup(W-W_{1})\cup k(k^{-1}(gf(N_{1}))\times(-\infty, -1$ ]) (note that $gf(N_{1})$

$\subset W_{1}=k(bd(V)\times\{-1\}))$ . It is easy to see that each point of $H$ has an open
neighbourhood homeomorphic to $l^{2}$ , that is, $H$ is an $l^{2}$ -manifold. Since $H$ is
homotopically equivalent to $l^{2}-V\cong l^{2}$ , then $H\cong l^{2}$ by the CT. Let $j:H\rightarrow l^{2}$ be
a homeomorphism. We obtain a desired embedding jhgf: $M\rightarrow l^{2}$ .
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