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AN EMBEDDING THEOREM
OF COMPLETE KAHLER MANIFOLDS
OF POSITIVE BISECTIONAL CURVATURE ONTO
AFFINE ALGEBRAIC VARIETIES

BY

Ncaming MOK (*)

RESUME. — Nous prouvons qu’une variété compléte kdhlérienne non compacte X de
courbure bisectionnelle positive satisfaisant quelques conditions quantitatives géométriques
est biholomorphiquement isomorphe a une variété affine algébrique. Si X est une surface
complexe de courbure riemannienne positive satisfaisant les mémes conditions quantitatives,
nous démontrons que X est en fait biholomorphiquement isomorphe a C2.

ABSTRACT. — We prove that a complete noncompact Kihler manifold X of positive
bisectional curvature satisfying suitable growth conditions can be biholomorphically -
ded onto an affine algebraic variety. In case X is a complex surface of positive Riemannian

* sectional curvature satisfying the same growth conditions, we show that X is biholomorphic
to C2.

The following conjectures concerning the complex structure of non-
compact complete Kihler manifolds of positive curvature, formulated by
GRreeNE and Wu [9], Stu [22] and Wu [32] are central to the study of such
manifolds.

Conjecture 1

A non-compact complete Kidhler manifold of positive sectional curvature
is biholomorphic to €C".

(*) Texte recu le 4 juin 1983, révisé le 24 février 1984.

N. Mok, Princeton University, Department of Mathematics, Fine Hall, Box 37, Princeton,
N.Y. 08544 US.A.
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198 N. MOK

Conjecture I1

A non-compact complete Kihler manifold of positive bisectional curva-
ture is a Stein manifold.

The geometric basis of Conjecture I is the following structure theorem
on complete Riemannian manifolds of positive sectional curvature.

THEOREM (GROMOLL-MEYER [30], CHEEGER-GROMOLL [6] and Poor
[31)). — A4 non-compact complete Riemannian manifold of positive sectional
curvature is diffeomorphic to R".

By using the above theorem GRreeNE and Wu [10] proved that a non-
compact complete Kahler manifold of positive sectional curvature is a
Stein manifold. Nonetheless, in the case of positive bisectional curvature,
the Busemann functions of CHEEGER-GROMOLL [5] do not immediately give
rise to an exhaustion function because one does not have a geometric
comparison theorem for geodesic distances as in the case of positive
sectional curvature (the theorem of Toponogov). This consideration moti-
vated Conjecture II.

The analogue of Conjecture I for negative (or non-positive) sectional
curvature and for manifolds with a pole have been formulated and proved
(Sru-Yavu [22], GReeNe-WU [10] and Mok-Siu-Yau [17]). There it was
necessary to assume conditions on the decay of the curvature tensor to
make sure first of all that the manifold is parabolic.

From standard examples of complete Kihler metrics of positive bisectio-
nal curvature on C" it appears also appropriate to assume certain geometric
growth conditions on the curvature tensor and the volume of geodesic
balls. With Conjectures I and II in mind, we studied the Poincaré-Lelong
equation on complete Kahler manifolds (Mok-Siu-Yau [17]). We obtai-
ned, among other things, the following pinching theorem on complete
Kahler manifolds of nonnegative bisectional curvature.

THEOREM (MOK-S1U-Y AU [17]). — Suppose X is a complete Kéihler mani-
Jold of complex dimension n=2. Suppose X is a Stein manifold and the
holomorphic bisecture curvature is non-negative. Moreover, assume

(i) Volume (B(x,; r))=cr®.

(i) O<scalar curvature <Co/d>**(x,;x) where B(xqo; r) and d(x,; x)
denote respectively geodesic balls and geodesic distances, ¢>0, C,>0 and ¢
is an arbitrarily small positive constant. Then, X is isometrically biholomor-
phic to C" with the flat metric.
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COMPLETE KAHLER MANIFOLDS OF POSITIVE BISECTIONAL CURVATURE 199

In this article we study the problem of compactifying complete Kihler
manifolds of positive bisectional curvature. 'We have the following princi-
pal result,

MAIN THEOREM. — Let X be a complete non-compact n-dimensional
Kahler manifold of positive holomorphic bisectional curvature. Suppose for
some positive constants ¢, C

(i) Volume (B(x,; r))=cr*".

(i) O<scalar curvature <C[d*(xy; x). Then, X is biholomorphic to an
affine algebraic variety.

From the Main Theorem and a theorem of RamaNuiam [19] in affine
algebraic geometry, we obtain the following corollary related to
Conjecture I of Siu stated above.

COROLLARY. — In case of dimension n=2, if the Kdihler manifold X in
the Main Theorem is actually of positive Riemannian sectional curvature,
then X is biholomorphic to C2.

For the proof of the Main Theorem we consider the algebra P(X) of
holomorphic functions of polynomial growth. We assume for the follo-
wing discussion that n>2. In [17] we obtained a special plurisubharmonic
function u of logarithmic growth by solving the equation idou=Ricci
form. The existence of non-trivial functions in the algebra P(X) then
follows readily from the L2-estimates on complete Kihler manifolds of
ANDREOTTI-VESENTINI [1] and HORMANDER [12]. Such an approach was
already implicit in Sru-Yau [24]. There the exponential map plays an
essential role in the estimates. In particular, it enables them to estimate
volume growths of subvarieties by geometric comparison theorems. This
was crucial in obtaining “minimal degree functions™ defining a biholomor-
phic map onto C*. In our case the failure of exponential mappings to
give global coordinates present serious difficulties. In particular, we do
not have direct uniform estimates for the algebra P (X) (for example, a
uniform bound on the degree of f, ,, ..., f, .€P(X) which give local
holomorphic coordinates at x, for an arbitrary point xe X) to show that
P(X) is finitely generated. To resolve this difficulty, we prove a series of
finiteness theorems related to the algebra P(X) by first passing to the
quotient field R (X) of “rational” functions, leading finally to the existence
of a proper embedding. As the first step we prove a Siegel’s theorem on
the transcendence degree of R(X). More precisely, we show that R(X)
is a finite extension field of C(f;, ..., f,), where f, ..., f,e P(X) are
algebraically independent.
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200 N. MOK

Let mult ([V]; x,) be the multiplicity of the zero divisor [V] of a
holomorphic function feP(X) at x,e V, and deg(f) be the degree of f
measured in terms of geodesic distances. Basic to our estimate is the
inequality mult([V]; x,) < C deg(f) for some C>0. This is obtained by
comparing both quantities to the volume growths of V over geodesic balls
using the classical inequality of Bishop-Lelong and estimates of the Green
kernel. Unlike the classical inequality, the multiplicity will now be boun-
ded by some global weighted average of volumes of V over a family of
“ringed” domains. From the proof the inequality

mult([V]; x)<C deg(f)

is actually valid for a complete Kahier manifoid of positive Ricci curvature
satisfying the same growth conditions. However, the holomorphic bisec-
tional curvature enters when we prove existence theorems for
P(X). Moreover, results of [17] on the d0-equation, which are only valid
in case of nonnegative holomorphic bisectional curvature, imply by an
application of the proof of the basic inequality that X is Stein.

From the basic inequality mult([V]; x,) <C deg( f), an existence theo-
rem for P(X) and a classical argument of Poincaré-Siegel, we prove
immediately that the field R (X) of “rational” functions is a finite extension
field of some C(f,,..., £, RX)=C(f, ..., So &8P, fi, 8 he P(X),
such that f,, . . ., f, are algebraically independent. This theorem, which
we call the Siegel’s Theorem on X, does not imply that P(X) is finitely
generated. However, the Siegel’s Theorem on X implies that the mapping
F:X—-C"? given by F=(f,, ..., f, & h) defines, in an appropriate
sense, a birational equivalence between X and an irreducible affine al-
gebraic subvariety Z of C"*2 of dimension n. We shall obtain an embed-
ding by desingularizing F. This will involve a number of finiteness theo-
rems.

First, we show that F: X — Z is almost surjective in the sense that it
can miss at most a finite number of possibly singular hypersurfaces
of Z. We show this by solving an ideal problem for each point zeZ
missed by F, except for a certain algebraic subvariety T, of Z containing
the singularities. By using the L2-estimates of SkoDA [25], we show that
each such point z¢ F(X) U T, gives rise to some f e P(X) of degree
bounded independent of z, which is the pull-back under F of some rational
function whose polc set passes through z. By an intermediate result in
the proof of the Siegel's Theorem on X, the dimension of the vector space
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COMPLETE KAHLER MANIFOLDS OF POSITIVE BISECTIONAL CURVATURE 201

of f e P(X) such that deg( f)<C is finite. If F were not almost surjective,
one could select an infinite family of linearly independent f’s, giving a
contradiction.

The next step in proving the Main Theorem is to show that the mapping
F : X — Z can be desingularized by adjoining a finite number of holomor-
phic functions of polynomial growth. First we show that the mapping
defined by lifting F to an affine algebraic normalization Z of Z is still
defined by functions in P(X). We call such a lifting F : X - Z a normali-
zation of F. Let ¥ be the branching locus of F. By the previous finite-
ness theorem F(¥), which we call the image set of indeterminancy, must
lie in the union of a finite number of irreducible algebraic subvarieties S,
of codimension 2. However, it is not apparent that only a finite number
of irreducible components of ¥ are mapped into 5;. In general F “blows
down” branches of ¥, which may have irreducible branches of
codimension>2. In order to show that F: X — Z can be desingularized
by adjoining a finite number of functions in P (X), one would like to show
that ¥ must have only a finite number of irreducible components. For
branches of codimension one we can prove this by establishing a uniform
version of the basic inequality mult([V]; x,) <C deg(f) with a constant
independent of f and x, for regular points x, of the zero-divisor V of
feP(X). We prove this by geometric comparison theorems and the
integral formula of LELONG [13], applied to geodesic balls. This involves
a useful estimate on the exponential mapping on large Euclidean balls in
the tangent spaces (Proposition (7.2)). We remark that the basic inequa-
lity with a fixed base point and the uniform version are obtained under
different curvature conditions and that the uniform estimate does not
apply to all singular points.

Our previous argument is not strong enough when the branching locus
P contains branches of codimension>2. Fortunately, the uniform version
of the basic inequality, suitably modified, is sufficient for showing that
F: X — Z can be desingularized in a finite number of steps. Essentially,
we show that through each irreducible branch W of ¥ (of positive dimen-
sion), there exists an “algebraic” curve C intersecting W at isolated points
such that C is defined by g,e P(X) of degree bounded independent
of W. Then, we prove that there are only a finite number of W’s by
inverting F along slices of algebraic curves on Z. (It is essential to reduce
the problem to algebraic curves because of indeterminacies of meromorphic
functions on higher-dimensional varieties.)
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202 N. MOK

‘After desingularization, we obtain a biholomorphism of X onto some
Y—W, where Y is an affine algebraic variety, possibly singular, and W is
an algebraic subvariety of pure codimension one. In general such a
variety Y— W may fail to be affine algebraic because of the examples
of Zariski (GoopMaN [11]). By a somewhat devious application of the
vanishing theorem of Serre in algebraic geometry, we show in general that
Y — W is biregular to an affine algebraic variety if and only if it is rationally
convex. In our case this follows from the fact that X is convex with
respect to P (X).

The proof of the basic inequality yields an improvement of a pinching
theorem of Mok-Siu-Yau [17] in the case of nonnegative holomorphic
bisectional curvature. This is contained in § 4 on applications of the
proof of the basic inequality.

A significant part of this article depends on results of [17]. In § 1 we
collect basic results of [17] that we shall need. Also, for the sake of
completeness, we have included in § 7 certain standard estimates about
exponential mappings on complete Riemannian manifolds using geometric
comparison theorems. For the proofs of standard comparison theorems,
we refer the reader to CHEEGER-EBIN [4] and S1u-Yau [24] (especially for
estimates involving the complex Hessian).

A summary of the results of the present article, together with a sketch
of the proofs, has appeared in Mok [15]. Related results and problems
on non-compact complete Kihler manifolds of positive curvature can be
found in the survey article Mok [16].

I want to thank Professor R. Gunning, Professor J. J. Kohn, Professor
Y.-T. Siu and Professor S.-T. Yau for their encouragement and help
during the course of the research. Professor Nils (vrelid has given me
invaluable help by arranging my summer stay in Oslo University, during
which a substantial portion of the present article was worked out and
written up. In June 1982, a preliminary version of the results was presen-
ted in Seminaire Lelong-Skoda in I'Institute Poincaré. I want to thank
Professor P. Dolbeault, Professor P. Lelong and Professor H. Skoda for
inviting me to the seminar and for their most encouraging enthusiasm in
my research work. Finally, I would like to thank Professor D. Mumford,
who kindly pointed out some important examples of Zariski in affine
algebraic geometry relevant to my work. It motivated the final stroke
(§ 9, on passing from an embedding to a proper embedding) completing
the proof of the Main Theorem.
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Added in proof. — The author would like to thank the referee for
suggestions which improved the exposition of Proposition 7.2 and for
correcting a number of inaccuracies on bibliographical references.
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1. Estimates of the Laplace-Beltrami operator and the Poincaré-Lelong
equation

We collect in this section relevant estimates taken from § 1 of Mok-Siu-
YAu [17] on the Laplace-Beltrami operator and the Poincaré-Lelong equa-
tion on complete Kihler manifolds of nonnegative holomorphic bisectional
curvature.

(1. 1) ESTIMATES OF THE GREEN KERNEL

ProposITiION (Mok-S1u-Yau [17; p. 190]). — Let X be a complete m-
dimensional complete Riemannian manifold of nonnegative Ricci curvature,
m >3, such that for some fixed base point x,, the volume of geodesic balls
B(xq; R) satisfies

Volume (B(xo; R))=cR™, for some c>0.

Then, the Green kernel (G (x, y) exists on X and satisfies the estimates

A B
—_ <O s ——
d(x, yy=? 9 d(x, yy"~?
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204 N. MOK

Jfor some positive constants A and B independent of x. Moreover,

C
V6 D€
” y (x y)” d(x, y)'._l

Jor some C independent of x.

From the proof of Proposition (1.1) we can choose the constants A
and B so that the estimate

1 1 1 1
4 (d(x, P R"") =Gz(x.)<B (d(x, S R'“’)

is valid for the Green kernel G on B(x,; R), whenever d(xq; x),
d(xq; Y)<R/2. A similar estimate holds for the gradient of Gz (x, .).

The zero-order estimates of Green kernels are obtained by using the
Sobolev inequality of Croke [8] and the iteration technique of
Di Giorgi-Nash-Moser (Moser [18], BomBIerl-GrusTi [3]). The gradient
estimates are obtained from the Harnack inequality of Yau [28] and
CHENG-YAU [7]). For the sake of reference we also include here the latter
version on geodesic balls of Riemannian manifolds of nonnegative Ricci
curvature only for the case of harmonic functions.

TreoreM (Harnack inequality, CHENG-YAU [7]). — Let X be a Rieman-
nian manifold of nonnegative Ricci curvature. Suppose h is a positive
harmonic function on a relatively compact geodesic ball B (p; R) centered
at p of radius R, then there exists a constant C <0 such that

VA < suph(x), r(x)=d(p, x)

a’—r?

being the geodesic distance. Moreover, the constant C depends only on the
dimension of the Riemannian manifolds X.

(1.2) EsSTIMATES OF THE POINCARE-LELONG EQUATION

TueoreM (Mok-Siu-Yau [17]; Theorem 1.1, p. 187). — Let X be a
complete Kihler manifold of nonnegative holomorphic bisectional curvature
of dimension n>2. Suppose the scalar curvature is bounded by C/r* and
Volume (B(x, pr))=cr*® for some fixed base point x, and some
¢>0. Suppose p is a closed (1.1) form || p|| <C,/r?, measured in terms of
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norms of the given Kihler metric. Then, there exists a solution u of
1/2 Au=trace (p) such that u is of order 0 (log r) and satisfies automatically
id0u=p.

The theorem above is obtained from a variation of a Bochner inequality
due originally to BisHoP-GOLDBERG [2] and applying estimates of the
Laplace-Beltrami operator.

2. L2-estimates of J of Andreotti-Vesentini, Hormander and Skoda

We present here the well-known LZ-estimates of 0 for the sake of
reference. We will only use (2.1) in the case of holomorphic line
bundles. The basic estimates here are those of ANDREOTTI-VESENTINI [1]
and HORMANDER [12). We will also need an adaptation of Skoda’s estima-
tes for solving the ideal problem in the context of complete Kihler
manifolds.

(2.1) Tueorem (L%-estimates of © on a complete Kihler manifold,
ANDREOTTI-VESENTINI [1] and HORMANDER [12]). — Let X be a complete
Kdhler manifold and denote by Ric the Ricci curvature form of X. Let ¢
be a smooth function such that, in terms of the given Kihler metric,

Jor tangent vectors 1 of type (1.0) at x and for some positive continuous
function c(x). Suppose f is a 0-closed smooth (0. 1) form on X such that

' 2
[ e
X [4

Then, there exists a solution u of ou=f such that

[upere [ LLE -
X x ¢

For hermitian holomorphic vector bundles V with curvature form © (€, E';
M, I'), where &, £’ are vectors of V and 1, i’ are complex tangent vectors
of X, both of type (1.0), the inequality (%) should be replaced by :

(3Bp, n AMD+OE & m, M=e@|In?

Jor all £ of unit length.
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Remark. — (1) &, &’ can also be regarded as complex tangent vectors
of type (1.0) of V in the fiber direction. In the case ¥V =tangent bundle
Ty, ©(, E; n, n) gives the holomorphic bisectional curvature in the
directions &, n if £, n are of unit length. In the case of V=A"Ty, the
anticanonical line bundle, @ (£, £; n, i) gives the Ricci curvature in the
direction of n) when £ is of unit length.

(2) In order to obtain the same estimate when ¢ is not necessarily
smooth one needs to approximate ¢ by appropriate smooth
functions. This can be done whenever X is a Stein manifold.

(2.2). The following theorem is an adaptation of Skoda’s estimates for
solving the ideal problem in the context of complete Kaihler
manifolds. The precise constants appearing in Skopa [25] will not be
needed.

THEOREM (adaptation to complete Kihler manifolds from
Sxopa [25]). — Let X be a complete Kdhler manifold, ¢ a smooth function
such that 90 + Ric is a semi-positive (1, 1) form, where Ric stands for the
Ricci curvature form. Let f,, . . ., f,, h be holomorphic functions on X, k
be a positive constant, a.> 1 arbitrarily such that:

S L Lp——
Gl A 2)"“43 <o0.
Then, there exists a solution (g,, . . ., g,) of YI_, fig;=h satisfying the
estimate:
2 2
|2, e <C L e ke

Qr- [ £ AP

Jor each j, 1<j<p.

Since the proof of the above theorem in case of bounded pseudoconvex
domains is obtained by applying the LZ-estimates of HORMANDER [12] to
the weight functions constant log (|g,|*+ ... +]|g,|?), application of
Theorem (2. 1) immediately gives (2.2) in case gy, . . ., g, have no com-
mon zero (i.e., log (|g, |*+ . . . +|g,|?) is smooth). In the general case
smoothing can be obtained by taking log (|g,|*+ . .. +]g,|*+¢), which
decreases monotonically to log (|g,|2+. . . +|g,|*) as e > 0.
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3. The basic inequality mult ([V]; x,)<C deg(f).

(3.1) From now on we shall assume that X is an n-dimensional complete
Kihler manifold of positive holomorphic bisectional curvature such that
the scalar curvature is bounded by C,/d(x,; x)> and Volume
(B(xq; r))=cr?", as in the hypothesis of the Main Theorem. The follo-
wing basic inequality is the starting point of our study of the algebra P (X)
of holomorphic functions of polynomial growth. It relates the degree of
such functions to the multiplicity of their zero divisors at some arbitrary
but fixed base point. We prove here the inequality in the case of mani-
folds of nonnegative Ricci curvature. In case of dimension 1 a Riemann
surface admitting a complete metric of positive Ricci curvature must be
biholomorphic to the complex plane by the classical theorem of
BrLanc-FiaLra [1].  For the following theorem and the rest of this article
we consider therefore only dimensions n> 2.

THEOREM (3.1) (The basic inequality). — Let X be an n-dimensional
complete Kihler manifold of positive Ricci curvature, n>2, such that for
some fixed base point x,

(i) Scalar curvature <Cofd(xq; x)2, Co=0.

(ii) Volume (B(xo; r))=cr?®, ¢>0.

Let f be a holomorphic function on X of polynomial growth, i.e.,
| f)|<C @(xo; xP+1) for some p=0, C'20, and let
[Vl=i/2nddlog | f|* be the zero divisor, counting multiplicity, determined
by f. Then, there exists a positive constant C independent of f such that:

mult ([V]; xO)<C deg (f),

where deg( f) is defined to be the infimum of all p for which the following
estimate holds:

| £ ()] <C (P)E(x0; X)°+1).

The multiplicity here is taken to be the usual multiplicity defined
algebraically. By a theorem of Thie [27] this agrees with the Lelong
number of the positive (1, 1) current [V] at x,. We will not distinguish
between the zero divisor of f and the positive (1, 1) integral current it
represents. Also, holomorphic n-forms and n-vector fields of polynomial
growth and their degrees will be defined analogously.
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Theorem (3. 1) will be a consequence of more precise estimates of both
the multiplicity and the degree, in terms of the volume growth of [V]
over geodesic balls. Unlike the classical inequality of Bishop-Lelong, the
multiplicity will be estimated in terms of a weighted average of volumes
of [V] inside geodesic balls over the entire manifold. We remark that a
more direct proof can be given in the case under consideration in the
Main Theorem, namely, when the holomorphic bisectional curvatures are
positive, where we have results of [17] for solving the Poincaré-Lelong
equation.

We fix a base point x, and some R,>0. For R>R,, we subdivide X
into regions D, (R,), v=0 defined by:

Do (R)=B(xo; 2R)
{ D,(R)=B(xo; 2°*' R)—B(xo; 2'R)

We define a weighted volume of V over D, (R) by:

1

AR=———| Alog|f]?
® (2VR)""L.(.) ol /|

With these notations we have the following estimates.

ProposITION (3. 1. 1). — Let X be a complete Kihler manifold, Ric(X)>0
satisfying geometric growth conditions as in the hypothesis of
Theorem (3.1). Then there exist an Ry>0 such that for all R>R, and

Jor all fe P(X)
A,(R)
2v

mult ([V]; x0)<CY,

where the constant C is independent of f.

PrOPOSITION (3. 1.2). — Hypothesis as in Theorem (3. 1) and Proposition
(3.1.1), there exists a constant C, independent of f and R and constants
C, (f) depending on f such that for any R>R,>0 (with R, fixed as before),

pdeg ()=C, (T, 4, (R)—C,(f).

The next two paragraphs will be devoted to proving the preceding
propositions.
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(3.2) AN UPPER BOUND FOR THE MULTIPLICITY

In this paragraph we will prove Proposition (3.1.1). Let xo€X and
R,>0 be fixed as above. Let B be a coordinate neighborhood of x,
biholomorphic to a Euclidean ball with x, corresponding to the center
such that B © B(x,; Ro/2). Since the Ricci form on X is positive definite,
we have, writing Ric for the Ricci form,

mult ([V]; xo) <Const. f -21-63 log| f]* A Ric"!
, o

<Const. J. —81og | f|* A Ric™™! for R=Ro/2.
3(3)2“

Here the first inequality could be obtained by applying the inequality of
Bishop-Lelong to the a coordinate ball B’ with x,e B’ < = B. The cons-
tant is independent of f, but depends on the choice of B and the smallest
(positive) eigenvalue of the Ricci curvature form. Hence, for each
R=R,/2 we obtain by integration by parts:

mult ([V]; x,)<Const. J’ L 331og | £1* A Ric*™?
3m2T

=Const.J‘ L Jlog|f|? A Ric"?
B®2T

Const. c
< Rcz,.nf'z‘j | Viog|f|* |l (scalar curvature < R-g>
B®

Integrating from R/2 to R, we have, for R=R:
R B(R)~B (R/2)

In order to relate the latter integral with the volume growth of [V],
counting multiplicities, we need to represent log| f |* as an integral over
V, using the following lemma on Riesz representation.

Lemma (Riesz representation). — Let f e P(X) and X, be a point close
to x, such that f (xo)#0. Then, on X:

log | f (x)|*= lim [Gr (%05 ) —Gr(x; )] Alog| f () |*dy

R -~ © JB(R)
+l°gl f(;o)|29
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where Gy denotes the Green kernel on B(R)=B(x,; R), taken to be positive,
and the limit is in the sense of uniform convergence on compact subsets.

Proof of lemma. — Let:
un(x)=f [Gr(Xo; ¥)—Gr(x; »)]Alog| f (»)|*dy+log| f (x,)[?
B(R)

on the geodesic ball B(R). Then on B(R):
lOg |f|2=uk+hk’

where hg is harmonic, hg (x,)=0 and on 3B (R):

hg <sup,p g, log| f | —log| f(fo)ll_
By the maximum principle the above inequality is also valid on B(R). By
the Harnack inequality of CHeng-Yau [7] (cf (1.1)) apphed to
(Supp (r) hr— hg) we have on B(R/2):

C -~
“v}'r” 3 El(suPn(n)IOSI flz)"l°8| f(xo)lzl-

Since by assumption fis of polynomial growth,
SUP,p (&) lOg I S !2 <gqlog R+Const.

for R large enough, giving:

Cq log R+Const.
IVl < =122

on B(R/2).

Recall that hg(%,)=0. Taking limits we obtain lim hy=0 uniformly
R—+ o

on compact subsets of X, thus proving the lemma.
From the inequality:

Const.
L
B(R)-B(R/2)

we shall obtain the desired upper bound for mult([V]; x,)- From the

mult([V]; xo) < —oee
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lemma (Riesz representation) one has the gradient estimate (given by
(1. D))

||v1og|f(x)lzl|<LIIV,G(x, NlAtog| £ (»)|*dy

Const
< | ———Al 2d
Ld(x,y)"'l oe| S ([P dy

Hence:

[ ivislsef)
B(R)-B(R/2)

<L (L C—°“s"—-dx)mog|f(y)|2dy.

®-sand(x, y)>1

Since X has nonnegative Ricci curvature, the exponential map (in normal
geodesic coordinates) is volume-decreasing. It follows that volume of
geodesic spheres dB(x, R) is of order 0(d(x, y)**~!). Hence, for R>R,:

[ vl seor
B(R)—B(R/2)

sj (J —Ci'de)Aloslf(y)lzdy
B(2R) B

(R)-B (R/2) d(x, )’)2'— !

Const.
+J (J' ———“’2__1dx> Alog| f (»)?|dy
X~-B(@2R) \JB(R)~B(R/2) d(x, y

< Const. RJ' Alog| f (»)|*dy

Do (R)
.  Const.
+3%, ———_Volume(B (R)) Alog| f (»)|2dy
(2"R)y™ B, (®)

Here we subdivide X—B(2R) into D, (R)=B(xy; 2°*' R)—B(x,; 2'R)
and put D, (R)=B(2R). From the estimate Volume (B (R))<Const. R?",
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which holds because X has nonnegative Ricci curvature, we obtain (all
constants being independent of R)

Const.
mult ([V]; xo) €~ f | Viog] £ 2]
R B(R)-B(R/2)

Const.
SFJ. Alog| f (»)|*dy
Do (R)
o 1 Const. J‘ A,(R)
e Alo 2dy<Const. ¥° T2
EV 1 2y (2VR)2"_2 DV(R) glf(y)l y szo 2V

(3.3) A LOWER BOUND FOR THE DEGREE

The lower bound p deg(f)=>C, (X" 4,)—C;(f), C, independent of
f, is in fact an immediate consequence of the lemma on Riesz representation
proved in (3.2). To see this, recall that X, is a point close to x, such
that f (x,)#0 and let:

g ()= f —Gx(x, y)Alog| £ ()] dy
B(R)

where B(R)=B(x,; R). The function log|f|?—vy is harmonic on
B(R). Since fis of polynomial growth, given any §>0, there is a constant
C’ (d) such that:

|f ()] <C )@ (o3 x)*0 S 1*2+1).

From the maximum principle for any R>0:

l°8| £ (xo) |1_”x(’?o)Sz(deg(f)"’a)S“Pxeon(x)(d(ioQ x)+1)+C" (3)

On the other hand, from estimates of Gx(x; y) in (1.1):

~ -1 Const. |
—vmp (%)= Y0 @ R? R)’*"f Alog| f (»)|*dy
Dy (R)

where the constant is independent of £ Combining the two inequalities
gives the desired inequality when 8 is small enough.
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(3.4) CONCLUSION OF THE PROOF OF THE BASIC INEQUALITY

Finally, we prove the inequality mult([V]; x,)<Cdeg(f) from the
inequalities (i) and (ii) for R= R, >0, with x,, fixed

() mult([V; %) SCLE.o 2500 *
(i) pdeg (N)=C, (X4 A,(R)-C.(f).
Recall that:

Dy(R)=B(xo; 2R),
D,(R)=B(xo; 2'*' R)—B(xo; 2'R),

and that the weighted volume A, (R) is defined by:

! J' Alog| f|%
DyW(R)

O

We consider the inequality (i) for R=2*R,,, adding up the inequalities:

Ay (2*Ro)+ ——A‘(‘;'R” +... +——————A‘(2 Ro) +.. !

. 2—mult([V]; x
> C (IV]; xo)

Now for v=1, s>0

1

A,(2R) = ————rn—
V( 0) (2v+s RO)Zn—Z

[ stopl =t
Dy+3(Rg)

The term A,(2°R,) can be decomposed by regarding D,(2°R,)=
B(xq; 22*'R,) as the disjoint union of B(xy; 2Rg)=D¢(Ry),
D,(Ry), ... D,(Ry). Then,

1
Ao(PRy)= ———=Y" 2
@ R)= i T | logl |

v (Ro)

o5 A0 (Ro)+

1
2' (2n=2) 2(:*1)(2:--2)‘41 (Ro)

1
+... +2—1n_—2A,—1(R0)+As(R0)’
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giving:

AO(R0)+A (R°) . .+A—"§—VIS°—)+...>%mult([V];xo),
‘42"2ng) + A4, (Ro)+ 21— AI(R°) o+ sz(f“) RS -é—mult([V]; Xo)s

Ao (Ro) | 4: (Ro) A3 (Ro) A, (Ro)
2 ez +4,(Ro)+ , Tt

+..2 —émult([V]; Xo)-

Adding the first (s) inequalities, we have:
agAg(Ro)+a, A, (Ro)+ ... +a,A,(Rg)+. . Emult([V] Xo)

where for 0<r<s—1 a

1<a,<l+z\.=1 22 Zv'l 2(2l| v <K<,

K independent of s; and for r>s

—;<]+l+ _l_)< 1
a, r-s+l 2 Tt 2-1 2r—s'

This gives
(#) K(4o(Ro)+A4;(Ro)+. . . 4,1 (Ro)+ ( A,(Ro)

A ®) | AR

s
+ L=+ ... ) Z2=mult(]V]; .
> T ) ok (IV]; xo)

Now we use the inequality (ii) to obtain:

Ag(Ro)+A; (Rp)+. .. +A4,_ 1(Ro)<—deg (f)+=2L2 C,(f).
C, C,
and:

A4 (Ro) 1 (s+v+1) deg(f)+C(f)
2 C, '

Substituting into the previous inequality (¥)

deg(f) (—+z:°.os;v“) +@+0 25 2 mu((11; ).

1
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Since Y (v/2") < oo and Y- 5/2"=2s the basic inequality:
mult([V]; xo)<C deg(f),

with a different constant C, follows immediately by letting s — 0.

4. Steinness of X and an improvement of a pinching theorem for nonnega-
tive bisectional curvature

(4.1) Recall that the complete n-simensional Kihler manifold X in the

Main Theorem satisfies
(i) holomorphic bisectional curvature>0;

(ii) scalar curvature <C/d(x,; x)?;

(iii) Volume (B (x,; r))=cr*", ¢>0.

We assume here n>2. Using the solution of the Poincaré-Lelong
equation developed in [17], we showed in the same article
(Theorem 1.2 (2), p. 200) that under the stronger assumption

(i)’ C’(d(x,, x)+ 1)? <scalar curvature < C/d(x,, x)?, X is a Stein mani-
fold because the solution @ of idou=Ricci curvature form (reduced to
1/2 Au=scalar curvature) is an exhaustion function. Using intermediate
estimates of the basic inequality (Theorem (3. 1)) we shall prove the same
thing under the weaker assumption (ii) with only an upper bound on the
scalar curvature. For the sake of completeness we shall recall the argu-
ments used in [17, Theorem 1.2(2), p. 200 From now on X will be the
complete Kihler manifold satisfying the hypothesis of the Main Theorem
and x, will be a fixed base point. We formulate our result in the following
more general form.

ProprosiTiON (4.1). — Let p be a closed positive (1, 1) form on X such
that ||p]| <C/d(xo; x)*. Then there is a solution of 1/2Au=trace (p)
of order 0(logd(x,; x)) which satisfies automatically the Poincaré-Lelong
equation i00u=p. Moreover, either p=0 or u actually satisfies the more
precise estimates C’(logd(xy; x)<u<C”logd(xy; x), C’, C’">0 for
d(xq; x) large enough.

Proof. — The lower estimate in (3. 2) of volume growth of hypersurfaces
on geodesic balls is clearly also valid in a modified form for closed positive

TOME 112 —~ 1984 — N°2



216 N. MOK

(1, 1) forms p such that ||p|| <C/d(xo; x)>. We use the same notations
as in (3.2). We define the regions:

Do(Ro)=B(2R,)
{D,,(Ro)=B(2"“Ro)—B(2"Ro) for v>1

and the weighted averages:

(2v Rb)zu-z B, (Ro)

From the arguments of (3.2) we have:

A,(p; Ro)=

Z,,.o szv(Po 2"Ro)>c>0

for any integer p>0, where c is indepcndent of p. Write trace (p)=h
and define h,=1p xo)h h=3Y,_oh, Let u, be the solution on X of

1/2Au,=h, obtamed by solving the Dirichlet boundary value problem and
normahzmg at x, so that u,(x,)=0. Thus 1/2Au, ,=h,, on B(2*Ry),
k=p, u, ,=constant on 3B (x,, k) and u, ,(xo)=0, then u,, is the uniform
limit of u,, on compact subsets. Let x be such that
2R, <d(x0; X)<29*1 R, and write:

u(x)= qu p (x)+ Zp>q+ 1 Up (X).
We estimate the two terms
Wy (X)= Z‘,‘q P (x) and W, (x)= Zp)q+ 1 up (X)

separately. We do w, first. On B(xy, 2R,) u, is harmonic for
p=q+1. Since estimates of the solution Av =7y x, by solving the Dirich-
let boundary problem (cf. [17, Theorem 1]) give |v|<C,R?, we obtain
from h,<C,o/(27 Ro)* s (27 Roy and the gradient estimate of harmonic func-
tions (YAu [28]):

|Vu,| < 'le on B(x,; 2°"'R,)
0
giving:

w,(x);—zp d(x,, x)+infyu, —Z‘_o 5 —CCy=-C,

zq+2 (Z'R )
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where C is a constant depending only on the geometry of X. Clearly, C,

is independent of x. Now we estimate w, (x). Fix p<q. u, is harmonic
on X—B(2’R,). We have: '

u,(2)=f —-h(»)G(z; .v)+f h(») G(xo; »).
Dp(Ro)

Dy (Ro)

For all p, the first term is larger than CC, on X. Let:

a,=J‘ h(»)G(xo; y)dy.
D, (RO)

Then, at x, by comparing to harmonic measures, we have:

C3 2’(2"2)1%2'_2)) +a
d(xo; x)**~2 "

u,(x)= —CCy+(CCy) ( 1-

There exists an integer m such that for g=p+m, we have:

p(2n—2) p(28~2)
1---C32 R =>1~p*?, with some p<1.
d(xq; x)*"2

Thus,
wy x)=z-m CCo + 2p<q—- _CCO +(CC0)(1 —ﬂ"’)+d,, |
=—mCCo—CCo Y ey mB P+ oy

1
2-CC, (m+ 'l_;—B) +Zp‘¢--ar

From:

W(x)=W1(x)+Wz(x)>—Cz—CCo(m+-l—l—

) + Zp‘q—mal

to prove the proposition it remains to estimate Z,‘ —m O
Recall that:

1
Z:)-O ;Av(p; 2"R())>C>0,
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where:

(zvR)2n-2 Dy (Ro) *

Clear a,2 4, (p; R,) because G(xo; ¥)=1/(2” Ry)**~2 for ye D, (R,).
From the inequality (#) of (3. 4) adapted to the weighted total variations
A,(p; Ry) we obtain, writing A,=A4,(p; R,)

A,(p, R)=

K(Ag+As+...+A4,_)+ (A,+ % + i’f—’ +... )zsq
for some constant ¢>0.
From the proof of Proposition (3.1.2) we know that:
A, < Ci(s+v+1) + _Cé
2y 2 2

There is an integer k >0, independent of x, such that:

Then:

Aps-
K(Ag+A;+...+4,_)+ (A,+ .. +;—:fl—‘).>izc--—c, Ce

1
A0+A1+ Ty +A'+ e +Al+k-1> - (E —Cl C4).
K\2
Combining:
o+, + ...+, _ 2Ag+A;+...+4,_,
with the last inequality, we obtain the desired estimate:

u(x)=z-C,-CC, (m+ T-l—ﬁ)+2,‘,__a,,>csq—c6, C,>0.

Recall that x is a point on D, (Ro), i. ¢., 2! Ro <d(x,; X)<29*! R,, and that
u(x) is the solution to i 9ou=Ric obtained by reduction to 1/2 Au=scalar
curvature. The estimate u(x)=>C,;q9—C, gives the lower bound:

u=>C’ logd(x,; x).
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The upper bound:
u<C" logd(xg; x)

was already contained in [17, Theorem 1. 1].

From Proposition (4. 1) and solving i 8du=Ricci curvature form using
techniques of [17] we conclude immediately:

(4.2) ProrosrrioN. — Let X be an n-dimensional complete Kihler
manifold of positive holomorphic bisectional curvature. Suppose for a fixed
base point:

(i) scalar curvature<Cld(xq; x)*;
(i) Volume (B(x,, r))=cr*";
Jor some C, c>0. Then X is a Stein manifold.

~ Proof. — The case of dimension n=1 is trivial. From Proposition
(4.1), for n>2, the solution of i ddu=Ricci curvature form is a strictly
plurisubharmonic exhaustion function. X is Stein by Grauert's solution
of the Levi problem.

Another consequence of Proposition (4. 1), combined with results of
Mok-S1u-Yau [17] is an improvement of the pinching theorem in [17,
Theorem 1.2, p. 194] in case of nonnegative holomorphic bisectional
curvature. The improvement here is simply that we drop the assumption
that X is Stein.

THEOREM. — Let X be a complete Kdhler manifold of nonnegative holomor-
phic bisectional curvature of dimension n>2. Suppose for a fixed base
point x,:

(i) scalar curvature <C/d(xq; x)***

(ii) Volume (B(xq; r))=cr®"
for some C, ¢>0 and for an arbitrarily small positive constant €. Then, X
is isometrically biholomorphic to C" with the flat metric.

Proof. — The solution of i 9du=Ricci curvature form obtained in [17,
Theorem 1.2, p. 194] is bounded. From Proposition (4. 1) u is identically
zero. Since X has nonnegative holomorphic bisectional curvature, it fol-
lows from the vanishing of the Ricci form that X is flat. X is therefore
covered by C" such that the covering transformations are unitary. The
volume growth condition (ii) then forces =, (X) to be finite. Since any
finite fixed-point free group of diffeomorphisms of R™ is trivial, it follows
that X is isometrically biholomorphic to C" with the flat metric.
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S. Siegel’s Theorem on the ﬁéld of rational functions

(5.1) Recall that P(X) stands for the algebra of holomorphic functions
of polynomial growth on X. We shall call the quotient field of P(X) the
field of rational functions, denoted by R(X). The main result of this
section can be summarized in the following analogue of the classical
theorem of Siegel. The proof is obtained from the basic inequality of
§ 3, L2-estimates of J and the classical arguments of Poincaré and Siegel.

ProposITION (5.1) (Siegel’s Theorem on the field of rational
functions). — Let X be a complete Kihler manifold of positive bisectional
curvature satisfying the geometric hypothesis of the Main Theorem. Then,
the field R(X) of rational functions on X is a finite extension field over
C(fi - --,1,) for some algebraically independent holomorphic functions
Ji-..s fin PX).

Proof. — In this section we denote as before by u the solution of
idou=Ricci form obtained in [17}. First we find f,, ..., f, in P(X)
algebraically independent over C. Let xeX, and let z,,...,z,;
Yi-1lzi|*<1; be local holomorphic coordinates at x such that
z;(x)=...=z,(x)=0. Let p be a smooth cut-off function on C" such
that Suppp c= B"(1) and p=1 on the ball B"(1/2). The function
ploglz|=p(z; (¥). . .z,(x)log(} |2 (x)|*)"? is globally defined on X and
is smooth except for the logarithmic singularity at X. Furthermore, the
(1, 1) form 80 plog|z| dominates a negative multiple of the Kahler form
on X. Choose now a positive constant C such that

v=Cu+p((2n+2)log|z|)
is plurisubharmonic on X (90u being positive definite). Then, for the

plurisubharmonic weight function v, and any non-zero tangent vector v
of type (1, 0) on X:

{dv+Ric, v A 1) >0.

Now 0(pz;) is a o-closed (0, 1)-form on the complete Kaihler
manifold X. Using the standard L2-estimates of 0 (cf. § 2), there exists a
smooth function u, such that du,=0(pz,) and:

1
Jluflze"s-j [3pz)||*e™
x B CcJx
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where (d0v+Ric, v A v) 2c|lv||*> whenever v is a tangent vector on
Suppp. Because of the singularity (2n+2)log|z|, u; and its first order
derivatives have to vanish at x. Moreover, the functions fi=u;—pz;
are then holomorphic (3 f;=0). They define a local biholomorphism at
x. Suppose P(f;,...,f,)=0 for some polynomial P in n
variables. Differentiating P at x, shows that df, (x) . . . df, (x) would be
linearly dependent, contradicting with the fact 9f,/0z;(x,)=9;;.

Let now d, denote the dimension of all functions in P(X) of
degree<p. We claim that d,<C’p” for some C'>0. To show this consi-
der the mapping ®,, : P (X) = C*™ defined by taking all partial derivatives
of feP(X) of order<m at the point x. There exists a constant k>0,
k =k (n), such that g(m)<km". Recall that by § 3 there exists a constant
C>0 such that mult([V]; x,)<Cdeg(f). We can assume that C is an
integer. Now choose C’ such that C'>k C". To show that d,<C’p" we
argue by contradiction. If d,>C’p" we would have

(% d,>k(C,)'>q(C,)

(g (m) being the number of coefficients in the Taylor expansion at x, of
terms of degree<m). Choose a basis over C of the vector space V, of
polynomials in P (X) of degree p, denoted by {g;, . . ., 84,} and conside-
rer &, :V,—C* ©p, From (%) it follows that some non-zero linear
combination Z;'; 14:8;=g would be mapped to zero by ®c,.. g bas
degree<p and vanishes at the point x, with multiplicity>C,+1. This
contradicts with the inequality mult ([V]; x,)<C deg( f), proving d,<C'p"
by contradiction.

From d,<C’p" it will follow that the field R(X) of rational functions
on X is a finite extension field of C(/f,, .. ., f;). First we observe from
the algebraic independence of f,, . . ., f, that for p large enough:

~dim {leC[f,, ..., f,}): degl<p}=cp" for some c>0.

Let k,, ..., k, be rational functions linearly independent over the field
C(fy,.--,[,) Write k;=h,/g, g, heP(X). By assumption Z:Sll,k,,

LeC(fi,. .., f,) are all distinct. By taking LeC[f,...,f} of
degree < p, p sufficiently large, it follows from

dim{leC[f;, ..., f,]: degi<p}=cp”
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that:
d,.,2cp".s for p large enough

where t=max {deg (h;)}. Hence ¢p".s<C'(p+1)", and

C oty C

c p e’

proving the assertion that R(X) is a finite extension field over
C(fy ..., f) wheref,, ..., f, are holomorphic functions of polynomial
growth which together define a local holomorphism at x,. One can write
RX)=C(fy - . .» Jw &/h) for some g/h=k eR (X), g, he P(X).

(5.2) In the following sections we consider the mapping F : X - C**2
defined by F=(f;, ..., f+2) fos1=8 fo+2=h. Since R(X) is a finite
extension field of C (f;, ..., f,) both g and h satisfy equalities of the
form

sslim, .,

i+ ;:l Ri(fi, .- . ) fi=0, k=n+l, n+2

where R;(w,, ..., w,) are rational functions in w,, ..., w,. Let Z, be
the subvariety of C**2 defined by
ZO={wl$ .. -swll+2) : w‘k'l+2;t=.1‘ R:(wb LR E ] wn)w£=01

k=n+1,n+2}.

Outside the union of the pole sets of R}, 1<jSv,—1, k=n+1, n+2, the
projection mapping Z, - C" given by the first n coordinates is a finite
mapping. It follows that Z,, is a subvariety of maximal dimension n. Let
Z be the connected component of Z, containing F (X).

6. An ideal problem on X and the existence of a “‘quasi-embedding” into
an affine aigebraic variety

(6. 1) Suppose there is a holomorphic embedding of X onto some affine
algebraic variety given by functions of polynomial growth on X, then the
algebra P(X) of such functions would be finitely generated. But the
Siegels’s Theorem we proved in § 5, in particular the fact that the quotient
field R(X) of rational functions is finitely generated, in géneral does not
imply the finite generation of P(X). Recall that

R(X)'—'.C(fl, . -’j;n g/h),
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where f,, ..., f,, & he P(X) and df; A ... A df, is non-zero at a point
xo. We have therefore obtained a holomorphic mapping
F=(fy, ... [ 8 h: X->C"*% We write f,,,=g, f,..,=h. We by-
pass the difficulty of proving directly that P(X) is finitely
generated.  Instead, we examine how far F: X — C"*2 is from an embed-
ding and complete F to a proper embedding by adjoining a finite number
of functions of polynomial growth. As stated in the introduction, this
process involves, among other things, two finiteness theorems, one on the
number of irreducible hypersurfaces missed by the mapping F, the other
on the number of blow-ups necessary to resolve the singularities of the
mapping. As before, we shall always assume X to be of dimension n>2.

The example Fy=(z,, z, z,—1) : C? = C? illustrates the type of degene-
rary of the mapping F: X = C"*2. The field R (X) of rational functions
on C?, can be generated by {z,, z,z,—1}. F, is an affine blow-down
which maps the entire Z,-axis to the point (0, —1); it is otherwise injective
and gives a biholomorphism C?—(z, —axis) - C>—(w,—axis). F, misses
precisely (w, —axis)— {(0, —1)}. Another type of degenerary can be seen
from the ampping F, : C — C? below. The field of rational functions on
C, R(C), can be generated by {2z z3}. The mapping F, : C —» C? defi-
ned by F, (z)=(z?, z%) is an injective holomorphic mapping from C onto
the subvariety Z of C? defined by Z = {(w,, w,)=w}=w2} with an isola-
ted singularity. F, is degenerate at the single point (0, 0).

In the above examples, one can adjoin polynomials to complete the
given mapping to a proper embedding. In the case of

Fo=(f1; f2)=(25, 2,2, 1),

one adjoins f3=z,=(f,+1)/f;. This extra function f, can be recovered
in the following way. F, misses the origin. One can solve the equation
f18,1+f38;,=1 from the Nullstellensatz. An explicit solution is given by:

2, (z3)+ (2, =D (=D =1

fi=z,=(f,+1)/f, is given as one of the g’s. As a function of the
coordinates w,, w, of the target space f, is a function whose pole set almost
lies outside F(X). It intersects F,(C?) at the single point (0, —1). The
mapping F, : C - C2, F,=({,, f)=(z% z*) can on the other hand be
completed to a proper embedding by adjoining fy=z=f,/f; to “smooth
out” the isolated singularity (0, 0) of Z.
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Of course, one can argue in case of such examples by adjoining step-by-
step polynomials to obtain a mapping of rank n everywhere. But this
involves the knowledge that every algebraic subvariety of C* has only a
finite number of irreducible branches. We shall prove the analogous
statement for our Kahler manifold X' in § 7 and § 8 and use it to desingula-
rize our mapping F.

In this section we shall first prove that F: X—C"*2 js in a certain
sense “‘almost injective” and ““almost surjective”.

(6.2) ALMOST INJECTIVITY OF F: X - C**?

ProrostTioN. — Let F=(f,, ..., fir2): X— C"*? be the holomorphic
mapping defined above and let Z be the connected component of the subva-
riety defined by (fy, . - .» fo+2) as in (5.2). Then, there exists a subvariety
Vo of such that F|x_y, : X—Z is an injective locally biholomorphic
mapping. Moreover, Z is irreducible.

Proof. — The arguments in the proof of the Siegel’'s Theorem (5.1)
show that the algebra P (X) separates points on X. Let x;eX, j=1, 2 be
different points such that F(x,) are smooth of Z and

dfi A ... Adf, (x)#0,1<i,< ... <i,<n+2. Then, locally at x,, x,,
holomorphic functions on X can be given by holomorphic functions of
Wy, . . ., W,, where (w,, ..., w,,,) are coordinates of the target space

C"*2, It follows from the fact that P(X) separates points that
F(x,)#F(x;). Let V, be the union of the branching locus of F and
F~1(Sing(Z)). Then, F is injective and locally biholomorphic on
X—V, Since F(X)c F(X—V,), F(X) lies in an irreducible component.
By definition (in (5. 2)) Z is irreducible.

(6.3) ALMOST SURJECTIVITY OF F — AN IDEAL PROBLEM ON X

In order to show that F can miss at most a finite number of irreducible
branches of Z we proceed as in the examples to solve ideal problems on
X. The solutions of analogues of f,g,+f>g2,=1 (as in the example in
(6.1)) are then rational functions in the image coordinates
(W, . - ., W,+2). But since they are holomorphic functions on X the pole
set must be disjoint from F(X—V,). In practice we shall only be able to
solve the ideal problem at points of Z-—-F(X) outside a subvariety S
containing the singularities of Z. We use an adaptation of Skoda’s
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estimates on the ideal problem [25] to complete Kahler mani-
folds. Continuing this way we shall recover hypersurfaces H; of Z which
almost lie outside F(X) in the sense that

H,ﬂF(X)=H,f\F(Vo)-

That such a process must terminate in a finite number of steps would
follow from estimates of degrees of g,’s and the fact that the dimension of
Je€ P (X) of degree <const. is finite.

In order to solve ideal problems using estimates of Skopa [25] it would
be necessary to establish the following estimate which gives a lower bound
of the proximity of F(x) to a point b outside F(X) on Z, in terms of
geodesic distances on X. It would be necessary to assume that b lies
outside some subvariety S of Z.

PrROPOSITION (6.3.1). — On Z there exists an algebraic subvariety S
such that for all be Z—S—F(X)

C()

dist(F(x), b)> =7

R(x)=d(xo; x)

where dist denotes the Euclidean distance in C**2, C(b) is a constant
depending on b and k is a constant depending only on the sum of degrees of
f 1> ¢ o f;+2'

Proof. — We prove the proposition by solving for the equation F(y)=z
for points z on Z sufficiently close to F(x). This amounts to estimating
the vector fields obtained by inverting df; , . . ., df, for some (i;, . . ., i,),
1<i,< ... <i,<n+2. The algebraic subvariety S, which contains all
singular points of Z, will be determined later. Let first beZ—F(X) be a
smooth point of Z and choose (i;, . . ., i), 1<i;< ... <i,<n+2 such
that dz; A ... Adz (b)#0. Let xeX, d(xo, x)=R and

Fx)=(fi (%), - - -5 Jas2(x))

be inside a fixed open neighborhood N of b in Z such that the mapping
G=(fiy»-.-» ;) : X—C" is a biholomorphism on a neighborhood of

F~!'(N). In order to prove the proposition it suffices to solve the equa-
tion:

G(y)=£z,l, ce Zy)
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with:
0< |G(x)—-(z,1, ces z,.)|<C(b)R‘*

for some constant C(b), k>0.
Let W,, . . ., W, be meromorphic vector fields on X defined by:

<W,’ df“) = qu'

At a point xeX where df; A ... A df, #0, W, is simply 0/of;, when
(fip---»fy) is regarded as a local systtm of holomorphic
coordinates. One can invert the holomorphic mapping G in a neigh-
borhood of G (x) by tracing integral curves of real and imaginary parts of
the vector fields W,, which are holomorphic in a neighborhood of x.

By the Cramer’s rule have:

l n
Ndfi,n ... Adf |

.
X(SUPyqqenlldfiy A - Adf A ... AdSD

|w,ll<

where all norms are measured in terms of the given Kihler metric on X
and d/ﬁp means the omission of df" in taking wedge products. By the

gradient estimate of harmonic functions ||df;, A ... A :if,. ALond
grows at most polynomially. Let n be a holomorphic n-vector field on
X obtained by solving ¢ with L2-estimates using the weight function ku,
k>0 sufficiently large. Since i dou=Ric, and:

190 log||n || = —Ric,

we have:

i00 (log||n || +u)=0.

From the estimates of u and the sub-mean value inequality, it follows that
log||n|| grows at most logarithmically. The holomorphic function
hi, . .., defined by:

By oo s y=Ldfyn ... Adf, M)
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is of polynomial growth. We have the estimate:

n|
Iw i<l
P by sl
X (SUpy cqeulldfiy A .- A df A - .. af. |
CR*o
 —— for some C, ky>0.
R
From the Siegel’s theorem for R(X) h;,, . . ., , can be expressed on Z as
a rational function, i.e.,

hiys o os iy )=Hyys . . o,  (F(x))

for some rational H;,...,, on Z and for all xeX outside a

subvaricty. Now we define § to be the union of zero-sets of all
H .» i, and Sing(Z). Then, for F(x) sufficiently close to b, we have
the estimate:

THRE

| W, || <Co (B) R*,

for some constant C, (b) depending on be Z—S.
(Here, of course, W, is defined by a specific choice of (f,, ..
£).) Consider the real vector field:

v= Z;-l al(z RC(W‘,)-I» Z;-q B,(ZIm(W,))

*

where:
Zo-1 (o[ +[B,[H)=1.
v is the pull-back under G of the real vector field
o=y (@, 0/0x, +B,0/0y,)

defined on C".
To solve for:

GON=ays - - - )
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with:
0<|G()—(zy - - -0 2,)| SCBR™

for some constant C(b), k>0 it suffices to show that the integral curves
v,(t) defined by v with initial values y,(0)=x can be defined for
0<t<C()R™* Consider the ordinary differential equation:

d
—=Colp)r

r(0)=R(x).
This equation admits a finite solution for 0<t < c(x) with:

ko_l - .
c(x)=—-"2—R(x)"%*! assuming k,>1.
(x) C.®) (x) g Ko

By comparing R(y,(t)) with r we complete the proof of Proposition
(6.3.1).

Now we are ready to formulate and prove the “almost surjectivity” of
the holomorphic mapping F : X —» C"*2,

PRrOPOSITION (6.3.2). — There exists an algebraic subvariety T of Z
such that F(X) contains Z—T. Furthermore one can choose T such that F
maps X--V biholomorphically onto Z—T, for some subvariety V of X
containing the branching locus of F.

Proof. — Recall first there exists an algebraic subvariety S containing
the singularities of Z such that the estimate of (6.2.1) hold Let now b
be a point of Z—S$ lying outside the image of F. For each such point
there exists (iy,...,4,), 1<i;<...<i,<n+2 such that the projection
map Z - C" given by (z,,...,2,42) = (2, . . .,2,) is non-degenerate
at b. We shall denote this projection map by =, I=(,,...,i,).
n; ! (n; (b)) consists of <M points, for some M independent of b and
1. Let h, be a holomorphic function on C**2 such that h, (b)=1, h, (w)=1
for wen; !(n,;(b))—{b}. By interpolation such a polynomial can be
chosen of degree <M. We now solve on X the ideal problem

(.ﬂl—b:,)gﬁ' ce. +(f,”—b‘.)g,,=(h,,°F)"+2
where b=(b,, . . .,b,).
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By Proposition (6.2.1) there exists a constant k>0 independent of b
such that

dist (F (x), b)> g}%-)

with C (b) possibly depending on b. Recall that u is the solution of the
Poincaré-Lelong equation i dou=Ricci form obtained by the method of
[17), which satisfies by an intermediate estimate of the basic inequality

u(x) >const. logd (xo; x) for d(xq; x) sufficiently large

The opposite inequality
u(x)<const. logd (xo; x) for d(xq; x) sufficiently large

is a consequence of estimates of the Green kernel.

The function h, ( F(x)) is a holomorphic function on X is of polynomial
growth and of degree <M max, (¢, deg(f). Since h,(W)=0 on

(g (0)—-{b}
Ihb'2u+4

&zt

is bounded near =n;'w,(b)—{b} for a>1 small enough. From
dist( F (x), b)=C (b)/R* it follows that there exists some positive constant
K, such that

l hb°F '2--0-‘
b 4 (th‘u I fit_biu lz)"“

By the estimate of Skoda, adapted to complete Kihler manifolds, there
exists a solution of (g, .. .,g)

e X1* < oo for some a>1

(fi,=b) &1+ ... +(fi,—b,) g, =(hyoFy*?
such that for some a>0 fixed and independent of b,

Zl<k<n|gh 'z -K.u |hb'Flz“+‘
e “1*gC,

X (Zn <k&n I fix—bh |2)" X (Zx Sk€n | flk_bit P)"“

e Ki'c oo,
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Since f; are of polynomial growth, by the upper bound of u it follows that
there exists a constant K, >0 such that

f (Zl‘m. 'gk '2) d (xo; x)+ 1) F2<c 0.
X

By the sub-mean value inequality, and the fact that ) ., .. |8.[* is plurisu-
bharmonic (hence subharmonic in any Kahler metric), it follows that for
1<k<n, g, is a function of polynomial growth on X of degree <K
independent of b. Consider the equation

(fu=b)g1+. .. +(fi,—b )8 = F)y*?

as an equation on the subvariety Z. By the Siegel Theorem of § 4, g,,
1<k<n are rational functions of f;,...,f,,,. Considered as rational
functions of the coordinates (wy, . .,w,,,) of the target space C"*2, at
least one of g, must have a pole at b, otherwise

(w,—b g +. .. +(W:.—b¢,)g,.=h:+2

would yield a contradiction at b, since h,(b)=1. Let now T, be the union
of the pole sets of g,,...,8, on Z. If F misses any point outside
T, U S we can proceed by choosing b’€ Z—(T, U S \U F (X)) to construct
holomorphic functions g7, . . ., g, on X of degree <K At least one of
g: must have a pole at b".- Proceeding this way we obtain holomorphic
functions p;e P (X) of degree <K such that p;, when considered as rational
functions of w,, . ..,w,,,, has a pole at b, More precisely, pole set of
Pj & Ux<; pole sets of p,, and b;epole set of p;—(U,<; pole sets of p,).

Such functions p; must be linearly independent. In fact, the equation
Pyt +ep=0, ¢#0
would be contradicted at b, where p,, .. .,p;_, are regular at b; and p,

has a pole at b; (which is a smooth point of Z). But the estimates in the
Siegel’s Theorem of § 4 gives

dim{ feP(X)=deg(f)<K} < 0.

It follows that the whole process of locating “exceptional” subvarieties
must terminate in a finite number of steps, say at j=m. Let

T=SUT,U...UT, Then F(X)>Z-T. Define V=F (D).
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F:X—V - Z-T is injective, and hence bijective, by Proposition (6. 2)
(V> Vy). Since Z—T is smooth, F maps X— V biholomorphically onto
Z-T.

Remark. — 1t is possible to further reduce T so that V can be taken to
be ¥, as in Proposition (6. 2), i. ., the union of the branching locus of F
and F ~!(Sing Z). Later we can further reduce V precisely to the bran-
ching locus of some F by normalizing the holomorphic mapping F (7. 1).

To finish the proof of the Main Theorem, we have first to desingularize
the holomorphic map F : X -+ Z which is almost a biholomorphism. The
difficulty of the problem is to prove that the obvious process of desingulari-
zation will come to an end in a finite number of steps. The latter
statement would be immediate if we know that every “‘algebraic” subva-
riety of X, i e, one defined by functions in P(X), has necessarily only
a finite number of irreducible branches. Geometric difficulty arises in
dimension n> 3 because we do not have sufficient control of the geometry
of “algebraic” subvarieties of codimension >2. In order to solve this
problem of desingularization, we shall show in § 8 that a uniform bound
on the multiplicities of irreducible branches of the zero-divisors of f € P(X)
is sufficient for the finiteness of the desingularization process (affine
blow-ups). This uniform bound on multiplicities will first be established
in the next section (§ 7) using geometric comparison theorems. Then in
the last section (§ 9) we shall show that the resulting holomorphic map,
which is a biholomorphism onto some Zariski open subset of an affine
algebraic variety, can be completed to a proper embedding. This will
involve proving the rational convexity of the image and an application of
the vanishing theorem of SERRE [20] in algebraic geometry.

7. A uniform bound on multiplicities of branches of an *‘algebraic™ divisor

(7.1) Let feP(X) and [V]=i/2%d0 log| f|* be the zero divisor (or
closed positive (1,1) integral current), counting multiplicity, defined by
f. The basic inequality of § 3 shows that the muitiplicity of [V] at each
point x,€V is bounded by a constant multiple of the degree of f with a
constant possibly depending on x,. In fact, because we have to insert a
coordinate Euclidean ball at x, and estimate [V] A Ric"~!, the constant
depends on the choice of the ball and a lower bound of the eigenvalues
of the Ricci tensor. In this chapter we shall derive the uniform version
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of the basic inequality. For the derivation we shall need bounds on the
sectional curvature. On the other hand, the Ricci curvature tensor is
only required to be positive semi-definite.

THEOREM (7.1). — Let X be a Stein complete Kihler manifold of
nonnegative Ricci curvature oj:_ dimension n>2. Suppose, for a fixed base
point xo and for R(x)=d (x; xo)

(i) —(Co/R*) < sectional curvature < Co/R?

(i) Volume B(x, ; r)=cr*", c¢>0.

Let f be a holomorphic function on X of polynomial growth and [V} be
an irreducible non-compact branch of the zero divisor [V], then,

mult ([V])<C deg(f),

where C is a constant independent of f and the particular branch [V].

Remark. — (1) Here the multiplicity of [V}] is defined as the multiplicity
at regular points of ¥,, Multiplicities at singular points of ¥; would be
strictly larger.

(2) With obvious modifications of the proof, the theorem also applies
to zero sets of holomorphic n-forms o of polynomial growth. Morevover,
the number of branches V; are finite in both cases, as would be obvious
from the proof.

We shall prove Theorem (7.1) by means of geometric comparison
theorems. We shall show that the volume of [V} in geodesic balls of
radius r (with a fixed center) grows at least like C’'r2"~? with a positive
constant C’=C, . multiplicity of [V], C, >0 a universal constant depending
only on the geometry of X. A theorem of this nature on simply connected
complete Kihler manifolds of nonpositive sectional curvature can be found
in Stu-Yau [24]. There they only use the fact that V; is a minimal
subvariety. The proof makes heavy use of the theorem of Cartan-
Hadamard, i. e, that the exponential map is a diffeomorphism at each
base point. In our case one would need an estimate of the injectivity
radius. It would also be necessary to take into account the positive upper
bound of the sectional curvature tensor. In the next paragraph we shall
prove a proposition on geodesic balls which is weaker than the desirable
estimate of the injectivity radius but which is nonetheless sufficient for
estimates of volume growths of complex subvarieties.
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(7.2) ProrosiTiON. — Let X be a complete Kihler manifold of dimension
n>2 satisfying the hypothesis of Theorem (7.1). Then there exists a posi-
tive constant c, such that the conjugate radius at p with d (p; xo)=R is
bounded from below by ¢, R and that the local homeomorphism

exp,=Bo(0, ¢, R)—+ X

from the Euclidean ball B, (0, ¢, R) in the tangent space T,(X) into X has
at most k sheets, with an integer k independent of p.

Remarks. — (i) By the conjugate radius we mean the largest possible s
such that the exponential map exp, : T, (X) - X is a local homeomorphism
on B,(s)=B,(0; s).. We shall say that a local homeomorphism has at
most k sheets if the preimage of every point is a finite set of at most k
points.

(ii) The estimate here on the conjugate radius is standard. It is included
for readers not familar with differential-geometric arguments.

Proof. — To prove the first part of Proposition (7.2), we make use of
Rauch’s Comparison Theorem (cf. CHEEGER-EBIN [5]). Let x, be a fixed
base point, p be an arbitrary point on X such that d (xo; p)=R. By the
assumption (i) in the statement of the Main Theorem, on the geodesic
ball B(x; R/2) we have the inequality

-2
sectional curvature < _So_ =(—§—> ..
R/2? \2 /o

Hence, by Rauch’s Comparison Theorem (comparing with the Euclidean
sphere of radius R/2 \/C_o), there is no conjugate point of p along geodesic

emanating from p of length n R/2 \/c—o or R/2, whichever is smaller, proving
the first part of Proposition (7. 2) for any

¢, <min (1/2, u/2\/E;).
From now on we shall assume
¢, <min(1/2, n/2\/c—o)

and determine it later. For any point p on X with d (x,; p)=R
let Zug,,(x)dx,®dx, denote the pull-back of the Kahler metric on X
under the exponential map exp, We observe that the metric

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



234 : N. MOK

Y.,8y(x/c, Rydx; ® dx; is non-degenerate on the Euclidean unit ball and
that the corresponding Laplacian operators are uniformly elliptic with
elliptic constants independent of the point p.

In order to bound the number of sheets of exp,:B,(c; R)—» X for a
suitable choice of ¢,, we shall compare the Green kernels of B(p; c, R),
equipped with the Kihler metric on X, and B,(c, R) equipped with
i 8u(x) dx' ® dx’, for c, sufficiently small. We write the Green kernels
as G, g (x; ) and G, x (X; y) respectively. We assert that for ¢, sufficien-
tly small and for 0<c, <c,/4 there exists positive constants A and B
independent of p such that whenever

x, yeB(p; 2¢, R) and X, 5€Bo(2c1R)

A B
# — <G, p(x; )€
) d*=2(x; y) 223 ) d*=2(x; y)

A ) - B
TE =TS SGC (x; _;')€ ———
(T <o < e
where || x—y|| is simply the Euclidean distance on B,(2¢c, R). We shall

only need two of the four inequalities,
The first line of (#) appears in Mok-Siu-Yau [17, § 1. 2] except that
the constant B depends on the constant ¢, appearing in

Volume (B (p; r))=c,r*"
We assert that ¢, can in fact be chosen independent of p. By looking at

the exponential map at p and observing that for the volume form
ﬁdx’ . .. dx*" in normal geodesic coordinates, ﬁ decreases along each

geodesic (by a standard comparison theorem and nonnegativity of Ricci
curvatures), the ratio Volume B(p; r)/r*" is a decreasing function in r for
p fixed. But by comparing very large geodesic balls the inequality

Volume (B (X,; ) =(c+¢€) r*", £>0,

for one single base point X, implies the same inequality for large geodesic
balls centered at p. Taking limits one has in fact

Volume (B (p; r)) >cr?",

for all base points p and for all geodesic balls B(p; r). The second line
of (#) follows easily from the Harnack inequality of MosEer for uniformiy
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elliptic operators [18]. A proof of the given estimates can be found in
StaMPACCHIA [26] using capacity functions.

We shall now finish the proof of Proposition (7.2). Let xeB(p; c, R),
exp; ' (x) N\ By (cy R)= {X,, X;, . . ., X, } with X, #X,% ... #X,. Lety,
be a point on dB(p; 2¢, R). From the estimates above

B < B
#2(x;9) (@R

GczR (x; }’o)s

Let y, be a point on 6B, (p; 2¢, R) such that the segment joining the
origin in y corresponds to a minimal geodesic between p and y, under the
exponential map. Then our assertion gives ’

A~ > ‘A
@2@;3) ~ B, R

> (e) (7)
= (c1 R)z.—z 32n-2 )

We write A for the Laplacian operator of (Bo (c; R), ), ;8,dx' ® dx')
which is simply the pull-back of the Laplacian operator A on X. Let
exp, 1 (X) N Bo(c; R)={Xy, . . ., Xp Xgu1s - - - %, } Where Xoiq, . . ., X, lie

outside B, (¢, R). Then, for x=X, 1<i<r as above, on the ball B, (c, R),

Gtz r (Xi3 Vo) =

-—K;GQR (exp, x), e:xp‘,(}))=(8;1+8;2 - +5;¢)+(8;.+'1+ cee+80)
where 87, denotes the point mass at X,.
On the other hand
=&Y Gy (X D=5, 485+ ... +8)+(5,, + .- +8D)

Since G, z (exp, ), exp, ( ) is positive on 9B, (c, R), possibly infinite at
some points, by the maximum principle we have

Gcz R (exPp (;)’ expp (;))> Z:-l Gc; R (;i’ ;)2 Z:= 1 Gcz R (-;ia ;)

In particular, at the point y =y, (Recall that exp, (X)=x, exp, (¥o)=Yo),

B
(cy R)*—2

qA

2G,,x (390> X1, Gopn (55 y0)> 32, Ryr2
- — 1
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B
<32l—2 —
1 (,4)

on the nufnbcr of sheets of exp, : By(c; R) = X.

which gives the bound

Remarks. — We remark here that the hypothesis in the Main Theorem
on the curvature tensor of X, namely bisectional curvature>0, scalar
curvature < C/d? (xo; x), C>0 implies that (—C’)/d?(xo; x) <sectional
curvature < C’/d? (x,; x), C'>0, because at any point x€ X, the Rieman-
nian sectional curvature of a 2 plane p A g, p, g€ T, (X) (the tangent space
at x), can be expressed in terms of holomorphic bisectional
curvatures. More precisely, if z;, 1 <i<n is a local system of coordindtes,
- with z=x,+ /=T x,+; and R denotes the sectional curvature tensor, then

in terms of the basis 9/0x;, 1<i<2n, of T (X), for 1<i, j, k, I<n

¢ é\é @
Ripy= R} — s VA
b < ( ox; 0x; ) 0x; 0x, >
can be expressed in terms of R;;, 1<i, j, k, I<n by putting
b8 _9,30
ox; 0z; 0z
i) 0 0
=— /=1 ———],bothforl<i<n
0Xps; (6z,~ Ezi)

Proposition (7. 2) and hence Theorem ¢7. 1) can be sharpened by dropping
the negative lower bound for Riemannian sectional curvatures. To do
this, we apply the arguments of [17, (1.1)] to the ball B,(c, R) with
the metric given by the Kéhler form exp}w®, where w=Kahler form
of X. Namely, the inequality

A -~ -~
T T YTy <G¢ (x; y)< T =3
|5—p[p-z = 2" [x-y-2
can be obtained by using comparison theorems for positive Ricci curvature,
the isoperimetric inequality of CrokE [8] and the iteration technique of
Di Giorgi-Nash-Moser. In practice we shall work with B,(Kc, R) with
K a large constant, Kc,<n/ _/C,. One has, however, to be careful in
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obtaining the inequality Ar§<4n, where r;(x)=d(x; y) denotes metric
distance on the incomplete Riemannian manifold (B, (Kc, R), (g;;)). This
can always be done by choosing ¢, small enough, as long as

(i) there is a minimal geodesic in the incomplete metric (B, (Kc; R), (g;))
realizing the infimum of lengths of curves joining x and y for X,
y€By(c; R),

(ii) all such minimal geodesics lie within B, (Kc,/2 R).

The property (ii) guarantees that one can use the arguments of
CHEEGER-GROMOLL [5] at points where there is more than one minimal
geodesic.

(7.3) Proof of Theorem (7.1). — In order to prove Theorem (7. 1) we
argue as in § 3 by comparing both mult ([V], x) and deg f with the
volume growth of V,. For the lower bound of deg(f) we shall still use
Proposition (3.1.2). In order to obtain the inequality

mult [V}, x)<C deg(f)

it is sufficient to show that for each irreducible branch V, of the zero set
V of £, and for some R,>0 fixed and for a fixed base point X,

Volume ([B (Xo; 2'** Ro)—B (Xo; 2'Ro)I N V;2C, (2" Ro)*" 2,

for v large enough with a constant C, independent of the holomorphic
function f and the particular branch V,.

In fact, using the notations of § 3 with

1

A, [Vi= W

j [Vd A @" !, o=Kihler form on X,
Dy (Ro)

D,(Ry)=B(2R,), and D,(Rp)=B(2"** Ry)—B(2'R,) for v 1, the above
estimate gives, for v sufficiently large

A, ([Vi) = Co mult (V).

But since [V;] is only part of [V]=i/2nddlog|f[|?, clearly
Proposition (3. 1.2) implies that, when we choose X, such that f (xX,)#0,

Ym0 Ay (VDK Csp deg(f)+Co ().
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The inequality A4,([V])=C, mult([V]) implies immediately the desired
bound

mult ([V])<C deg(f).

Suppose now D, (Ro) N\ V,#J. Since X is Stein, each ¥, is noncompact
(and connected). It must intersect 0B(x,; R) whenever R>2%*!R,

Let now p, be a point of V¥, lying on B (Xo, 3.2" ' R,). Such a point
exists when v is sufficiently large. p,eD,(R,) and is mid-way between
the boundaries. Let ¢, <min(1/2, n/ \/'C_z) be small enough that
B(p,,c, R,) lies in D,(R,), where R,=d (X,; p,). Write exp, ==, Let
P, , be the subvariety of B, (c, R,) defined by P, ,=n71 (V)N By(c, R).

Note that here the Euclidean ball B, (c; R,) is a spread over X (via the
local homeomorphism =) and hence inherits a complex structure. ¥, ,
is then a complex subvariety of By(c,R,) with this complex
structure. Since there is a2 uniform bound on the number of sheets of
exp, =By (c, R,) = X, we have

Volume (B (3,; ¢, R) "D, (Ro)< 7 Volume (7.,

where ¥, , is measured in terms of n*®, o=Kihler form of X. To
complete the proof of Theorem (7. 1) we shall now use geometric compari-
son theorems to show

Volumck(vi. v)? Cs R‘z,“-z.

In order to have a convenient comparison for a lower bound of volumes
of subvarieties, we use a model which is a piece of P* with a multiple of
the Fubini-Study metric. Precisely let B = « C* = P" be a Euclidean ball
with center at the origin, equipped with the Fubini-Study metric suitable
normalized so that the Riemannian sectional curvatures are bounded
from below by C,. Let z,,...,z, be the usual complex coordinates on
C". Write s*>=3"_ |z]% and denote by p the normalized Fubini-Study
Kihler form on B. There exists positive constants C4 C, such that

Cen<idos’<C,p

Let p/2<c, <min(1/2, n/_/C,) and (B, (p), Zi'Jl,,dx‘ ® dx’) be the metric
(B, u) in normal geoiiesic coordinates at the origin. Consider now the
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model (Bo(pR,/2), Y, ,8,dx'®dx’) i. e, with the metric n¥®. The
function R, (s(2x/R,))? is strictly plurisubharmonic on B, (p R,/2) with the
usual complex structure. By a standard comparison theorem for the
complex Hessian (cf. Sru-Yau [24, (1. 1)]), on

((28) Epsrone).

with n,: B, (p R,) = X a local biholomorphism, we have

QntmgiaaR‘f(s(%—g)) <Cym*o

v

where Cg, Cj are positive constants independent of v. By definition the
volume of 17',-. . Is given by

volume(vi,v)‘:J' C Pla@er?

Bo (1 Ry)

>,f [7.J A (iaane(s<2—x)))ﬂ.
BotpRv/2) Cs R,

We can now apply the integral formula of LELONG [13] to the function
R¥(s(2x/R))?>=9¢2. On dB(pR,/2), p,=aR,, with a>0 fixed.

Moreover, ¢, is equal to O only at the origin in B,(pRy/2). Hence,
from the integral formula of LELONG,

1 i 2x
S P (_aaxs( (_)--1
(aR)*""2 Lo(px,,/z)[ A Cs ’ R,
i, L (s
=lim, _, , ) J:M” 7.JaA (Cs 90 R? (s( X, )))
+J 7. A(iaalog(s<2_"))>"".
Bo (o Rv/2) R,

The second term corresponds to the “projectivized volume™ of
LeLonG [13]. It is nonnegative because by the geometric comparison
theorem for the complex Hessian (Sru-Yau [24, (1.1)]) the function
logs?(2x/R,) is plurisubharmonic on the Riemann domain B,(pR,/2)
over X (with the spread given by =n,=exp,). The limit term is
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analogous to the density number of LELONG[13). It equals
C, mult ([P, ], 0)=C, mult([V]) as can be seen by locally comparing with
the standard potentials. More precisely, one can use the biholomorphic
invariance of Lelong numbers (LELONG [14], Stu [23]), diagonalize the (1, 1)
form 60 R?s?(2x/R,) at 0 and approximate level sets by Euclidean balls
after appropriate linear coordinate transformations. With this we have
completed the proof of the inequality

Volume (¥, ,)>Cs R2*"2
or
Volume ([, ,])>Cs mult([V]) R>*~2

where the volume of [P,,] has the obvious meaning of counting
multiplicities. This completes the proof of Theorem (7.1). The analo-
gous statement for holomorphic n-forms ® is obtained by integrating
the Pincaré-Lelong equation i/2x 80 log||®|]>=[V]+(1/2®) (Ricci form),
where [V] is the zero-divisor of w.

Results of this chapter will now be applied in § 8 to show that the
quasi-embedding F: X — Z into an affine algebraic variety constructed in
§ 6 can be desingularized in a finite number of steps to yield an embedding
into some affine algebraic variety (which in general may not be
surjective). We remark here that the proof of Theorem (7.1) clearly
implies that V can only have a finite number of branches. However, the
weaker statement in Thorem (7. 1) together with a modified version of it
(8.3), (¥) 4) will be sufficient. We also remark here that the estimates of
this chapter also yield lower estimates of complex analytic subvarieties of
X of any dimension. But this does not prove that the number of branches
of an ‘““algebraic’ subvariety is finite because we did not establish correspon-
ding estimates of Green kernels on “‘algebraic™ subvarieties.

8. Desingularization of the quasi-embedding by affine blow-ups

(8.1) In § 6 we constructed a holomorphic map F : X — Z into an affine
algebraic variety which maps X—U biholomorphically onto Z—T for
some subvariety U of X and some affine algebraic subvariety T of Z. U
contains the branching locus of F but may in general be larger because
there can be self-intersections (and also subvarieties on which the solution
of the ideal problem fails (Proposition (6.3.2)). By normalizing the
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affine algebraic variety Z we remove the self-intersections. We show that
the map F resulting from the normalization is still defined by functions of
polynomial growth on X by using the lemma on Riesz representation in
§ 3. From the existence theorem of P(X) in § 2 it is clear how one can
reduce the branching locus on X by adjoining additional functions of
polynomial growth. In § 8.2 we shall prove a finiteness theorem on
affine blow-ups by using a strengthened version of Theorem (7. 1).

ProrosiTiON (8.1). — Normalization of an “algebraic” holomorphic map
into affine algebraic varieties.

Let F:X— Z be a holomorphic mapping of X into an affine algebraic
variety defined by functions of polynomial growth. Let Z be the affine
algebraic normalization of Z. Then, the lifting F of F into Z is again
defined by holomorphic functions of polynomial growth.

Proof. — Let Reg(Z) denote the Zariski dense subset of Z consisting
of regular points. It is well known that the normalization Z of Z (which
one proves easily to be affine algebraic) can be obtained by taking Zto
be the closure of the graph of {Q,,...,Q,} on Reg(Z) where Q; is a
rational function which is holomorphic (or regular in the terminology of
algebraic geometry) on Reg(Z). The lifting of F: X —+Z to F:X-2Zis
then defined by (fy, - - +» fao @1°Fs ..., Qn,°F) where F=(f, ..., fa)
and Q,°F denotes the holomorphic extension of Q;°F on F ~'(Reg(Z))
to the whole manifold X. To prove Proposition (8.1) it suffices to
establish the following statement.

(*) Let h,, h, be holomorphic functions on X of polynomial growth,
h,#0. Suppose the function g=h,/h, on (X~ zero set of h;) can be
extended to a holomorphic function on X, also denoted by g. Then, g is
a holomorphic function of polynomial growth on X.

Proof of (*). — Alog|g|*=A log|h,|*—A log|h,|* as measures. The
trace

1 i
—Al 2= — 97 lo 2 n=1
- oglef'= o~ glg)* A o™},

o=XKihler form of X, is simply the integral measure on the zero set of g,
counting multiplicity. Both log|h,|?> and log|h,|*> can be obtained by
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Riesz representation as in (3.2), lemma, in the sense that with
hy (xo), hy(x0)#0

log ' h; (x) |2=lim, - J‘ - [Gr (§o§ y)
B(xo: R)

—Gg (x; y)] Alog | b, () |> dy+log| h, (X,) |2
i=1,2,

with G, =Green kernel on the geodesic ball B(%,; R).

It follows from the above that log |g|*=log|h,|*—log|h,|* can be
represented by the same integral formula. By Proposition (3.1.2)

pdeg (h)=C, O, A, (hy; R)—C, (hy))

where A, (hy, R) is the area of [H,]=zero divisor of h,, counting
multiplicities. The inequality

pdeg (h)=C, C; 4, (8; R)—C; (b))

(with A,(g; R) defined as A, (h,, R)) holds since A log|g|><A log|h, |?
in the sense of measures. It follows readily from the Riesz representation
formula for log|g|? and the last inequality that log|g(x)|* grows at most
like const. logd (X, ; x), so that g has polynomial growth.

(8.2) AFFINE BLOW-UPS OF “ALGEBRAIC” HOLOMORPHIC MAPS INTO CV, —
In this section we shall write Fy: X = Z, for the quasi-embedding defined
in § 6 (Fo,=F) and denote by F,: X — Z, a normalization of Fo. If x is
a point on the branching locus P, of F, we claim that F, must blow
down a complex curve passing through x to a point. Otherwise F, would
be a finite proper mapping from an open neighborhood of x to an open
neighborhood of F,(x). Since F, is one-to-one on X— ¥, F, can be
inverted because Z, is normal. From the existence theorem for P(X) in
§ 2 one can adjoin a finite number of holomorphic functions of polynomial
growth to get a map F, : X— Z, for some irreducible affine algebraic
variety Z; of dimension n=dim¢, X>2, such that F, is locally biholomor-
phic at x. Hence, the locus of ramification V, of F, is strictly smaller
than ¥,. Wecrite F, : X — 2, for a normalization of F , and continue this
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way to get holomorphic mappings F;: X - Z, and their normalizations
F,: X - Z, such that

Po2P,2...27,2...

where 7, =locus of ramification of F..

If after a finite number of steps V,=(, then F,: X > Z, is a local
biholomorphism. Moreover, it is sufficient to show that ¥, consists at
most of isolated points, in which case it must be empty because F,, can
be inverted by the normality of Z,. By using the existence theorem for
P(X) as done in § 6, Proposition (6.2.2), F, is actually a biholomorphism
of X onto its image. Arguments of Proposition (6.2.2) show that the
image of F, can miss at most a finite number of irreducible subvarieties
of Z,, say T™, ..., T It F,(0ONT™+#, then it must interest
T™ in a non-empty open set because F is open. We arrange T™ so
that F . (XONT™=g for 1<i<p and F . XNT™#g for
p+1<i<q. F,(X)is a Stein subset of Z_ because X is Stein (§ 4) and
F, maps X biholomorphically onto its image. By Hartog’s extension
theorem of holomorphic functions every holomorphic function on
Z,— Ui, T{™ extends to Z,,— U,<, T™ (extension phenomenon of Thul-
len type). By Steinness of F,(X) we obtain F,(X)=Z,— U, T™.
Moreover each T must be of codimension one.

The difficulty of completing F,: X — Z, to an embedding onto a Zariski
dense open subset of some affine algebraic variety is therefore to show
that, if done appropriately, the descending chain

7,27, 2...272...

must stop in a finite number of steps. We solve this difficulty by conside-
ring the vanishing order of holomorphic functions and n-forms of polyno-
mial growth.

We state the main result of this chapter in the following proposition.

PrOPOSITION (8.2). — Let F: X — Z be the quasi-embedding of X into
an affine algebraic variety Z defined as in Proposition (6.2.2),
F=(f;, ..., fy). Then, there exists a finite number of holomorphic func-
tions f; of polynomial growth, N+1<i<N, such that the holomorphic
mapping F=(f1, . . -, fxo fue1r + - +» Ju): X = CV defines a biholomorphism
of X onto some Z—T, where Z is an irreducible affine algebraic variety
(possibly singular) and T is an algebraic subvariety of Z of pure codimension
one.
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By the arguments given above, Proposition (8.2) is a consequence of
the following proposition.

PropostTioN (8.2). — Let F : X — Z be the quasi-embedding of X into
an affine algebraic variety Z defined as in Proposition (6.2.2),
F=(fy,....fn). Let F:X-C¥, F=(f1,.., for fasrr---»fn) be
obtained by adjoining a finite number of f holomorphic functions of polyno-
mial growth. Then, the branching locus of F' has only a finite number of
irreducible branches of positive dimension.

Remarks. — We observe first that the proof of Theorem (7.1) shows
immediately that ¥’ has only a finite number of irreducible branches of
codimension one (by considering upper and lower bounds on the volume
growth of the zero set of dfi A ... Adf). This settles Propo-

sition (8. 2)’ for dimension n=2.

Since the upper estimate on the volume growth of such hypersurfaces
depends on estimates of the Green kernel on X, a direct generalization of
the arguments of Theorem (7.1) to subvarieties of higher codimension
would necessitate estimates of Green kernels on “algebraic” subvarieties
of X. We will bypass this difficulty on Bezout estimates. Instead, all
we need is a strengthened version of Theorem (7. 1) which can be applied
to most singular points of the branches V, in the theorem.

For the proof of Proposition (8.2)’ in general we need to introduce
some terminology. We say that a family of irreducible subvarieties E, of
dimension p is of bounded degree if each E; is an irreducible component
of the zero set of n—p holomorphic functions f € P (X), of degree bounded
independent of i. With this terminology we can formulate an essential
step in the proof of Proposition (8. 2)".

PROPOSITION (8.2)*. — Let F': X — CV be as in Proposition (8.2)' and
let V'=\J,;.;V, be the decomposition of the branching locus V’ of F into
irreducible components. Let I, be the set of all indices i for which V, is of
positive dimension. Then, there exists a family of irreducible analytic curves
C,, iel,, of bounded degree such that for each icl,, C, intersects V, at
isolated points in V,— ;4 V.

In order to give a better picture of the arguments we shall first give a
proof of Proposition (8.2)" for dimension 2 which can be generalized to
higher dimensions with some technical modifications.
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Proof of Proposition (8.2)”. — Case of dimension 2. It is sufficient to
prove that proposition is valid for the set of all irreducible curves P.GeD,
belonging to the branching locus ¥ of F : X - Z < CV, which is a normali-
zation of the quasi-embedding F : X — Z of Proposition (6.2.2). (Recall
that ¥ contains no isolated points by the normality of Z). For each iel
pick a point x; of P, which does not lic on other branches. We assert
that (%), Each f, 1<j<N, must be constant on each branch V. To
prove (*), by contradiction, suppose ¥, is a branch on which some p
1<j<N, is not constant. Choose a neighborhood U of x; relatively .
compact in X such that F(8U N V) is disjoint from F(x,). By choosing
U small enough, one can even assume that F(dU) is disjoint from F(x,)
since F(X—-P?)N\F(?)=@. Hence, F(x) is an interior point of the
compact set F(0)=K Fmaps UN F~!(Int K) onto Int K. Since F can
be inverted on Z—T, by the normality of Z, F can be inverted on
Int K (Recall that U is relatively compact in X). This shows that F is
biholomorphic at x,, contradicting with the fact that x;e V.

Let fy=a;, on P, iecl. By Theorem (7.1) the vanishing order m; of
f1—a; at x; is bounded independent of i. We will further assume that x;
does not belong to another branch of the zero-set of f;,. For each iel,
let w; be an m-th root of f; —a, in a neighborhood U, of i. Then, consider
the expansion.

2= E:Lo by, Wi +b; 4y (x) WEH?!

where b; , ., (x) is defined on U; and non-constant on U,n P, and b; ,
are constants for 1<v<p, We claim that (*), p, is bounded independent
ofiel

(%), is imMediate consequence of Theorem (7.1). In fact, on U,
dfy A dfy=wi*tdf, A db; .y

so that the vanishing order is at least p,+1. But by Theorem (7.1)
applied to holomorphic n-forms the vanishing order df; A df, at x; is
uniformly independent of i, proving the assertion (*),.

Now let {=b; ,,+1(x). The holomorphic function

fi— E:i.o b, ,wi —Cw'n"'“
Wf’+l 4

is defined near x, vanishes at x; but not at points on ¥, near x,. It
follows that the zero set C; must intersect ¥, at isolated points. Now
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consider the zero set D; of the multi-valent function
£)) zZ;— Z:'so b, (2 —a)"™—{(z,—a,) Pt Vi

defined on the affine algebraic variety Z. By passing to a finite branched
covering, it is easy to see that D, is contained in the zero set of some
polynomial P,(z,, z,) of degree bounded independent of i. Hence, there
exists an irreducible branch C; of P,(f,, f,)=0 which contains x; and
intersects V; at isolated points.

Remarks. — (i) By the zero-set of a multivalent function ¢ we mean
the set of all points at which some branch of ¢ vanishes.

(ii) It is also apparent how one can construct polynomials P,(z,, z,) on
C? whose zero set contains D, with degrees bounded independent of i,
directly from the multivalent functions in (¥).

The technical complication in higher dimensions comes from branches
V; of codimension>2. For the proof of Proposition (8.2)" for higher
dimensions we need the following modified version of Theorem (7. 1).

STRENGTHENED VERSION OF THEOREM (7.1). — Notations as in
Theorem (7. 1) the estimate mult([V])<C deg(f) can be replaced by the
estimate

mult([V]; x)<C deg(f)
for all points x € X except possibly for a discrete sequence of points {x, }

on V, where the constant C is independent of x and f. The analogous
estimate is also valid for holomorphic n-forms of polynomial growth.

Proof. — In the lower estimate of volume growth in Theorem (7. 1),
we consider the intersection of V,, an irreducible component of V, with
suitably large geodesic balls. In order to prove the strengthened statement
for xeV it is sufficient to show that on each ringed domain
D,=B(x; 2'*! Ry)—B(x; 2'R,) there exists a point y, such that

mult ([V]; »,)=>mult ([V]; x).
Recall that the set of all points ye V such that
mult({V]; y)=mult({V]; x)

is an analytic subvariety E,. (A purely analytic proof can be given by
Stu's Theorem on LELONG numbers (23] and THIE'S result [27]). Either x
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is an isolated point of E, or there is a positive dimensional branch E; of
E_ passing through x. In the latter case E; must be non-compact since
X is Stein, so that E intersects each D,. The above inequality is then
satisfied for any y,e D,NE, If x is an isolated point of E, then we
assert that E, must be positive-dimensional for y sufficiently near x. In
fact, if {z,} is a sequence of points on V such that z, is an isolated point
of E,, and muit([V], z,)=c>0 for all p, then {z,} =V is a closed subva-
riety of E(c)={zeV : mult([V];2)>c}, so that {z,} must be discrete,
from which our assertion follows easily. Hence the set of all xeV for
which the estimate
mult([V]; x)<C deg(f)

can possibly fail is at most a discrete set.

With this we can continue with the proof of Proposition (8. 2)” in higher
dimensions.

Proof of (8.2)” continued. — Let ¥, be a k-dimensional branch of
P, 0<k<n—1. Let x,e¥, be a regular point. In local coordinates
(Wy, - . ., w,) suppose (W, (x),...w,(x))=0 and ¥, be defined by
w;=...=w,_,=0. Consider the o-process defined in local coordinates
by
O (uy, . .- u)=(Uy, Uy gy oo s Uy Upopp Un—it1s - - -» 1,),

@ mapping some open neighborhood U of 0eC” into X, ®(0)=x, Let
1 be a holomorphic n-vector field on X of polynomial growth and consider
the holomorphic function f= (df, A ... A df, n), where f;, .. .,f, are
the first n-components of F, assumed to be of rank n. Then f vanishes
identically on 7, in particular on P, Denote the zero-divisor of f by
W. By suitably choosing the values of 1 and its first derivatives at one
point, one can certainly arrange dfAadfiA ... Adf,_, to be
non-trivial. Let PeU be such that u, (P)=0 and P is a regular point of
the zero set of fo®. Assume now x;e ¥, has been chosen such that the
estimate

mult ([W]; x)<C deg(f)

applies. By comparing the Taylor expansion of f and fo® at x; (in the
w-coordinates) and at O respectively, we see immediately that

mult(zero-divisor of f o ®; 0) <2 mult ([W]; x)<2C deg(f).
In particular the vanishing order of f o ® at P is at most 2 C deg(f). Now
consider the n-tuple (f,°®, ..., f,o®) of functions on ’{ ueU:u, =0},
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Suppose they have rank p(=rank of (f;, . . ., f,) on ¥ and that the rank
at P is also equal to p, without loss of generality. Then, there is an open
neighborhood U, of P in U such that the common zero set of
(fio®=L,, . .., f,o®—L,) intersects ¥, transversally. Call this level set
E@,, ..., (as a subset of U,). On E(,, .. .,§,) the multiplicity of
fe®onE (..., L)N{u,=0}is the same as the multiplicity of f - ®
" (as a function on U) on the u,-axis. We shall write f for f ® and f, for
f;o® for short. Let the multiplicity of f on {u, =0} be m and let f'/™
denote some m-th root of f in a neighborhood of P in U. Suppose,
after renumbering, (f),...,f,) have rank p at P.. Define
G(uy, . - . u)=Fi(0,u, . ..,u,) on U, for 1 <i<p and suppose it is possi-
ble to write f; in the expansion

® Ai=t+8 Gy L)Y+
SR (RN AN LLES I Lk

where &,, . . ., &, g,+ are holomorphic functions on U, and the functions
£, depends only on values of f;,.. ., f,. Then clearly the vanishing
order of dfadfyn...Andf,_, at P is at least g because
dE, Gy, . .- 5) Adfy A ... Adf,_,=0. However, by choosing P such
that ®(P)eP,cX does not belong to the bad set of
df A dfy A ... Adf,_, (the discrete point set for which the strengthened
version of Theorem (7. 1) does not apply), and by comparing the Taylor
expansions at P and F(P) respectively, we have: vanishing order of
df A dfy A ... Adf,_, at P=vanishing order of df A df; A ... A df,_,
at F(P)+(n—k—1), where the extra constant (n—k —1) comes from the
Jacobian determinant of ®. This means that with this choice of P the
exponent g in the expansion (#) is bounded independent of ¥, The
expansion (#) is obtained simply as follows. Let g, be the extension
of (f,-~¢)/f"™ to U, Suppose g is constant on each
EECy .. ..8)N{u,;=0}. For U, sufficiently small this means that
£ |E(c;. cvtwntu=0=81&;s - - .,§;). Then one continues by letting g,
be the extension of (f;—§,~&, Gy, - - -.§,) £1™)/f ™ to U, and so on.

Now choose q such that g, ., is not identically constant on generic level
sets E(C,, .. .,.L)N{u,=0}. We write E,, ...,{,; n,) for the zero
set of the extended holomorphic function

fl—CI—z:-l §1(§l9 .. .’q')fl/m _n

flatim 1
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Then for suitable choice of {, . . .,{, and n,, E(,, . . .,{,; n,) intersects
E®,,...,L,) transversally at a point P, sufficiently close to
P. E®,,.-.,{,: ny) is of dimension n—p—1. For generic choices of
P, the vanishing order of f, It(h. .. ..lu: np at P, is the same as that of f,
at P,. Then, one performs the same process on E(,, . . .,{,; n,) for
the function f, and so on until one obtains an analytic curve C; intersecting
{u, =0} transversally, defined as W— {u, =0}, where W is the simulta-
neous zero set of holomorphic functions

J—t= T, & fom—n, ot o

for some constants {;, 1; and £, 1<v<gq; and for g;<const. independent
of i for 1<jgp—1. The local analytic set ®(C;) passes through some
¥:€ ¥,— U, 4 7, (not necessarily the initial point x,, but chosen as to avoid
the bad set of df A df; A ... A df,_, for applying the strengthened ver-
sion of Theorem (7. 1)).

Finally the last argument in case of dimension 2 can easily be adapted
to show that ®(C;) is contained in some curve C; defined by global
holomorphic functions of polynomial growth, with a degree bounded
independent of i. This completes the proof of Proposition (8. 2)‘.

We are now ready to prove Proposition (8.2)' and hence Proposition
(8. 2), the main result of this chapter.

Proof of Proposition (8.2)'. — Let F : X - Z be a normalization of the
initial quasi-embedding F : X — Z, and F,: X — Z, be obtained from F oy
adjoining a finite number of feP(X) and then by normalization. It
suffices to prove that the branching locus P of F, has only a finite
number of irreducible branches P, . . ., P (PP contains no isolated
points). We prove this by inverting the mapping F,, along slices of
algebraic curves of bounded degrees. Recall that by Proposition (8. 2)",
there exists an s such that for each V¥, 1<i<p, there exists a curve C;
which is an irreducible component of the common zero-set of
(n—1) f € P(X) of degree<s, such that C, interesects P, passing through
some point y,e PP —,,, PP, Let {f,, ..., f,} be a basis of the vector
space of all f € P(X) of degree<s, and consider the affine algebraic variety
E, defined by

E9= {(z0eZ,xC" V¥ _ L, 4, £,(2)=0 for all o, 0<a<n-2}.
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E®© is thus a parametrized space of common zero-sets of (n— 1) holomor-
phic functions f e P(X) of degree<s. By Proposition (8.2), if P30
then there exists some (@ e C®~ 1" such that E® N (Z, x {{®}) contains
an algebraic curve as a branch. It follows immediately that E‘“ must
then contain at least one branch of dimension (n—1)r+1. (Note that
for { sufficiently near {, E® N\ (Z,x{{})#0). Let E be the union of
all ((n—1)7+ 1)-dimensional branches E, of E'” such that the generic fiber
of the projection E; - C*~1r*1 js of dimension 1.

For each branch P® of P, there is now a point (F,(y); {®)e E®
such that y,e PP — U,,, PP. It is clear that (F,(y); () belongs to
some E, in E. Let o: E — E be the normalization of E. We regard o as
a mapping (0,, 6;): E—»Z,xC*" V7. The generic fibers of ¢,:E— Z,
will now consist of smooth algebraic curves. Let g=>p be an integer
and F: X~ 2Z_be obtained from F,_, by adjunction of feP(X) and
normahzatxon, as before. We conslder all possxble directed sets
{F, q>p} obtained this way. Recall that there is an algebraic hypersur-
face (possibly singular) T, of Z, such that F,|_;e is a biholomorphism
of X—7® onto Z,- T, "and F | v is degeneratc on each branch P,
mapping it into T The mapping F oo, is well-defined on
E—o (T, xC* V7). For q=p consxder the holomorphic mapping
o, =F- F tog,: E—o™* (T,xC* V") » 2, which clearly extends to an
N -tuple of meromorphic functions (Z = C"«) We are interested in the
extension of ®,, across o~ (T,x C*~ V"),

For a generic point {eC"~ V", EN (T, x {{}) is the intersection of an
algebraic curve with T,. Let 6™*(T,xC"~ V") = Uj., D, be the decom-_
position of o~ ! (T, x C*~ ") into irreducible components.

Two possibilities can happen in the meromorphic extension of
®,,: E— Ui., D, » C¥ across D,; 1<k <t fixed.

(i) For all possible F,,:X - Z, o Cy, q=p, ®,, extends holomorphic
across generic points of D,.

(ii) There exists some choice of F,: X— Zq, g>p such that the pole set
of some component of ®,, contains D, = E. (In this case D, is necessarily
of codimension one in E.)

In case of (i) actually ®,, extends holomorphically across D, — U4, D;.

We are going to define an algebraic subvariety D° of
o~ (T, xC" V)= i, D, by the following procedure: Suppose
{Dy,....Dy}, {Dygsys - - -, D, } is the division of o™ ! (T, x C*~ V") into
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classes satisfying (i) and (ii) respectively. For each k>t, choose some
F,:X— 2, such that the pole set of some component h of ®,, contains
D,. Let D’,. be the set of indeterminancy of h belonging to D,. Then,
define :

D’ =( U:=xo+1 DD U Sing(c“ (T’ X C(l—l)r)).

We claim the following is true:

(% For all but a finite number of P, the point (F,(y); {?) € E defined
above is such that (P e o, (D).

Given (#), it is then clear by induction how the proof of Proposition
(8.2) is completed. To prove (#), we again consider the sets {D,, .. .,
D,} and {D, ., ...,D,} scparately. It suffices to prove, for each k,
the statement:

(#), There exists at most ome P such that for the points
(F,(y); {™)eE defined as above, 65 (5) N (D,—D") contains a point
which corresponds to y,.

Here, if 65 !({) = E is a smooth Riemann surface intersecting o7 *(7,)
at isolated points we say that & € o5 ! ({) N (D,—D’) corresponds to ye P
if the mapping ¥ defined on the slice o;!'(Q)—o7!(T,) by
¥Y=F"loc,:0;1()—07!(T,) = X extends holomorphically across &,
with the value W (E)=y. In general, one considers the normalization of
one-dimensional branches of o;!(E) intersecting o7 !(T,) at isolated
points, in which case the points £ may correspond to several end-points
ye P,

Proof of (#),. — (i) Let k be such that 1<k<t,. To prove (#), suppose
there exists some P such that for some E® with o,(E®)=(®,
E®eD, Choose F,:X— 2, q>p such that F,_ is locally biholomorphic
at y,eP®— U, PP. Let W, be the algebraic subvariety of Z, that
corresponds to V. Then @, (E”)eW, By the definition of ®,,
@ (Dy— Ui D) =m0 (T,), where m,: Z_— 2, is the natural projection
map induced by C¥ — C"». W, is an irreducible component of n,! (T,).

1t follows that for E€D,, @, (E)e W, Since y;¢ PP for jsi, we have
proved (¥), for 1<k <t,.

(i) Suppose now t,+1<k<t. Let Eeo;'(Q)N(D,—D’). ®, was
chosen such that some component h of ®,, has a pole at §&. Let

— -1 _ -
¥=F °°11oz‘(c)—-1‘(r,)
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and let ¥ be the mapping defined by lifting to the normalization € of
one-dimensional branches of o;!({) intersecting o7 '(T,) at isolated
points. Obviously & cannot correspond to y; since ¥ cannot be extended
holomorphically across any point of € which correspond to £ under the
normalization map, completing the proof of (¥),.

By an obvious inductive argument based on (¥), one can step-by-step
reduce the dimension of the parameter space of *“‘algebraic curves” which
gives the different components P of P®. In each step, normalization
is needed to make sure that the set of indeterminancy is well-defined. ~ This
proves Proposition (8.2)’ and hence the main result Proposition (8. 2).

9. Completion to a proper embedding onto an affine algebraic variety by
“techniques of algebraic geometry

(9.1) In the last chapter we proved that for the n-dimensional, n>2,
complete Kihler manifold X of positive bisectional curvature satisfying
the geometric growth conditions of the Main Theorem, there exists a
holomorphic mapping G: X = C" for some N, defined by holomorphic
functions of polynomial growth such that G maps X biholomorphically
onto a Zariski dense open subset of some affine algebraic variety Y,
possibly  singular. Moreover, the complement is of pure
codimension 1. We denote here the complement of G(X) by W, i e,
G:X - Y—W is a biholomorphism. If Y is non-singular, then it follows
easily from the vanishing theorem of Serre that Y— W is biregular to an
affine algebraic variety (for any algebraic W of codimension
one). However, in general this is not true if Y has singularities. There
are well-kown examples in affine algebraic geometry due to Zariski (cf.
Goobpman [11]) such that the algebra of rational functions regular on
Y—W, W of pure codimension one, is infinitely generated. Although in
our case Y — W is a manifold, there is no guarantee in the way we construct
the embedding G that Y is non-singular. In general, Y—W fails to be
affine algebraic because divisors defined by W are not locally principle,
i. e., W cannot in general be defined locally by a single polynomial. On
the positive side, we prove.

THEOREM (9.1). — Let Y be an affine algebraic variety, possibly singular,
and let W be an algebraic subvariety of pure codimension one. Suppose
Y —W is rationally convex. Then Y —W is biregular to an affine algebraic
variety. —
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Here a subset S of C" is said to be rationally convex if, given any
compact subset K of CV, there exists a point z€S, a rational function f
which is holomorphic on an open neighborhood of S, such that
| £ @) > supeexl| f(X)]-

In order to prove Theorem (9. 1), we shall need the following proposition
obtained by Runge approximation.

ProposiTION (9.1). — X is convex with respect to the algebra P(X) of
holomorphic functions of polynomial growth, i. e., given a compact subset K
of X, there exists a compact subset K' of X containing K such that given
xeX—K’, there exists an f € P (X) such that | f (x)| >supg| f|.

In the case of the biholomorphic mapping G: X — Y—W this implies
that Y— W is rationally convex in Y because P(X) is now precisely the
pull-back under G of rational functions on Y which are regular on Y—W.

Proof of Proposition (9. 1). — Recall that there exists a plurisubharmonic
exhaustion function u solving i 90u= Ricci form, such that

C, logR<u<C, logR

for R(x)=d (xy; x) sufficiently large, with C,, C,>0. Given this, the
proof of Proposition (9. 1) is a standard application of L2-techniques of
Runge approximation.

Let K be a fixed compact subset of X and let x be a point on X such
that u(x)> supgu. Let U be a small coordinate open ball centered at x
such that UM K=9, and let z,, . . ., z, be local holomorphic coordinate
functions on U with z;(x)=0, 1<i<n. Let ¢ be a function smooth on
X except for a logarithmic singularity at x, with compact support contained
in U such that ¢=2nlog(|z,|*+. .. + |z, |*) in a neighborhood of x in
U. The function ku+ ¢ is strictly plurisubharmonic on X for k sufficiently
large. Let now i be a smooth cut-off function supported on U (i e.,
Suppy c= U) such that x=1 near x. Let ¢ be chosen such that
supKu<c<infUu. Let v be a solution of JV=20(ay), o #0, satisfying

2
J | O |? e tumket® g J. J——a—%ﬁe“"""“*” for some C>0.
X X

Such a v exists because Ric>0 and 0(ay) has compact support. C
depends here on the lower bound of eigenvalues of 9d(ku+¢). Since
d(v—ay) =0 f=v—ay is holomorphic on X. By examining the singularity
at x, v(x)=0, so that f (x)=a. The weight function k (u—c)+ ¢ tends to
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infinity on U when k approaches infinity, but is arbitrarily small on
K c {u<c} (approaching — o) when k is arbitrarily large. An applica-
tion of the sub-mean value inequality then shows that for k large enough,

supg|v| < |a|.

Moreover, fis of polynomial growth from the sub-mean value inequality
on X because of the upper estimate u<C, logR for R large enough.

Proof of Theorem (9.1). — We first give a proof of Theorem (9.1)
under the assumption that the subvariety W can locally be defined by a
single polynomial. In this case, rational convexity is not needed. More
precisely, we assume that, given any ze W, there exists a polynomial P on
C" such that P(z)=0 and that there exists an open neighborhood U of z
in Y such that {zeY: P(z2)=0}NU=WNU. (Clearly one can also
assume that U is Zariski-open.) Fix z, e W and let P, be a polynomial
as above. The rational function 1/P, is regular on Y—W—E,, where E,
is an algebraic subvariety of Y not passing through z. Let now Q be a
polynomial in CV such that Q(z,)=1 and Q vanishes on E,. To find
such a Q0 we appeal to the vanishing theorem of Serre: (One can also use
the vanishing theorem of Kodaira or the L?-estimates of & of Hormander
on CV)

THEOREM (SERRE) [20]. — Let M be a projective variety and L the positive
hyperplane section line bundle on M. Let & be a coherent algebraic sheaf
on M. Then, there exists an integer m>0 such that for all v>1

HM, F @ L™=0.

Here the cohomology can be cither defined in terms of the algebraic
coherent sheaf # ® L™ or the corresponding analytic coherent sheaf, because
of GAGA (SERRE [21)).

For an aigebraic variety V of C¥, we shall denote by ¥ the (Zariski)
closure of ¥ in PY. Now we prove the existence of a polynomial Q, as
given above. Let S, denote the ideal sheaf of E, and m, be the maximal

ideal sheaf at z;. To find such a polynomial @, it suffices to show that
the restriction map of section modules

T (P, LM =T (E,U{z}, O, s ® L™
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is surjective, where O, ,,, denotes the reduced structure sheaf of
E,U{z}. From the short exact sequence on

0-5;:8m, ®L" > 0p@®L" -0z, ,,(,,,®L" >0
it suffices by passing to long exact sequences to prove that

H'(P*, 55, ®m, ® L™)=0,

which is valid because of the vanishing theorem of Serre. Clearly the
function g, =Q}/P, is regular on Y— W for s large enough.. Moreover
2:=01}/P, (2) -» oo as z approaches U, "\ W. It is now a standard argu-
ment how one can find a finite number of points z, 1 <i<t, and correspon-
ding functions g;=Q}/P, such that (z,, . . ., 2, &;, - - -,&,) gives a proper
embedding of Y— W onto an affine algebraic subvariety of C¥**,

Assume now W is an arbitrary algebraic subvariety of pure codimension
one and that Y—W is rationally convex. We claim that there exist
rational functions g,, . . ., g, regular on Y — W such that if Y is the closure
of the graph of (g,, . . .,g,) on Y—W (the closure being taken in C¥*?),
and W’ is the part of Y’ sitting above W under the projection map
n(zy, . - - Zn4p) =(2y, - - -, 2y), then W’ can be locally defined by a single
polynomial on Y. We shall first give the argument in the case of
dimension 2.

Proof for dimension 2. — Let g, be a non-zero polynomial on C¥ which
vanishes on W. Let Z be the zero set of g, on Y and Z= Z, be the
decomposition of Z into irreducible components Z,, Let Z, 1<i<m be
those branches which do not lie on W. By rational convexity of Y—-W
it is easy to see (as we did in the proof of Theorem (8. 3) for dimension 2)
that there exist a finite number of polynomials g,,...,g, such that
(245 . - -»Zn, 815 825 - - -»8,) defines a proper embedding when restricted to
each Z,— W, 1<i<m. Recall that n is the coordinate projection map of
C¥*? onto the first N components. Then, the function zy,,=g,°n on
Y’ vanishes precisely on wn~!(Z)> W’. However, for 1<i<m,
n~1(Z,—W)is a closed algebraic curve on Y’ so that n " (Z) N\ W’'=0. 1t
follows that at each ze W’, there is an open neighborhood U’ such that
U’ N W is defined by zy,,. This gives Theorem (9. 1) for dimension 2.

Proof for arbitrary dimensions. — In arbitrary dimensions n we need an
inductive argument in order to embed Z;— W properly for 1 <i<m, where
Z, has the same meaning as above. We show now by induction that (*),
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there exists a k-dimensional algebraic subvariety V, of Y, a finite number
of rational functions (b ,, . .., h, ,) which are regular on Y—W, such
that (h, ,, . ..,k ;) defines an embedding of Y— W which is a proper
embedding when restricted to V,—W. The statement (%), gives
Theorem (9. 1).

Clearly, by adjoining the coordinate functions (z,, . . ., zy), it is sufficient
to find (h,, . . ., h,) such that the restriction to ¥, is proper.

We define V, inductively in descending dimensions as follows. V, is
defined tobe Y. V,_;= U, <icmZ; Where Z; have the same meaning as
in dimension 2, i. e., for some polynomial g, vanishing on W, V,_, is the
union of those irreducible components of its zero set on Y which do not
lic on W. Suppose V,,, is defined. Let g,_, be a polynomial vanishing
on W such that g,_, is not identically zero on any irreducible branch of
Vi+1- Then, V, is defined to be the union of those irreducible branches
of the zero set of g,_, which do not lic on W.

The arguments in case of dimension two clearly gives (*),. Suppose
(%), is true. Let Y, be the closure of the graph of (b, ,,.. .,k ,) on
Y—W and W, be the part of Y, sitting above W. Let x,:Y, — Y be the
natural coordinate projection. Then =;'(V,)NW,=C because
(hs, s, .. ..A.,,k) is proper on V,. On n;* (Viyy), % ' (Vi) N W, can be
locally defined by the polynomial g,.,°x,. Then, the embedding argu-
ment in case of dimension 2 using the theorem of Serre immediately yields
(*),+;. This completes the proof of Theorem (8. 1) and hence the proof
pf the Main Theorem.

In case of dimension 2, a theorem of RAMANuUIAM [19] in algebraic
geometry says that a quasi-projective surface homeomorphic to R* is
actually biregular to C2. By the theorem of GRoMoLL-MEYER and others
stated in the introduction, a complete m-dimensional Riemannian manifold
of positive sectional curvature is diffeomorphic to R™. Combined with
the above theorem of Ramanujam, we obtain the corollary to the Main
Theorem for non-compact Kihler surfaces of positive sectional curvature.
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