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Abstract

Future applications for personal robots motivate research into devel-

oping robots that are intelligent in their interactions with people. To-

ward this goal, in this paper we present an integrated socio-cognitive

architecture to endow an anthropomorphic robot with the ability to

infer mental states such as beliefs, intents, and desires from the ob-

servable behavior of its human partner. The design of our architecture

is informed by recent findings from neuroscience and embodies cogni-

tion that reveals how living systems leverage their physical and cog-

nitive embodiment through simulation-theoretic mechanisms to infer

the mental states of others. We assess the robot’s mindreading skills

on a suite of benchmark tasks where the robot interacts with a human

partner in a cooperative scenario and a learning scenario. In addi-

tion, we have conducted human subjects experiments using the same

task scenarios to assess human performance on these tasks and to

compare the robot’s performance with that of people. In the process,

our human subject studies also reveal some interesting insights into

human behavior.

KEY WORDS—Human-Robot interaction, social robot, cog-

nitive architecture, social cognition, human-robot teamwork,

learning from demonstration, perspective taking, mental mod-

els.

1. Introduction

The promise of personal robots motivates new applications for

robotic technologies that interact with people to help realize
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human goals at home, at work, in hospitals, in schools, and

beyond (see Tapus et al. (2007) for a review). In particular,

whereas much of the research into robotics has emphasized de-

veloping systems that are intelligent in their interactions with

inanimate objects and physical environments, social robotics

focuses on developing systems that are intelligent in their in-

teractions with people in human environments.

In psychology, Theory of mind (ToM)—also called Min-

dreading—is the ability to attribute mental states (e.g. beliefs,

intents, desires, feelings, knowledge, etc.) to oneself and to

others, and to understand that these mental states can be the

cause of and thus can be used to explain and predict the behav-

ior of others (Premack and Woodruff 1978). In practice, this

competence enables people to coordinate minds and bodies to

achieve skillful social behavior across numerous domains and

contexts, including collaborative (or adversarial) teamwork,

conversation, learning from others, and more.

Similarly, personal robots need an analogous competence to

be able to skillfully think about, relate to, and coordinate their

behavior with humans over a wide range of real-time, real-

world social scenarios. Toward this long-term goal, this paper

presents an integrated socio-cognitive architecture to endow

social robots with mindreading skills.

1.1. A Simulation-theoretic Approach to Mindreading

The design of our socio-cognitive architecture is inspired by

recent findings from neuroscience (e.g. Gallese and Goldman

(1998)), embodied cognition (e.g. Barsalou et al. (2003)), and

developmental psychology (e.g. Meltzoff and Decety (2003))

that reveal how living systems leverage their physical and cog-

nitive embodiment through simulation-theoretic mechanisms

to infer the mental states of others. Specifically, simulation

theory holds that certain parts of the brain have a dual use:

they are used to not only generate our own behavior and men-

tal states, but also to predict and infer the same in others. To
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Fig. 1. Leonardo, operating a remote control panel with a slider, a button and a switch used in our cooperative behavior experi-

ment. The robot can track objects and people tagged with reflective markers. The simulated Leonardo can perform more dexterous

tasks than the physical robot, such as inserting pegs into blocks used in our social learning experiments. People demonstrate the

task to be learned using a computer mouse to move objects in the virtual world.

understand another person’s mental process, we use our own

similar cognitive processes and body structure to simulate the

mental states of the other person Gordon 1986� Davies and

Stone 1995, in effect, taking the mental perspective of another.

There is growing scientific evidence that early ToM abil-

ities and critical precursors develop from more embodied

processes (e.g. mirror neurons (Rizzolatti et al. 1996)) and

other embodied cognition mechanisms such as perspective-

taking and simulation (e.g. Barsalou et al. (2003)) rather than

only by symbolic processes (e.g. language). Our benchmark

tasks allow us to investigate computational models of these

embodied processes where we explicitly consider tasks that do

not require language and only depend on human non-verbal

behavior.

We have developed a benchmark suite of tasks that are in-

spired by those used in psychology to probe children’s devel-

oping ToM competence. In particular, one of the most impor-

tant milestones in ToM development is gaining the ability to

attribute false belief : to recognize that others can have be-

liefs about the world that are wrong or different from one’s

own. The canonical test for this developmental milestone is the

false-belief task (originally formulated by Wimmer and Perner

(1983)). Inspired by these methods, several of the robot’s as-

sessment tasks are adapted from false-belief tasks to probe the

robot’s ability to ascribe knowledge to an agent based on per-

ceptual experience, attribute false beliefs, take visual perspec-

tive, and to infer intents and desires to anticipate an agent’s

actions. These abilities are exercised in the context of two dif-

ferent domains: assisting a human to attain what they desire

and learning from ambiguous human demonstrations. Finally,

we have run a parallel set of human subject studies on the

same benchmark suite. This allows us to assess human per-

formance on these tasks, and to compare the robot’s perfor-

mance directly with human data. Through this cross-domain

and “cross-species” analysis, our objective is to advance the

state-of-the-art in endowing social robots with a flexible reper-

toire of mindreading skills that can be skillfully demonstrated

in diverse tasks involving human partners, as well as to learn

about human performance.

We assess the performance of our integrated system on

Leonardo, a 65-degree-of-freedom anthropomorphic robot

(and its simulated counterpart) that interacts in real-time with

a human partner (see Figure 1). The same socio-cognitive ar-

chitecture generates the behavior of the physical and simulated

robots.

Similarly, our socio-cognitive architecture has been de-

signed to interpret human behavior and the underlying men-

tal states in real-time by simulating them within the robot’s

own generative mechanisms on the perceptual, motor, belief,

and intentional levels. This grounds and constrains the ro-

bot’s information about the human in terms of the robot’s own

physical embodiment and socio-cognitive architecture, both

from the bottom-up through low-level perceptual and motor

processes, as well as from the top-down from its intention

and deliberation processes. In this way, the robot leverages its

own physicality and architectural organization as important re-

sources to make and ground its mental inferences. This enables

the robot to make inferences during real-time scenarios about

people’s likely focus of attention and beliefs to better under-

stand the intention behind their observable behavior. Impor-

tantly, these mindreading skills can be applied across different

domains and tasks.

2. Related Work

Research at the intersection of human–robot interaction and

social robotics strives to endow robots with a variety of human-

compatible social skills and socio-cognitive competencies.

Several of these computationally modeled skills and abilities

have been identified as important precursors to the develop-

ment of ToM in humans. For instance, some of the earliest
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work exploring ToM ideas in robots concerned distinguish-

ing animate from inanimate movement (Scassellati 2001).

The ability to share (and learn how to share) attention has

been identified as a critical precursor to ToM (Baron-Cohen

1991) and has been modeled on several robots (e.g. Scassellati

(2002), Nagai et al. (2002), Fasel et al. (2002), Movellan and

Watson (2002), and Deak et al. (2001)). Imitation has also been

identified as a precursor Meltzoff (2005) and has been widely

explored in robots as a method for learning motor skills and

recognizing human actions (e.g. Schaal (1997), Billard et al.

(2004), Breazeal et al. (2005), Gray et al. (2005), Demiris and

Hayes (2002), Johnson and Demiris (2005), and Jenkins and

Matarić (2002)).

Finally, perspective taking abilities have been demonstrated

on several notable robotic systems that can take the visual per-

spective of another agent (often a human) to perform tasks

such as playing “hide and seek” (Trafton et al. 2006), disam-

biguate among multiple possible referents within a cluttered

physical space (Trafton et al. 2005), or provide instrumental

or informational support during a human–robot teamwork task

once beliefs diverge owing to visual occlusions in a workspace

(Gray et al. 2005� Breazeal et al. 2006). An architectural chal-

lenge for social robotics is to integrate these diverse skills and

abilities (along with other social skills) in a principled manner

that can be applied across diverse social domains.

To date, related computational work in artificial intelli-

gence has emphasized top-down symbol-based models, such

as belief,desire, intentions (BDI) systems (Rao and Murray

1994), adaptive control of thought–rational (ACT-R) models

(Emond and Ferres 2001), state, operator and result (SOAR)

models (Laird 2001), collaborative discourse systems (Cohen

et al. 1990� Pollack 1990� Grosz et al. 1999), and plan recog-

nition (for a review, see Carberry (2001)). In robotics, plan

recognition has been approached from the bottom-up by ap-

plying probabilistic frameworks on perceptual streams to learn

and recognize plans (e.g. Ronnie et al. (2005), Needham et al.

(2005), and Intille and Bobick (1999)).

Pollack (1990) identifies several critical shortcomings of

many of these plan recognition techniques. First, with respect

to top-down techniques, it is problematic to make the common

assumption that the library of recipes (i.e. task knowledge)

is mutually known to the actor and observing agent. Further,

with respect to both top-down and bottom-up techniques, it

is too limiting for the recognizing agent to only consider the

actor’s plan as a recipe for action while ignoring the actor’s

mental attitudes that resulted in having that plan. As a result,

such systems are incapable of inferring and reasoning about

misconceptions (i.e. false beliefs) or invalid plans of the ac-

tor (Pollack 1990) that frequently arise in complex, dynamic

scenarios where each participant only has partial knowledge

of the overall situation. (Pollack 1990) addresses this by ar-

guing for an equally important conceptualization of plans as

“complex mental attitudes” comprising a principled organiza-

tion of mental states such as beliefs and intentions that underly

the actor’s recipe for action. Pollack and successors have ap-

plied these insights to develop sophisticated collaborative dia-

log systems (see Carberry (2001)). A challenge for robotics is

to adapt such insights to non-verbal collaborative behavior.

3. Cognitive Architecture Overview

In light of these prior works, we argue that embodied processes

for mindreading and their computational counterparts are im-

portant to investigate, understand, and assess in their own right.

Further, embodied processes have particular relevance to min-

dreading abilities in robots given the physical coupling of ro-

bots to the real world.

Our architecture incorporates simulation-theoretic mecha-

nisms as a foundational and organizational principle to sup-

port mindreading skills and abilities. See Figure 2 for a system

overview diagram. The two concentric bands denote two dif-

ferent modes of operation. In generation mode (the light band)

the robot constructs its own mental states to behave intelli-

gently in the world. In simulation mode (the dark band) the

robot constructs and represents the mental states of its human

collaborator based on observing their behavior and taking their

mental perspective. By doing so, the mental states of the hu-

man and robot are represented in the same terms so that they

can be readily compared and related to one another.

For instance, within the perception system, the robot per-

forms a transformation to estimate what the human partner can

see from their vantage point. Within the motor system, mirror-

neuron inspired mechanisms are used to map and represent

perceived body positions of the human into the robot’s own

joint space to conduct action recognition. Within the belief sys-

tem, belief-construction is used in conjunction with adopting

the visual perspective of the human partner in order to estimate

the beliefs the human is likely to hold given what they can

visually observe. Finally, within the intention system where

goal-directed behaviors are generated, schemas relate precon-

ditions and actions with desired outcomes and are organized

to represent hierarchical tasks. Within this system, motor in-

formation is used along with perceptual and other contextual

clues (i.e. task knowledge) to infer the human’s goals and how

they might be trying to achieve them (i.e. plan recognition).

In summary, bottom-up processes actively construct likely

action, perception, and belief states through an embodied

process of simulation. In parallel, high-level task knowledge

combined with simulation can be used to deduce likely desires,

goals, plans, and beliefs from the top down. These sources

of information are integrated to represent the human’s mental

states.

Our technical discussion proceeds as follows. In Sections 4

and 5 we present our intention system and social learning

mechanisms that are the core technical contributions of this

paper. These highly integrative systems are presented in sig-

nificant detail intended to support reimplementation. Before
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Fig. 2. System architecture overview. See the text for further details.

diving into these systems, we introduce some of the technical

details of the perception system, belief system, and motor sys-

tem components of our architecture, focusing on the technical

issues necessary to understand the operation of the intention

system and social learning mechanisms. While these subsys-

tems are presented with lighter detail, references are provided

to our prior work and to the related work of others for the in-

terested reader.

3.1. The Perception and Belief Systems

In order to convey how the robot interprets the environment

from the human’s perspective, we must first describe how the

robot understands the world from its own perspective. This

section presents a technical description of two important com-

ponents of our cognitive architecture: the perception system

and the belief system. The perception system is responsible for

extracting perceptual features from raw sensory information,

while the belief system is responsible for integrating this infor-

mation into discrete object representations. The belief system

represents our approach to sensor fusion, object tracking and

persistence, and short-term memory.

3.1.1. Perception Modeling

On every time step, the robot receives a set of sensory observa-

tions O � �o1� o2� � � � � oN � from its various sensory processes.

As an example, imagine that the robot receives information

about buttons and their locations from an eye-mounted cam-

era, and information about the button indicator lights from an

overhead camera. On a particular time step, the robot might re-

ceive the observations O � �(red button at position �10� 0� 0�),

(green button at �0� 0� 0�), (blue button at ��10� 0� 0�), (light

at �10� 0� 0�), (light at ��10� 0� 0���. Information is extracted

from these observations by the perception system. The percep-

tion system consists of a set of percepts P � �p1� p2� � � � � pK �,

where each p � P is a classification function defined such that

p�o� � �m� c� d�� (1)

where m� c � [0� 1] are match and confidence values and d is

an optional derived feature value. For each observation oi � O,

the perception system produces a percept snapshot

si � ��p�m� c� d� � p � P� p�oi �

� �m� c� d��m 	 c � k�� (2)

where k � [0� 1] is a threshold value, typically 0.5. Returning

to our example, the robot might have four percepts relevant to

the buttons and their states: a location percept which extracts

the position information contained in the observations, a color

percept, a button shape recognition percept, and a button light

recognition percept. The perception system would produce

five percept snapshots corresponding to the five sensory ob-

servations, containing entries for relevant matching percepts.
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3.1.2. Belief Modeling

These snapshots are then clustered into discrete object repre-

sentations called beliefs by the belief system. This clustering

is typically based on the spatial relationships between the var-

ious observations, in conjunction with other metrics of simi-

larity. The belief system maintains a set of beliefs B, where

each belief b � B is a set mapping percepts to history func-

tions: b � ��px � hx�� �py� hy�� � � ��. For each �p� h� � b, h is a

history function defined such that

h�t� � �m
t � c


t � d


t � (3)

represents the “remembered” evaluation for percept p at time

t . History functions may be lossless, but they are often imple-

mented using compression schemes such as low-pass filtering

or logarithmic timescale memory structures.

A belief system is fully described by the tuple

�B�G�M� d� q� �� c�, where:

� B is the current set of beliefs�

� G is a generator function map, G : P � �, where

each g � � is a history generator function where

g�m� c� d� � h is a history function as above�

� M is the belief merge function, where M�b1� b2� � b


represents the “merge” of the history information con-

tained within b1 and b2�

� d � d1� d2� � � � � dL is a vector of belief distance func-

tions, di : B  B � ��

� q � q1� q2� � � � � qL is a vector of indicator functions

where each element qi denotes the applicability of di ,

qi : B  B � �0� 1��

� � � �1� �2� � � � � �L is a vector of weights, �i � ��

and

� c � c1� c2� � � � � cJ is a vector of culling functions, c j :

B � �0� 1�.

Using the above, we define the belief distance function, D,

and the belief culling function, C :

D�b1� b2� �

L�

i�1

�i qi �b1� b2�di �b1� b2�� (4)

C�b� �

J�

j�1

c j �b�� (5)

The belief system manages three key processes: creating

new beliefs from incoming percept snapshots, merging these

new beliefs into existing beliefs, and culling stale beliefs. For

the first of these processes, we define the function N , which

creates a new belief bi from a percept snapshot si :

bi � N�si � � ��p� h� � �p�m� c� d� � si �

g � G�p�� h � g�m� c� d��� (6)

For the second process, the belief system merges new be-

liefs into existing beliefs by clustering proximal beliefs, as-

sumed to represent different observations of the same object.

This is accomplished via bottom-up, agglomerative clustering

as follows. For a set of beliefs B:

1: while �bx � by � B such that D�bx � by� � thresh do

2: �nd b1� b2 � B such that D�b1� b2� is minimal

3: B � B � �M�b1� b2�� � �b1� b2�

We label this process merge�B�. Finally, the belief system

culls stale beliefs by removing all beliefs from the current set

for which C�b� � 1. In summary, then, a complete belief sys-

tem update cycle proceeds as follows:

1: begin with current belief set B

2: receive percept snapshot set S from the perception system

3: create incoming belief set BI � �N�si � � si � S�

4: merge: B � merge�B � BI �

5: cull: B � B � �b � b � B�C�b� � 1�

Returning again to the example, the belief system might

specify a number of relevant distance metrics, including a mea-

sure of Euclidean spatial distance along with a number of met-

rics based on symbolic feature similarity. For example, a sym-

bolic metric might judge observations that are hand-shaped as

distant from observations that are button-shaped, thus sepa-

rating these observations into distinct beliefs even if they are

collocated. For the example, the merge process would produce

three beliefs from the original five observations: a red button

in the ON state, a green button in the OFF state, and a blue

button in the ON state.

The belief system framework supports the implementation

of a wide range of object tracking methods, including ad-

vanced tracking techniques such as Kalman filters (Kalman

1960) and particle filters (Carpenter et al. 1999� Arulampalam

et al. 2002). The ability to specify multiple distance metrics

allows sophisticated, general-purpose tracking methods such

as these to operate side-by-side with hand-crafted rules which

encode prior domain knowledge about object categories, dy-

namics, and persistence.

3.1.3. Belief Inference and Visual Perspective Simulation

When collaborating on a shared task, it is important for all

parties involved to have a consistent representation of the task

context. However, in complex and dynamic environments, it is
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Fig. 3. Perspective transform of sensor data for belief modeling. (a) Data from sensors is used to update the robot’s own model

of the world (shown in (b)) via the normal belief system update. (b) The real world scenario and corresponding model: the robot

(shown as a dark gray hexagon) can see the human (shown as a light gray circle) and two objects. The human can only see

object O1. Coordinate system orientation is shown next to the human and the robot where the origin is centered on each agent.

(c) The human’s position and orientation from this model is used to transform incoming sensor data to data that is relative to the

human’s coordinate system. (d) The result of the transformed data. (e) Next, objects that are out of sight of the human (estimated

by an “attentional cone”) are filtered out, and the data is transformed to a human centric format. (f) This data is now ready to be

presented to the belief system that models the human’s beliefs.

possible for one collaborator’s beliefs about the context sur-

rounding the activity to diverge from those of other collabo-

rators. For example, a visual occlusion could partially block

one person’s viewpoint of a shared workspace but not that of

the other, or an event could occur that one person witnesses,

but the other does not. There are many situations where the

knowledge that two or more people have of a shared scenario

can differ over time. The ability for an agent to estimate what

others do and do not know based on their perceptual experi-

ence is at the crux of many false belief tasks. In this section

we describe our method of modeling the knowledge of nearby

humans based on their visual experience by taking their visual

perspective.

As described in the previous section, belief maintenance

consists of incorporating new sensor data into existing knowl-

edge of the world. The robot’s sensors are all in its own ref-

erence frame, so objects in the world are perceived relative

to the robot’s position and orientation. In order to model the

beliefs of the human, the robot reuses the same mechanisms

used for its own belief modeling, but first transforms and filters

the incoming data stream (see Figure 3). In this way, the be-

liefs modeled for the human are handled with the same track-

ing and maintenance systems that the robot uses for its own

world model� however, the data is manipulated to simulate

first-person experience from the perspective of the human be-

ing modeled.

The robot can also filter out incoming data that it believes is

not perceivable to the human, thereby preventing that new data

from updating the model of the human’s beliefs. If the inputs

to the robot’s perceptual-belief pipeline are the sensory obser-

vations O � �o1� o2� � � � � oN �, then the inputs to the secondary

pipeline that models the human’s beliefs are O 
, where

O 
 � �P�o
� � o
 � O� V �o
� � 1�� (7)

where

V �x� �

�
�

�

1 if x is visible to human

0 otherwise
(8)

and

P : �robot local observations�

� �person local observations�� (9)

Visibility is determined by a cone calculated from the hu-

man’s position and orientation. The robot also filters out ob-

jects whose view is blocked by occlusions (for any occlusions

that it can detect).

Maintaining this parallel set of beliefs is different from sim-

ply adding “is-visible-to-human” metadata to the robot’s orig-

inal beliefs because it reuses the entire architecture which has

mechanisms for object permanence, history of properties, etc.

This allows for a more sophisticated model of the human’s

beliefs. For instance, Figure 4 shows an example where this

approach keeps track of the human’s false beliefs about ob-

jects that have changed state while out of the human’s view.

This method has the advantage of keeping the model of the

human’s beliefs in the same format as the robot’s own, allow-

ing both for direct comparison between the two and operating

on these beliefs with the same mechanisms that operate on the
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Fig. 4. Timeline showing belief modeling. (a) Initially the robot’s model of the human’s beliefs agrees with the robot’s model

of beliefs. (b), (c) When snacks are swapped and boxes are closed, the human is gone and human’s model is not updated.

(d) The human returns and the model is updated to indicate that the human knows that boxes are closed, however human’s model

continues to indicate initial (now false) snack positions.

robot’s own. This is important for establishing and maintain-

ing mutual beliefs in time-varying situations where beliefs of

individuals can diverge over time.

3.2. The Motor System

An important element of the robot’s ability to predict and help

with goals of people is to be able to make sense of their phys-

ical actions. The approach we take is to reuse the physical ac-

tions the robot can perform to recognize the actions observed

in the human. We do this in a two-stage process. First we trans-

form observed human movements into the same movement

space as the robot. Once the observations are in a similar rep-

resentation to the robot’s own motor generation capabilities,

we can match the robot-space motions against its own motion

repertoire. This dual use of the same motor processes for both

production and recognition is inspired by mirror neurons. This

gives us a starting point towards understanding the overall ac-

tivity being performed by the human which also depends on

the surrounding context (we discuss this in Section 4).

3.2.1. Body Mapping

In order to compare observed human motions to the robot’s

motion repertoire, it is important for the human motions to be

in the same representation as the robot’s own motions. This can

be difficult, because human morphology may not be the same

as the robot’s. Also, whatever sensing technology is used to

provide data of human movements is unlikely to provide data

Fig. 5. Mapping perceived human joints onto the robot’s skele-

ton to allow for a comparison between joint configurations of

the robot and the human.

in a way that can be related directly to the robot’s representa-

tion of its own motions.

We use a mapping technique where the relation between

sensed human body positions and the robot’s own body posi-

tions is learned through an imitative interaction (Breazeal et

al. 2005� Gray et al. 2005). This technique allows the joint an-

gle configuration of the human to be mapped efficiently to the

geometry of the robot as long as the human has a consistent

sense of how to mimic the poses of the robot and is willing

to go through the quick, imitation-inspired process to help the

robot learn this mapping. Figure 5 presents a schematic of this

process.

We have used this technique to learn facial imitation based

on facial features tracked using the AxiomFFT system. In this
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case, the human imitates facial expressions of the robot until

the robot has enough samples to train a neural network that

maps between perceived two-dimensional locations of human

facial features in image coordinates to the robot’s facial joint

space (Breazeal et al. 2005). We have also used it to learn a

mapping from the arms and torso of an observed human to the

corresponding body regions of the robot using a motion cap-

ture suit (Gray et al. 2005), and later using an optical motion

tracking system (Brooks et al. 2005) as the input observations

of the human pose.

3.2.2. Matching Observed Actions to the Motor Repertoire

Once the perceived data is in the joint space of the robot, the

motor system represents these observed movement trajecto-

ries in the same way that it represents its own movements.

The robot’s motor repertoire is represented as a directed graph

of connected poses, called the pose graph. The nodes repre-

sent specific body poses, and the arcs represent allowed tran-

sitions between them. Families of poses can be represented as

a sub-graph of actions (e.g. different kinds of reaching, point-

ing, waving, etc.) and links between sub-graphs represent al-

lowable transitions between families of actions. In addition,

weighted blends of either discrete poses or full trajectories can

be generated to enlarge the repertoire of possible movements

(Downie 2000). For instance, the robot may have six explicit

reaching movements represented in its pose graph (primitives),

but can generate a new reaching movement using a weighted

blend of reaching primitives to span its entire workspace. The

goal of this example-based technique is to satisfy the dual

goals of having the robot produce lifelike, expressive motion

characteristic of human-made animations while still having the

flexibility to behave autonomously. In some cases if we need

exact positioning (such as flipping a switch) we start with the

blended solution and augment it slightly using inverse kine-

matics to achieve the end-effector position while attempting to

preserve what we can of the animated motion.

This structure is quite a useful way to represent the motions

of the robot. In practice, we overlay multiple motor systems

for different body regions that can run simultaneously. This

allows the robot to perform multiple motions simultaneously,

such as pointing at an object, directing its gaze towards it, nod-

ding, and expressing an emotional state such as interest. Indi-

vidual trajectories specify the joints they require which allows

the system to determine which motions are compatible with

others (can be run simultaneously).

Once the observed movements are represented within the

pose graph, strung together into a trajectory through this space,

the next challenge is to determine whether this trajectory is

similar to (or can be generated by) any that exist within the ro-

bot’s motor repertoire. Many interesting techniques exist and

others are being developed to determine the match between

trajectories based on the relative importance of spacial er-

rors, timing errors, etc. (e.g. Jenkins and Matarić (2002) and

Demiris and Hayes (2002)). In the interaction described here

we were able to use a simple heuristic to provide a goodness

of fit measure: a voting system that chooses trajectories based

on a running best-overall-matching-pose measure. However, in

interactions with more motions that need to be classified, we

have also explored the use of morphable models to provide a

more general solution (Brooks et al. 2005).

Representing observed human’s movements as one of the

robot’s own movements is useful for further inference using

the intention system. Rather than trying to recognize human

behavior purely from a collection of joint angle trajectories, the

intention system integrates this motor information with other

context provided by tasks schemas (that link environmental

conditions with actions to achieve expected outcomes). This

is described in the following section.

4. The Intention System

The intention system is responsible for generating the goal-

achieving behavior of the robot. Our representation for goal-

directed action enables the robot to plan a set of actions under

particular circumstances to achieve a desired result. Further-

more, the robot can also introspect over these representations

to determine the person’s desires, plans, and goals based on

what the robot’s would be if it were performing the same ac-

tion in the human’s situation. A core feature of this self-as-

simulator architecture is that the robot can employ multiple

world and agent models to infer introspective states, which it

can then apply across multiple task domains. For instance, the

robot can use its model of a person’s beliefs to help interpret

and predict their behavior, and then use its own model of the

world to decide how it can best help that person with their

goals.

The following sections describe our core task representa-

tion and the processes that operate on this representation to

generate behavior and to produce intentional inferences. Fi-

nally, in Section 4.4, we work through a detailed example of

how these processes function, providing additional technical

details of our fielded system.

4.1. Task Representation using Schemas

Within the deliberative system of the robot, the atomic-level

representation of a goal-directed behavior is a schema that as-

sociates its necessary perceptual preconditions with a specific

action (optionally performed on a particular object, or with

other parameters) to achieve an expected outcome: its goal.

As such, it resembles STRIPS operators within classic plan-

ning literature. Schemas can be organized sequentially and/or

hierarchically to create larger structures to represent tasks

and execute them. When chaining sequential schemas, the
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Fig. 6. Example of a task representation. In the simplified task representation to the left, the agent intends to obtain cookies.

There are two possible behaviors to obtain cookies: open a locked box that contains cookies, or operate a dispenser to release

cookies. In the more detailed figure to the right, the highlighted schema acts as the precondition for the upper schema, while

the lowest schema is the precondition for the highlighted schema. In order for the schema to activate a necessary precondition

(or to evaluate whether it is necessary using that precondition schema’s goal condition) it may need to compute the necessary

parameters relevant for that schema based on its own parameters. The downward mapping (solid line) in generation mode is

necessary to perform and evaluate precondition schemas based on the parameters of an upper schema. The upward mapping

for simulation mode (dashed line) is used to populate later schemas with potential parameters based on known precondition

parameters (used during an attempt to predict an ultimate goal for an observed action). Finally the inter-context mapping module

is necessary when the robot is trying to compare observed goals with its own world knowledge in order to formulate a helpful

plan. It must have a metric to determine how parameters that a human is using (that often relate to their possibly differing beliefs

about the world) can be expressed in terms of the robot’s own world knowledge.

goal of one schema becomes the precondition of the subse-

quent schema. Compound tasks are specified as a hierarchy of

schemas, where the expected result of multiple schemas are

the inputs (i.e. listed in the preconditions) of the subsequent

schema. To achieve some desired task goal, only the relevant

schema need be activated and all necessary preconditions will

be fulfilled. Figure 6 shows an example schema structure.

Each schema has a number of individual components. It

has a motor action, which causes the robot to physically per-

form some sort of movement trajectory by activating the cor-

responding path within the pose graph (described in Sec-

tion 3.2.2). It also has an evaluative mechanism to determine

the success of the action.

Both the motor action and the evaluative mechanism may

depend on additional parameters (for instance, specifying one

or more target objects in the world). These parameters may be

provided externally from a higher-level deliberative processes

if the schema is activated directly to produce the robot’s own

behavior (see Section 4.2). If the schema is activated in sim-

ulation mode in response to an observed action, then the pa-

rameters must be discovered based on observation (see Sec-

tion 4.3). If the schema is activated as a precondition for a se-

quence of schemas, however, the associated parameters must

be determined automatically based on the parameters of the

downstream schema.

4.2. Generating Goal-achieving Behavior

In behavior generation mode, schema structures can be tra-

versed top down to achieve goals and automatically satisfy

preconditions in the process. In this process, the robot acti-

vates the top-level schema which in turn may need to activate

other supporting schemas before it can execute fully. When

schemas are activated to generate the robot’s own behavior,

most schemas are parameterized by a set of arguments that
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adapts how the motor action operates to suit the situation at

hand. For instance, the style of the action may be adjusted to

express the robot’s affective state, or a particular object could

be set as the target for a given action. When this first schema is

activated, the parameters (or target) for this schema is based on

its goal. It is then up to the schema hierarchy to automatically

generate schema parameters for any other required schemas

based on the initial parameters provided to this first top-level

schema.

At every juncture between schemas in a hierarchy, there ex-

ists a parameter mapping module. This module is designed to

generate the necessary parameters for precondition schemas

based on the existing parameters for the parent schema. For ex-

ample, in Figure 6 the robot’s goal is to obtain cookies. Grasp-

ing cookies requires an unobstructed path. In this case, how-

ever, cookies are believed to be in a box or in a dispenser that

the robot can perceive. The unobstructed schema is activated

to reveal a clear path to cookies. One strategy is to open the

target box, box A. As it turns out, box A is locked. Accord-

ingly, the robot should attempt the unlocked schema to unlock

the correct lock, namely lock A.

Note that for any given situation, many schemas within the

robot’s task repertoire will not be relevant. In these cases, the

parameter mapping module will not be able to assign para-

meters to instantiate the corresponding schema. This indicates

that the current context is not appropriate for that precondi-

tion schema to be performed. Hence, this serves an important

filtering process whereby the robot only entertains executing

schemas that are relevant and performable.

The system currently uses this filtering process to select one

goal schema that describes the human’s behavior. However, for

future tasks in more complex environments, it will be impor-

tant to revise this system to maintain multiple, probabilistic

hypotheses. Another important future addition to the system

is in the area of probabilistic actions. The robot’s goals are

specified relative to perceived world state which gives it some

persistence in the face of failed actions, however a more ex-

plicit modeling would be required to use that information for

planning and replanning in the face of motor failure and other

uncertain outcomes.

4.3. Inferring Intent from Observed Behavior

In simulation mode, the robot tries to infer the intention of a

person’s observed course of action. To do so, the robot tra-

verses schemas in the reverse direction. As schemas are tra-

versed bottom-up, each schema’s parameter mapping module

is applied to the robot’s model of the human’s beliefs: map-

ping parameters relevant to a precondition upwards to parame-

ters necessary for the next higher-level schema. In general, the

reverse mapping may be ambiguous (for instance, if someone

is opening a box containing multiple items, which one they

might want to grab), and it may also be arbitrarily complex.

For this reason, the architecture allows for each action to spec-

ify its own mapping function which handles both forward and

reverse mapping. The actions used in this demonstration em-

ploy a mapping function based on object types and spatial re-

lationships, which can operate similarly in either forward or

reverse operation.

For instance, if schema S1 (operating in relation to belief

b1) is a precondition to schema S2 (operating in relation to b2),

then if either b1 or b2 is known the other can be determined

according to the following:

b1�isT ypeFor S1 � b2�isT ypeFor S2 � r�b1� b2�� b1� b2

� Beliefs�

where r is the relation that must hold between the beliefs.

For the schemas described here, r is a position-based rela-

tionship. For example, in the case of a lock and a box:

r�b1� b2� � �b1�location � b2�haspLocation� � 20 cm�

In simulation mode, some schema parameters must be de-

tected through direct observation, such as the target object of

an observed action. In this case, a parameter generation mod-

ule (associated with each schema) computes the specific argu-

ments necessary to simulate an observed schema in the manner

it is being performed by the human. For instance, a person’s

arm trajectory for a reaching movement has different end pur-

poses depending on what is being reached for: to grasp cook-

ies, to open a lid, to unlock a lock, etc. In this case, the para-

meter generation module for the reaching schema produces its

values based on the robot’s models of the beliefs of the person

as estimated by the belief system, namely, an object near the

person’s hand that they can see:

target � b iff �h� b � B

�
b�isCorrectT ype � h�isO�nHand

��b�posi tion � h�position� � threshold Distance
�

where B is the subject’s Beliefs.

If there exists such a b, then the parameter generation mod-

ule has determined the relevant target b, and the robot con-

cludes that the attached schema may be relevant to the ob-

served action.

Analogous to the filtering role of the parameter mapping

module described previously, these parameter generation mod-

ules also serve an important filtering function that narrows the

relevant candidate schemas that may describe the human’s ob-

served behavior. If the parameter generation module is unable

to populate its schema with the appropriate arguments for the

current situation, the robot concludes that this schema does not

describe the human’s current behavior.
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To summarize, the intention system runs in simulation

mode to enable the robot to observe the human and infer their

goal. This is achieved by first determining which schema in the

robot’s own repertoire matches the human’s activity by finding

a schema whose motor action matches the observed action of

the human and whose parameter generation module indicates

that it is a relevant schema in the human’s current context.

From there, the robot can traverse upwards in the schema hi-

erarchy to try to determine the ultimate goal of the observed

behavior. At each step, the robot must attempt to predict the

relevant parameters of the higher (temporally later) schema

based on the parameters of the lower (preceding) schema using

the connecting parameter mapping module. Once it comes to

a point where there are no more unique, valid, higher schemas

(this can happen because the schema structure has no further

schemas, because a parameter mapping module cannot map

parameters any further, or because there is more than one valid

schema or parameter for the next step), then it has found the

farthest goal it can predict into the future without being am-

biguous (see Algorithm 1).

4.4. An Example: Goal Assistance

Using all of the parts described above, the robot can infer what

the human is intending to do even if their beliefs about the

situation are false or incomplete and their resulting course of

action will fail to accomplish their goal. How might a robot

help a person in this situation? We consider the case where the

robot has true beliefs about the situation at hand. The robot

can assist the human by first adopting the same goal and then

computing a course of action that resolves the errors the human

has encountered.

To adopt the human’s goal, the robot maps goal information

from the context of the human’s beliefs into its own set of be-

liefs. The most common mapping is simply to find a belief in

the human’s estimated context that preserves a set of properties

from the first belief.

Here a belief Bbs1 from one belief system maps to Bbs2 in

another based on the properties P if

�p � P� Bbs1’s p � T �Bbs2’s p�

T �p� �

�
�

�

perspective transform of p p has location data,

p p has no location data.

This goal can then be used to provide assistance. Consider

the case where the robot can use the same schema hierarchy

computed according to Section 4.3. Algorithm 2 summarizes

this process. For readability the algorithms shown here are

simplified to refer to only a single human, however the archi-

tecture supports multiple humans.

Figure 7 illustrates this process, following the example in

Figure 6, where the human wants a bag of cookies they believe

is contained in box A. However, the human’s beliefs are false

as the cookies were moved to box B while the human was not

looking. The robot saw this switch take place and therefore has

true beliefs of the situation. The robot uses this knowledge to

help the human obtain the object of their desire. This is the

general premise for our cooperative behavior experiments in

Section 6.

5. Social Learning Mechanisms

The previous section highlighted a cooperative behavior sce-

nario to illustrate the mechanisms within the intention system

for behavior generation and simulation for goal inference. In

this section we present the task and goal learning mechanisms
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Fig. 7. Example goal inference and helpful behavior. In this example, the human is trying to gain access to a bag of cookies which

they believe is locked in box A. The robot saw the cookies moved to box B without the human seeing this event, so the human

has false beliefs of the true location of the cookies. The schema hierarchy shown here describes two possible solutions that the

robot knows to produce a food item: either unlocking and opening the correct box, or dispensing a matching food item from a

dispenser that it can operate. Flow diagrams (a)–(d) represent the corresponding schema hierarchy that is evaluated in the context

of a particular set of beliefs (either the human’s or the robot’s) shown at the bottom. (a) The robot detects a “reach” motion and

the relevant context for the “unlock” segment (“own-hand-near-lock” from the human’s perspective). This corresponds to the

human reaching for the lock on box A. (b) The process traverses up the hierarchy, using a model of the human’s beliefs as input

to the parameter mapping functions to predict targets for the potential human actions that are likely to follow the current action.

In this example, the robot determines that the human’s desire is to obtain the cookies. (c) Once a final goal is calculated, the

process switches to the robot’s own belief context. The robot knows that chips are actually in box A and cookies are in box B.

(d) Again, the system uses parameter mapping to determine the targets of relevant actions necessary towards the goal, but this

time starting from the goal and working backwards using knowledge from the robot’s own beliefs. The robot can then choose an

action that helps the human attain his goal: either unlocking box B (the robot realizes the human is looking in the wrong box), or

dispensing a bag of chips from the robot’s dispenser. For instance, a principle of “least effort” can be applied to decide between

the two.

implemented in our cognitive architecture. We are particu-

larly concerned with social learning scenarios where a human

teaches a robot through face-to-face interaction. This social

context gives rise to interesting issues that do not occur when

learning in isolation. Specifically, mindreading skills play an

important role in enabling the robot to learn what the human

intends to teach.

For instance, when demonstrating a task to be learned, it

is important that the context surrounding the demonstration

is the same for the teacher as it is for the learner. However,

in complex and dynamic environments, it is possible for the

instructor’s beliefs about the context surrounding the demon-

stration to diverge from those of the learner. Consider the situ-

ation where a visual occlusion blocks the teacher’s viewpoint

of a region of a shared workspace but not that of the learner.

Consequently this leads to ambiguous demonstrations where

the teacher does not realize that the visual information of the

scene differs between them.

The ability for the learner to infer the beliefs of the teacher

allows the learner to build task models that capture the intent

behind the human’s demonstrations. To support this, perspec-

tive taking processes are interwoven into the learning mech-

anism to support social learning scenarios. We evaluate this

capability in Section 7 as part of our benchmark suite.

Note that our core interest is not on the particulars of the

underlying learning mechanism, any number of techniques

would suffice. Rather, our focus is how mindreading abilities

interface with the underlying learning mechanism to support

social learning scenarios.

5.1. Task and Goal Learning

We believe that flexible, goal-oriented, hierarchical task learn-

ing is imperative for learning in a collaborative setting from a

human partner, owing to the human’s propensity to communi-

cate in goal-oriented and intentional terms. Hence, we have a
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hierarchical, goal-oriented task representation, wherein a task

is represented by a set, S, of schema hypotheses: one primary

hypothesis and n others. A schema hypothesis has x executa-

bles, E (each either a primitive action a or another schema), a

goal, G, and a tally, c, of how many seen examples have been

consistent with this hypothesis.

Goals for actions and schemas are a set of y goal beliefs

about what must hold true in order to consider this schema or

action achieved. A goal belief represents a desired change dur-

ing the action or schema by grouping a belief’s percepts into

i criteria percepts (indicating features that hold constant over

the action or schema) and j expectation percepts (indicating

an expected feature change). This yields straightforward goal

evaluation during execution: for each goal belief, all objects

with the criteria features must match the expectation features.

Schema representation:

S � �[�E1 � � � Ex��G� c]P� [�E1 � � � Ex��G� c]1���n��

E � a�S�

G � �B1 � � � By��

B � pC1
� � � pCi
� pE1
� � � pE j
�

For the purpose of task learning, the robot can take a snap-

shot of the world (i.e. the state of the belief system) at time

t , Snp�t�, in order to later reason about world state changes.

Learning is mixed initiative such that the robot pays atten-

tion to both its own and its partner’s actions during a learn-

ing episode. When the learning process begins, the robot cre-

ates a new schema representation, S, and saves a belief snap-

shot Snp�t0�. From time t0 until the human indicates that the

task is finished, tend, if either the robot or the human com-

pletes an action, act , the robot makes an action representation,

a � [act�G], for S:

1: For action act at time tb given last action at ta
2: G � belief changes from Snp�ta� to Snp�tb�

3: append [act�G] to executables of S

4: ta � tb

At time tend, this same process works to infer the goal for the

schema, S, making the goal inference from the differences in

Snp�t0� and Snp�tend�. The goal inference mechanism notes

all changes that occurred over the task� however, there may

still be ambiguity around which aspects of the state change

are the goal (the change to an object, a class of objects, the

whole world state, etc.). Our approach uses hypothesis testing

coupled with human interaction to disambiguate the overall

task goal over a few examples.

Once the human indicates that the current task is

done, S contains the representation of the seen example

([�E1 � � � Ex��G� 1]). The system uses S to expand other hy-

potheses about the desired goal state to yield a hypothesis of

all goal representations, G, consistent with the current demon-

stration (for details of this expansion process, see Berlin et

al. (2006))� to accommodate the tasks described here we ad-

ditionally expand hypotheses whose goal is a state change

across a simple disjunction of object classes). The current best

schema candidate (the primary hypothesis) is chosen through

a Bayesian likelihood method: P�h�D� � P�D�h�P�h�. The

data, D, is the set of all examples seen for this task. Here

P�D�h� is the percentage of the examples in which the state

change seen in the example is consistent with the goal repre-

sentation in h. For priors, P�h�, hypotheses whose goal states

apply to the broadest object classes with the most specific class

descriptions are preferred (determined by number of classes

and criteria/expectation features, respectively).

Thus, as a task is learned, the algorithm initially chooses

highly specific hypotheses (those with many criteria and ex-

pectation features matching the initial demonstration), with

more general hypotheses selected as subsequent demonstra-

tions invalidate various specific features.

5.2. Perspective Taking and Task Learning

In order to model the task from the demonstrator’s perspec-

tive, the robot runs a parallel copy of its task learning engine

that operates on its simulated representation of the human’s be-

liefs. In essence, this focuses the hypothesis generation mecha-

nism on the subset of the input space that matters to the human

teacher.

At the beginning of a learning episode, the robot can take

a snapshot of the world in order to later reason about world

state changes. The integration of perspective taking means

that this snapshot can either be taken from the robot’s �R� or

the human’s �H� belief perspective. Thus, when the learning

process begins, the robot creates two distinct schema represen-

tations, SRobot and SHum, and saves belief snapshots Snp�t0� R�

and Snp�t0� H�. Learning proceeds as before, but operating on

these two parallel schemas.

Once the human indicates that the current task is done,

SRobot and SHum both contain the representation of the seen

example. Having been created from the same demonstration,

the executables will be equivalent, but the goals may not be

equal since they are from differing perspectives. Maintaining

parallel schema representations gives the robot three options

when faced with inconsistent goal hypotheses: assume that the

human’s schema is correct, assume that its own schema is cor-

rect, or attempt to resolve the conflicts between the schemas.

In this paper, we take the perspective of the teacher, and as-

sume that their schema captures the rule they intend to teach.

In prior work, we have also explored conflict resolution behav-

iors where the robot attempts to resolve ambiguities as they

arise (Breazeal et al. 2006).
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Fig. 8. The four collaborative benchmark tasks: (1) simple goal inference� (2) goal inference with false beliefs� (3) goal inference

with false beliefs and indirect, dislocated action� and (4) goal inference with multiple agents and false beliefs. Shown are the

actual world state and the actor’s “belief” state at the moment when the subject’s behavior is classified.

6. Providing Assistance on a Physical Task

In order to evaluate our cognitive architecture, we have de-

veloped a novel set of benchmark tasks that examines the use

of belief reasoning and goal inference by robots and humans

in a collaborative setting. Our benchmark tasks are variants

of the classic Sally-Anne false belief task from developmen-

tal psychology, but embedded within a live, cooperative set-

ting. Subjects interact face-to-face with a partner (an exper-

imental confederate), and are prompted to assist their part-

ner in any way they see fit. Language is not required to per-

form these tasks. Instead of probing the participant with an

explicit prompt (e.g. “where will your partner look for the

cookies?”), we observe their behavior as they attempt to as-

sist their partner. Our objective is to examine the spontaneous

use of goal inference and false belief reasoning in collaborative

activity.

6.1. Benchmark Tasks

A schematic of four benchmark tasks is shown in Figure 8. In

each task, the subject (i.e. a human or robot) interacts with a

collaborative partner (actor) who is an experimental confed-

erate. The subject has access to a collection of food objects

(cookies in a small red package or chips in a larger blue pack-

age) that are identical to hidden target objects locked away in

opaque boxes that their partner (actor) may be searching for.

It is thus possible for the subject to assist their partner (actor)

by giving them the food item that matches the target of their

search without requiring the actor to figure out how to unlock

the appropriate box. Or the subject can communicate relevant

information, such as gesturing to the location of the target item.

In those tasks that call for boxes to be sealed, color-coded

combination locks are used. Two of the lock’s four numeric

dials are covered up and fixed in place by electrical tape, leav-

ing only two dials free for manipulation. This lock mechanism

served an important timing function in our study, introducing

a delay in the actor’s process of opening any sealed box. This

gives the subject sufficient time to consider the actor’s goal

and beliefs and then perform potential helpful actions before

the actor unlocks the box.

(1) Task 1 is a control task examining simple goal infer-

ence. The subject and actor both watch as the experi-
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menter hides a package of cookies in box A and a bag of

chips in box B. The experimenter then seals both boxes.

The actor receives instructions written on a notecard to

deliver a bag of chips to the experimenter. The actor pro-

ceeds to attempt to open box B, and the subject’s sub-

sequent behavior is recorded. In order to successfully

assist the actor, the subject must infer that because the

actor is attempting to open box B, the actor’s goal is to

acquire the chips contained within the box.

(2) Task 2 examines goal inference with false beliefs. The

setup proceeds as in Task 1, with subject and actor both

observing cookies hidden in box A and chips hidden in

box B. After the boxes are sealed, the actor is asked to

leave the room, at which point the experimenter swaps

the contents of the boxes. The actor returns, receives in-

structions, and attempts to open box A. In order to suc-

cessfully assist the actor, the subject must infer that the

actor’s goal is to acquire the cookies, even though box A

currently contains the chips.

(3) Task 3 examines goal inference with false beliefs and

indirect, dislocated action. The setup proceeds as in

Task 2, however, in this case, the experimenter locks

both boxes A and B with color-coded padlocks. The key

to box A is left in plain view, but the key to box B

is sealed inside of a third box, box C. The actor is

then asked to leave the room, at which point the ex-

perimenter, using a master key, swaps the contents of

boxes A and B, leaving both boxes locked. The actor re-

turns, receives instructions, and attempts to open box C.

In order to successfully assist the actor, the subject must

infer that the actor’s goal is to acquire the chips, even

though the immediate target of the actor’s actions, box

C, contains neither the chips nor even the key to a box

containing chips.

(4) Task 4 examines goal inference with multiple agents

and false beliefs. In this task, the subject is introduced

to two collaborative partners, actors 1 and 2. All three

watch as the experimenter hides cookies in box A and

chips in box B, and then seals both boxes. Actor 1 is

then asked to leave the room, at which point the exper-

imenter swaps the contents of boxes A and B in view

of both the subject and actor 2. Actor 2 is then asked to

leave, and actor 1 returns. Actor 1 receives instructions

and attempts to open box A. The subject’s subsequent

behavior is recorded (Task 4a). Finally, actor 1 leaves,

and actor 2 returns, receives instructions, and also at-

tempts to open box A. The subject’s behavior is recorded

(Task 4b). In order to successfully assist both actors, the

subject must keep track of actor 1’s false beliefs about

the object locations as well as actor 2’s correct beliefs

about these locations.

Fig. 9. Setup of the human subjects study. (A)–(C) Boxes in

which target objects were hidden. (D) Confederate’s chair.

(E) Participant’s chair. (F) Objects available to participant.

(G) Detail of the box with combination lock. (H) Target ob-

jects. (I) Participant’s viewpoint. (J) Confederate’s viewpoint.

6.2. Human Subjects Study

We conducted a human subjects study to gather human perfor-

mance data on our collaborative benchmark tasks.

Figure 9 shows some of the essential elements of our study

setup. Target objects were hidden in three flight cases (A), (B),

and (C). Our experimental confederate and the study partici-

pant were seated opposite each other at locations (D) and (E),

respectively. The participant’s stock of food objects was lo-

cated on a stool, (F), adjacent to their chair and out of the reach

and view of the confederate. The target objects, (H), were a

bright red package of chocolate-chip cookies and a bright blue

bag of corn chips. Also shown are the viewpoint from the par-

ticipant’s location, (I), and the viewpoint from the confeder-

ate’s location, (J)� note that the stock of food objects is not

visible from this location.

The detail of our box-sealing mechanism is shown in (G).

When attempting to open a sealed box, the actor (experimen-

tal confederate) systematically tries two digit combinations in

numeric order, starting at zero and tugging at the lock with
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Table 1. Behavior Demonstrated by Study Participants on Benchmark Tasks.

Task Correct object Guidance gesture Grounding gesture Other No action Incorrect object

Task 1 16 0 0 1† 1 2

Task 2 14 1 2 0 0 3

Task 3 13	 5 2 0 0 0

Task 4a 14 2 1 0 3 0

Task 4b 13 0 1 1‡ 1 4

	 One participant produced the object only after the key had been retrieved from box C.

† Participant successfully pried open the locked target box.

‡ Participant discovered the combination lock code and revealed it gesturally.

each iteration. The correct code was always 21, so the actor

could open the lock within 30 to 45 seconds, giving the subject

sufficient time to consider the actor’s goal and contemplate po-

tential helpful actions, while keeping the experiment running

at a reasonable pace.

We gathered data from 20 participants: 11 females and 9

males, with ages ranging from 18 to 65. Our participants were

a mix of undergraduates, graduate students, and staff from the

MIT community. Participants were each presented with the

four benchmark tasks in randomized order. Participants were

instructed not to talk to their partner, but were told that they

were otherwise free to perform any action or gesture that might

help their partner achieve the goal. Participants were instructed

that they might find the objects on the stool next to their chair

useful, but that they could only use one of these objects per

task.

The results of the study are summarized in Table 1. Par-

ticipant behavior was partitioned into six categories, from

most helpful to least helpful: correct object presented, guid-

ance gesture presented, grounding gesture presented, other,

no action, incorrect object presented. Behavior was clas-

sified as follows. If the participant presented the correct tar-

get object to their partner, they were tallied as “correct”,

and if they presented the wrong object, they were tallied as

“incorrect”.

Participants who did not present either object were clas-

sified according to the gestures that they displayed. “Guid-

ance” gestures included only direct pointing or manipulation

towards the correct target box, lock, or key. “Grounding” ges-

tures included bidirectional pointing gestures indicating that

the box contents had been swapped, as well as the use of the

matching food objects as a “map” to indicate the correct con-

tents of the various boxes. In the absence of such gestures,

behavior was tallied as “no action”.

Finally, two unexpected cases were tallied as “other” as de-

scribed in the table notes. It should be noted that in the case of

Task 3, guidance gestures were almost as helpful as producing

the correct object, since indicating the correct padlocked box

or its readily-available key resulted in the rapid acquisition of

the contents of the box.

Fig. 10. Leonardo can operate a remote control box to reveal

the contents of two boxes located near the human.

These results indicate that participants were largely suc-

cessful at inferring the goals of their collaborative partners and

engaging in helpful behaviors even in the presence of false be-

liefs, multiple agents, and indirect goal cues.

It should also be noted, however, that success was not uni-

form. Several participants found some of the tasks to be chal-

lenging and reported difficultly in remembering the locations

of the hidden objects and the divergent beliefs of their collab-

orative partners.

6.3. Robot Experiment

In the robot version of the experiment, the robot, Leonardo,

interacts face-to-face with one or more human partners (see

Figure 10). The physical robot (and its virtual counterpart) is

able to exhibit a large repertoire of non-verbal communica-

tion cues such as facial expressions, gestures, and gaze shifts.

Leonardo can perform simple manipulation tasks in a small

workspace with objects specifically designed for the robot. It

can understand simple commands using the Sphinx4 speech
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recognition system, but the robot does not speak. It has a num-

ber of camera systems to perceive events, objects, and people

in its workspace. In this paper, the robot uses a 10-camera Vi-

con Motion Capture system to robustly track specific objects

and particular human features (tagged with reflective markers)

in real-time to millimeter accuracy.

In this set of experiments, the robot’s goal is to assist the

human (or humans) given the actor’s goal of obtaining a de-

sired food item. The robot study followed the same protocol

as in the human study. Language was not involved in the robot

study either. The same objects and actors were used in both

studies, with one exception: as the robot lacks sufficient dex-

terity to pick up and hand objects to the human, the robot was

given a remote control panel that it could use to open either

of two small metal boxes (one containing chips and the other

cookies) near the actor as shown in Figure 10. The actor can

then easily retrieve the target object within.

To participate in these tasks, the robot must track multiple

objects (the chips, cookies, box lids, locks, etc.) and multiple

aspects of human behavior (each person’s head pose and hand

trajectory) robustly and in real-time. As can be seen in Fig-

ure 11, we use a 10-camera Vicon motion capture system to

track the trajectories of reflective markers mounted to people

and objects involved in the benchmark tasks. The Vicon sys-

tem was very useful in this regard instead of using traditional

video cameras. Extension 1 demonstrates the robot performing

Tasks 4a and 4b in real-time with two human partners.

The actors wore a headband and gloves with a distinct pat-

tern of markers so that the robot could distinguish between the

different actors as well as track their behavior. Distinct pat-

terns of markers were also placed on each objects used in the

study. We developed customized tracking software to enable

the robot to uniquely identify each rigid and near-rigid object

(via their pattern of markers) to track their position and ori-

entation. The robot must ascribe meaning to these trajectories,

e.g. what food items are in which boxes over time, who is wit-

ness to which events, who is performing what actions, etc. The

robot’s perceptual and belief systems are responsible for con-

structing the robot’s cognitive understanding of the scenario as

it unfolds in real-time.

Table 2 displays the robot’s behavior generated by our ar-

chitecture on the various benchmark tasks under two condi-

tions. In the first condition, the robot can offer the human a

matching target object by operating its remote control box to

reveal the correct item inside. In the second condition, the ro-

bot does not have its remote control box, so it cannot provide

access to matching items. In this case, the robot can help the

person by pointing to the location where the desired object re-

ally is. Note that this communicative action manipulates the

human’s beliefs (rather than actions), helping to lead them to

their goal.

On Tasks 1 and 4b, the collaborator attempts to open the

correct box, so the robot does not need to generate any helpful

behaviors. On Tasks 2 and 4a, the robot uses its knowledge of

Table 2. Under the “Remote Control” Condition the Robot

Operates its Remote Control Box Interface to Reveal the

Correct Matching Item for All Tasks. Under the “Deictic

Gesture” Condition, the Robot can only Help the Actor by

Pointing to the Correct Location of the Required Item.

Task Remote control Deictic gesture

Task 1 Open chips box (correct) No action

Task 2 Open cookie box (correct) Points to target

location

Task 3 Open chips box (correct) Points to key

Task 4a Open chips box (correct) Points to target

location

Task 4b Open cookies box (correct) No action

the human’s beliefs to infer which object they are trying to ac-

quire. Using this goal in conjunction with its own true knowl-

edge of the world state allows the robot to direct the human to

the correct box via a pointing gesture The robot uses the same

inferential mechanism on Task 3 to generate a pointing ges-

ture towards the key lying on the table which opens the correct

padlocked box.

6.4. Summary

While the robot is not able to generate the full range of gestures

and actions observed in our human study participants, the self-

as-simulator cognitive architecture nevertheless allows the ro-

bot to produce helpful behaviors on a number of sophisticated

collaborative tasks requiring goal inference in the presence of

potentially divergent beliefs. Further, when given its remote

control panel, the robot successfully opens the correct box to

reveal the matching target item.

Our original objective of performing human subjects exper-

iments was to gather data on the range of human behavior as

they solved each task. We then wanted to compare the robot’s

performance on these tasks to human performance, fully ex-

pecting humans to be better. We were surprised at the number

of people who did not perform the tasks correctly, and that

people found some of these tasks to be difficult. These tasks

are not as simple as one might initially think.

In light of our human performance data, it is interesting that

our robot can successfully perform these tasks under both con-

ditions.

7. Learning From Demonstration

Mindreading skills play an important role in many forms of

skillful social behavior. In the previous section we examined
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Fig. 11. Setup of the human–robot study for Tasks 4a and 4b. The scenario proceeds from upper left image to bottom right. First,

actor 2 places chips in the left box and cookies in the right box for all to see. While actor 1 is absent, actor 2 switches the food

items. Actor 1 returns looking for chips, but going to the wrong box. The robot realizes the false belief and invalid plan of actor 1,

and gives them the chips they desire. Actor 2 (with true beliefs and a valid plan) returns looking for cookies, and the robot opens

the small box revealing matching cookies. See also Extension 1.

the robot’s mindreading skills in a cooperative task scenario.

As a second domain, we examine the robot’s mindreading

skills in a social learning context where the robot learns tasks

from watching a human teacher. Importantly, the tasks are de-

signed to be intentionally ambiguous, providing the opportu-

nity to investigate how different types of perspective taking

might be used to resolve these ambiguities.

For instance, in Section 5 we gave the example of a visual

occlusion that blocks the teacher’s viewpoint of a region of

the shared demonstration area but not the learner’s, leading to

an ambiguous demonstration where the teacher does not real-

ize the visual information of the scene differs between them.

This learning task incorporates a false-belief manipulation in

that there are relevant objects in the workspace that the hu-

man cannot see but the robot can. In a more subtle situation,

both human and robot can see the same workspace, but the

teacher focuses their visual attention on a subset of objects in

the workspace while ignoring the rest.

To address these kinds of social learning situations, we

hypothesize that perspective taking and belief inference inte-

grates with task learning mechanisms, whereby inferring the

beliefs of the teacher allows the learner to build task models

which capture the intent behind the teacher’s demonstrations.

In essence, perspective taking acts as a dynamic “social filter”

that focuses the hypothesis generation mechanism on the sub-

set of the input space that matters to the human teacher. This

enables the learner to successfully learn what the teacher in-

tends to teach despite incompleteness or ambiguity in the ob-

served demonstrations.

To test our hypothesis we devised a benchmark suite of

learning tasks where different concepts would be learned de-

pending on whether the learner took the perspective of the hu-

man teacher to frame the learning problem, or not. We tested

this benchmark suite both on human subjects as well as the

robot.

7.1. Benchmark Tasks

Figure 12 illustrates sample demonstrations of each of four

tasks. The tasks were designed to investigate how different

types of perspective taking might be used to resolve ambigu-

ities in the demonstrations. The subjects’ demonstrated rules

can be divided into three categories: perspective taking (PT)

rules, non-perspective taking (NPT) rules, and rules that did

not clearly support either hypothesis (Other). Figure 13 shows

the set of blocks that would be considered to be part of the

demonstration consistent with the PT hypothesis or NPT hy-

pothesis for an instance of two of the learning tasks.

Our hypothesis is that human learners engage in perspec-

tive taking when the human teacher is present and performing

the demonstrations, and would not engage in perspective tak-

ing when the human teacher is absent. As a result, they would

learn different rules depending on whether the same learning

examples are embedded in a social context or not.

Task 1 focused on visual perspective taking during the

demonstration. Participants were shown two demonstrations

with blocks with different configurations. The workspace had
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Fig. 12. The four tasks demonstrated to participants in the

study (photos taken from the participant’s perspective). Tasks 1

and 2 were demonstrated twice with blocks in different

configurations. Tasks 3 and 4 were demonstrated only once.

Fig. 13. Input domains consistent with the perspective taking

(PT) versus non-perspective taking (NPT) hypotheses. In vi-

sual perspective taking (left image), the student’s attention is

focused on just the blocks that the teacher can see, excluding

the occluded block. In resource perspective taking (right im-

age), attention is focused on just the blocks that are considered

to be “the teacher’s”, excluding the other blocks.

square blocks in different colors, each with a circular hole cut

out of its center, and a large pile of circular pegs. In the social

condition (see Figure 14) for both demonstrations, the teacher

attempted to fill all of the holes in the square blocks with the

available pegs. Critically, in both demonstrations, a blue block

lay within clear view of the subject but was occluded from the

view of the teacher by a barrier. The hole of this blue block was

never filled by the teacher. None of the other blocks involved

in the demonstrations were blue. In the non-social condition,

the subject was shown images on a computer of the same end

configuration of blocks from the learner’s viewpoint. Thus, an

appropriate (NPT) rule might be “fill all but blue”, or “fill all

but this one”, but if the teacher’s perspective is taken into ac-

count, a more parsimonious (PT) rule might be “fill all of the

holes” (see Figure 13).

Task 2 focused on resource perspective taking and fo-

cused visual attention during the demonstration. Again, partic-

ipants were shown two demonstrations with blocks in differ-

ent configurations. The blocks had seven different shapes and

three different colors: red, green, and blue. In the social con-

dition in both of the demonstrations, the teacher placed mar-

ble beads on some of the blocks. Various manipulations were

performed to encourage the idea that some of the blocks “be-

longed” to the teacher, whereas the others “belonged” to the

participant, including spatial separation in the arrangement of

the two sets of blocks, and the teacher was careful to only at-

tend to “their” blocks during the demonstration.

In both demonstrations, the teacher placed markers on only

“their” red and green blocks, ignoring all of the participant’s

blocks. Owing to the way that the blocks were arranged, how-

ever, the teacher’s markers were only ever placed on triangu-

lar blocks, long, skinny, rectangular blocks, and bridge-shaped

blocks, and marked all such blocks in the workspace. Thus, if

the blocks’ “ownership” is taken into account, a simple (PT)

rule might be “mark only red and green blocks”, but a more

complicated (NPT) rule involving shape preference could ac-

count for the marking and non-marking of all of the blocks in

the workspace (see Figure 13).

Tasks 3 and 4 investigated whether or not visual perspec-

tive is factored into the understanding of task goals. In both

tasks, participants were shown a single construction demon-

stration, and then were asked to construct “the same thing”

using a similar set of blocks. Figure 12 shows the examples

that were constructed by the teacher. In the social condition

for both tasks, the teacher assembled the examples from left

to right. In Task 4, the teacher assembled the word “LiT” so

that it read correctly from their own perspective. Our question

was, would the participants rotate the demonstration (the PT

rule) so that it read correctly for themselves, or would they

mirror the figure (the NPT rule) so that it looked exactly the

same as the demonstration (and, thus, read backwards from

their perspective). Task 3, in which the teacher assembled a

sequence of building-like forms, was essentially included as a

control, to see whether people would perform any such per-

spective flipping in a non-linguistic scenario.

8. Human Subjects Study

We conducted a human subjects study for two purposes. First,

to gather human performance data on a set of learning tasks

that were well matched to our cognitive architecture’s existing

perceptual and inferential capabilities. This allows us to com-

pare our system’s behavior with human behavior on the same

benchmark suite. Second, the study served to investigate the

role of perspective taking in human learning. When we began

this study, we were not sure what outcome to expect given that
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Fig. 14. A learning from demonstration task. Image sequence proceeds upper left to bottom right. The top two photos shows

the first example from the teacher’s viewpoint. The middle row shows the second example where the subject’s viewpoint is also

displayed. Note that the student can see a blue block that is occluded from the teacher’s viewpoint. The bottom image on the far

right shows a novel configuration of blocks for the subject to demonstrate their learned rule.

we could not find a similar experiment in the psychological

literature.

Study participants were asked to engage in the four differ-

ent learning tasks involving foam building blocks. We gath-

ered data from 41 participants: 19 females and 22 males, with

ages ranging from 18 to 40. The participants were a mix of un-

dergraduates, graduate students, and staff from the MIT com-

munity. The participants were divided into two groups. In the

social condition, 20 participants observed demonstrations pro-

vided by a human teacher (an experimental confederate) sit-

ting opposite them (see Figure 14). In the non-social condition,

21 participants were shown static images of the same demon-

strations on a computer screen with the teacher absent from

the scene. Participants were asked to show their understand-

ing of the presented skill either by reperforming the skill on

a novel set of blocks (in the social condition) or by selecting

the best matching image from a set of possible images (in the

non-social condition).

The results of the human subjects study are summarized in

Table 3 where participant behavior was recorded and classified

according to the exhibited rule. For every task, differences in

rule choice between the social and non-social conditions were

highly significant (chi-square, p � 0�005 or p � 0�001 as in

Table 3).

Table 4 displays the rules selected by study participants,

with the most popular rules for each task highlighted in bold.

Note that, while many participants fell into the “Other” cate-

gory for Task 1, there was very little rule agreement between

these participants. These results strongly support the intuition

(and our hypothesis) that perspective taking plays an important

role in human learning in socially situated contexts.

Table 3. Differential Rule Acquisition for Study Partic-

ipants in Social versus Non-social Conditions (			 p �

0�001).

Task Condition PT rule NPT rule Other p

Task 1 Social 6 (30%) 1 (5%) 13 (65%)

Non-social 1 (5%) 12 (57%) 8 (38%) ***

Task 2 Social 16 (80%) 0 4 (20%)

Non-social 7 (33%) 12 (57%) 2 (10%) ***

Task 3 Social 12 (60%) 8 (40%) —

Non-social 0 21 (100%) — ***

Task 4 Social 14 (70%) 6 (30%) —

Non-social 0 21 (100%) — ***

Table 4. Hypotheses Selected by Human Study Partici-

pants. The Most Popular Rule for Each Task is Highlighted

in Bold.

Task Condition Hypotheses selected

Task 1 Social All� number� spatial arrangement

Non-social All but blue, spatial arrangement�

All but one

Task 2 Social All red and green� shape preference�

Spatial arrangement

Non-social Shape preference� all red and green

Tasks 3 Social Rotate figure, mirror figure

and 4 Non-social Mirror figure
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Fig. 15. Virtual Leonardo was presented with the same learn-

ing tasks as our human subjects in a simulated environment.

The examples for Tasks 1 and 2 are shown. The human demon-

strator can use the mouse to grab and place the pegs into the

holes of the blocks for Task 1, or to place beads on top of

blocks for Task 2. The virtual robot simulates the virtual vi-

sual perspective of the teacher.

9. Robot Experiment

The next question is how the behavior of our cognitive archi-

tecture compares with our human data. The architecture and

learning implementation were developed prior to our human

subjects experiment. When executed by our system, would its

learning behavior predict human behavior? To investigate this

question, its learning performance was analyzed under two

conditions: with the perspective taking mechanisms intact (to

mirror the social condition in the human study), and with them

disabled (to mirror the non-social condition).

We used the same tasks and protocols from our human sub-

jects study to test our architecture. As our physical robot lacks

the dexterity to perform the object manipulations necessary to

demonstrate the learned concepts, we conducted these experi-

ments with our simulated robot in a virtual world running on

a desktop computer. The simulated robot runs the same cogni-

tive architecture as its physical counterpart, and interacts with

the human demonstrator in real-time where the teacher can

move the objects using the computer mouse to perform the

same demonstrations. We simulated the tasks and protocols as

accurately as possible to preserve the spatial relationships, vi-

sual perspectives, and workspace configuration used in the hu-

man study (see Figure 15).

Table 5 shows the hypotheses entertained by the robot un-

der the various task conditions at the conclusion of the demon-

strations. The hypotheses favored by the learning mechanism

are highlighted in bold. As an example, Figure 16 illustrates

an interaction run for the social condition.

Table 5. Robot Hypotheses on Benchmark Tasks.

Task Condition Hypotheses considered

Task 1 With PT All� all but blue

Without PT All but blue

Task 2 With PT All red and green� shape preference

Without PT Shape preference

Tasks 3 With PT Rotate figure, mirror figure

and 4 Without PT Mirror figure

9.1. Summary

For comparison, Table 4 displays the rules selected by our hu-

man study participants, with the most popular rules for each

task highlighted in bold. For every task and condition, the

rule learned by the robot matches the most popular rule se-

lected by the humans. This strongly suggests that the robot’s

perspective-taking mechanisms focus its attention on a region

of the input space similar to that attended to by study partici-

pants in the presence of a human teacher.

It should also be noted, as evident in the tables, that par-

ticipants generally seemed able to entertain a more varied set

of hypotheses than the robot. In particular, participants often

demonstrated rules based on spatial or numeric relationships

between the objects, relationships which are currently not yet

represented by the robot. Thus, the differences in behavior be-

tween the humans and the robot can largely be understood as a

difference in the scope of the relationships considered between

the objects in the example space, rather than as a difference in

this underlying space. The robot’s perspective-taking mecha-

nisms seem to be extremely successful at bringing the agent’s

focus of attention into alignment with the humans’ in the pres-

ence of a social teacher.

It was a pleasant surprise that our results with our robot

predicted human performance on this set of tasks. We were

not expecting to see this amount of agreement between the be-

havior produced by our cognitive architecture and our human

subjects.

10. Discussion

We have tested and evaluated our self-as-simulator cognitive

architecture in two different domains: cooperative behavior

and learning from demonstration.

As we discussed previously, one of the most important

milestones in children’s ToM development is gaining the abil-

ity to attribute false belief. This may entail understanding how

knowledge is formed, that people’s beliefs are based on their

knowledge, that mental states can differ from reality and from

one’s own, and that people’s behavior and intention can be pre-

dicted by their mental states. Our self-as-simulator architecture
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Fig. 16. The teaching scenario for Task 1 with the virtual robot. The top left and top right images show the visual perspective

for the human demonstrator. Note how the blue block is occluded from the teacher’s view as in the human subjects study. Image

sequence proceeds upper left to bottom right.

tackles each of these using a combination of bottom-up and

top-down processes.

At the perceptual level, simulation-theoretic mechanisms

for visual perspective taking are used to represent what a per-

son can see as a function of body location and head orientation.

Hence, visually accessible knowledge is constructed from the

bottom-up and sent to the belief system that uses this informa-

tion to simulate the other’s corresponding beliefs (which could

be false depending on the perceptually derived knowledge).

Meanwhile, mirror-neuron inspired mechanisms in the motor

system map the human’s observed hand trajectories onto the

robot’s body to simulate and recognize goal-directed actions,

such as reaching movements. These two sources of bottom-up

knowledge (perceptual and motor) are sent to the higher-level

intention system where task knowledge in the form of hierar-

chical task models are run in simulation using inferred beliefs

and recognized actions to deduce possible desires and goals of

the human partner. Meanwhile, in real-time and in parallel, the

robot uses the same systems to generate its own perceptions,

beliefs, actions, desires and goals, all represented in the same

way as those it generates for its human partner.

Depending on the domain and task, the architecture can

then reason about and apply these mental states (of self and

from others) in different ways. The reasoning process also

takes the form of a simulation. In the case of the cooperative

tasks, these estimated human beliefs reveal their desired target

and impact their intentions to obtain it. Given the goal of help-

ing the human obtain their desired target, the robot can reason

about a course of action (simulating within the intention sys-

tem) given the possible actions it can take. When the robot has

access to its control panel, its most direct way of helping the

person is to open the box revealing a matching target item. If

the robot does not have access to its control panel, it can still

help its partner by giving them the knowledge (i.e. pointing to

the correct box) that they need to obtain the target for them-

selves. In the case of learning tasks, the robot uses the beliefs

it has inferred from the human teacher to reframe the input

demonstrations. By simulating the same learning mechanisms

on the reframed demonstrations, the robot infers the rule the

human teacher intended to demonstrate.

Thus, in different ways, both domains test the architecture’s

ability to attribute beliefs (possibly false) to others, to consider

the resulting implications on their behavior (e.g. plans, possi-

bly invalid), and to shape its own behavior accordingly. Im-

portantly, these inferences are made from observing a person’s

real-time, non-verbal behavior as they try to obtain their goal

or instruct a task.

Our cross-domain assessment highlights our ultimate goal

of endowing social robots with a way of thinking about and re-

lating to the social world of humans, inspired and informed by

human mindreading skills. We have demonstrated how our ar-

chitecture can apply the same set of mental state inferences

to an assortment of tasks designed to probe different kinds

of inferences in two very different domains (task assistance

and social learning). Importantly, the robot does not simply

infer task-specific “hidden states” (e.g. hidden Markov mod-

els) from observing behavior, but rather those specific mental

states that are believed to underly human behavior across many

different domains (e.g. beliefs, intents, desires, etc.).

This is an important capability for personal robots that need

to understand not only what people say but also what they

do. Many prior works have developed techniques for sym-

bolic or language-based domains (as discussed in Section 2).

This work, however, demonstrates how embodied mechanisms

(grounded in the robot’s own perceptual, motor, and behavior-

generation processes) can address the latter. Given the growing

scientific evidence that early ToM abilities and critical precur-

sors develop from more embodied processes such as mirror
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neurons, imitation, simulation, and perspective-taking, devel-

oping computational models of these processes is scientifically

significant to understand. Toward this goal, it is exciting to

view social robots as an experimental platform to develop

and test models and theories to understand human mindread-

ing skills. The ability to test and compare robots and humans

on the same tasks following the same protocols is potentially

very powerful. As future work, designing new experiments

and tasks that allow researchers to compare embodied com-

putational models (i.e. social robots) with prelinguistic chil-

dren who are developing ToM, or even with other species (e.g.

chimpanzees) to explore comparative psychological models, is

also exciting.

Furthermore, because we are particularly interested in per-

sonal robots that assist and learn from humans, it matters that

the robot’s socio-cognitive abilities are compatible with those

of humans. In short, the kinds of inferences the robot makes

and the behaviors it performs need to make intuitive sense to

people: the robot needs to be consistent with the theory of

mind people ascribe to it. Hence, our human subject studies

and “cross-species” assessment are an important contribution

toward this goal. In both domains, we found the robot’s behav-

ior to be consistent with human behavior. In the cooperative

task domain, we were surprised that adults found the tasks to

be as challenging as they did. In the learning domain, we were

pleasantly surprised to find evidence to support that humans

engage in perspective taking to learn from ambiguous demon-

strations. We were also pleasantly surprised to find that our ar-

chitecture was highly predictive of the most popular rules the

humans also learn. Hence, our human subject studies are not

only an interesting way to assess our system, they also reveal

insights into human behavior.

11. Conclusion

Many applications for personal robots require them to be so-

cially intelligent and skillful in their interactions with humans.

We argue that personal robots need mindreading skills as a way

of being able to think about and relate to the social world of hu-

mans. Inspired by human theory of mind, its development and

precursors, we have developed a novel integrated architecture,

informed by recent scientific findings in embodied cognition

and neuroscience for how people are able to take the perspec-

tive of others. Accordingly, simulation-theoretic mechanisms

serve as the organizational principle for our robot’s perspec-

tive taking skills over multiple system levels (e.g. perceptual-

belief, action–goal, task learning, etc.).

We have evaluated our architecture on a novel benchmark

suite and showed that our anthropomorphic robot can apply

mindreading skills across two different domains: (1) to assist

a human despite their false beliefs and invalid plans in a coop-

erative setting� or (2) to draw the same conclusions as humans

under conditions of high ambiguity in a learning setting. We

also performed two novel human subjects studies, that both re-

vealed insights into human behavior as well as providing an

important point of comparison for the robot’s behavior. This

motivates further research into the use of social robots as a

flexible experimental testbed for embodying models and theo-

ries of human ToM and testing them using the same tasks and

protocols used for humans and other species.

Robotic systems that aim to collaborate effectively with

humans in dynamic, social environments must be able to re-

spond flexibly to the intentions of their human partners, even

when their collaborators’ actions are based on false or incom-

plete beliefs. The architecture enables our robot to infer the

task-related beliefs and intentions of its interaction partners

based on their observable motor behavior and visual perspec-

tive. This is the first work to show how an embodied-cognitive

approach enables a real-world robot to produce appropriate

behavioral responses in complex collaborative scenarios in-

volving a human partner’s divergent, false beliefs and invalid

plans. Significantly, the robot is able to make these inferences

from watching what people do, rather than from what they

say. The non-verbal demands of our tasks highlight the impor-

tant role that embodied, bottom-up simulation-theoretic mech-

anisms play inascribingknowledge,belief, and intents toothers.

In addition, this is the first work to examine the role of per-

spective taking for introceptive states (e.g. beliefs and goals)

in a human–robot learning task. It builds upon and integrates

two important areas of research: (1) ambiguity resolution and

perspective taking� and (2) learning from humans. Ambigu-

ity has been a topic of interest in dialog systems (Grosz and

Sidner 1990� Gorniak 2005). Others have looked at the use of

visual perspective taking in collaborative settings (Jones and

Hinds 2002� Cassimatis et al. 2004). We also draw inspiration

from research into learning from humans, which typically fo-

cuses on either modeling a human via observation (Lashkari et

al. 1994� Horvitz et al. 1998) or on learning in an interactive

setting Atkeson and Schaal (1997)� Lieberman (2001)� Nico-

lescu and Matarić (2003). The contribution of our work is in

combining and extending these thrusts into a novel, integrated

approach where perspective taking is used as an organizing

principle for learning in human–robot interaction.

In our learning experiments, in particular, the behavior of

the architecture was surprisingly predictive of human perfor-

mance. Specifically, we found evidence that people use per-

spective taking to entertain a different set of hypotheses when

demonstrations are presented by another person, versus when

they are presented in a non-social context. This data supports

that perspective taking, both in humans and in our architecture,

focuses the agent’s attention on the subset of the problem space

that is important to the teacher. This constrained attention al-

lows the agent to overcome ambiguity and incompleteness that

can often be present in human demonstrations. This finding

has interesting implications for the role of mindreading skills

in machine learning systems that are intended to learn from

people in human environments.

 at MASSACHUSETTS INST OF TECH on April 28, 2009 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Breazeal, Gray, and Berlin / An Embodied Cognition Approach to Mindreading Skills for Socially Intelligent Robots 679

Acknowledgements

The work presented in this paper is a result of ongoing efforts

of the graduate and undergraduate students of the MIT Me-

dia Lab Personal Robots Group. This work is funded by the

Digital Life and Things That Think consortia of the MIT Me-

dia Lab, and supported by the Office of Naval Research (YIP

grant N000140510623). Jesse Gray would like to thank Sam-

sung Electronics for their support. We would also like to thank

Roman Zadov, Amy Shui, Andrew Brooks, Mikey Siegel,

Guy Hoffman, Andrea L. Thomaz, Alea Teeters, and Ste-

fanie Tellex for their assistance with our study. IRB approved

protocols were used in our human subject studies.

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Demonstration of Task 4a and 4b.
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