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ABSTRACT.   In this paper it is shown that each semigroup which is
a matrix of commutative cancellative semigroups has a "quotient semi-
group" which is a completely simple semigroup with abelian maximal

subgroups.   This result is proved by explicitly constructing the quotient
semigroup.   The paper also gives necessary and sufficient conditions for

a semigroup of the type being considered in the paper to be isomorphic to
a Rees matrix semigroup over a commutative cancellative semigroup.
Several special cases and examples are also briefly discussed.

The study of the semigroups in the title was initiated by Petrich [7] in
connection with commutative separative semigroups.   It was conjectured in

that paper that matrices of commutative cancellative semigroups can be em-

bedded into Rees matrix semigroups over abelian groups.   This paper answers

the conjecture affirmatively.   We also study the embedding and use it to

characterize several special cases of matrices of commutative cancellative
semigroups.

0. Preliminaries and summary. We use 5 to represent a semigroup. If

there is a congruence p on ç for which S/p is a rectangular band whose
classes are all commutative cancellative semigroups, then we say S is a
matrix of commutative cancellative semigroups. Since a rectangular band

may be considered as 7 x A, the product of a left and right zero semigroup
respectively, we will write S = .UA^-, for a matrix of commutative can-

cellative semigroups, whose classes are the S...   In case the rectangular
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128 JAMES STREILEIN

band above is just A, a right zero semigroup, we define a right zero union
of commutative cancellative semigroups and write S = Ua^a» analogously.

A second concept we will make extensive use of is the Rees matrix
semigroup.   We denote such a semigroup by S = JH(7, G, A; P), where 7 and A
are nonempty sets, G is a group, and P maps Axl into G.   The functional
value P(X, i) is denoted by Px¿.   Elements of S are of the form (i, g, X)
with i £ I, g £ G, X £ A and multiplication is given by (i, g, X)(j, h, p) =
(7, gPXjt>> P).   We call S the Rees matrix semigroup over the group G with
sandwich matrix P.   It is a well-known theorem in semigroup theory that a
semigroup is completely simple if and only if it is isomorphic to a Rees
matrix semigroup over some group.   A completely simple semigroup is a

simple semigroup which contains an idempotent e which has the property
that if / is another idempotent for which / = ef = fe, we must have e = /.
Any other concepts not defined in the text may be found in Petrich [6] or
Clifford and Preston [3].

The main result of §1 is that matrices of commutative cancellative
semigroups are precisely subsemigroups of Rees matrix semigroups over
abelian groups.   We do this by constructing a special Rees matrix semi-
group, called the quotient Rees matrix semigroup, into which a given matrix
of commutative cancellative semigroups can be embedded.   A characteriza-
tion of a special type of matrix of commutative cancellative semigroups is
given.

§2 contains the justification for calling the particular Rees matrix
semigroups over abelian groups constructed in §1 a quotient Rees matrix
semigroup.   This is given in a theorem which says that its quotient Rees
matrix semigroup is the smallest into which a matrix of commutative can-
cellative semigroups can be embedded.   There are also several other results

which give further information about the nature of the embedding.
In §3 we use the results already obtained in §§1 and 2 to characterize

Rees matrix semigroups over commutative cancellative semigroups, which
generalize the notion of a Rees matrix semigroup over a group.   We also
consider a restricted family of Rees matrix semigroups over commutative
cancellative semigroups.

§4 contains a short discussion of several examples.   These include
free contents, prime quasi-uniserial semigroups and ^-semigroups.

1. The embedding. We start with several definitions which have been
used to characterize matrices of commutative cancellative semigroups
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AN EMBEDDING THEOREM 129

and a lemma which is probably known.

If for any a, b, c £ S we have abc = bac, then we call S left commuta-
tive.

Lemma. If S a Ua.S\ is a right zero union of commutative cancellative

semigroups, then S is left commutative.

Proof. Let a, b, c £ S, so that a £ Sx, b £ S   , and c £ S^ for some

X, p, r¡ £ A.  Since S    is a commutative semigroup, we compute (abc) (be) =

(èc)(«èc)= b(c)(abc) = b(abc)c = (ba)(bc)c = (bac)(bc).   Therefore we have

a&c = èac, by cancellation in S  , as required.

We need the following two definitions before we can present our first
theorem. We define S to be weakly cancellative if for a, b, x £ S, ax = bx
and xa = xb implies a = b. A semigroup S is conditionally commutative if
for a, b £S with ab = ba, then for any c £ S we have flc£> = èca.

Theorem 1.  TTze following conditions on a semigroup S are equivalent:
(i) S 7s a matrix of commutative cancellative semigroups.

(ii) S is weakly cancellative and conditionally commutative.

(iii) 5 can be embedded in a Rees matrix semigroup over an abelian

group.

Proof. As mentioned in the introduction, Petrich [7] has proved the
equivalence of conditions (i) and (ii).   Therefore we will start with S =
,UA^.., a matrix of commutative cancellative semigroups, which is weakly

cancellative and conditionally commutative.   We will construct a Rees matrix

semigroup, Qai$), over an abelian group into which S can be embedded.

To start the construction, we fix 1 £ 7, 1 £ A, an element a £ S     and

let G be the quotient group over S   , written in the natural way as quotients

of elements in 5'.,.   We also define a mapping P from A x 7 into G by

P. . =-   for some seUS,., t el) S.  .
Ai 7 t      i" i     ißasa¿ta « *

To show that P is single valued we choose another u £ KJ.S .. and v £
U»S-    and will show

asta auva

asaAta     auaAva

We obtain the following string of equalities:
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130 JAMES STREILEIN

iasta)iaua)iava) = iasta)iavd)iaua) = ias)ita2)iva2)iua)

a (as)(va)(ta)(ua)    (by commutativity in S .A

a (asva)(atd)(aua) = (asvd)(aud)(ata) = (asvd)(au)(a ta)

= (au)(asva)(a2ta)    fby left commutativity in IJ 5.1

= (au)(as)va*ta = (as)(au)va*ta    (by commutativity in 5,. )

= ias)iauva)ia2ta) = iauvd)ias)ia2ta)    [by left commutativity in U 5,    1
\ A      1/A/

= iauva)iasa)iata).

Thus we have established that P is single valued.

Therefore Q (S) = 3í¡(7, G, A; P) is a Rees matrix semigroup over an

abelian group.   Define a function cp   on 5 by:

ci (7>) = (z, aea/a2, X)   for fefiS...
'fit Z A

It is immediate that <f>    is a function from 5 into Qai^)-   Let 7>, c £ 5 with
b £ 5.. and c £ 5.   .   For these elements,zX ;M '

(.  aba       a2bca2        aca      \      /.  zzczca     \       ,  z,   \
"~ •(c¡MO'-¡T'fí) = (Z'"^-'íl)=^c)

using the definition of p. ..   Hence c/>    is a homomorphism.

Let b, c £ 5 be such that <pa(&) = <Pa(c).   Then (i, aba/a2, X) = (/,

aca/a , p), implying i = /, A = p and aba/a   = aca/a .   Thus b, c £ 5¿   and

be a cb.   This implies èrze = cab by conditional commutativity.   Multiplying

by a, we have zzTjzzc = acab and èaca = caba.   Using aba = ßca we obtain

abac = aèaè and baba = cczèa giving ac = a7> and 7>a = ca by cancellation in

the respective subsemigroups.   These equalities imply c = b by weak can-
cellation.   Thus cp    is one-to-one and is actually an embedding.

Conversely, it is immediate that a subsemigroup of a Rees matrix semi-

group over an abelian group is a matrix of commutative cancellative semi-
groups.

We call the Rees matrix semigroup QA^), constructed in the above

theorem, the quotient Rees matrix semigroup for 5.   We note that px¿ in the

theorem is the identity if À = 1 or i = 1.
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We next use Theorem 1 to give a new proof of a part of the following
theorem from Petrich [7]. This theorem characterizes medial, weakly can-
cellative semigroups. A medial semigroup is one which satisfies the
identity, abed = acbd. We will also have occasion to use square commuta-

tivity which means that we always have (ab) = a b for a, b £ 5. Finally
a rectangular abelian group is the direct product of a rectangular band and
an abelian group.

Theorem 2.  The following conditions on a semigroup 5 are equivalent:
(i) 5 7s medial and weakly cancellative.

(ii) 5 7s a matrix of cancellative semigroups and is square commuta-

tive.

(iii) 5 is embeddable into a rectangular abelian group.

(iv) 5 is a subdirect product of a rectangular band and a commutative
cancellative semigroup.

Proof. We give only the proof of "(ii) implies (iii)" and refer the reader
to Petrich [7] for the remainder.   Let 5 be a matrix of cancellative semi-
groups, which is also square commutative.   Say 5 = ,UA5\y   If a, b £ S^,

then ab   = (ab) .   This implies ab = ba by cancellation in 5^.   Hence 5

is a matrix of commutative cancellative semigroups.   By Theorem 1 we know

5 can be embedded into the Rees matrix semigroup Qai$) over an abelian

group G.   Let (i, a, X), (j, b, p) £ 5.   By hypothesis (7, a, X)2(j, b, p)2 =
((«1 «, A) (7, b, p))2.   Hence (7, ap^.ap^.bp^.b, p) = (i, ap^.bp^.ap^b, p),

so that PxiPßj = PXjP^v which implies P^P^P^ = Pßi-   This is exactly
the requirement given in Petrich [6, IV. 3.3Í» that a Rees matrix semigroup

is the direct product of a rectangular band and a group.
If xa a xb for a, b, x £ S implies a = b, then 5 is /e/z* cancellative.

Analogously to a rectangular abelian group, a right abelian group is the

direct product of a right zero semigroup and an abelian group.   These con-
cepts are used in the following corollary of Theorem 2, which is proved in

Petrich [7].

Corollary.  The following conditions on a semigroup S are equivalent:

(i) 5 is left commutative and left cancellative.

(ii) 5 is embeddable into a right abelian group.

(iii) 5 is a subdirect product of a commutative cancellative semigroup

and a right zero semigroup.
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132 JAMES STREILEIN

(iv) S is a right zero union of commutative cancellative semigroups.

2. Quotient Rees matrix semigroups. We immediately give the theorem
which Justifies our earlier definition.   As a corollary we will have the earlier
known result for right zero unions of commutative cancellative semigroups.
We then develop further properties of the embedding cp constructed in Theo-
rem 1.

Theorem 3.  Let 5= , U.5..  be a matrix of commutative cancellative
semigroups, and <f>    be the embedding of S into Q (5) given in the proof of
Theorem 1.   If 6 is a homomorphism of S into T, a completely simple semi-
group, then there exists tfj a unique homomorphism of Q (5) z«ro T which
makes the following diagram commutative:

Proof. We will let 5     be the subsemigroup of 5 used to construct <pa
and Qa(S) = M(7, G, A; P) as in the proof of Theorem 1.   As we noted after
Theorem 1, P has all entries in the row and the column containing P..  equal
to the identity.

By the Rees theorem for completely   simple   semigroups    T   =
M(7', 77, A'; Q) fot some group H.   Since 9 is a homomorphism it must take
elements that commute to elements that commute.   Hence 6 induces mappings
of 7 into 7'and A into A'.   We will denote these mappings by primes so that
if b gSjx, then 6(b) = [¿', b', A'] £ T, where we are using square brackets

to distinguish more readily those of T from those of öa(^)>   As an additional
simplification, we will require that all entries of Q in the row and column
containing #,/]< be identity elements, which can be done following [3, 3.4].

We next define a mapping eu: S    —» 77 by 6(b) = [l ', co(b), 1 '] (b £ 5U).

Since 5     generates its quotient group G, we can extend <u to all of G by

cù(cb~ ) = a>(c)(ú)(b))~ .   It is easy to verify that co is a homomorphism on G.
Using co, we define the mapping \fr: M(I, G, A; P) —► M(l', 77, A'; Q)

by ifr(i, b, X) = [¿', cú(b), X'] (be G).  We will show that iff is the required
mapping.

Let (¿, b, A), (1, c, p) e Qa(S).   Then
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AN EMBEDDING THEOREM 133

z/r((l,   b,  X)(l,   C,   p))  a lfj(l,   bc,p)a   [1',   (¿(be),   p]

a [l', ù)ib)(o(c), p'] a [l', ú)ib)qx,licoic), p]

a [I', oib), X'][l', coic), p'] = if/il, b, X)if/H, c, p)..
Therefore it is clear that if/ is a homomorphism when restricted to UA5 .^.
Similarly it can be shown that if/ restricted to U/^,i is a homomorphism.

We also note that it is immediate from the definition of co and if/, that we have
6(b) a iftcf, (b) for all b in 5    , so the diagram commutes on 5   .

For b in 5     and c in 5    , we have cb in 5   .   Thus

eic)6(b) a eicb) = if/cpaicb) = ip-<f>a(c\fjtpa(b) a if/cpa(c)d(b).

Since 6(c) and i/rc/3(c) must be in the same subgroup of T, we must have
6(c) a if/cp(c).   Hence the diagram commutes on U/^j  and similarly it will

also commute on UA^1X-

We now let c be in 5     and d be in 5¿1> so that cp(c) = (1 ', c ', A') and

4>(d) = (i ', d , 1 ) for some c , d in G.   Therefore

[!', o>ic')qxli,o>id'), 1'] = [1', coic'), X'][i', coid'), l']

= dic)d(d)ae(cd) = tf,(pa(cd)

= if/((i, c', X)(i, d\ D) = iA(i, c'p.d', i)
AZ

= [1', olc'p^d'), 1] = [1', co(c')w(pXiMd'), 1'],

which implies that ?\».-i = <u(p. .).

We are finally ready to show that if/ is a homomorphism.   Let (7, b, X),

U,c,li)£Qa(S).   Then

i/r((z, è, X)(j, c, pi) = ^(i, bpK.c, p)

= [Ï, co(bpK.c), p] m [A, (uib)(ûipXj)ù)ic), p]

= [l', a>ib)qx,.,(óic), p ]

= [7, <y(7>), A'][;', czj(c), p'].

Thus i// is a homomorphism as required.

We still need to show that the diagram commutes for any b in 5.   We
already have this by definition for b in 5     and have shown this for all b
in U.S.. and U,•£,■,•   Therefore we only have to check commutativity for
an element c in 5i}.  We let b £ 5^, so that beb is in Sjj.   Then 6(b^b) =
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134 JAMES STREILEIN

ifjcpßcb).   Hence 6(b)6(c)6(b)  =  6(bcb) =  ifjcpa(b)if/<paic)if/<paib)  =
6(b)if/<p (c)6(b). Since 6(c) and if/cp (c) are in the same subgroup, it follows

that 6(c) a ipç5(c).   Thus we have shown that the diagram commutes.   It is

also clear from the proof that any other map i/r   which makes the diagram

commutative must take the same action as if/ and thus is the same function
and the theorem is proved.

The following corollary for right zero unions of commutative cancella-
tive semigroups is due to Dickinson [4].

Corollary.   Let 5 = Ua^a ^e a right zero union of commutative cancel-
lative semigroups, and <f> be the embedding of 5 into Q  (5) given in Theorem

1.   If 6 is an embedding of S into T, a right abelian group, then there exists

if/, a unique embedding of Q  (5) into T which makes the following diagram

commutative:

The next proposition shows that quotient Rees matrix semigroups are,

up to isomorphism, not dependent upon the choice of the element a used in

the construction in Theorem 1.

Theorem 4.  Let 5 = ,U. 5.,  be a matrix of commutative cancellativeI      A    zA '
semigroups, and let a £ S{X and b £ 5    .   If we let cf>a, (f>b be the embeddings
of 5 in Q  (5), Q, (S) as constructed in the proof of Theorem 1, using a, b

respectively, then there exists an isomorphism if/ of Q (S) onto Qh(S) which

makes the following diagram commutative:

Proof.  This follows immediately from Theorem 3.   We have unique ho-

momorphisms if/a fe: Qa(s) '-* Qbis) and ^¿>a: QbiS) ~~* 2a(S) such that
lb  if/   , = cb. and <b,ib,    = d>   but then ch  ib   ,ib      = cp .   Thus t/>   ,ib,™ara,b      vi> ^bTb,a      ^a ^ar a,br b,a      ra r a,b^ b,a
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is the identity map on Q  (S) and similarly ib     ib   , is the identity map on

0,(5).   Hence if/      and t/>,      are inverse isomorphisms.o r a,b T b,a r

Corollary.  For 5 = iUa^i a matr^x of commutative cancellative semi-

groups, the image of each 5.. under any cp in the proof of Theorem 1 gene-

rates the group into which it is embedded.

This is just one of the results needed in the proof of the proposition.

The following corollary could also be derived from the already men-
tioned work of Dickinson [4].

Corollary.  For S = .U.^-,, a matrix of commutative cancellative semi-

groups, all the 5..  have isomorphic quotient groups.

3. Rees compositions.  In this section we generalize the construction
of Rees matrix semigroups to any semigroup and we characterize those semi-
groups obtained by using commutative cancellative semigroups in this way.

The special case of the direct product of a rectangular band and a commuta-
tive cancellative semigroup is also studied.

We need to introduce several standard concepts.   A left translation X is
a function, written on the left, of 5 to 5 which satisfies A(xy) = A(x)y for

x, y £ 5.   A right translation p is defined similarly when written on the

right.   A left translation X and a right translation p are linked if x(Xy) =

(xp)y for x, y £ S.   The translation hull of a semigroup, denoted by 0(5), is

the set of pairs of linked left and right translations, (X, p), considered as
bitranslations.   If (X, p), (X  , p  ) £ 0(5) then multiplication defined by
(A, p)(A , p ') = (AA , pp ) £ 0(5) makes 0(5) a semigroup.   It is also clear

that (1, 1) £ 0(5), where t is the identity function on 5 written on the proper

side, is the identity for 0(5).   Hence one can consider the group of units of
0(5).   A left translation A and a right translation p are permutable if (Ax)p =

A(xp) for all x £ 5.   A set of bitranslations T is permutable if for any (A, p),

(A', p ') £ T, we have that A and p ' are permutable.
We extend the definition of Rees matrix semigroups to T = m(I, S, A; P),

where I, A are any nonempty sets and 5 is any semigroup.   However P maps

A x 7 into a permutable subset of the group of units of 0(5).   It can be
verified that this definition produces a semigroup when (i, a, A), (j, b, p) £ T

multiply as (i, a, A)(j, b, p) = (7, apxjb, p), where (apxj)b = a(pxjb) =

aPXjb.   We call DH(7, 5, A; P) a Rees matrix semigroup over the semigroup 5.

Since we are mainly concerned with matrices of commutative cancella-

tive semigroups, we will consider here only Rees matrix semigroups over
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commutative cancellative semigroups.   It has been shown by Hall [5] and

Dickinson [4] that 0(5) for a commutative cancellative semigroup consists

of exactly those elements g of the quotient group, say G, of 5 such that
gS Ç 5, i.e. the idealizer of 5 in G.   It is also immediate that, because of

commutativity, all elements m £ 0(5) are permutable.   Hence in the case of
a Rees matrix semigroup over a commutative cancellative semigroup we only
require that px ■ be a member of the group of units of the idealizer of 5 in its
quotient group.   We now present a theorem which characterizes Rees matrix
semigroups over commutative cancellative semigroups.

Theorem 5.  Let 5 = rU.5..   be a matrix of commutative cancellative

semigroups.   The following statements are equivalent:

(i) For all a, b £ S, there exists c, d £ 5 such that cba = bac, ba = ca,

dab = abd, ab = ad.
(ii) For all a £ 5, if a e S.. then aS.   =a5.   and 5.   a = 5 ..a.
V    ' '    ' lA Iß Iß IP- IK

(iii) 5 is isomorphic to a Rees matrix semigroup over any 5...

Proof, (i) implies (ii). Let a £ 5.. and b £ S.  .   By the hypothesis of

(i) we have an element d such that dab = abd and ab = ad.   Thus d £ S.    and
lß

we have cz5.   C aS..   Therefore baS.C baS     since ba £ 5...   Since we areiß-     iß tß—       iß A
in a subsemigroup of a Rees matrix semigroup over a group, we have aS. C
aS. and the first equality in (ii) holds. The second equality in (ii) follows

similarly.
(ii) implies (iii). Fix a e 5..  and construct the embedding of Theorem

1.   We claim that the image of 5 in M(I, G, A; P) = T, where G is the quotient
group of 5.., is a subset of T of the form 7 x 5.. x A.

To show this we observe from the proof of Theorem 1 that this is equiv-
alent to showing that cp(5.   ) = {/! x 5.^ x {pi or equivalently «5    a =

a S...   Using the hypothesis in (ii),

(aSj/M)a = a(SifjLa) = aS ¿x« = a2S a

proving that the image is as claimed.
It only remains to show that the p   . are in the group of units of the

idealizer of 5.. in G.   We already know this if j = i or p = X since all such

p   ■ ate the identity as seen from the proof of Theorem 1.   Let (j, b, p) and

(k, c, X) be in the image of 5 in T.   Then (j, b, p) (k, c, A) = (7, d, X)(k, c, A)
for some (j, d, X) in the image of 5 in T by (ii).   Hence bp   .c = dp\jC ~

dc and thus bp   ■ = d.   This shows that p   .   is in the idealizer of 5 ^ in G.
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AN EMBEDDING THEOREM 137

By (ii) for each d e S..  there exists a b e S     such that (j, b, p)(k, c, A) =

il, d, A)(fc, c, À) which implies bp   . = d, showing that p   . takes 5¿x onto
5...   Thus T is a Rees matrix semigroup over S...

(iii) implies (i). Let 5 = 3l¡(7, T, A; P) be a Rees matrix semigroup over
the commutative cancellative semigroup T.   Then for a, b £ 5 we have ß =

(7, a ', A) and b = (j, b ', p).   It is immediately verified that c = (j, b'p   .p~\ A)
and d = (7, ¿> 'p   . p~ ., p)   ate the elements needed in (i).

zVorc?. Professor Petrich has suggested that the conditions on the sand-
wich matrix, P, can be relaxed in the case of Rees matrix semigroups over
commutative cancellative semigroups and he has characterized such semi-
groups.

We also mention that a result entirely similar to that for direct products

of rectangular bands and groups as mentioned in the proof of Theorem 2 can
be proved for Rees matrix semigroups over any semigroup.   We use this

result in the next theorem to characterize direct products of rectangular
bands and commutative cancellative semigroups.

Theorem 6. A semigroup 5 is isomorphic to the direct product of a rec-

tangular band and a commutative cancellative semigroup if and only if 5 is
weakly cancellative, medial and for any a, b £ 5 there exist c, d e 5 for
which bca2 = ca c and a2db = da d.

Proof. If 5 is isomorphic to T x B where T is a commutative cancella-
tive semigroup and B is a rectangular band, then by Theorem 2, 5 is weakly
cancellative and medial.   We represent B as 7 x A with 7 a left and A a right
zero semigroup, respectively.   Let (a, (i, A)), (b, (j, p)) £ T x B.   It is
immediately checked that the elements (b, (j, A)) and (b, (i, p)) satisfy the

requirements in the statement of this theorem for c and d, respectively.
Conversely, assume 5 is weakly cancellative, medial and satisfies the

requirements on elements in the theorem.   By Theorem 2, 5 is a matrix of
commutative cancellative semigroups, say 5 = f UA5iX.   Let a, b £ 5 so

that by hypothesis there exist c, d eS with bca   = ca c and a db = da d.

If a £ S.., b £ 5.   then c £ 5.. and d £ 5.  .   We have bca2 = baca byZA ip. IK Iß
mediality and aca = a c by right commutativity in Uf^x ^rora tne coro^ary

after Theorem 2.   Thus ha c = ca c and since by Theorem 1 we are in a
subsemigroup of a Rees matrix semigroup over an abelian group we have
ba = ca.  Hence by Theorem 5, 5 is a Rees matrix semigroup over any of the

commutative cancellative semigroups 5;x#
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We now let (i, a, A), (/, b, p), (k, c, p) and (7, d, y) e 5.   By mediality
(i, a, X)(j, b, p)(k, c, p)(l, d, y)= (i, a, X)(k, c, p)(j, b, p)(l, d, y).   This
implies that PxjPflkPf,l = PXkPßjPßr or PXiP~ß)Pßk " *Xk usinS commuta-
tivity and  cancellation in the quotient group of the   S¿x fot  which we do

the embedding in Theorem 1.   Hence, by the result referred to in Theorem 2,

5 is actually isomorphic to the direct product of the commutative cancella-
tive semigroup 5 ..   and the rectangular band 7 x A.

Corollary.  For a semigroup 5 the following are equivalent:
(i) 5 z's a Rees matrix semigroup of commutative, cancellative semi-

groups with |/| = 1.
(ii) 5 z's a left commutative, left cancellative semigroup and for a, b £ S

there exists a c £ 5 such that baca = ca c.
(iii) 5 is left commutative, left cancellative and Sa Ç aS for all a £ 5.
(iv) 5 is isomorphic to the direct product of a commutative, cancella-

tive semigroup and a right zero semigroup.

The equivalence of (i), (iii) and (iv) can be found in Petrich [7].

4. Examples.  We discuss briefly free contents, prime quasi-uniserial
semigroups and Rees matrix semigroups over /(-semigroups.

As defined by Tamura [lO], the free content on two generators, denoted

by C(a, b), is the subsemigroup of F(a, b), the free semigroup on the two
generators a and b, which consists of all words that contain both a and b at
least once.

It has been shown by Shafer [8] that any countable semigroup can be
embedded in C(a, b).

Shafer [8] denotes by A the congruence on F(a, b) generated by the

identities a = a   and b = b .   He has shown that C(a, b)/X is a matrix of

infinite cyclic semigroups.
As a second example we mention prime quasi-uniserial semigroups as

defined by Behrens [l], [2].   Let 7 be any set, G be the infinite cyclic group

generated by eu, C be the subsemigroup of G consisting of {új^Is = 0, 1,...!,
and n be a function from 7 x 7 to the nonnegative integers, Í0, 1, 2,...!,

which satisfies the following conditions.   If we denote 7r(z, /) by (if), n
must satisfy:

1. 0'0=o,
2. (ij) + 0'*) > C»*),
3. (*;) + 00 > 0,7 4 j.
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The set 5=7xGx7 is a prime quasi-uniserial semigroup when we define

multiplication by (h, oA, i)(j, cj, k)= (h, cus+t + ̂ ,\ k).   It is easy to see

that 5 is a matrix of commutative cancellative semigroups.   The conditions
on <r are also equivalent to the conditions that all c; = (z, <o , 7), 7 £ 7, are

idempotent and that T = U ■ • Ce . e. is a subsemigroup of 5 containing no

further idempotents, where (os(h, cú , i) a (h, o> +s, 7).   It is easily checked

that T is a matrix of commutative cancellative semigroups.   Behrens uses

such semigroups in the study of prime, arithmetic rings with identity.
In fact both of the above examples can be considered as the more

restrictive case of matrices of Jl-semigroups.   An Jl-semigroup is an archi-

medean commutative cancellative semigroup without idempotents.   Tamura
[9] has constructed all Jl-semigroups as pairs (G, 7), where G is an abelian

group and 7 maps G x G into N, the nonnegative integers, and satisfies the
following conditions:

(i) ¡(a, ß) + I(aß, y) = l(a, ßy) + 7(73, y) (a, ß,y e G),
(ii) I(a, ß) a 7(73, a) (a, 73 £ G),

(iii) ¡(e, ()= 1 where e is the identity of G,
(iv) for each a £ G there exists m > 0 such that I(am, a) > 0.

The multiplication on 5 = N x G defined by (m, a)(n, ß) = (77z + n + I(a, ß),
aß) makes 5 an Jî-semigroup.

Hall [5] has characterized the group of units of the idealizer of 5 in its

quotient group, which we denote by 2(5).   The characterization is that

2(5) = {[0, g]|g£G, 7(g, 70 >0, and 7(g-1,/>)>0

for all heG, lig, g-1) = l],

where [O, g] is a function on 5 defined by [0, g] («, h) = (n + I(g, h) - 1, gh)
using the Tamura representation (G, 1) given above.

If G is any abelian group then 7: G x G —* \ l! satisfies the above four
conditions. For S a M x G, 2(5) = j[o, g]|g £ G\. We can use these facts to
construct many Rees matrix semigroups over the Jl-semigroup 5.

As another less trivial example, let G = je, a, a , ai\ be the cyclic
group of order 4.   If we define 7 by ¡(e, a1) = 1 for 7 = 1, 2, 3, 4, I(a, a) = 0,

I(a, a2) = 1, I(a, cz3) = 2, I(a2, a2) = 3, I(a\ a2) = 3 and I(a\ a3 ) = 2, then
7 satisfies the above conditions and 2(5) = j[0, e], [O, a ]}.
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