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AN EMBEDDING THEOREM
OF COMPLETE KAHLER MANIFOLDS

OF POSITIVE BISECTIONAL CURVATURE ONTO
AFFINE ALGEBRAIC VARIETIES

BY

NGAIMING MOK (*)

R£SUM£. — Nous prouvons qu'une variete complete kahleriennc non compacte X de

courbure biscctionnclle positive satisfaisant qudques conditions quantitatives geometriques

est biholomorphiqucment isomorphe a une varictc affine algebrique. Si X est une surface

complcxe de courbure riemannienne positive satisfaisant les memes conditions quantitatives,

nous demontrons que X est en fait biholomorphiquement isomorphe a C2.

ABSTRACT. - We prove that a complete noncompact Kahler manifold X of positive

bisectional curvature satisfying suitable growth conditions can be biholomorphicaUy embed-

ded onto an affine algebraic variety. In case X is a complex surface of positive Riemannian

sectional curvature satisfying the same growth conditions, we show that X is biholomorphic

toC2.

The following conjectures concerning the complex structure of non-
compact complete Kahler manifolds of positive curvature, formulated by
GREENE and Wu [9], Siu [22] and Wu [32] are central to the study of such
manifolds.

Conjecture I

A non-compact complete Kahler manifold of positive sectional curvature
is biholomorphic to C".

(*) Texte recu Ie 4juin 1983. revise Ie 24 fcvrier 1984.

N. MOK, Princeton University, Department of Mathematics, Fine Hall, Box 37, Princeton,
N.Y. 08544 U.S.A.
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198 N. MOK

Conjecture D

A non-compact complete Kahler manifold of positive bisectional curva-
ture is a Stein manifold.

The geometric basis of Conjecture I is the following structure theorem
on complete Riemannian manifolds of positive sectional curvature.

THEOREM (GROMOLL-MEYER [30], CHEEGER-GROMOLL [6] and POOR
[31]). — A non-compact complete Riemannian manifold of positive sectional
curvature is diffeomorphic to R".

By using the above theorem GREENE and Wu [10] proved that a non-
compact complete Kahler manifold of positive sectional curvature is a
Stein manifold. Nonetheless, in the case of positive bisectional curvature,
the Busemann functions of CHEEGER-GROMOLL [5] do not immediately give
rise to an exhaustion function because one does not have a geometric
comparison theorem for geodesic distances as in the case of positive
sectional curvature (the theorem of Toponogov). This consideration moti-
vated Conjecture II.

The analogue of Conjecture I for negative (or non-positive) sectional
curvature and for manifolds with a pole have been formulated and proved
(SIU-YAU [22], GREENE-WU [10] and MOK-SIU-YAU [17]). There it was
necessary to assume conditions on the decay of the curvature tensor to
make sure first of all that the manifold is parabolic.

From standard examples of complete Kahler metrics of positive bisectio-
nal curvature on C" it appears also appropriate to assume certain geometric
growth conditions on the curvature tensor and the volume of geodesic
balls. With Conjectures I and II in mind, we studied the Poincare-Lelong
equation on complete Kahler manifolds (MOK-SIU-YAU [17]). We obtai-
ned, among other things, the following pinching theorem on complete
Kahler manifolds of nonnegative bisectional curvature.

THEOREM (MOK-SIU-YAU [17]). — Suppose Xisa complete Kahler mani-
fold of complex dimension n^2. Suppose X is a Stein manifold and the
holomorphic bisecture curvature is non-negative. Moreover, assume

(i) Volume (B(x^r))^cr2\

(ii) 0< scalar curvature ^Co/d2'*"'^;^) where BQco; r) and d(xo; x)
denote respectively geodesic balls and geodesic distances, c>0, Co^O and e
15 an arbitrarily small positive constant. Then, X is isometrically biholomor-
phic to C" with the flat metric.
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COMPLETE KAHLER MANIFOLDS OF POSITIVE BISECTIONAL CURVATURE 199

In this article we study the problem of compactifying complete Kahler
manifolds of positive bisectional curvature. We have the following princi-
pal result

MAIN THEOREM. — Let X be a complete non-compact n-dimensional
Kahler manifold of positive holomorphic bisectional curvature. Suppose for
some positive constants c, C

(i) Volume (B(XO; r))^cr211.
(ii) 0< scalar curvature ^C/d2^; x). Then, X is biholomorphic to an

affine algebraic variety.
From the Main Theorem and a theorem of RAMANUJAM [19] in affine

algebraic geometry, we obtain the following corollary related to
Conjecture I of Siu stated above.

COROLLARY. — In case of dimension n=2, if the Kahler manifold X in
the Main Theorem is actually of positive Riemannian sectional curvature,
then X is biholomorphic to C2.

For the proof of the Main Theorem we consider the algebra P(X) of
holomorphic functions of polynomial growth. We assume for the follo-
wing discussion that n ̂  2. In [17] we obtained a special plurisubharmonic
function u of logarithmic growth by solving the equation ia3u=Ricri
form. The existence of non-trivial functions in the algebra P(X) then
follows readily from the I^-estimates on complete Kahler manifolds of
ANDREorn-VESENTiNi [1] and HORMANDER [12]. Such an approach was
already implicit in SIU-YAU [24]. There the exponential map plays an
essential role in the estimates. In particular, it enables them to estimate
volume growths of subvarieties by geometric comparison theorems. This
was crucial in obtaining "minimal degree functions" defining a biholomor-
phic map onto C". In our case the failure of exponential mappings to
give global coordinates present serious difficulties. In particular, we do
not have direct uniform estimates for the algebra P(X) (for example, a
uniform bound on the degree of /,. i, ...,/,. n^PW which give local
holomorphic coordinates at x, for an arbitrary point xeX) to show that
P(X) is finitely generated. To resolve this difficulty, we prove a series of
finiteness theorems related to the algebra P(X) by first passing to the
quotient field R(X) of "rational" functions, leading finally to the existence
of a proper embedding. As the first step we prove a SiegeRs theorem on
the transcendence degree of R(X). More precisely, we show that R(X)
is a finite extension field of COi,. . .,/,), where /i,.. ̂ f,eP(X) are
algebraically independent.

BULLETIN DE LA SOCE&Tfe MATHfeMATIQUE DE FRANCE



200 N. MOK

Let mult ([V]; Xo) be the multiplicity of the zero divisor [V] of a
holomorphic function feP(X) at Xo€V^ and deg(/) be the degree of/
measured in terms of geodesic distances. Basic to our estimate is the
inequality mult([F]; Xo)<C deg(/) for some C>0. This is obtained by
comparing both quantities to the volume growths of V over geodesic balls
using the classical inequality of Bisbop-Lelong and estimates of the Green
kernel. Unlike the classical inequality, the multiplicity will now be boun-
ded by some global weighted average of volumes of V over a family of
"ringed" domains. From the proof the inequality

mult([F];Xo)<Cdeg(/)

is actually valid for a complete Kahier manifold of positive Ricci curvature
satisfying the same growth conditions. However, the holomorphic bisec-
tional curvature enters when we prove existence theorems for
P(X). Moreover, results of [17] on the ^-equation, which arc only valid
in case of nonnegative holomorphic bisectional curvature, imply by an
application of the proof of the basic inequality that X is Stein.

From the basic inequality mult([F]; Xo)^C deg(/), an existence theo-
rem for P(X) and a classical argument of Poincare-Siegel, we prove
immediately that the field R (X) of "rational" functions is a finite extension
field of some C(/i....,/,), R(X)»C(f^ .. .,/,.^/A), /„ g, heP(X),
such that /i, • . . , / « are algebraically independent. This theorem, which
we call the SiegeFs Theorem on X, does not imply that P(X) is finitely
generated. However, the SiegeRs Theorem on X implies that the mapping
F: X-^C^2 given by F=(/i, ...,/„ ,̂ h) defines, in an appropriate
sense, a birational equivalence between X and an irreducible affine al-
gebraic subvariety Z of C^2 of dimension n. We shall obtain an embed-
ding by desingularizing F. This will involve a number of finiteness theo-
rems.

First, we show that F : X-^Z is almost surjective in the sense that it
can miss at most a finite number of possibly singular hypersurfaces
ofZ. We show this by solving an ideal problem for each point zeZ
missed by F, except for a certain algebraic subvariety To of Z containing
the singularities. By using the I^-estimatcs of SKODA [25], we show that
each such point ziF(X)\JTQ gives rise to some f,eP(X) of degree
bounded independent of z, which is the pull-back under F of some rational
function whose pole set passes through z. By an intermediate result in
the proof of the Siegel's Theorem on X, the dimension of the vector space
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of / € P (X) such that deg (/)< C is finite. If F were not almost surjective,
one could select an infinite family of linearly independent /,'s, giving a
contradiction.

The next step in proving the Main Theorem is to show that the mapping
F : X-^Z can be desingulanzed by adjoining a finite number of holomor-
phic functions of polynomial growth. First we show that the mapping
defined by lifting F to an affine algebraic normalization Z of Z is still
defined by functions in P CX). We call such a lifting F : X -^ 2 a normali-
zation of F. Let P be the branching locus of F. By the previous finite-
ness theorem .F(P), which we call the image set of indeterminancy, must
lie in the union of a finite number of irreducible algebraic subvarieties S,
of codimension 2. However, it is not apparent that only a finite number
of irreducible components of P are mapped into S;. In general f "blows
down" branches of P, which may have irreducible branches of
codimension > 2. In order to show that F : X-* Z can be desingulanzed
by adjoining a finite number of functions in P(X), one would like to show
that P must have only a finite number of irreducible components. For
branches of codimension one we can prove this by establishing a uniform
version of the basic inequality mult([r|; Xo)<C deg(/) with a constant
independent of f and XQ for regular points XQ of the zero-divisor V of
feP(X). We prove this by geometric comparison theorems and the
integral formula of LELONG [13], applied to geodesic balls. This involves
a useful estimate on the exponential mapping on large Euclidean balls in
the tangent spaces (Proposition (7.2)). We remark that the basic inequa-
lity with a fixed base point and the uniform version are obtained under
different curvature conditions and that the uniform estimate does not
apply to all singular points.

Our previous argument is not strong enough when the branching locus
P contains branches of codimension > 2. Fortunately, the uniform version
of the basic inequality, suitably modified, is sufficient for showing that
f: x-^ Z can be desingulanzed in a finite number of steps. Essentially,
we show that through each irreducible branch W of P (of positive dimen-
sion), there exists an "algebraic" curve C intersecting W at isolated points
such that C is defined by gi€P(X) of degree bounded independent
ofW. Then, we prove that there are only a finite number of W's by
inverting F along slices of algebraic curves on 2. (It is essential to reduce
the problem to algebraic curves because of indeterminacies of meromorphic
functions on higher-dimensional varieties.)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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After desingularization, we obtain a biholomorphism of X onto some
r— W, where Y is an affine algebraic variety, possibly singular, and W is
an algebraic subvariety of pure codimension one. In general such a
variety Y-W may fail to be affine algebraic because of the examples
of Zariski (GOODMAN [11]). By a somewhat devious application of the
vanishing theorem of Serre in algebraic geometry, we show in general that
y— W is biregular to an affine algebraic variety if and only if it is rationally
convex. In our case this follows from the fact that X is convex with
respect to PCX).

The proof of the basic inequality yields an improvement of a pinching
theorem of MOK-SIU-YAU [17] in the case of nonnegative holomorphic
bisectional curvature. This is contained in § 4 on applications of the
proof of the basic inequality.

A significant part of this article depends on results of [17]. In § 1 we
collect basic results of [17] that we shall need. Also, for the sake of
completeness, we have included in § 7 certain standard estimates about
exponential mappings on complete Riemannian manifolds using geometric
comparison theorems. For the proofs of standard comparison theorems,
we refer the reader to CHEEGER-EBIN [4] and SIU-YAU [24] (especially for
estimates involving the complex Hessian).

A summary of the results of the present article, together with a sketch
of the proofs, has appeared in MOK [15]. Related results and problems
on non-compact complete Kahler manifolds of positive curvature can be
found in the survey article MOK [16].

I want to thank Professor R. Gunning, Professor J. J. Kohn, Professor
Y.-T. Siu and Professor S.-T. Yau for their encouragement and help
during the course of the research. Professor Nils ^)vrelid has given me
invaluable help by arranging my summer stay in Oslo University, during
which a substantial portion of the present article was worked out and
written up. In June 1982, a preliminary version of the results was presen-
ted in Seminaire LeIong-Skoda in FInstitute Poincare. I want to thank
Professor P. Dolbeault, Professor P. Leiong and Professor H. Skoda for
inviting me to the seminar and for their most encouraging enthusiasm in
my research work. Finally, I would like to thank Professor D. Mumford,
who kindly pointed out some important examples of Zariski in affine
algebraic geometry relevant to my work. It motivated the final stroke
(§ 9, on passing from an embedding to a proper embedding) completing
the proof of the Main Theorem^
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Added in proof. — The author would like to thank the referee for
suggestions which improved the exposition of Proposition 7.2 and for
correcting a number of inaccuracies on bibliographical references.
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1. Estimates of the Laplace-Beltrami operator and the Poincare-Lelong
equation

We collect in this section relevant estimates taken from § 1 of MOK-SIU-
YAU [17] on the Laplace-Beltrami operator and the Poincare-Lelong equa-
tion on complete Kahler manifolds of nonnegative holomorphic bisectional
curvature.

(1.1) ESTIMATES OF THE GREEN KERNEL

PROPOSITION (MOK-SIU-YAU [17; p. 190]). — Let X be a complete m-
dimensional complete Riemannian manifold of nonnegative Ricci curvature,
w^3, such that for some fixed base point XQ, the volume of geodesic balls
B(XQ; R) satisfies

Volume (B(xo; K))^cRm,for some c>0.

Then, the Green kernel (G(x, y) exists on X and satisfies the estimates

A ^G(x,y)^ B

d(x,yr~2 d(x,yr^

BULLETIN DE LA SOClfeTfe MATHfiMATlQUE DE FRANCE
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for some positive constants A and B independent ofx. Moreover^

11^^;^
for some C independent ofx.

From the proof of Proposition (1.1) we can choose the constants A
and B so that the estimate

^f——1——"—^^GjiO^wf——1——--—1—N1
\d(x,yr~2 P " " 2 } WOc^)"-2 R^2}

is valid for the Green kernel Gji on B(xo; R\ whenever d(xo; x),
d (XQ ; y) < R/2. A similar estimate holds for the gradient of G^ (x,.).

The zero-order estimates of Green kernels are obtained by using the
Sobolev inequality of CROKE [8] and the iteration technique of
Di Giorgi-Nash-Moscr (MOSER [18], BOMBIERI-GIUSTI [3]). The gradient
estimates are obtained from the Hamack inequality of YAU [28] and
CHENG-YAU [7]. For the sake of reference we also include here the latter
version on geodesic balls of Riemannian manifolds of nonnegative Ricci
curvature only for the case of harmonic functions.

THEOREM (Hamack inequality, CHENG-YAU [7]). — Let Xbe a Rieman-
nian manifold of nonnegative Ricci curvature. Suppose h is a positive
harmonic function on a relatively compact geodesic ball B (p; R) centered
at p of radius R, then there exists a constant C<0 such that

II^Mll < -^2 ̂ P^)' r(x)^d(p, x)

being the geodesic distance. Moreover, the constant C depends only on the
dimension of the Riemannian manifolds X.

(1.2) ESTIMATES OF THE POlNCARfe-LELONG EQUATION

THEOREM (MOK-SIU-YAU [17]; Theorem 1.1, p. 187). — Let X be a
complete Kdhler manifold of nonnegative holomorphic bisectional curvature
of dimension n^2. Suppose the scalar curvature is bounded by C/r2 and
Volume (B(xQpr))^cr2H for some fixed base point XQ and some
c>0. Suppose p is a closed (1.1) form || p|| <Ci/r2, measured in terms of

TOME 112 — 1984 — N° 2
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norms of the given Kahler metric. Then, there exists a solution u of
\/2^u= trace (p) such that u is of order 0(log r) and satisfies automatically
i'33t<=p.

The theorem above is obtained from a variation of a Bochner inequality
due originally to BISHOP-GOLDBERG [2] and applying estimates of the
Laplace-Beltrami operator.

2. L'-estimates of '5 of Andreotti-Vesentini, Honnander and Skoda

We present here the well-known Z^-estimatcs of 3 for the sake of
reference. We will only use (2.1) in the case of holomorphic line
bundles. The basic estimates here are those of ANDREOTTI-VESENTINI [1]
and HORMANDER [12]. We will also need an adaptation of Skoda's estima-
tes for solving the ideal problem in the context of complete Kahler
manifolds.

(2.1) THEOREM (Z^-estimates of 3 on a complete Kahler manifold,
ANDREOTTI-VESENTINI [1] and HORMANDER [12]). — Let X be a complete
Kahler manifold and denote by Ric the Ricci curvature form ofX. Let <p
be a smooth function such that, in terms of the given Kahler metric,

(*) <33<p-hRic. TI A TI»C (x)||Ti||2

for tangent vectors r\ of type (1.0) at x and for some positive continuous
function c (x). Suppose fis a ̂ -closed smooth (0.1) form on X such that

f Jmi!.-.<«.
J x c

Then, there exists a solution u of^u^fsuch that

For hermitian holomorphic vector Inindles V with curvature form © ( ,̂ ̂ ;
T|, Tf), where ty ^ are vectors of V and r\, if are complex tangent vectors
ofX, both of type (1.0), the inequality (*) should be replaced by :

<33<p, -n A -n>-h®& ^; r\, r\)^c(x)\\r\\\2

for all fy of unit length.
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Remark. — (1) fy, ^' can also be regarded as complex tangent vectors
of type (1.0) of V in the fiber direction. In the case F== tangent bundle
Ty, ©(!;, ^; 'H, f)) gives the holomorphic bisectional curvature in the
directions ,̂ T| if ,̂ TI are of unit length. In the case of PsA-Ty, the
anticanonical line bundle, ®(^, ^; 11, r\) gives the Ricd curvature in the
direction of T| when E, is of unit length.

(2) In order to obtain the same estimate when <p is not necessarily
smooth one needs to approximate q> by appropriate smooth
functions. This can be done whenever X is a. Stein manifold.

(2.2). The following theorem is an adaptation of Skoda's estimates for
solving the ideal problem in the context of complete Kahler
manifolds. The precise constants appearing in SKODA [25] will not be
needed.

THEOREM (adaptation to complete Kahler manifolds from
SKODA [25]). — Let X be a complete Kahler manifold, <p a smooth function
such that 53<p+Ric is a semi-positive (1,1) form, where Ric stands for the
Ricci curvature form. Let /i,. . ., fp, h be holomorphic functions on X, k
be a positive constant, a> 1 arbitrarily such that:

h\2

^(Ef.il/il2)^1
e '^<(X).

Then, there exists a solution (g^, . . .,^) of^^^g^h satisfying the
estimate:

f W e-^C f l^l2 ^
J&il/il2)" •J&il/J2)^1

for each;, l^j^p.

Since the proof of the above theorem in case of bounded pseudoconvex
domains is obtained by applying the I^-estimates of HORMANDER [12] to
the weight functions constant log ([gil^ . . . +|^p|2), application of
Theorem (2.1) immediately gives (2.2) in case gi, . . ., gp have no com-
mon zero (i. e., log (\g^ P+ .. . + \gp\2) is smooth). In the general case
smoothing can be obtained by taking log (\g^ \2^-.. . -h Igp^-he), which
decreases monotonically to log (|gi [^ . . . 4- \gp\2) as e-»0.
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3. The bask inequality mult ([V]; Xo)^C deg(/).

(3.1) From now on we shall assume that X is an n-dimensional complete
Kahler manifold of positive holomorphic bisectional curvature such that
the scalar curvature is bounded by Co/dQco; x)2 and Volume
(B(XQ; r^^cr211, as in the hypothesis of the Main Theorem. The follo-
wing basic inequality is the starting point of our study of the algebra P(X)
of holomorphic functions of polynomial growth. It relates the degree of
such functions to the multiplicity of their zero divisors at some arbitrary
but fixed base point. We prove here the inequality in the case of mani-
folds of nonnegative Ricci curvature. In case of dimension 1 a Riemann
surface admitting a complete metric of positive Ricci curvature must be
biholomorphic to the complex plane by the classical theorem of
BLANC-FIALA [1]. For the following theorem and the rest of this article
we consider therefore only dimensions n^2.

THEOREM (3.1) (The basic inequality). — Let X be an n'dimensional
complete Kahler manifold of positive Ricci curvature, n^2, such that for
some fixed base point XQ

(i) Scalar curvature <Co/d(xo; x)2, Co>0.

(ii) Volume (B(XO; r))^cr2". c>0.

Let f be a holomorphic function on X of polynomial growth, i.e.,
\f(x)\^C/(d(xo,x)p•^\) for some p^O, C^O, and let
[V]=i/2n0Btog \f\2 be the zero divisor, counting multiplicity, determined
by f. Then, there exists a positive constant C independent of f such that:

mult([^];Xo)<Cdeg(/),

where deg(/) is defined to be the infimum of all p for which the following
estimate holds:

\f(x)\^C(p)(d(x^,x)^\).

The multiplicity here is taken to be the usual multiplicity defined
algebraically. By a theorem of THIE [27] this agrees with the Leiong
number of the positive (1, 1) current [V] at XQ. We will not distinguish
between the zero divisor of/and the positive (1, 1) integral current it
represents. Also, holomorphic n-forms atod n-vector fields of polynomial
growth and their degrees will be defined analogously.

BULLETIN DE LA SOCIETfe MATHEMATIQUE DE FRANCE
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Theorem (3.1) will be a consequence of more precise estimates of both
the multiplicity and the degree, in terms of the volume growth of [V]
over geodesic balls. Unlike the classical inequality of Bishop-Lelong, the
multiplicity will be estimated in terms of a weighted average of volumes
of [V} inside geodesic balls over the entire manifold. We remark that a
more direct proof can be given in the case under consideration in the
Main Theorem, namely, when the holomorphic bisectional curvatures are
positive, where we have results of [17] for solving the Poincare-Lelong
equation.

We fix a base point jco and some jRo>0. For R^R^we subdivide X
into regions Z>v(^o)» Y^O defined by:

r Z>oW=BOco;2/0

{ D,(Jt)=B(jCo; 2v+lJl)-B(xo; VR)

We define a weighted volume of V over D^(R) by:

^-^L^'
With these notations we have the following estimates.

PROPOSITION (3.1.1). — Let X be a complete Kahler manifold, Ric (X) > 0
satisfying geometric growth conditions as in the hypothesis of
Theorem (3.1). Then there exist an RQ>O such that for all R>RQ and
forallfeP(X)

rnuitan^owl̂ ^,

where the constant C is independent off.

PROPOSITION (3.1.2). — Hypothesis as in Theorem (3.1) and Proposition
(3.1.1), there exists a constant C\ independent off and R and constants
C^(f) depending on f such that for any R^Ro>0 (with RQ fixed as before),

U deg (f)^C, (̂  A,(JQ)-C, (/).

The next two paragraphs will be devoted to proving the preceding
propositions.

TOMEin—^M—N^
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(3.2) AN UPPER BOUND FOR THE MULTIPLICITY

In this paragraph we will prove Proposition (3.1.1). Let XQ^X and
RQ>O be fixed as above. Let B be a coordinate neighborhood of XQ
biholomorphic to a Euclidean ball with XQ corresponding to the center
such that B c B (XQ ; Ro/2). Since the Ricd form on X is positive definite,
we have, writing Ric for the Ricd form,

mult ([7]; XoXConst. | -^-83 log|/|2 A Ric"-1

JB211

<Const f -^SS log |/|2 A Ric"-1 for R^R^/2.
JB (A) 2 w

Here the first inequality could be obtained by applying the inequality of
Bishop-Leiong to the a coordinate ball B' with x^eB' c c B. The cons-
tant is independent of/, but depends on the choice of B and the smallest
(positive) eigenvalue of the Ricd curvature form. Hence, for each
R^RQ/I we obtain by integration by parts:

mult ([^]; XoXConst. f —SB log | /12 A Ric"-1

Jaw211

=Const. f -L^logl/^ARic11-1

Jw(H)2TC

<SSf IIVlogl/l^lf scalar curvature Jj).
R JSBW \ /

Integrating from R/2 to R, we have, for R^RQ:

mult([n;^)<^Sf llviogi/i2)!.
K JB(R)-fl(H/2)

In order to relate the latter integral with the volume growth of [V},
counting multiplicities, we need to represent log] /|2 as an integral over
V, using the following lemma on Riesz representation.

LEMMA (Riesz representation). — Let fcP(X) and x'o be a point close
to XQ such that f (xo) ̂ 0. Then, on X:

logl/OOl2^ lim f lG^(xo;>Q-G^;^]Alog|/00|2^
R -» aojB(R)

+iog|/M2,
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where G^ denotes the Green kernel on B(R)^B(XQ, R), taken to be positive,
and the limit is in the sense of uniform convergence on compact subsets.

Proof of lemma. — Let

up(x)» f [G^^o;^-Gil(^;^)]Alog|/(^|2^+log|/(xo)|2

JB(R)

on the geodesic ball B (R). Then on B (R):

logl/l^^+A^,

where h^ is harmonic, h^(xo)^0 and on 8B(R):

^sup^logl/p-logl/^o)!2.

By the maximum principle the above inequality is also valid on B (R). By
the Hamack inequality of CHENG-YAU [7] (c/(l.l)) applied to
(^PB W ̂ R ~~ hp) we have on B (R12):

llvftji^^Ksup^^iogl/l^-iogl/^o)!2!.
K.

Since by assumption/is of polynomial growth,

sup^a (R) log | /12 $ q log R + Const.

for R large enough, giving:

IIV^IK^^^^^-onB^).
R

Recall that An(xo)=0. Taking limits we obtain lim h^O uniformly
n-» oo

on compact subsets of X, thus proving the lemma.
From the inequality:

mult([^;xo)<^f IIVlogl/l2!)
K JB(R)-B(R/2)

we shall obtain the desired upper bound for mult([^]; Xo). From the
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lemma (Riesz representation) one has the gradient estimate (given by
(1.1)):

IIVlogl/Oc)!2!^ f ||V,G(x^)||Alog|/^)|2^
Jx

^.•^-^'^
Hence:

f llviogl/oc)!2!!
JB(K)-B(Jt/2)

^{L^S-^^-
Since X has nonnegative Ricci curvature, the exponential map (in normal
geodesic coordinates) is volume-decreasing. It follows that volume of
geodesic spheres 8B(x, R) is of order 0(d(x, y)29^1). Hence, for R^RQ:

f iiviogi/ooni
JB(R)-BW2)

4 f f -c^^<^x)Alog|/(^|^^JB(2R)\JBw-»wmd(x,y)2' * /

^ (J J^^^}^^JX -B (2 K) \ JB (H)-B (X/2) « W }̂ /

$ConstJ?| ^\oi\f(y)\ldy
JDoW

+^"-1 -^rrVolumc(BW) f Alog| /(^)|2^
I2 iv/ JDyW

Here we subdivide J!f-fi(2Jl) into D^(R)»B(XQ; 2v+l^)-B(xo; 2^)
and put Do (R) SSB(2 R)' From the estimate Volume (B (R)) < Const. Jl2",

BULLETIN DE LA SOClfeTfe MATHfeMATIQUE DE FRANCE



212 N. MOK

which holds because X has nonnegative Ricci curvature, we obtain (all
constants being independent of R)

mult([^;^)<^f ||Vlog|/n|
K

 JBW-BWD

<^f Alogl/001^
K JDOW

-̂̂ î L î̂ î 0- E:-« •̂
(3.3) A LOWER BOUND FOR THE DEGREE

The lower bound pdegt/^C^^A^-C^/), Ci independent of
/, is in fact an immediate consequence of the lemma on Ricsz representation
proved in (3.2). To sec this, recall that J?o is a point close to Xo such
that f(xo) ̂ 0 and let:

VR(X)» f -G^y)Mos\f(y)\2dy
Jaw

where B(R)=B(XQ; R). The function logj/ l2—^ is harmonic on
B (R). Since /is of polynomial growth, given any 8 > 0, there is a constant
C (8) such that:

|/(x)|<C/(8)(d(^o;x)d^<^+6+l).

From the maximum principle for any R>0:

log|/(xo)|2-^(Xo)<2(deg(/)+8)sup,<^w(d^o;x)+l)-^-C-(8)

On the other hand, from estimates of G^(x; y)in(l. I):

-«Wxo)>£;^—^f Alog|/00|^
I2 K) JDyW

where the constant is independent of / Combining the two inequalities
gives the desired inequality when 8 is small enough.
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(3.4) CONCLUSION OF THE PROOF OF THE BASIC INEQUALITY

Finally, we prove the inequality mult([F]; Xo)<Cdeg(/) from the
inequalities (i) and (ii) for R^RQ>O, with XQ fixed

(i) nnrita^XoW^^'

(ii) pdeg (/)^CJ^ A^R))-W).

Recall that:

Z)oW=BOco;2JO,

Z\W=B(Xo; 2v+lJO-BOco; rR),

and that the weighted volume A^(R) is defined by:

-<vW=.y———if Alog|/|2.
(2 K) JIMH)

We consider the inequality (i) for R^rRo, adding up the inequalities:

Ao(2^o)+ Al(^ + . • • + Al(^ )̂ + . • • > ̂ multdV]; xo)
jf ^ v^

Now for v^l, s>0

A,(2'R,)= } ! Alogl/I^A^^o).
^ "o^ Ji»v+»(*o)

The term Ao(2'J?o) can be decomposed by regarding ^(^'Ro)"

B(xo; 2'+lJlo) as the disjoint union of B(XO; 2Ro)=^)o(^o).

Dt(Ro),...D,(R<,). Then,

^(2^o)=———^E:-of Alog|/|2

V2 ^OJ JDv(Ho)

== ydn-^^O ̂ + ̂ C"^^ !̂)'4! ̂ o)

+ • • • + ̂ in î̂ -l (^o)+A.(JU
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giving:

A,(R,)+A^+. . . +^CR^)+. . . ̂ multaH; xo),
2 Z C'

ĵ) +Ai (Ro)+ ̂ ^ + . . . + dA) + . . • > ̂ mult(m; xo).

^^"^j)+A2(^)+Al^^)+.••+^)+•••>^""lt([^^;Xo).

Adding the first (s) inequalities, we have:

aoAoW))+ai^iW))+ • • • +a.A.(Ro)+ • • • > ̂ multd^]; Xo)
c-'

where for 0<r<5— 1 -

î <i+E:.̂ +E:.,̂ ,î ^<co.

K independent of s; and for r>s

^rM14-^---^)^
This gives

(») K(Ao(i?o)+Ai(<o)+ • . .A._i(^o))+(A.(J?o)

^A^o)^ ...+^±^)+ ...)>^mult([F];Xo).

Now we use the inequality (ii) to obtain:

Ao(^o)+^i (^o)+ . . . +A^ (J?o)^ -L deg (/)+ c^/)-
Ci Ci

and:

A^y(^o)^l (5+v-H)deg(/HC,(/)

2V ^2" Ci

Substituting into the previous inequality W

<W/) (^ + S:-.'̂ 1) +(2+K)̂ °̂ n,ri.((n; X.).
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Since ̂ oW)<(X> and E^.o5/2^25 the basic inequality:

mult([n;Xo)<Cdeg(/),

with a different constant C, follows immediately by letting s -^ oo.

4. Sternness of X and an improvement of a pinching theorem for nonnega-
tive bisectional curvature

(4.1) Recall that the complete n-simensional Kahler manifold X in the
Main Theorem satisfies

(i) holomorphic bisectional curvature >0;

(ii) scalar curvature <C/d(xo; x)2;

(iii) Volume (B(XO; r))^cr211, c>0.

We assume here n^2. Using the solution of the Poincare-Lelong
equation developed in [IT], we showed in the same article
(Theorem 1.2 (2), p. 200) that under the stronger assumption

(ii)7 C\d (xo, x) -h I)2 < scalar curvature < C/d (xo, x)2, X is a Stein mani-
fold because the solution q> of i95u=R\cci curvature form (reduced to
l/2Au= scalar curvature) is an exhaustion function. Using intermediate
estimates of the basic inequality (Theorem (3.1)) we shall prove the same
thing under the weaker assumption (ii) with only an upper bound on the
scalar curvature. For the sake of completeness we shall recall the argu-
ments used in [17, Theorem 1.2(2), p. 200]. From now on X will be the
complete Kahler manifold satisfying the hypothesis of the Main Theorem
and XQ will be a fixed base point We formulate our result in the following
more general form.

PROPOSITION (4.1). — Let p be a closed positive (1, 1) form on X such
that \\p\\^C/d(xQ', jc)2. Then there is a solution of 1/2A«= trace (p)
of order 0(logd(xo; x)) which satisfies automatically the Poincare-Lelong
equation i5?u=p. Moreover, either p=0 or u actually satisfies the more
precise estimates C7 (log d (XQ ; x) ̂  u ̂  C" log d (XQ ; x), C', C" > 0 for
d (XQ ; x) large enough,

Proof. — The lower estimate in (3.2) of volume growth of hypersurfaces
on geodesic balls is clearly also valid in a modified form for closed positive
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(1, 1) forms p such that ||p|| <C/d(xo; x)2. We use the same notations
as in (3.2). We define the regions:

r D^(R^B(2R^)

[D,(Ro)»B(2^iRo)-B(2VR^ for v>l

and the weighted averages:

^(p;^)- ^-J trace (p).
(2 Ko; Jl»v(Ho)^^^Ra)211-2]^

From the arguments of (3.2) we have:

^^A,(p;2^o)^c>0,

for any integer H^O, where c is independent of n. Write trace (p)=A

and define kp^X^dio)^ ^Z^-o^r Let ^ be the solution on x of

l/l&Up^hp obtained by solving the Dirichlet boundary value problem and
normalizing at Xo so that u^(xo)=0. Thus 1/2 AMp. t==fcp, on ^^o^
t^, u^ ksconstant on 8B(x^ k) and u^ k(xo)=0, then Mp is the uniform
limit of Up k on compact subsets. Let x be such that
2qRo^d(Xo', jO^'^Jlo and write:

u 00 = £p<, ̂  (x) + Ep^ i ̂  W-

We estimate the two terms

w! (x) = Zp<, "p (x) and ^2 (x) = Zp^,+1 ̂  00

separately. We do w^ first. On B(xo, 2^0) "p ls harmonic for
p^q-\-1. Since estimates of the solution AV=XB(H) by solving the Dirich-
let boundary problem (c/. [17, Theorem 1]) give |i?|<CojR2, we obtain
from hp^CoKl' R^)2 XBO^HO) and ̂  g1^1^®111 estimate of harmonic func-
tions (YAU [28]):

|VKJ<^- onB(x,;2^1R^

giving:

^00> -1^2——^ ^)+infjr^ ^ -Zr-o c^ -^o- -^6(2^o) ^-•—A-^ ^-o ̂
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where C is a constant depending only on the geometry of X Clearly, C^
is independent of x. Now we estimate w^ (x). Fix p < q. Up is harmonic
onX-B(2PR^ We have:

t^)= f -h(y)G(z; y)-¥ f fc(^)G(xo; ̂ ).
Jpp(Ho) Ji>^(Xo)

For all ̂ , the first term is larger than CCo on X. Let:

ap=f A(^)G(Xo;^)^.
Jl)p(^o)

Then, at x, by comparing to harmonic measures, we have:

(
r 2l»(2i«-2)D(2ii-2)\

.,(^-CC.+(CC.) <- ',^^^ )^

There exists an integer m such that for q^p+m, we have:

r 2)><2»i-2)o<2i»-2)

1 - -1-———-»— > 1 -P*-", with some P< 1.
d(xo;x)2''~2

Thus,

wi (x) > - m CCo + Z,<,_. - CCo + (CCo) (1 - P*-') + a,

=-mCCo-CCo^„,P«-'>+S,<,_„a,

^-CCo(m+^)+E,<.-.a^

From:

w(x)=Wi(x)+W2(x)^-C2-CCo(m-h—,)+^^^a^

to prove the proposition it remains to estimate ̂ ^,-^tty.

Recall that:

L"-o^v(p;yjio)s^>o,
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where:

A^(p, <)= ———-—- trace (p).
cy1 p^211"2 I
^ K^ JDy(Xo)

acar a^A^(p; Ro) because G(xo; ̂ l^Ro)211"2 for^€D^(Ro).
From the inequality (9) of (3.4) adapted to the weighted total variations

Ay(p; Ro) we obtain, writing Ay=A^(p; R^)

JC(Ao+Ai+. . . ̂ A^^A^^-h^-h . . . \^sc

for some constant c>0.

From the proof of Proposition (3.1.2) we know that:
^y^C,(5-hV-H) ^ C^

2v ^ y ^v-

There is an integer fc >0, independent of x, such that:
yoo 5±^±1< sc
Sv..-^———^^''^-

Then:

K(Ao+A,+...+A.^)+fA.+...+^^\>^~C,C4,

Ao+Ai+. . . +A.+. . . +A.^-i^-(^~CiC4).

Combining:
ao+tti+ . . . +a,-^>Ao+Ai+ . . . +A,«^

with the last inequality, we obtain the desired estimate:

u(x)>-C2-CCo(w+-—)-h^^^a^C5g-C6,C5>0.

Recall that x is a point on D, (Ro)» i. c., 2* J^o ̂  ̂  (-^o» x) ̂  2< '*'x ̂  an(l that

u(x) is the solution to i^3u=Ric obtained by reduction to 1/2 Au» scalar
curvature. The estimate u (x) > €5 ̂  — Cg gives the lower bound:

u^C \ogd(xo; x).
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The upper bound:
M<C"logd(xo;x)

was already contained in [17, Theorem 1.1],

From Proposition (4.1) and solving i55u=Ricci curvature form using
techniques of [17] we conclude immediately:

(4.2) PROPOSITION. — Let X be an n-dimensional complete Kahler
manifold of positive holomorphic bisectional curvature. Suppose for a fixed
base point:

(i) scalar curvature <Cld(Xo; x)2;

(ii) Volume (B(x^r))^cr2n;

for some C, c>0. Then X is a Stein manifold.

Proof. — The case of dimension n=l is trivial. From Proposition
(4.1), for n^2, the solution of i53u==Ricci curvature form is a strictly
plurisubharmonic exhaustion function. X is Stein by Graucrfs solution
of the Levi problem.

Another consequence of Proposition (4.1), combined with results of
MOK-SIU-YAU [17] is an improvement of the pinching theorem in [17,
Theorem 1.2, p. 194] in case of nonnegative holomorphic bisectional
curvature. The improvement here is simply that we drop the assumption
that X is Stein.

THEOREM. — Let Xbea complete Kahler manifold of nonnegative holomor'
phic bisectional curvature of dimension n^2. Suppose for a fixed base
point XQ:

(i) scalar curvature <C/d(xQ, x)2^t

(ii) Volume (B(XO; r))^cr2"

for some C, c>0 and for an arbitrarily small positive constant e. Then, X
is isometrically biholomorphic to C" with the flat metric.

proof. — The solution of i33u=Ricci curvature form obtained in [17,
Theorem 1.2, p. 194] is bounded. From Proposition (4.1) u is identically
zero. Since X has nonnegative holomorphic bisectional curvature, it fol-
lows from the vanishing of the Ricd form that X is flat. X is therefore
covered by C" such that the covering transformations are unitary. The
volume growth condition (ii) then forces n^ (X) to be finite. Since any
finite fixed-point free group of diffeomorphisms of IR*" is trivial, it follows
that X is isometrically biholomorphic to C" with the flat metric.
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5. SiegePs Theorem OB the field of rational functions

(5.1) Recall that P(X) stands for the algebra of holomorphic functions
of polynomial growth on X We shall call the quotient field of P(X) the
field of rational functions, denoted by R(X). The main result of this
section can be summarized in the following analogue of the classical
theorem of Siegel. The proof is obtained from the basic inequality of
§ 3, I^-estimates of 3 and the classical arguments of Poincare and Siegel.

PROPOSITION (5.1) (Siegel's Theorem on the field of rational
functions). — Let X be a complete Kahler manifold of positive bisectional
curvature satisfying the geometric hypothesis of the Main Theorem. Then,
the field R(X) of rational functions on X is a finite extension field over
C(/i, . . .,/J for some algebraically independent holomorphic functions
/^...,/,inP(X).

Proof. — In this section we denote as before by u the solution of
i53M=Ricd form obtained in [17]. First we find /i,...,/, in P(X)
algebraically independent over C. Let xeX, and let Zi , . . . ,z , ;
S^.il^l2^*' b® l00^ holomorphic coordinates at x such that
Zi(x)=. . . =z,(x)=0. Let p be a smooth cut-off function on C" such
that SupppcrcjyO) and p=l on the ball JET (1/2). The function
plog|z[=p(zi(x). . .z^^log^j^Wl2)172 is globally defined on Xand
is smooth except for the logarithmic singularity at X Furthermore, the
(1, 1) form 83 p log | z | dominates a negative multiple of the Kahler form
on X. Choose now a positive constant C such that

v=Cu-hp((2n+2)log|z|)

is plurisubharmonic on X (09u being positive definite). Then, for the
plurisubharmonic weight function v, and any non-zero tangent vector v
of type (1, 0) onX:

<a3v+Ric, v A F> >0.

Now 3(pZ() is a 3-closed (0, l)-form on the complete Kahler
manifold X. Using the standard I^-estimates of 3 (c/. § 2), there exists a
smooth function u^ such that 3i((=3(pZ() and:

fl^l^^-^fll^P^II2^
Jx cJx
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where <53v-hRic, i?AF>>c| |y | |2 whenever v is a tangent vector on
Suppp. Because of the singularity (2n+2)logJ2|, u, and its first order
derivatives have to vanish at x. Moreover, the functions /.sUf—pz,
are then holomorphic (3/<=()). They define a local biholomorphism at
x. Suppose P(/i, . . ,,y,)=0 for some polynomial P in n
variables. Differentiating P at XQ shows that df^ (x) .. . df^ (x) would be
linearly dependent, contradicting with the fact 3/,/52^(xo)=8y.

Let now dp denote the dimension of all functions in P(X) of
degree^. We claim that dp^C'jf for some (7>0. To show this consi-
der the mapping €>„ : P(X) -*• C9^ defined by taking all partial derivatives
of feP(X) of order ̂ w at the point x. There exists a constant k>0,
k =k (n), such that q^m)<kmn. Recall that by § 3 there exists a constant
C>0 such that mult([F]; Xo)^Cdeg(/). We can assume that C is an
integer. Now choose C such that C'>k C". To show that d p ^ C ' p " we
argue by contradiction. If dp> C'p^ we would have

W dp>k(Cp)ll>q(Cp)

(q(m) being the number of coefficients in the Taylor expansion at XQ of
terms of degree <w). Choose a basis over C of the vector space Vp of
polynomials in P(X) of degree;?, denoted by {g^ . . ., g^} and conside-
rer <Dc : Vp^C9^. From (#) it follows that some non-zero linear

combination Yfiii^Si^S would be mapped to zero by Ocp- 8 has

degree ̂ p and vanishes at the point XQ with multiplicity ̂ Cp+1. This
contradicts with the inequality mult ([V\; Xo)< C deg (/), proving dp < C^
by contradiction.

From d p ^ C ' p " it will follow that the field R(X) of rational functions
on X is a finite extension field of C(/i, . . ., /,). First we observe from
the algebraic independence of/i , . . . , /„ that for p large enough:

dim {(eC[/i, . . .,/.]: degl^p}'^cpn for some c>0.

Let /Ci, . . ., /c, be rational functions linearly independent over the field
C(/i, . . .,/,). Write k^hjgi, g^ h^P(X). By assumption E^i^
li€C(f^. ..,/,) are all distinct. By taking ^€C[/i,. . .,/J of
degree </?, p sufficiently large, it follows from

dim{l€C[/i,. . ̂ ,/J : degl^p} >cp19
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that:

dp^ cff. s for /? large enough

where r=max{dcg (fc,)}. Hence c^.s^C'^+O^ and

,<,„ C(p+ry C
5$hmp^^— ———=—»1' c p" c

proving the assertion that R(X) is a finite extension field over
C (/i, • • • , / « ) where /i, •..,/, are holomorphic functions of polynomial
growth which together define a local holomorphism at XQ. One can write
R(X)=C(/i, . . .,/„ ^/fc) for some g/h^keR(X), g, AeP(X).

(5.2) In the following sections we consider the mapping F : X -» C^2

defined by F=(/i, .. .,/^2)> /^i^ /.-^A- Since R(X) is a finite
extension field of C (/i, ...,/«) both ^ and h satisfy equalities of the
form

^+£J^1R5(^ • • ̂ Dfi-^ fc=n+l, n+2,

where R^(WI, . . ., w^ are rational functions in Wi, . . ., w,. Let Zo be
the subvariety of C^2 defined by

Zo={Wi, . . .,H^) : W^+SJt'l111?^!' • • - ̂ H^O,

J(c==n+l, n+2}.

Outside the union of the pole sets of R}, 1 ^j^v^— 1, k=n-h 1, n+2, the
projection mapping Zo -^ C" given by the first n coordinates is a finite
mapping. It follows that Zo is a subvariety of maximal dimension n. Let
Z be the connected component of Zo containing F(X).

6. An ideal problem on X and the existence of a q̂uasi-embedding" into

an affine algebraic variety

(6.1) Suppose there is a holomorphic embedding of X onto some affine
algebraic variety given by functions of polynomial growth on X, then the
algebra P(X) of such functions would be finitely generated. But the
Siegels's Theorem we proved in § 5, in particular the fact that the quotient
field R(X) of rational functions is finitely generated, in general does not
imply the finite generation of P(X). Recall that

RW=C(/,,...,/,.^/fc),
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where /i, . . ., /„ g, heP(X) and d/i A ... A df^ is non-zero at a point
XQ. We have therefore obtained a holomorphic mapping

F-(fi. • . .̂  ̂  A): ̂ C^2. We write /,^=^ /^=h. We by-
pass the difficulty of proving directly that P(X) is finitely
generated. Instead, we examine how far F : X-^ C^^2 is from an embed-
ding and complete F to a proper embedding by adjoining a finite number
of functions of polynomial growth. As stated in the introduction, this
process involves, among other things, two finiteness theorems, one on the
number of irreducible hypersurfaces missed by the mapping F, the other
on the number of blow-ups necessary to resolve the singularities of the
mapping. As before, we shall always assume X to be of dimension n>2.

The example F()=(ZI, z^ 22— 1): C2 ->• C2 illustrates the type of degene-
rary of the mapping F'.X^C^2. The field R(X) of rational functions
on C2, can be generated by {zi, z ^ z ^ — l } . Fo ls an affine blow-down
which maps the entire Z^-axis to the point (0, — 1); it is otherwise injective
and gives a biholomorphism C2 — (z^ — axis) -+ C2 — (w^ — axis). Fo misses
precisely (w^ — axis) — {(0, — 1)}. Another type of degenerary can be seen
from the ampping Fi : C -»• C2 below. The field of rational functions on
C, R (C), can be generated by { z2, z3}. The mapping F^ : C -r C2 defi-
ned by Pi (z)=(z2, z3) is an injective holomorphic mapping from C onto
the subvariety Z of C2 defined by Z= {(w^, w2)==w?=wj} with an isola-
ted singularity. F^ is degenerate at the single point (0, 0).

In the above examples, one can adjoin polynomials to complete the
given mapping to a proper embedding. In the case of

^0=(/1>/2)=(^ ̂ 2 -1)>

one adjoins f^ =Zz = (/a + l)//r This extra function f^ can be recovered
in the following way. Fo misses the origin. One can solve the equation
fi8i +/2^2= 1 fr0111 ̂  Nullstellensatz. An explicit solution is given by:

Z,(Z2)+(ZiZ,-l)(~l)=l

/3=Z3=(y^4-l)/^ is given as one of the '̂s. As a function of the
coordinates w^, w^ of the target spacer is a function whose pole set almost
lies outside F(X). It intersects Fo(C2) at the single point (0, -1). The
mapping F^ : C-^C2, Fi=(/i,/2)==(z2, z3) can on the other hand be
completed to a proper embedding by adjoining/3=z=/2//i to "smooth
out" the isolated singularity (0, 0) of Z.
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Of course, one can argue in case of such examples by adjoining step-by-
step polynomials to obtain a mapping of rank n everywhere. But this
involves the knowledge that every algebraic subvariety of C" has only a
Unite number of irreducible branches. We shall prove the analogous
statement for our Kahler manifold X in § 7 and § 8 and use it to desingula-
rize our mapping F.

In this section we shall first prove that F: X^C"^2 is in a certain
sense "almost injective" and "almost surjective".

(6.2) ALMOST INJECTIVITY OF F: X^C^2

PROPOSITION. — Let F ==(/i, . . .,/»+2) '' X^C"^2 be the holomorphic
mapping defined above and let Z be the connected component of the subva-
riety defined by (/i, . . ., /n+z) as in (5.2). Then, there exists a subvariety
VQ of such that F \ ] [ ^ V Q ' ' X ^ Z is an infective locally biholomorphic

mapping. Moreover, Z is irreducible.

Proof. — The arguments in the proof of the SiegeFs Theorem (5.1)
show that the algebra P(X) separates points on X. Let x^eX, j= 1, 2 be
different points such that F(x,) are smooth of Z and

df^ A . . . A df^Xj)^ Kii< ... <i«^n+2. Then, locally at x^, x^
holomorphic functions on X can be given by holomorphic functions of
Wi, . . ., H,, where (wi, . . ., ^,+2) are coordinates of the target space
C11^2. It follows from the fact that P(X) separates points that
F(xi)^F(.X2). Let VQ be the union of the branching locus of F and
F'l(Smg(Z)). Then, F is injective and locally biholomorphic on
X—VQ. Since F(X) <= F(X— VQ\ F(X) lies in an irreducible component.
By definition (in (5.2)) Z is irreducible.

(6.3) ALMOST suRJEcnvrrY OF F—AN IDEAL PROBLEM ON X

In order to show that F can miss at most a finite number of irreducible
branches of Z we proceed as in the examples to solve ideal problems on
X. The solutions of analogues of/i^i+/2^==1 (as in the example in
(6.1)) are then rational functions in the image coordinates
(wi, . . ., ^+2). But since they are holomorphic functions on X the pole
set must be disjoint from F(X— Vo). In practice we shall only be able to
solve the ideal problem at points of Z—F(X) outside a subvariety 5
containing the singularities of Z. We use an adaptation of Skoda's
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estimates on the ideal problem [25] to complete Kahler mani-
folds. Continuing this way we shall recover hypersurfaces Hj of Z which
almost lie outside F(X) in the sense that

j^nTO=^nW)).

That such a process must terminate in a finite number of steps would
follow from estimates of degrees of g^s and the fact that the dimension of
feP(X) of degree $ const. is finite.

In order to solve ideal problems using estimates of SKODA [25] it would
be necessary to establish the following estimate which gives a lower bound
of the proximity of F(x) to a point b outside F(X) on Z, in terms of
geodesic distances on X. It would be necessary to assume that b lies
outside some subvariety S of Z.

PROPOSITION (6.3.1). — On Z there exists an algebraic subvariety S
such that for all freZ-S-F(-X)

dist(FOc), b)>CWR(x)=d(x^ x)
jR*

where dist denotes the Euclidean distance in C"'1'2, C(b) is a constant
depending on b and k is a constant depending only on the sum of degrees of

/ ! » • • • » y»»+2-

Proof. — We prove the proposition by solving for the equation F(y)^z
for points z on Z sufficiently close to F(x). This amounts to estimating
the vector fields obtained by inverting df^ . . ., df^ for some (ii,. . ., i,),
Ki'i< . . . <i,^n-h2. The algebraic subvariety S, which contains all
singular points of Z, will be determined later. Let first freZ-F(-X)bea
smooth point of Z and choose (i\, . . ., ij, l^i'i< . . . <i,^n+2 such
that dz^ A . . . A d2^(b)^0. Let xeX, d(xo, x)^R and

TO=(/iOa...,/^2W)

be inside a fixed open neighborhood N of b in Z such that the mapping
G==(/^, . . .,/J : X-^C" is a biholomorphism on a neighborhood of
F~1 (R). In order to prove the proposition it suffices to solve the equa-
tion:

G00=(z^....,z^
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with:
0< |G(;c)-(z^ ..., z^^CWR^

for some constant C(&), k>0.

Let W\,. .., W^, be meromorphic vector fields on X defined by:

<^^>=8^.

At a point xeX where d/^ A ... A d/i.^0, Wp is simply 5/5/̂  when

(/<i» • • •»/(,) is regarded as a local system of holomorphic
coordinates. One can invert the holomorphic mapping G in a neigh-
borhood of G(x) by tracing integral curves of real and imaginary parts of
the vector fields Wy which are holomorphic in a neighborhood of x.

By the Cramer's rule have:

W^JTr——!——^HP"
11^1 A • • • Ad/J

^(SUpi^.lld^A ... A d/^A ... Ad/J|)

where all norms are measured in terms of the given Kahler metric on X
^\

and d/i, means the omission of df^ in taking wedge products. By the

gradient estimate of harmonic functions || df^ A . . . A df^ A . . . A df^ ||
grows at most polynomially. Let r| be a holomorphic n-vector field on
X obtained by solving 3 with Z^-estimates using the weight function ku,
k>0 sufficiently large. Since i SSu = Ric, and:

i8B log || 111| > -Ric,

we have:

i53(log||Ti ll-hi^O.

From the estimates of u and the sub-mean value inequality, it follows that
^g [| Ti l l grows at most logarithmically. The holomorphic function
A,p . . . , » „ defined by:

îp • . •, *,=<^ A . . . A df^ r} >
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is of polynomial growth. We have the estimate:

IÎ IK ,, lh" , •n
|1»1, • • • > ij

x(SUpi^J|d^ A . . . A d/^A . . . d/J|)

CJ^o
^ . . ^ — — — — — — f o r some C, ko>0.

l^r • • •' ij

From the Siegers theorem for R(X) h^, . . ., ^ can be expressed on Z as

a rational function, i. e.,

^....,^(x)=^,....^(F(x))

for some rational H^ , . . . , ^ on Z and for all xeX outside a

subvariety. Now we define S to be the union of zero-sets of all
H^ ..., ^ and Sing(Z). Then, for F(x) sufficiently close to b, we have

the estimate:

||^||<Co(b)^o.

for some constant Co(b) depending on beZ—S.

(Here, of course, Wp is defined by a specific choice of (/^,. . .,

/i,)-) Consider the real vector field:

"3=Z^l^(2Re(^)+S;.lP^2Im(^))

where:

S-xd^MPpI2)-!.

v is the pull-back under G of the real vector field

F^i^l8x^8/9y^

defined on C".

To solve for

GOO=(2^...,Z(.)
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with:

0<|G(x)~(z^ . . ., z^^C^R^

for some constant C(b\ k>0 it suffices to show that the integral curves
y^(0 defined by v with initial values y^(0)=x can be defined for
0 < « C (b) R "k. Consider the ordinary differential equation:

^=Co(^o
at

r(0)=R(x).

This equation admits a finite solution for 0<«c(.x) with:

c(x)=ko^R(xVk^l assuming fco>l.
Co (b)

By comparing R(jv(t)) with r we complete the proof of Proposition
(6.3.1).

Now we are ready to formulate and prove the "almost surjectivity" of
the holomorphic mapping F: X-^ C1'"1'2.

PROPOSITION (6.3.2). — There exists an algebraic subvariety T of Z
such that F(X) contains Z— T. Furthermore one can choose T such that F
maps X-V biholomorphically onto Z-T, for some subvariety V of X
containing the branching locus ofF.

Proof. — Recall first there exists an algebraic subvariety S containing
the singularities of Z such that the estimate of (6.2.1) hold Let now b
be a point of Z—S lying outside the image of F. For each such point
there exists (i\, . . .,i,), l^ i \<. . . <i,<n+2 such that the projection
map Z-^C" given by (zi,. . .,z^^)^(z^ . . .,2^ is non-degenerate

at b. We shall denote this projection map by Wj, J=(i\,. . .,i,).
nr1^^)) consists of <M points, for some M independent of b and
J. Let h^ be a holomorphic function on C" + 2 such that h^ (b) = 1, h^ (w) = 1
for weTCj'1^^))—^}. By interpolation such a polynomial can be
chosen of degree <M. We now solve on X the ideal problem

(/4~&^i+. . . +(/^,)^.=(A,oF^2

where b»(b^. . .,b,).
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By Proposition (6.2.1) there exists a constant k>0 independent of b
such that

dlsi(F(x\b)>cw

TV

with C(b) possibly depending on 6. Recall that u is the solution of the
Poincare-Lelong equation i53u=Ricci form obtained by the method of
[IT], which satisfies by an intermediate estimate of the basic inequality

u (x) ̂  const. log d (XQ ; x) for d (x^; x) sufficiently large

The opposite inequality

u (x) < const. log d (xo; x) for d (XQ ; x) sufficiently large

is a consequence of estimates of the Green kernel.

The function h^ ( F(x)) is a holomorpbic function on X is of polynomial
growth and of degree ^M max^^^^deg(f^ Since h^(w)=0 on

^Wfc))-{fc}

IhJ2^4

/V" I- L |2\«»+1
(Lk-il2^""^! ^

is bounded near ^^(^-{fc} for a>l small enough. From

dist( F (x), b^C^/Jv* it follows that there exists some positive constant

KI such that

|2>»+4\h^F

L (£,<»<.. I/4-M2)""1
e"^1" < oo for some a> 1

By the estimate of Skoda, adapted to complete Kahler manifolds, there
exists a solution of (gi, . . . ,g,)

(fi.-b^g^ . . . ̂ (f^b^)g^(h^F)^2

such that for some a>0 fixed and independent of b,

M ^ I 12 r I li V |2*»"^4
f 2.i<x.l»'l --l.^^r 1"»"1——————(-''"•CM.

J, (£,..<. I A-tJ2)-- '''•J,C,«<.IA-V)"*1
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Since /(are of polynomial growth, by the upper bound of u it follows that
there exists a constant K^>Q such that

f (Zi^JftM^o^Hir^oo-
Jx

By the sub-mean value inequality, and the fact that ̂  ̂ , I ft I2 is plurisu-
bharmonic (hence subharmonic in any Kahler metric), it follows that for
l^fc^n, g^ is a function of polynomial growth on X of degree ^K
independent of b. Consider the equation

(/^&^i+. • . -K/i.-^ft-^^r2

as an equation on the subvariety Z. By the Siegel Theorem of § 4, g^
l^k<n are rational functions of /i,.. .,/«+2- Considered as rational
functions of the coordinates (w^ . .,^,+2) of the iaW1 ̂ ^ cll+2' at

least one of g^ must have a pole at 6, otherwise

(w.,-^)^+... +(^-^..=fcr2

would yield a contradiction at &, since h^(b)^ 1. Let now 7\ be the union
of the pole sets of gi,. . .,ft on Z. If F misses any point outside
7\ U S we can proceed by choosing b'eZ-(T\ U S U F W) to construct
holomorphic functions g'i, . . ..g, on X of degree ^^L At least one of
g^ must have a pole at b'. Proceeding this way we obtain holomorphic
functions pj € P (X) of degree < K such that pp when considered as rational
functions of w^, . .., w^^ has a pole at b .̂ More precisely, pole set of
PS + Uk<j P0!® sets °f Pip an^ b^epole set of^—(Uk<^ pole sets ofp^).

Such functions pj must be linearly independent. In fact, the equation

Cipi+ .. . +c^=0, c^O

would be contradicted at bp where p^ . . .,^-1 are regular at bj and pj
has a pole at ^ (which is a smooth point of Z). But the estimates in the
SiegeFs Theorem of § 4 gives

din^/ePW^degt/XX} <oo.

It follows that the whole process of locating "exceptional" subvarieties
must terminate in a finite number of steps, say at j'=m. Let
T=S U Ti U • . • U T .̂ Then F (X) => Z-T. Define F=F ~1 (T).
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F:X—V^Z—T is injective, and hence bijective, by Proposition (6.2)
(V => Vo). Since Z— T is smooth, F maps X— V biholomorphically onto
z-r.

Remark. — It is possible to further reduce T so that F can be taken to
be VQ as in Proposition (6.2), i. e., the union of the branching locus of F
and F ~~1 (Sing Z). Later we can further reduce V precisely to the bran-
ching locus of some F by normalizing the holomorphic mapping F (7.1).

To finish the proof of the Main Theorem, we have first to desingularize
the holomorphic map F: X-* Z which is almost a biholomorphism. The
difficulty of the problem is to prove that the obvious process of desingulari-
zation will come to an end in a finite number of steps. The latter
statement would be immediate if we know that every "algebraic" subva-
riety of X i. e., one defined by functions in PCX), has necessarily only
a finite number of irreducible branches. Geometric difficulty arises in
dimension n^3 because we do not have sufficient control of the geometry
of "algebraic" subvarieties of codimension ^2. In order to solve this
problem of desingularization, we shall show in § 8 that a uniform bound
on the multiplicities of irreducible branches of the zero-divisors offeP(X)
is sufficient for the finiteness of the desingularization process (affine
blow-ups). This uniform bound on multiplicities will first be established
in the next section (§ 7) using geometric comparison theorems. Then in
the last section (§ 9) we shall show that the resulting holomorphic map,
which is a biholomorphism onto some Zariski open subset of an affine
algebraic variety, can be completed to a proper embedding. This will
involve proving the rational convexity of the image and an application of
the vanishing theorem of SERRE [20] in algebraic geometry.

7. A uniform bound on multiplicities of branches of an k algebraic^ divisor

(7.1) Let feP(X) and [V]=i/2n8'8 log|/|2 be the zero divisor (or
closed positive (1,1) integral current), counting multiplicity, defined by
f. The basic inequality of § 3 shows that the multiplicity of [V\ at each
point Xo6 V is bounded by a constant multiple of the degree of / with a
constant possibly depending on XQ. In fact, because we have to insert a
coordinate Euclidean ball at XQ and estimate [V\ A Ric""1, the constant
depends on the choice of the ball and a lower bound of the eigenvalues
of the Ricri tensor. In this chapter we shall derive the uniform version
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of the basic inequality. For the derivation we shall need bounds on the
sectional curvature. On the other hand, the Ricci curvature tensor is
only required to be positive semi-definite.

THEOREM (7.1). - Let X be a Stein complete KShler manifold of
nonnegative Ricci curvature of dimension n>2. Suppose, for a fixed base
point J?o and for R(x)^d (x; J?o)

(i) - (Co/R2)^ sectional curvature^ ColR2

(ii) Volume B(XQ ; r)>cr2", c>0.

Let fbe a hohmorphic function on X of polynomial growth and [FJ be
an irreducible non-compact branch of the zero divisor [V\, then,

mult([FJ)<Cdeg(/),

where C is a constant independent of f and the particular branch [FJ.

Remark. - (1) Here the multiplicity of [V^ is defined as the multiplicity
at regular points of V,. Multiplicities at singular points of V^ would be
strictly larger.

(2) With obvious modifications of the proof, the theorem also applies
to zero sets of holomorphic n-forms <o of polynomial growth. Morevover,
the number of branches V, are finite in both cases, as would be obvious
from the proof.

We shall prove Theorem (7.1) by means of geometric comparison
theorems. We shall show that the volume of [FJ in geodesic balls of
radius r (with a fixed center) grows at least like C'r2""2 with a positive
constant C' = Ci. multiplicity of [V^ Ci > 0 a universal constant depending
only on the geometry of X. A theorem of this nature on simply connected
complete Kahler manifolds of nonpositive sectional curvature can be found
in SIU-YAU [24]. There they only use the fact that V, is a minimal
subvariety. The proof makes heavy use of the theorem of Cartan-
Hadamard, i. e., that the exponential map is a diffeomorphism at each
base point. In our case one would need an estimate of the injectivity
radius. It would also be necessary to take into account the positive upper
bound of the sectional curvature tensor. In the next paragraph we shall
prove a proposition on geodesic balls which is weaker than the desirable
estimate of the injectivity radius but which is nonetheless sufficient for
estimates of volume growths of complex subvarieties.
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(7.2) PROPOSITION. - Let X be a complete Kahler manifold of dimension
n^2 satisfying the hypothesis of Theorem (7.1). Then there exists a posi-
tive constant c^ such that the conjugate radius at p with d (p; Xo)=Jl is
bounded from below by c^ R and that the local homeomorphism

expp=Bo(0,Ci<)-^^

from the Euclidean ball Bo(0, c^ R) in the tangent space Tp(X) into X has
at most k sheets, with an integer k independent of p.

Remarks. - (i) By the conjugate radius we mean the largest possible s
such that the exponential map exp, : T^(X) -*• Xis a local homeomorphism
on Bo(s)^Bo(0; s). We shall say that a local homeomorphism has at
most k sheets if the preimage of every point is a finite set of at most k
points.

(ii) The estimate here on the conjugate radius is standard. It is included
for readers not familar with differential-geometric arguments.

Proof - To prove the first part of Proposition (7.2), we make use of
Rauctfs Comparison Theorem (cf. CHEEGER-EBIN [5]). Let XQ be a fixed
base point, p be an arbitrary point on X such that d (xo; p)SSR. By the
assumption (i) in the statement of the Main Theorem, on the geodesic
ball B(x, R/2) we have the inequality

c / R \~2

sectional curvature < —°— =( —— } .
(R/2)2 \2^J

Hence, by Rauch's Comparison Theorem (comparing with the Euclidean
sphere of radius R/2^Co), there is no conjugate point of p along geodesic

emanating from p of length n R/2 ̂ /Co or R/2, whichever is smaller, proving
the first part of Proposition (7.2) for any

c^min(l/2,TC/2^/Co).

From now on we shall assume

Ci<min(l/2, n/2^/Co)

and determine it later. For any point p on X with d(xQ;p)=R
^EyftjW^i®^ denote the pull-back of the Kahler metric on X
under the exponential map exg .̂ We observe that the metric
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TiijSij(x/c^R)dXi®dXj is non-degenerate on the Euclidean unit ball and
that the corresponding Laplacian operators arc uniformly elliptic with
elliptic constants independent of the point p.

In order to bound the number of sheets of expp:Bo(c^R)^X for a
suitable choice of c^, we shall compare the Green kernels of B(p; c^R),
equipped with the Kahler metric on X and BQ^R) equipped with
^j8ij(x)dx1 ® dxj, for c^ sufficiently small. We write the Green kernels
as G^ K (x; y) and G^ , (J?; j7) respectively. We assen that for c^ sufficien-
tly small and for 0<c^<c^/4 there exists positive constants A and B
independent of p such that whenever

x,y€B(p;2c^R) and J?, ^eB^lc^R)

w f--^^^^^^
{ww^^^'^^vr4^

where ||̂ -?|| is simply the Euclidean distance on Bo(2c^R). We shall
only need two of the four inequalities.

The first line of (#) appears in MOK-SIU-YAU [17, § 1.2] except that
the constant B depends on the constant Cp appearing in

Volume (B(p;r))>c^r2".

We assert that Cp can in fact be chosen independent of p. By looking at
the exponential map at p and observing that for the volume form
^/gdx1. . . dx211 in normal geodesic coordinates, fg decreases along each

geodesic (by a standard comparison theorem and nonnegativity of Ricd
curvatures), the ratio Volume B(p\ r)/r211 is a decreasing function in r for
p fixed. But by comparing very large geodesic balls the inequality

Volume (B (J?o; r))>(c+e) r2", e>0,

for one single base point ;?o implies the same inequality for large geodesic
balls centered at p. Taking limits one has in fact

Volume (B^r^cr21',

for all base points p and for all geodesic balls B ( p ; r). The second line
of (#) follows easily from the Hamack inequality of MOSER for uniformly
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elliptic operators [18]. A proof of the given estimates can be found in
STAMPACCHIA [26] using capacity functions.

We shall now finish the proof of Proposition (7.2). Let x e B (p; c^ R),
exp^OO nBo(Ci<)= {x^ ^,. . .,x,} with J^^ . . . ̂  Letj^o
be a point on 8B (p; 2 c^ R\ From the estimates above

^^''^^^^(c^-

Let y^o be a point on 8Bo(p; 2c^R) such that the segment joining the
origin in 'y corresponds to a minimal geodesic between p and y^ under the
exponential map. Then our assertion gives

S...A.?.>^,i^4^>(3^3

^[(c.R)2-2)^^)'

We write i for the Lapladan operator of (BQ^R), ̂  .g^dx^dx1)
which is simply the pull-back of the Lapladan operator A on X Let
exp^OOnBo^J1^ {^i, .^.,J^^+i,. . .,^} where x,+i,. . .,^ He
outside Bo (ci J^). Then, for J?= x,, 1 < i < r as above, on the ball Bo (Ci Jl),

-A;G,^(exp^(x). exp^(.?))=(8^+8;,. . . -h8;̂ )+(S;̂ -h . . . +8^

where 8^ denotes the point mass at x<.

On the other hand

-̂ ;E»i Gc^(^.?)=s(5;,-^8;,-^- . . . +8;,)-h(8;̂ + . . . +8;̂ ).

Since Gc2K(exPp(^)' exPp(>;)) is positive on SE^c^R), possibly infinite at
some points, by the maximum principle we have

Gc^(exp^), exp^io)s. ̂  Gc^(^y)> £?^ Gc^(^y\

In particular, at the point ^=^0 (Recall that expp(x)=x, expp(^o)=^o)>

^^ >G^ (x; ̂ )> E?., G^(x^ y^ ̂ .,^_,
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which gives the bound

^•-^)
on the number of sheets of expp : Bo (c!R) -^ ̂ -

Remarks. — We remark here that the hypothesis in the Main Theorem
on the curvature tensor of X, namely bisectional curvature>0, scalar
curvature <C|dl(xo\x\ C>0 implies that (-C')/^2^; x)< sectional
curvature <C/d2(x^ x), C'>0, because at any point xeX, the Rieman-
nian sectional curvature of a 2 plane p A q, p, qe T^(X) (the tangent space
at x), can be expressed in terms of holomorphic bisectional
curvatures. More precisely, if z<, Ki<n is a local system of coordinates,
with Zi=x,+ /^Ix'^i and R denotes the sectional curvature tensor, then

in terms of the basis 8/8xi, 1 <i<2n, of T,(-X), for 1 ̂ i, j, k, l^n

R - /R( 8 8 \ 8 8 \
Rijk^ ^[^^xjsx^xj

can be expressed in terms of R^ 1 <i, j, fc, l^n by putting

_8_^9_ 8_
8Xi 8Zi Qzi

—a-=-- /^Tf-^-^YbothforKi^n
8x^ ^ \8z, 82 J 9

Proposition (7.2) and hence Theorem (7.1) can be sharpened by dropping
the negative lower bound for Riemannian sectional curvatures. To do
this, we apply the arguments of [17, (1.1)] to the ball Bo (c^R) with
the metric given by the Kahler form exp^co, where G)=Kahler form
of X. Namely, the inequality

A B

«-=——-||2n-2 ^czJtC^ y)^ T^——-H2n-211^-^lr 1 1 ^ - ^ 1 1
can be obtained by using comparison theorems for positive Ricci curvature,
the isoperimetric inequality of CROKE [8] and the iteration technique of
Di Giorgi-Nash-Moser. In practice we shall work with Bo (Kc^ R) with
K a large constant, Kc^<n//Co. One has, however, to be careful in
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obtaining the inequality Ar?^4n, where ry(x)=d(x; ^) denotes metric
distance on the incomplete Riemannian manifold (Bo (Kc^ R), (^y)). This
can always be done by choosing c^ small enough, as long as

(i) there is a minimal geodesic in the incomplete metric (Bo (Kc^ R), (g^))
realizing the infimum of lengths of curves joining J? and y for J?,
y€Bo(c^R\

(ii) all such minimal geodesies lie within Bo(Kc^/2R).

The property (ii) guarantees that one can use the arguments of
CHEEGER-GROMOLL [5] at points where there is more than one minimal
geodesic.

(7.3) Proof of Theorem (7.1). — In order to prove Theorem (7.1) we
argue as in § 3 by comparing both mult ([VJ, x) and deg / ^ivith the
volume growth of V^ For the lower bound of deg(/) we shall still use
Proposition (3.1.2). In order to obtain the inequality

mult([Fj,x)<Cdeg(/)

it is sufficient to show that for each irreducible branch F( of the zero set
V off, and for some Ro>0 fixed and for a fixed base point j?o

Volume (IB (xo; 2^ R^-B (J?o; 2^0)] 0 V^CQ (2V W2.

for v large enough with a constant Co independent of the holomorphic
function/and the particular branch V^

In fact, using the notations of § 3 with

A^ ([Fj)= l ^_^ \ [V^ A ©"- \ (o=Kahler form on X,
(2^0) n Ji)v(Ro)

Z\CRo)=B(2JU and 2\(Ro)=B(2v+l R^B(TR^ for v^l, the above
estimate gives, for v sufficiently large

Av([^)^Comult([FJ).

But since [Fj is only part of [V]=i/2n8l5 log)/)2, clearly
Proposition (3.1.2) implies that, when we choose ;?o such that / (J?o) ̂ 0.

£;-o ̂  (TO^H deg(/)+C4(/).
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The inequality A^([VJ)^Co mult([FJ) implies immediately the desired
bound

mult([rj)<Cdcg(/).

Suppose now D^ (Ro) C\V^0. Since X is Stein, each F, is noncompact

(and connected). It must intersect 8B(xo; R) whenever R^1^'¥1R^

Let now p^ be a point of F< lying on 8B (xo, 3. 2^1 Ro). Such a point
exists when v is sufficiently large. ^v6Z>v(J?o) and is mid-way between
the boundaries. Let Ci<min(l/2, IC/TC^) be small enough that

BO\,CI R^) lies in Z\(J?o)> where R^d (xo; ^v)- Write exp^=^ Let

f^ ^ be the subvariety of Bo (c^ R^) defined by P(, v = ̂ v"1 (^i) H ̂  ̂ i ^v)-
Note that here the Euclidean ball Bo^i ^v) i8 a spread over X (via the

local homeomorphism n^) and hence inherits a complex structure. P,,v
is then a complex subvariety of Bo(ciJ^) with this complex
structure. Since there is a uniform bound on the number of sheets of
exp^ = Bo (ci R^) -^ X, we have

Volume (B (p^; c^ JQ 0 Dy (^o)) < ^ Volume (P( ̂
Jc

where ^^ is measured in terms of ^co, fi)=Kahlcr form of X. To
complete the proof of Theorem (7.1) we shall now use geometric compari-
son theorems to show

Volume^^Cs^"-2.

In order to have a convenient comparison for a lower bound of volumes
of subvarieties, we use a model which is a piece of P" with a multiple of
the Fubini-Study metric. Precisely let B c= c C" <= P" be a Euclidean ball
with center at the origin, equipped with the Fubini-Study metric suitable
normalized so that the Riemannian sectional curvatures are bounded
from below by C^ Let Zi, . . .,2, be the usual complex coordinates on
C". Write s2 = ̂  ̂  | z. [2, and denote by n the normalized Fubini-Study
Kahler form on B. There exists positive constants C^, €7 such that

C6^<l^3s2<C7H.

Let p/2<Ci <min(l/2, w//^) and (Bo(p), 2^/yAc* ® dx^ be the metric

(B, n) in normal geodesic coordinates at the origin. Consider now the
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model (Bo(P^v/2), ̂  jgijdx^dx1) i. e., with the metric TC*©. The
function R^(s(2x/R^))2 is strictly plurisubharmonic on Bo(pRJ2) with the
usual complex structure. By a standard comparison theorem for the
complex Hessian (cf. SIU-YAU [24, (1.1)]), on

(^(^.z,^®^).

with n^: BQ (p R^) ̂  X a local biholomorphism, we have

C^^ic^RH s L ^ ) ) ^Cg^G)

where Cg, Cg are positive constants independent of v. By definition the
volume of P^ ^ is given by

Volume (?,,,)= f [P,jAOc?(or1

JBo(ciAv)

.f ^(^(^w--
jBo(pilv/2) Y ^S \ \ ^v ///

We can now apply the integral formula of LELONG [13] to the function
JR? (5 (2 x/RJ)2 = (p^. On QB (p RJ2\ ̂  = a ̂  with a > 0 fixed.

Moreover, <py is equal to 0 only at the origin in Bo(pJ?o/2). Hence,
from the integral formula of LELONG,

—_f [r.jA (±Q^^(s(^Y1

(a^)2"-2^^) VCg "< \R^}

-^^^(^<<^r
+ f [y,.]^(i8-3\os(s(^\\\~\

Jflo(pHv/2) \ \ \ ^v ///

The second term corresponds to the "projectivized volume" of
LELONG [13]. It is nonnegative because by the geometric comparison
theorem for the complex Hessian (SIU-YAU [24, (1.1)]) the function
\ogs2(2x/R^) is plurisubharmonic on the Riemann domain Bo(pRJ2)
over X (with the spread given_ by ^=exp^). The limit term is
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analogous to the density number of LELONG [13]. It equals
Cg mult([^ J, 0) = C^ mult([FJ) as can be seen by locally comparing with
the standard potentials. More precisely, one can use the biholomorphic
invariance of Leiong numbers (LELONG [14], Siu [23]), diagonalize the (1, 1)
form i(fBR^s2(2x/R^) at 0 and approximate level sets by Euclidean balls
after appropriate linear coordinate transformations. With this we have
completed the proof of the inequality

or

Volume (^^CsJ^"-2

Volume ([P,.v])^C5 mult([FJ)J^11-2

where the volume of [P»,vl ^las ^e obvious meaning of counting
multiplicities. This completes the proof of Theorem (7.1). The analo-
gous statement for holomorphic n-forms CD is obtained by integrating
the Hncare-Lelong equation i/2n88 los^^^V^^^/ln) (Ricci form),
where [V\ is the zero-divisor of co.

Results of this chapter will now be applied in § 8 to show that the
quasi-embedding F:X-^Z into an affine algebraic variety constructed in
§ 6 can be desingularized in a finite number of steps to yield an embedding
into some affine algebraic variety (which in general may not be
surjective). We remark here that the proof of Theorem (7.1) clearly
implies that V can only have a finite number of branches. However, the
weaker statement in Thorem (7.1) together with a modified version of it
(8.3), (<) 4) will be sufficient. We also remark here that the estimates of
this chapter also yield lower estimates of complex analytic subvarieties of
X of any dimension. But this does not prove that the number of branches
of an "algebraic" subvariety is finite because we did not establish correspon-
ding estimates of Green kernels on "algebraic" subvarieties.

8. Desingularization of the quasi-embedding by affine blow-ups

(8.1) In § 6 we constructed a holomorphic map F : X -»- Z into an affine
algebraic variety which maps X—U biholomorphically onto Z — T for
some subvariety U of X and some affine algebraic subvariety T of Z. U
contains the branching locus of F but may in general be larger because
there can be self-intersections (and also subvarieties on which the solution
of the ideal problem fails (Proposition (6.3.2)). By normalizing the
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affine algebraic variety Z we remove the self-intersections. We show that
the map F resulting from the normalization is still defined by functions of
polynomial growth on X by using the lemma on Riesz representation in
§ 3. From the existence theorem of P(X) in § 2 it is clear how one can
reduce the branching locus on X by adjoining additional functions of
polynomial growth. In §8.2 we shall prove a finiteness theorem on
affine blow-ups by using a strengthened version of Theorem (7.1).

PROPOSITION (8.1). — Normalization of an ^ algebraic^ holomorphic map
into affine algebraic varieties.

Let F :X-^Z be a holomorphic mapping ofX into an affine algebraic
variety defined by functions of polynomial growth. Let Z be the affine
algebraic normalization of Z. Then, the lifting F of F into Z is again
defined by holomorphic functions of polynomial growth.

Proof. — Let Reg(Z) denote the Zariski dense subset of Z consisting
of regular points. It is well known that the normalization Z of Z (which
one proves easily to be affine algebraic) can be obtained by taking Z to
be the closure of the graph of { f i i , . . .,fi^} on Reg(Z) where Q^ is a
rational function which is holomorphic (or regular in the terminology of
algebraic geometry) on Reg(Z). The lifting of F : X-^ Z to P : X^ Z is
then defined by (/i, . . .,f^ Qi°F, . . ., Q^°F) where F=(/i, . . .,/w)
and fi, °F denotes the holomorphic extension of Q^F on F ~1 (Reg(Z))
to the whole manifold X. To prove Proposition (8.1) it suffices to
establish the following statement.

(^) Let fci, h^ be holomorphic functions on X of polynomial growth,
h^Q. Suppose the function g=hjh^ on (X- zero set of h^) can be
extended to a holomorphic function on X, also denoted by g. Then, g is
a holomorphic function of polynomial growth on X.

Proof of (^). - A log [ g |2 = A log | h J2 - A log | hj, |2 as measures. The
trace

-^A logl^l2^ —3Slog\g\2 A o11-1,
4n 2n

(o==Kahler form of X, is simply the integral measure on the zero set of g,
counting multiplicity. Both log|fci42 an<^ 1°8|^2|2 can ^ obtained by
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Riesz representation as in (3.2), lemma, in the sense that with
*i (xo\h^(xo)^0

log | h, (x) ĵ lim^ .„ f [G^ (J?o; y)
JB(XO;X)

^ (x; 30] A log | fc< (^) |2 ify+log | h, (;o) |2.

1=1,2.

with G^= Green kernel on the geodesic ball 5(xo; X).

It follows from the above that log l^psloglAj2—^)^!2 can be
represented by the same integral formula. By Proposition (3.1.2)

H deg (h^C, (S^ A, (h,; Jl)-C, (h,))

where A^(h^ R) is the area of [HJa=zcro divisor of h^ counting
multiplicities. The inequality

Hdeg(fc,)^C, (2^ A,te; JO-C^ (M

(with A^fe; Jl) defined as A^(h^ R)) holds since A log^l^A log|fci |2

in the sense of measures. It follows readily from the Riesz representation
formula for logj^)2 and the last inequality that log|^(x)|2 grows at most
like const. logd (J?o; x\ so that g has polynomial growth.

(8.2) AFFINE BLOW-UPS OF "ALGEBRAIC" HOLOMORPHIC MAPS INTO C .̂ -

In this section we shall write Fo: X-^ Zo for the quasi-embedding defined
in § 6 ( Fo^F) and denote by FQ:X^ZQ a normalization of Fo- If x is
a point on the branching locus ?o °f ^o we claim that JPo must blow
down a complex curve passing through x to a point. Otherwise FQ would
be a finite proper mapping from an open neighborhood of x to an open
neighborhood of ^oOO- Since FQ is one-to-one on X—VQ, FQ can be
inverted because ZQ is normal. From the existence theorem for P(X) in
§ 2 one can adjoin a finite number of holomorphic functions of polynomial
growth to get a map F^ : X-^Z^ for some irreducible affine algebraic
variety Z^ of dimension n=dimyA>2, such that F^ is locally biholomor-
phic at x. Hence, the locus of ramification V^ of Fi is strictly smaller
than PQ- We crite F ^ : X -^ Z^ for a normalization of F^ and continue this
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way to get holomorphic mappings F,: X-+Z,, and their normalizations
Fi: X-^such that

^^...3^...

where ^= locus of ramification of F^

If after a finite number of steps ^=0, then F^:S^Z^ is a local
biholomorphism. Moreover, it is sufficient to show that ?„ consists at
most of isolated points, in which case it must be empty because F^ can
be inverted by the normality of 2^ By using the existence theorem for
P (X) as done in § 6, Proposition (6.2.2), F^ is actually a biholomorphism
of X onto its image. Arguments of Proposition (6.2.2) show that the
image of f^ can miss at most a finite number of irreducible subvarieties
of 2^ say T ,̂ . . ..T^. If F^(X)^\T{m)^0, then it must interest
T^ in a non-empty open set because P^ is open. We arrange T^ so
that ^(A^)nT1m)=0 for l^i^p and f^(X)^\T(m}^0 for
p-^ l^i^q. FH,(X) is a Stein subset of Z^ because X is Stein (§ 4) and
F^ maps X biholomorphically onto its image. By Hartog's extension
theorem of holomorphic functions every holomorphic function on
2^- UK, T^ extends to Z^- Ui^p T^ (extension phenomenon of Thul-
len type). By Sternness of F^(X) we obtain F^(X)^Z^- Ui^T^

Moreover each T^ " ŝt be of codimension one.
The difficulty of completing Fg: X -* Zo to an embedding onto a Zariski

dense open subset of some affine algebraic variety is therefore to show
that, if done appropriately, the descending chain

^ 3 î i .. • 3^ • • •

must stop in a finite number of steps. We solve this difficulty by conside-
ring the vanishing order of holomorphic functions and n-forms of polyno-
mial growth.

We state the main result of this chapter in the following proposition.

PROPOSITION (8.2). — Let F :X-^Z be the quasi-embedding of X into
an affine algebraic variety Z defined as in Proposition (6.2.2),
F=(/^, . . ., /^). Then, there exists a finite number of holomorphic func-
tions fi of polynomial growth, N+l<i<N, such that the holomorphic
mapping F= (/i, . . ., f^ fn^ i, . . ., fn) ' X ̂  C^ defines a biholomorphism
ofX onto some 2-f, where i is an irreducible affine algebraic variety
(possibly singular) and t is an algebraic subvariety of 2 of pure codimension
one. _
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By the arguments given above. Proposition (8.2) is a consequence of
the following proposition.

PROPOSITION (8.2)'. - Let F :X-^Z be the quasi-embedding ofX into
an affine algebraic variety Z defined as in Proposition (6.2.2),
^(/I,...,/N). Let F'.X^C^ r=(^.../^/^,...,^) be
obtained by adjoining a finite number off holomorphic functions of polyno-
mial growth. Then, the branching locus of F has only a finite number of
irreducible branches of positive dimension.

Remarks. — We observe first that the proof of Theorem (7.1) shows
immediately that V has only a finite number of irreducible branches of
codimension one (by considering upper and lower bounds on the volume
growth of the zero set of df^ A ... A df^). This settles Propo-

sition (8. IY for dimension n s= 2.

Since the upper estimate on the volume growth of such hypersurfaces
depends on estimates of the Green kernel on X, a direct generalization of
the arguments of Theorem (7.1) to subvarieties of higher codimension
would necessitate estimates of Green kernels on "algebraic" subvarieties
of X. We will bypass this difficulty on Bezout estimates. Instead, all
we need is a strengthened version of Theorem (7.1) which can be applied
to most singular points of the branches V^ in the theorem.

For the proof of Proposition (8.2)7 in general we need to introduce
some terminology. We say that a family of irreducible subvarieties £, of
dimension p is of bounded degree if each £< is an irreducible component
of the zero set of n —p holomorphic functions / € P (X), of degree bounded
independent of i. With this terminology we can formulate an essential
step in the proof of Proposition (8.2)'.

PROPOSITION (8,iy. - Let F: X -^ C^' be as in Proposition (8.2)' and
let V= UisjV^ be the decomposition of the branching locus V ofF into
irreducible components. Let Jo be the set of all indices i for which V^ is of
positive dimension. Then, there exists a family of irreducible analytic curves
Cg, ieJo, of bounded degree such that for each ie Jo, G( intersects V^ at
isolated points in ^— U^^y

In order to give a better picture of the arguments we shall first give a
proof of Proposition (8. IY for dimension 2 which can be generalized to
higher dimensions with some technical modifications.
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Proof of Proposition (8.2)'7. - Case of dimension 2. It is sufficient to
prove that proposition is valid for the set of all irreducible curves P((ieJ),
belonging to the branching locus V of f : X-^ 2 <=. C^, which is a normali-
zation of the quasi-embedding F: X -^ Z of Proposition (6.2.2). (Recall
that V contains no isolated points by the normality of 2). For each ie I
pick a point x, of P, which does not lie on other branches. We assert
that (^)i Each fp 1</<^, must be constant on each branch P(. To
prove (^)i by contradiction, suppose P. is a branch on which some fp
\^j^ff, is not constant Choose a neighborhood 17 of x. relatively
compact in X such that P(8UC\ P() is disjoint from F(x^. By choosing
U small enough, one can even assume that f(9U) is disjoint from F(x^
since ^(X-P)n?(P)=0. Hence, F(x^ is an interior point of the
compact set F (U) = fL P maps 17 0 F~l (Int K) onto Int K. Since ̂  can
be inverted on 2—T, by the normality of 2, ^ can be inverted on
Int JK. (Recall that 17 is relatively compact in X). This shows that F is
biholomorphic at x<, contradicting with the fact that x^e P.

Let /i=fl» on Pj, I'eJ. By Theorem (7.1) the vanishing order m. of
/i --a, at x, is bounded independent of i. We will further assume that x,.
does not belong to another branch of the zero-set of/r For each ieJ,
let W( be an w^-th root of/i—a, in a neighborhood l7( of i. Then, consider
the expansion.

/2= £;Lo ^.v ̂ l+^p^l 00 W?'^

where b^ p^i(x) is defined on 17, and non-constant on l7( H ?< and b^ y

are constants for 1 ̂ v^/?,. We claim that (^)2^ is bounded independent
ofieJ.

(^)a is imTnediate consequence of Theorem (7.1). In fact, on U^

df^df^^df^db^^,

so that the vanishing order is at least ^i+l. But by Theorem (7.1)
applied to holomorphic n-forms the vanishing order d/i A df^ at x^ is
uniformly independent of i, proving the assertion (^Oz.

Now let ^ = b^ p,+1 (x,). The holomorphic function

^-E^cAvH^wr1
ff2'^h^\-^rl\

\ w?<- r
is defined near x<, vanishes at x, but not at points on P( near X(. It
follows that the zero set C\ must intersect P; at isolated points. Now
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consider the zero set D^ of the multi-valent function

(») ^2- £;Lo h v^i -^-^i -flO^1^'

defined on the affine algebraic variety Z. By passing to a finite branched
covering, it is easy to see that Z), is contained in the zero set of some
polynomial P((ZI, z^) of degree bounded independent of i. Hence, there
exists an irreducible branch C, of P^fi,/2)=0 which contains x< and
intersects V, at isolated points.

Remarks. - (i) By the zero-set of a multivalent function <p we mean
the set of all points at which some branch of <p vanishes.

(ii) It is also apparent how one can construct polynomials P( (z^ z^) on
C2 whose zero set contains D^ with degrees bounded independent of i,
directly from the multivalent functions in (<).

The technical complication in higher dimensions comes from branches
Vi of codimension^l For the proof of Proposition (8. 1Y for higher
dimensions we need the following modified version of Theorem (7.1).

STRENGTHENED VERSION OF THEOREM (7.1). — Notations as in
Theorem (7.1) the estimate mult([yj)<C deg(/) can be replaced by the
estimate

mult(m;Jc)<Cdeg(/)

for all points xeX except possibly for a discrete sequence of points {x^}
on V, where the constant C is independent of x and /. The analogous
estimate is also valid for holomorphic n-forms of polynomial growth.

Proof. — In the lower estimate of volume growth in Theorem (7.1),
we consider the intersection of V^ an irreducible component of V, with
suitably large geodesic balls. In order to prove the strengthened statement
for xeV it is sufficient to show that on each ringed domain
D^=B(x; 2^1 Ro)-B(x', 2^0) there exists a point ̂  such that

mult([y];^)^mult([^];x).

Recall that the set of all points yeV such that

mult([^];^)>mult([^];x)

is an analytic subvaricty Ey (A purely analytic proof can be given by
SILTS Theorem on LELONG numbers [23] and THIE-S result [27]). Either x

TOME 112—1984—?2



COMPLETE KAHLER MANIFOLDS OF POSITIVE BISECTIONAL CURVATURE 247

is an isolated point of £, or there is a positive dimensional branch £, of
£, passing through x. In the latter case £, must be non-compact since
X is Stein, so that £, intersects each D^ The above inequality is then
satisfied for any y^eD^C\Ey If x is an isolated point of £, then we
assert that £, must be positive-dimensional for y sufficiently near x. In
fact, if { z^} is a sequence of points on V such that z^ is an isolated point
of £, and mult([F], z^==c>0 for all H, then {z^} c: V is a closed subva-

riety of £(c)={z6V: mult([F|;z)>c}, so that {z^} must be discrete,
from which our assertion follows easily. Hence the set of all x 6 F for
which the estimate

mult([F];x)<Cdeg(/)

can possibly fail is at most a discrete set.

With this we can continue with the proof of Proposition (8.2)" in higher
dimensions.

Proof of (8.2)" continued. — Let P( be a k-dimensional branch of
P, 0<k<n-l. Let X(€P( be a regular point. In local coordinates
(wi , . . . ,w^) suppose (wi(x,),. . .,w,(x<))=0 and P( be defined by
H^= . . . =w,_k=0. Consider the a-process defined in local coordinates

by ,
<t> (Ui, . . ., M,)==(UI, «i M^ . . ., Mi U,-k» "r-k+K - • - > M^

0 mapping some open neighborhood 17 of OeC" into -X, 4>(0)==X(. Let
r\ be a holomorphic n-vector field on X of polynomial growth and consider
the holomorphic function /= <d/i A . . . A df^ T{ >, where /i, . . . ,/n are
the first w-components of F, assumed to be of rank n. Then / vanishes
identically on P, in particular on F(. Denote the zero-divisor of / by
W. By suitably choosing the values of r\ and its first derivatives at one
point, one can certainly arrange d/A df^ A . . . A d/»-i to be
non-trivial. Let Pe U be such that u^ (P)=0 and P is a regular point of
the zero set of/°<l>. Assume now x^e P( has been chosen such that the
estimate

mult([W];jc,)<Cdeg(/)

applies. By comparing the Taylor expansion of/and /o<D at x< (in the
w-coordinates) and at 0 respectively, we see immediately that

mult (zero-divisor of/o<&; 0)<2 mult([W]; x,)<2C deg(/).

In particular the vanishing order of/ ° 4> at P is at most 2 C deg (/). Now

consider the n-tuple (/i°<I>,. . .^/n0^) of functions on {u€l / :Ui=0}.
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Suppose they have rank p(=rank of (/i,.. ., f^ on P and that the rank
at P is also equal to p, without loss of generality. Then, there is an open
neighborhood l/i of P in 17 such that the common zero set of

(/i °^~^i» • - •»/«°^—£»i) intersects ?i transversally. Call this level set
£(Si> • • ->C») (as a subset of l/i). On £((;i,. ..,(;,) the multiplicity of
/o<& on £iKi,. . .»Sn)n{«i=0} is the same as the multiplicity of/°0
(as a function on 17) on the u^-axis. We shall write/for / o<D and /< for
/(<><& for short. Let the multiplicity o f / o n { u i = = 0 } b e m and let/171"
denote some w-th root of / in a neighborhood of P in 17. Suppose,
after renumbering, (/i,. . ̂ fp) have rank p at P. Define
^(ui, . . ., M»)=/((O, Ma, . . ., M,) on l/< for 1 ̂ i<p and suppose it is possi-
ble to write /i in the expansion

(») /i^i+^Ki,...^)/1^...

^(^...^/^^i/^1^

where ^i,. . ., ̂ , g,+i are holomorphic functions on l/i and the functions
^ depends only on values of /i,. . ., fy Then clearly the vanishing
order of d/A d/i A . .. A d/»-i a^ P ls a^ least ^ because
^(KI> • • •>y A 4fi A • • • A ^/i-i^- However, by choosing P such
that <&(P)6P(C:Jir does not belong to the bad set of
d/A d/i A ... A d/,,-i (the discrete point set for which the strengthened
version of Theorem (7.1) does not apply), and by comparing the Taylor
expansions at P and F(P) respectively, we have: vanishing order of
d/A d/i A . . . A d/,_i at P=vanishing order of d/A df^ A . . . A d/,_i
at ^(P)+(n—k—l), where the extra constant (n—fe—1) comes from the
Jacobian determinant of <1>. This means that with this choice of P the
exponent q in the expansion (9) is bounded independent of P<. The
expansion (X) is obtained simply as follows. Let gi be the extension
of (/i—^i)//1^ to l/i. Suppose g is constant on each
£ K i » - - - » y n { ^ = 0 } . For l/i sufficiently small this means that
81 IE (d. . . . . («) n { « i =o }== ̂ i Ki» • • •»y- Then one continues by letting g^
be the extension of (/i -Si -^i fti, . . ., Cp) y171")//2^ to l/i and so on.

Now choose ^ such that ^+1 is not identically constant on generic level
sets £Ki, . . ..^n^i^O}. We write £(^,. . .,^; ih) for the zero
set of the extended holomorphic function

/i^i-I?^^—^)^" .,
^(«+D/~ Nl*
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Then for suitable choice of Ci , . . ., ̂  and r\^ E(^,. .., ̂ ; T^) intersects
£(^i,...,^) transversally at a point P^ sufficiently close to
P. £((;i, . . .,(;,; Tii) is of dimension n—p-L For generic choices of

PI the vanishing order of/a |£(d... . .e»; 111) at PI ls ̂ e same as that of/a
at Pi. Then, one performs the same process on £Ki,. . .,!,„; T^) for
the function/^ and so on until one obtains an analytic curve C\ intersecting
{ii i==0} transversally, defined as W— {iii=0}, where W is the simulta-
neous zero set of holomorphic functions

^-D.i^^ '̂1'111

for some constants C,p r\j and ^u), Kv<^. and for q^ const. independent
of i for 1</^/?-1. The local analytic set <>(Q) passes through some
Yi€ P.- U^» f^ (not necessarily the initial point x^ but chosen as to avoid
the bad set of d/A d/i A ... A d/,-i for applying the strengthened ver-
sion of Theorem (7.1)).

Finally the last argument in case of dimension 2 can easily be adapted
to show that e>(C^) is contained in some curve C. defined by global
holomorphic functions of polynomial growth, with a degree bounded
independent of i. This completes the proof of Proposition (8.2)\

We are now ready to prove Proposition (8.2)' and hence Proposition
(8.2), the main result of this chapter.

Proof of Proposition (8.2)\ - Let F : X -^ 2 be a normalization of the
initial quasi-embedding F : X-^ Z, and Fp:X-^Zpbe obtained from F by
adjoining a finite number of feP(X) and then by normalization. It
suffices to prove that the branching locus P00 of P has only a finite
number of irreducible branches V^\ . . ., ̂  (P00 contains no isolated
points). We prove this by inverting the mapping Fp along slices of
algebraic curves of bounded degrees. Recall that by Proposition (8.2)',
there exists an s such that for each P00, \^i^p, there exists a curve C,
which is an irreducible component of the common zero-set of
(n-1) / eP(X) of degree ̂ s, such that C, interesects P°°, passing through
some point y^e P^- U^i P .̂ Let {/i, ..../,} be a basis of the vector
space of all/eP^X) of degree < 5, and consider the affine algebraic variety
EQ defined by

£<°>= {(z.Oe^xC^^.^^/JZ^O forallo,0^a<n-2}.
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f^ is thus a parametrized space of common zero-sets of(n~ 1) holomor-
phic functions f^P(X) of degree <s. By Proposition (8. 2f, if P^O
then there exists some t^eC01"1^ such that E^ 0 (Zp x {^°>}) contains
an algebraic curve as a branch. It follows immediately that f^ must
then contain at least one branch of dimension (n-l)r-(-L (Note that
for ^ sufficiently near ^0). E^ U (Zp x {^) )^). Let £ be the union of
all ((n— l)r+ l)-dimensional branches £, of f^ such that the generic fiber
of the projection £, -^ c01"1 '̂1'1 is of dimension 1.

For each branch P00 of P ,̂ there is now a point (fp(y^\ ^0)€£(0)

such that ^.eP^- U^P^. It is clear that (^(^); ^)) belongs to
some £, in £. Let o :£->-£ be the normalization of £. We regard a as
a mapping (a^ a^): E -+ 2p x C01"1 .̂ The generic fibers of Oi: E -^ 2,
will now consist of smooth algebraic curves. Let ^>p be an integer
and Fy:X-^Zy be obtained from F^^ by adjunction of feP(X) and
normalization, as before. We consider all possible directed sets
[Py ^p} obtained this way. Recall that there is an algebraic hypersur-
face (possibly singular) Tp of 2- such that fp\x-v^ is a biholomorphism
of X—^ onto Zp-Tp, and Fpl^p) is degenerate on each branch P^\
mapping it into Ty The mapping F p 1 0 ^ ^ is well-defined on
E—a'l('TpXC(H~l)r). For q^p consider the holomorphic mapping
9 p y ^ F y o F p 1 o CTI : £-a~1 (T^ x C01-1^ -^ 2^ which clearly extends to an
^,-tuple of meromorphic functions (2, c; C^). We are interested in the
extension of <bpy across a^l(TpXC{n^l}f).

For a generic point ^eC^^1^, £H(TpX {(;}) is the intersection of an
algebraic curve with Tp. Let a~l(TpXC{'l'l)r)^ U^iD,, be the decom-
position of a~1 (Tp x C01"1^ into irreducible components.

Two possibilities can happen in the meromorphic extension of
€>„:£- Ui«i^k-^C^ across Dk; l<k<t fixed.

(i) For all possible Fy:X^Z, c; C^, ^>^, <D^ extends holomorphic
across generic points of D^

(ii) There exists some choice of F^X-^Zy q>p such that the pole set
of some component of 9py contains D^ <= £. (In this case D^ is necessarily
of codimension one in £.)

In case of (i) actually Op, extends holomorphically across D^- Ui^r
We are going to define an algebraic subvariety D' of

o'~l(TpXC^l)r)»Uk»lD|, by the following procedure: Suppose
{Z>i, . . .,D^}, {D,^i,. . .,Z>J is the division of o-^xC01"1^) into
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classes satisfying (i) and (ii) respectively. For each fc>(o choose some
F,:X-^Zy such that the pole set of some component h of <!>„ contains
Df Let D\. be the set of indeterminancy of h belonging to D^ Then,
define

^-(U^o^^USingCa-^^xC^^-)).

We claim the following is true:

(») For all but a finite number of P ,̂ the point (^(^); ^°)e£ defined
above is such that i^eca^').

Given (<), it is then clear by induction how the proof of Proposition
(8.2)' is completed. To prove (t), we again consider the sets { Z > i , . . .,
D^} and {D^+i , . . .,D^} separately. It suffices to prove, for each k,
the statement:

(<)k There exists at most one V^ such that for the points
(Pp(yi). ?°)e£ defined as above, o^^nWk-jD') contains a point
which corresponds to y^

Here, if cr^1^) c= E is a smooth Riemann surface intersecting of1^)
at isolated points we say that ^e a^1 (Q 0 (2)^—1)') corresponds to ̂ € P^
if the mapping V defined on the slice o^1^)-^1^) by
y^'^oo^aa^O—Oi'^Ty)-^ extends holomorphically across ,̂
with the value ^(y=^. In general, one considers the normalization of
one-dimensional branches of o^'1^) intersecting cirf^Tp) at isolated
points, in which case the points ^ may correspond to several end-points
ye^\

Proof of (Vt\, — (i) Let k be such that l<fe <(o. To prove (#)^ suppose
there exists some P00 such that for some ^(0 with a^^0)^0,
^eDk. Choose ^:^-^2y q^p such that ̂  is locally biholomorphic
at ^€P°°- U^.^. Let W, be the algebraic subvariety of 2p that
corresponds to P°°. Then <l>p,(^°)6W(. By the definition of <D^
<!>?, (Dk — U^kk ̂ i) c: np9l (^i»)> where ̂ : Zy -̂  2p is the natural projection
map induced by C^ -* CNp. W^ is an irreducible component of n^1 (Tp).

It follows that for ^ 6 D^ 4>^ (Q € H .̂ Since ̂ ^ ̂  for j ̂  i, we have
proved (t)^ for l$k <to*

(ii) Suppose now tQ^l^k^t. Let ^€02 ^O 0(^-2)'). <D^ was
chosen such that some component h of <!>„ has a pole at Sy. Let

y^-loa^-i^^-i^)
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and let ^ be the mapping defined by lifting to the normalization C of
one-dimensional branches of ^^(Q intersecting ar^Tp) at isolated
points. Obviously ^ cannot correspond to y^ since ̂  cannot be extended
holomorphically across any point of C which correspond to ^ under the
normalization map, completing the proof of (<)k.

By an obvious inductive argument based on (<), one can step-by-step
reduce the dimension of the parameter space of "algebraic curves" which
gives the different components P^ of P .̂ In each step, normalization
is needed to make sure that the set of indeterminancy is well-defined. This
proves Proposition (8.2)' and hence the main result Proposition (8.2).

9. Completion to a proper embedding onto an aflioe algebraic variety by
techniques of algebraic geometry

(9.1) In the last chapter we proved that for the n-dimensional, n>2,
complete Kahler manifold X of positive bisectional curvature satisfying
the geometric growth conditions of the Main Theorem, there exists a
holomorphic mapping G'.X-^C" for some N, defined by holomorphic
functions of polynomial growth such that G maps X biholomorphically
onto a Zariski dense open subset of some affine algebraic variety V,
possibly singular. Moreover, the complement is of pure
codimension 1. We denote here the complement of G(X) by W, i. e.,
G:X-^Y— IV is a biholomorphism. If Y is non-singular, then it follows
easily from the vanishing theorem of Serre that Y—W is biregular to an
affine algebraic variety (for any algebraic W of codimension
one). However, in general this is not true if Y has singularities. There
are well-kown examples in affine algebraic geometry due to Zariski (cf.
GOODMAN [11]) such that the algebra of rational functions regular on
Y—W, W of pure codimension one, is infinitely generated. Although in
our case Y—WISSL manifold, there is no guarantee in the way we construct
the embedding G that Y is non-singular. In general, 7— W fails to be
affine algebraic because divisors defined by W are not locally principle,
i. e., W cannot in general be defined locally by a single polynomial. On
the positive side, we prove.

THEOREM (9.1). — Let Y be an affine algebraic variety, possibly singular,
and let W be an algebraic subvariety of pure codimension one. Suppose
Y—W is rationally convex. Then Y—W is biregular to an affine algebraic
variety. —
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Here a subset S of C^ is said to be rationally convex if, given any
compact subset K of C^, there exists a point zeS, a rational function /
which is holomorphic on an open neighborhood of S, such that
|/(z)|>sup^|/(x)|.

In order to prove Theorem (9.1), we shall need the following proposition
obtained by Runge approximation.

PROPOSITION (9.1). — X is convex wth respect to the algebra P(X) of
holomorphic functions of polynomial growth, i. e., given a compact subset K
of X, there exists a compact subset K of X containing K such that given
X€X-K\ there exists anfeP(X) such that \f(x)\ >sup^| /|.

In the case of the biholomorphic mapping G:X^ Y—W this implies
that Y—W is rationally convex in Y because P(X) is now precisely the
pull-back under G of rational functions on Y which are regular on Y—W.

Proof of Proposition (9.1). - Recall that there exists a plurisubharmonic
exhaustion function u solving i53u=Ricci form, such that

Ci logJ^u^Ca logR

for R(x)^d (xo; x) sufficiently large, with Ci, C2>0. Given this, the
proof of Proposition (9.1) is a standard application of I^-techniques of
Runge approximation.

Let K be a fixed compact subset of X and let x be a point on X such
that u(x)> supj^u. Let 17 be a small coordinate open ball centered at x
such that l/nK==9, and let z^ . . .,z, be local holomorphic coordinate
functions on 17 with 2(00=0, Ki^n. Let q> be a function smooth on
X except for a logarithmic singularity at x, with compact support contained
in U such that <p=2n log( jz i \2-^ . . . 4- |z, |2) in a neighborhood of x in
U. The function ku -Kp is strictly plurisubharmonic on X for k sufficiently
large. Let now ^ be a smooth cut-off function supported on U (i. e.,
Supp^czczU) such that 5c=l near x. Let c be chosen such that
supKu<c<mWu. Let i? be a solution of ^^^(ax), a^O, satisfying

f | 3y |2 (T ̂ -^^ f I g ((xx) I2 e- ̂ 'kc^ for some C>0.
L' ' h C

Such a i; exists because Ric>0 and 3(a)c) has compact support. C
depends here on the lower bound of eigenvalues of 53(ku-Kp). Since
3(t;— o^) == o /= v — a3c is holomorphic on X. By examining the singularity
at jc, i; (x) = 0, so that / (x) == a. The weight function k (u - c) -Kp tends to
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infinity on U when k approaches infinity, but is arbitrarily small on
K <= { u < c } (approaching —oo) when k is arbitrarily large. An applica-
tion of the sub-mean value inequality then shows that for k large enough,

sup, | r | < [ a |.

Moreover,/is of polynomial growth from the sub-mean value inequality
on X because of the upper estimate u^C^ logX for R large enough.

Proof of Theorem (9.1). - We first give a proof of Theorem (9.1)
under the assumption that the subvariety W can locally be defined by a
single polynomial. In this case, rational convexity is not needed. More
precisely, we assume that, given any zeW, there exists a polynomial P on
C^ such that P(z)==0 and that there exists an open neighborhood 17 of z
in V such that [zeY : P(z)=0} r\V^WC\ U. (Clearly one can also
assume that U is Zariski-open.) Fix z^ 6 W and let Pi be a polynomial
as above. The rational function I/Pi is regular on Y—W—E^ where £1
is an algebraic subvariety of Y not passing through 2. Let now Q be a
polynomial in C^ such that fi(zi)==l and Q vanishes on £1. To find
such a Q we appeal to the vanishing theorem of Serre: (One can also use
the vanishing theorem of Kodaira or the Z^-estimatcs of 3 of Hormander
on C^.)

THEOREM (SERRE) [20]. - Let M be a projective variety and L the positive
hyperplane section line bundle on M. Let f be a coherent algebraic sheaf
on M. Then, there exists an integer m >0 such that for all v^ 1

/T(M, y (SL^O.

Here the cohomology can be either defined in terms of the algebraic
coherent sheaf y ® L*" or the corresponding analytic coherent sheaf, because
of GAGA (SERRE [21]).

For an algebraic variety V of C^ we shall denote by V the (Zariski)
closure of V in P .̂ Now we prove the existence of a polynomial Qi as
given above. Let .X^ denote the ideal sheaf of E^ and m, be the maximal
ideal sheaf at 2i. To find such a polynomial Q^ it suffices to show that
the restriction map of section modules

^(PB.Lm)^^(^u{^}.^,^^®LIII)
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is surjective, where C^^} denotes the reduced structure sheaf of

^i U { ^} • From the short exact sequence on

O^^^w^L^ffp^L"^^^^®!/1-^

it suffices by passing to long exact sequences to prove that

^(PV.^S^®!/1')^,

which is valid because of the vanishing theorem of Serre. Clearly the
function gi^Q^/Pi is regular on Y—W for s large enough. Moreover
g^ = Q\IP^ (z) -^ oo as z approaches l/i 0 W. It is now a standard argu-
ment how one can find a finite number of points z^ 1 $ i ̂  (, and correspon-
ding functions ^=fi?/Pi such that (z^,. . .,Zjy, g^ . . .,^,) gives a proper
embedding of V— W onto an affine algebraic subvariety of C '̂1'1.

Assume now ̂  is an arbitrary algebraic subvariety of pure codimension
one and that Y—W is rationally convex. We claim that there exist
rational functions gi,. . . ,gp regular on V- W such that if T is the closure
of the graph of (gi, . . . ,gp) on Y—W (the closure being taken in C '̂1'1'),
and W is the part of T sitting above W under the projection map
7i(zi,. . . ,ZN+p)=(Zi, . . .,Zjv), Aen W can be locally defined by a single
polynomial on Y\ We shall first give the argument in the case of
dimension 2.

Proof for dimension 2. — Let g^ be a non-zero polynomial on C^ which
vanishes on W. Let Z be the zero set of g^ on Y and Z= U Z; be the
decomposition of Z into irreducible components Z<. Let Z., 1 ^i^m be
those branches which do not lie on W. By rational convexity of Y— W
it is easy to see (as we did in the proof of Theorem (8.3) for dimension 2)
that there exist a finite number of polynomials g^, . . . , g p such that
(zi, . . . ,ZN, gi, g2» • • • ^ g p ) defines a proper embedding when restricted to
each Z,— W, 1 ^i^w. Recall that n is the coordinate projection map of
C^"^ onto the first N components. Then, the function z^+1=^1 °it on
V vanishes precisely on n~l(Z)•=>W\ However, for Ki^w,
n ~1 (Z, - W) is a closed algebraic curve on V so that TC ~ l (Z,) H ̂ / == 9. It
follows that at each zeW\ there is an open neighborhood I/' such that
U' 0 iV' is defined by Zjy+i. This gives Theorem (9.1) for dimension 2.

Proof for arbitrary dimensions. — In arbitrary dimensions n we need an
inductive argument in order to embed Z,— W properly for Ki^w, where
Z{ has the same meaning as above. We show now by induction that (^)j^
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there exists a k-dimensional algebraic subvariety V^ of V, a finite number
of rational functions (A^i, ...,*».<») ^ch arc regular on Y-W, such
that (A^i, . . .,fcj^) defines an embedding of Y-W which is a proper

embedding when restricted to V^—W. The statement (^), gives
Theorem (9.1).

Clearly, by adjoining the coordinate functions (z^ . . ., z^), it is sufficient
to find (hi, . . ., h^ such that the restriction to V^ is proper.

We define V^ inductively in descending dimensions as follows. F, is
defined to be y. ^-i== U«K»Z(» where Z< have the same meaning as
in dimension 2, i. e., for some polynomial g^ vanishing on W^ V^^ is the
union of those irreducible components of its zero set on Y which do not
lie on W. Suppose F^+i is defined. Let g^^ be a polynomial vanishing
on W such that g^^ is not identically zero on any irreducible branch of
^k-n. Then, V^ is defined to be the union of those irreducible branches
of the zero set of g^^ which do not lie on W.

The arguments in case of dimension two clearly gives (*)i. Suppose
(^)k is true. Let Y^ be the closure of the graph of (h^ i,. . .,Ak.^) on
V- W and W^ be the part of Y^ sitting above W. Let ̂ : Y^ -^ Y be the
natural coordinate projection. Then nj^1 (V^) 0^=0 because
(*k. i. . . . .^) is proper on V^ On Kj^1 (^k+i), w^1 (F^i) n W^ can be
locally defined by the polynomial ^-k0^- Then, the embedding argu-
ment in case of dimension 2 using the theorem of Serre immediately yields
(^)k+1. This completes the proof of Theorem (8.1) and hence the proof
pf the Main Theorem.

In case of dimension 2, a theorem of RAMANUJAM [19] in algebraic
geometry says that a quasi-projective surface homeomorphic to R4 is
actually biregular to C2. By the theorem of GROMOLL-MEYER and others
stated in the introduction, a complete m-dimensional Riemannian manifold
of positive sectional curvature is diffeomorphic to R". Combined with
the above theorem of Ramanujam, we obtain the corollary to the Main
Theorem for non-compact Kahler surfaces of positive sectional curvature.
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