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“Beware, you who seek first and final principles, for you are trampling the 
 Garden of an angry God and He awaits you just beyond the last theorem” 

  Sister Miriam Godwinson  

Abstract. From elementary system graph representation, systems are shown to 
belong to only three states: simple, complicated, and complex. First two have 
been studied over past centuries. Last one originates in existence of threshold 
above which components interaction overtakes outside interaction, leading to 
system self-organization which filters outer action, making it more robust with 
emergence of new behaviour not predictable from components study. The 
threshold value, expressed in terms of coupling system parameters, is verified to 
recovers limits found in a broad range of domains in Physics and Mathematics, 
giving explicit criterion for emergence in complex system. Application to man-
made systems concentrates on the balance between relative system isolation 
when becoming complex and delegation of more “intelligence” in adequate 
frame between new augmented system state and supervising operator. Entering 
complexity state opens the possibility for the function to feedback onto the 
structure, ie to mimic  technically the early invention of Nature.  
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1   Introduction  

Accumulation of recent observations on natural phenomena with high technical 
development boosting the access to a wide range of new parameter indicates without 
doubt the existence of phenomena not following main stream laws established from 
patient analysis of natural phenomena over millennium long previous period. These 
“classical” laws are concerning phenomena “reasonably” isolated over broad range in 
size from galaxy to atoms when including quantum and relativistic improvements. In 
the mean time, technology advance and observation accuracy drove the attention on 
more complicated systems with always larger number of elements, for which previous 
laws are not sufficient to represent correctly enough their behaviour. Such systems are 
forming a new huge class in all scientific and technical human activities, and have 
reached their own status by the corner of the millennium under the name of 
“complex” systems. There is today a strong questioning about their origin and their 
formation [1]. This has been addressed in a very pedestrian approach [2] based on 
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elementary source-sink model applied to the graph representing the aggregate of 
system components, showing that system structure falls into three different groups, 
simple, complicated and complex, with specific and explicit properties. The first two 
groups are usual ones approachable by the methods of scientific reductionism [3]. The 
third group, by its very global nature, is not reducible to the effect of its components 
[4], and requires some adjustment for being correctly handled, because now a key 
point is the way the system behaves under (or against) environment action. The 
system mainly self-organizes and develops a global reaction hiding details of specific 
component effect. A consequence is that the mechanistic notion of individual 
component “trajectory” pertaining to first two groups looses its meaning and should 
be replaced by more general “manifold” entity corresponding to accessible 
“invariants” under environment action. So there is emergence of new natural 
properties which will be discussed depending of complexity grade and which can be 
related to well known classes of observed phenomena. Within the pedestrian graph 
approach an explicit criterion for passing to complex state and to have emergence of 
new behaviour is given in terms of system coupling parameters and is recovering all 
previous expressions in Physics and in Mathematics. Advantages in application of 
complex structure to artificial man made systems are stressed.  

2   System State Analysis  

Let the graph with N nodes N
i 

representing a system with a finite number N of 

identified and separable components. There exists three types of vertices in between 
the N components i and outside sources e whenever an exchange exists between 
them.. System dynamics result from a combination of previous three different 
exchanges to which three characteristic fluxes can be associated for each system 
component the nature of which (power, information, chemical,..) unambiguously 
characterize system components status. First flux corresponds to ‘’free’’ dynamics of 
i-th component p

ii 
along vertex V

ii
, second one p

i,e 
to transfer flux between outer 

source and system i-th component along vertex V
ie
, and last one to inter components 

effects p
i,int 

= Inf
j
{p

i,j
}, with p

i,j 
the characteristic and oriented flux exchange between 

components i and j along vertex V
ij
, see Fig. 1. For weak coupling p

ii 
>> p

i,int
(case 

(A)), system dynamics are reducible to a set of almost independent one-component 
sub-systems, and system will be termed as a simple one. For strong outer coupling p

i,e 

>> p
i,int

, p
ii 

(case (B)), system dynamics can be decoupled (as other components action 

creates a weak coupling between them), at least locally, into a set of sub-systems 
controlled by as many exterior sources as there are components in the system because 
they can still be identified. The system can be termed as complicated. Finally for 
strong internal coupling p

i,int 
>> p

ie
, p

ii 
(case(C)),system dynamics are now determined 

by components interaction satisfying the inequality, with fundamentally different 
outside action compared to case (B). Here internal interactions dominate and shield 
input tracking from outer source to component. So control action can only be a 
‘’global’’ one from other system components satisfying condition for case (B), so  
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Fig. 1. Graph representation of system with its three exclusive types of vertices Vii, Vie, and Vij 

system dynamics are now also driven by internal action. For all system components 
passing in third state their control cannot as in case (B) be fixed only by outer source 
action because of stronger interaction effect dominating the dynamics of concerned 
components, and a self-organization takes place inside the system leading to an 
internal control replacing classical one from outside. So manipulating inputs with as 
many dof as in initial system is no longer possible because of the conflict with 
internal control. External system control dimension is thus reduced. The system will 
be termed as complex (from Latin cum plexus : tied up with). A very elementary test 
for determining if a system is passing to complex state is thus to verify that its control 
requires manipulation of less dof than in initial system with weaker internal 
interactions. So paradoxically most complex possible structure corresponds to totally 
autarchic system, which joins simple system definition by isolation. In fact this 
apparently contradictory statement is resulting from the very nature of internal 
interactions effect which reduces the number of invariants on which system trajectory 
takes place. Example is neutral gas particles for which their initial 6N positions and 
velocities (the mechanical invariants of motion) are reduced to the only energy 
invariant (or temperature), justifying thermodynamic representation. Consequently, 
when increasing internal interactions, contrary to a complicated system which remains 
complicated from either side, a system is the less complicated seen from outside as it 
is more complex internally, on top of being less sensitive to outer action, a very useful 
property used very early by Nature and at the origin of Her evolution. In summary, 
exactly like there exists three states of matter (solid, liquid, gas), there are three states 
(simple, complicated, complex) for each system component. On a 3-d space, plotting 
the three values {p

ii 
, p

i,e 
, p

i,int
} for each system component gives a cluster of N points 

C
i
 the status of which is determined by their location with respect to boundaries of 

inequalities (A),(B),(C), see Fig. 2. Moreover, consequence of parameter variation 
can be analyzed, especially when crossing inequality (C), extremely important for 
control of man-made systems as this boundary is nowadays very often passed over 
with modern technology advance.  

An immense literature exists about complexity, its definition and its properties 
covering an extremely wide range of domains from Philosophy to Technology [5], 
especially in recent years where its role has been “discovered” in many different  
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Fig. 2. System representation in [Simple-Complicated-Complex] state-space domain 
- Inequality (A) is satisfied in tetrahedral domain (O,B1,B2) 
- Inequality (B) is satisfied in tetrahedral domain (O,B1,B3) 
- Inequality (C) is satisfied in tetrahedral domain (O,B2,B3) 

 
fields such as networks now playing a crucial role with the ascent of Information 
Technologies. In the sequel emphasis is more modestly put only on more restricted 
complex state compared to complicated state as concerns action from outside 
environment (ie from control point of view) onto the system. It is intended to show 
from the very elementary picture above that most of important results in a broad range 
of domains from Mathematics to Physics can be easily recovered and that still unclear 
emergence phenomenon finds here a natural explanation.  

3   Emergence  

First the deep difference between the first two states and last complex one is in the 
possibility for the formers to split the system into as many independent one-
component systems in a first approximation, which is impossible in the later where all 
interacting components have to be taken as a whole. In mathematical terms the 
consequence is that usual approximation methods developed for the first two states do 
not straightforwardly apply and have to be revised in order to handle the global aspect 
of the coordinated response of components in complex state, at the origin of important 
computer research on the problem. In specific situations, other elements also enter the 
description and it is interesting from description above to recover various situations 
observed and analytically studied for different parameters values. In general system 
state exhibits a mixed structure where some components are in one state and others in 
another one. Important examples are (weakly) inhomogeneous and continuous natural 
systems such as fluids with non zero gradients in a domain. Here, fluctuations are 
universally observed in a very large range of frequencies (roughly because the system 
has a very large number of components) the source of which is the free energy 
available in between this stationary equilibrium and complete (homogeneous) 
thermodynamic one, ie from the space gradients related to medium non homogeneity. 
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Splitting fluctuations into two groups depending on their wavelength compared to 
system characteristic gradient length, large wavelength ones excited in the medium 
are in complicated state and, because they are sensitive to boundary conditions, can be 
observed and possibly acted upon as such from outside, whereas fluctuations with 
small wavelength are in complex state and can only be considered globally. Under 
their strong interactions, and because they are much less sensitive to boundary 
conditions, they are loosing their phase and globally excite an outflux (usually called 
a transport) expressing non equilibrium system situation counteracting input flux 
responsible of medium non homogeneity. Clearly emergence of this transport is a 
direct consequence of components self interaction when crossing condition (C) which 
now takes place on a manifold in small wavelength component state space and 
constraints their motion to take place on it. So transports determination is an 
important element qualifying system behaviour and is an active research problem 
studied worldwide. This feature is observed for all natural (open) systems on the 
dissipative branch [6] exchanging (particles, chemical, energy) fluxes with outside 
environment. Evidently the channels by which internal energy sources are related to 
these fluxes are playing a privileged role because they regulate the influx ultimately 
available for the system and finally determine its self-organized state[7]. Dissipative 
systems only exist to the expense of these fluxes, and they evolve with parameter 
change − such as power input − along a set of neighbouring states determined by 
branching due to bifurcations where internal structure changes in compatibility with 
boundary conditions and by following the principle of largest stability. So the picture 
is a transport system governing flux exchanges guided by the bifurcation system 
which, as a pilot, fixes the structure along which these exchanges are taking place. 
Finding the branching pattern thus entirely defines possible system states and 
determines fluctuation spectrum. Branching is found as nontrivial solutions of 
variation equations deduced from general system dynamics equations. Despite clear 
identification of phenomena physical origin, their analysis is still in progress in many 
situations [8,9], and cleared up for fluctuations in deformable solid bodies[10]. 
Moreover, modification of system dynamics is the more important as non 
homogeneity gradient is steeper, with extreme case of living cell systems completely 
encapsulating within a filtering membrane (ie a steep gradient) a space domain where 
very specific “memory” DNA molecules are fixing the dynamics of inside system 
they control, with corresponding exchange across the membrane.   

However, aside dissipative pattern followed by natural systems exhibiting 
components with relatively elementary features (charge, mass, geometrical structure, 
chemical activity, wavelength, frequency..), there exists cases where complex state 
occurs in systems with more sophisticated components, usually called “agents”. 
Examples are herds of animals, insect colonies, living cell behaviour in organs and 
organisms, and population activity in an economy. In all cases, when observed from 
outside the systems are exhibiting relatively well defined behaviours but a very 
important element missing in previous analysis is the influence of the goal the 
systems are seemingly aiming at. Very often the components of these systems are 
searching through a collective action the satisfaction of properties they cannot reach 
alone, and to represent this situation the specific word “emergence” has also been 
coined [11]. The point is that it is now possible to return back to previous case and in 
a unified picture to envision the laws of Physics themselves as emerging phenomena. 
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For instance for an ensemble of neutral particles with hard ball interactions, and 
beyond the threshold of rarefied gas, (ie when the Knudsen number Kn = λ/L is 
decreasing to 0 from the value 1, with λ the particle mean free path and L a 
characteristic length scale), the particle system is suddenly passing from a 
complicated to a complex state (due to the huge value of Avogadro number). 
Consecutive to overtaking of collective interaction by collisions (expressed by 
decrease of Knudsen number below the value 1 representing the limit of constraint 
(C) for neutral particle system), it could be said that there is emergence of a pressure 
and a temperature, which, from a point of view outside the gas, summarizes perfectly 
well the representative parameters (the invariants) describing it at this global level 
(the thermodynamic representation). Similarly at atomic level, after baryons are 
assembled from primitive quark particles below some threshold energy, protons and 
neutrons assemble in turn themselves below another lower energy threshold into ions 
with only mass and charge parameters, able to combine finally with electrons to 
create atoms. In all cases, it can be verified that emergence of new compound system 
does occur when boundary condition (C) is crossed when applied to each component 
of the system and at each interaction level. Interestingly, independent of the 
background system and of the vocabulary, it is easily verified that all systems exhibit 
first emergence of self organization out of which there appears a specific behaviour. 
In fact it is elementarily understandable from previous source-sink model that a key 
point is in the accuracy of modelling the components in complex state, as long as the 
resulting “invariants” which will grasp all system information for interaction with 
environment are directly depending on this modelling. This has been at the origin of a 
computer “blind” search where the agents are given properties and “emerging” 
behaviour is obtained in a bottom-up approach, sometimes in surprising compatibility 
with experimental observations [12], in parallel to theoretical analysis [13]. Finally it 
should be observed that the logical chain:  
 
{stimuli/parameter change} → {higher interactions between some system 
components} →{passage to complex state} → {system self organization} → 
{emergence of new behaviour} 
 
discussed here is nothing but the sequence leading to the final step of system 
evolution toward more independence, and which is the feedback of “function” onto 
“structure”, a specific property of living organisms explaining their remarkable 
survival capability by structure modification.  

4   Mathematical Representation of Complex Systems Emergence 

The few basic previous examples from common sense observation illustrate the 
generality of the elements described above providing a unified base for complex 
system paradigm. From atomic nucleus to galaxy natural systems are seen to be 
constituted by aggregates of identifiable components (which, as already stressed, can 
be themselves, at each observation level, aggregates of smaller components) with well 
defined properties. These aggregates have been said to exhibit a complex behaviour 
when interaction between the components −or some of them− is overtaking their 
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interactions with exterior environment. Similarly living beings are exhibiting the same 
behaviour, as observed with gregarious species, and in artificial man-made systems 
the same phenomenon is occurring when the overtaking conditions are satisfied. This 
is the case for high enough performance level systems because the components are 
then tightly packed, as for high torque compact electrical actuators. Despite an 
extremely large variety of possible situations there are few basic interactive processes 
leading to complex self-organization. First exist weak gradients natural systems 
discussed in previous paragraph and entering the more general class of reducible 
systems mainly because it can be shown that their complete dynamics including 
generated fluctuations can be reduced by projection onto {initial state plus large 
wavelength components} dynamics without small wavelength components dynamics 
(in complex state), now globally represented by transport coefficients modifying 
initial dynamics, see Fig. 3. Their mathematical analysis is still in progress in non 
Gaussian case, due to difficulty for specific small parameter ordering to analytically 
express transport coefficients despite their source is well identified [8,9,14].  

More generally, a system may be in complete complex state, examples of which 
are atomic nucleus, herd of animals, and galaxies. Despite their very different space 
sizes, the systems exhibit always the same characteristic feature to finally depend on 
an extremely restricted number of parameters as compared to the aggregate of their 
initial components. Searching the way to extract directly the remaining ‘’control’’ 
parameters of such systems from their dynamics is a fundamental issue which today 
motivates a huge research effort worldwide, especially in relation with information 
networking. Extensive analytical and numerical study has been developed for 
differential systems of generic form  

( , , ) . ( , , ) . ( , )
dX

A t X F t X u S t X
dt

ν λ μ= + +                                 (1) 

where X = col(X
1
, X

2
,.. X

n
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Fig. 3. Schematic block representation of (controlled) complex system 
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nonlinear internal interactions and source terms respectively (the linear and source 
terms in the right hand side of eq.(1) are here split apart to indicate their respective 
role). The other variables v=v(X,t) ∈ R

p
 and u(X,t) ∈ U in A and F function account 

more generally for possible feedback evolution of X(t) onto their own dynamics as it 
often occurs in systems when splitting parameters into given and manipulated control 
ones. For fixed u(.,.), v(.,.), depending on the values of λ,μ components the system 
will be in simple, complicated or complex state described in §1. Increase in λ 
components moves the system into complex state, and eq.(1) transforms for very large 
λ into a singular system with small parameter in front of derivative amenable to 
asymptotic analysis [15]. For instance, 2−d Van der Pol system exhibits individual 
mode oscillations in state (A), driven oscillations in state (B). Under strong coupling 
between components when condition (C) is crossed relaxation oscillations are 
produced on a restricted (closed) 1−d curve representing the manifold on which 
complex state motion takes place. So even with two dof, complex state can occur, 
illustrating the fact that complexity is completely independent of complication with 
which it is very often confused.  

More generally, it has been repeatedly observed, especially on systems close to 
Hamiltonian ones[16], that system representative point in n−dimensional state space 
follows a more and more chaotic trajectory when crossing bifurcation values and at 
the end fills up a complete domain[17]. Of course sensitivity is largest when the 
system exhibits resonances, ie is close to conservative, and adapted mathematical 
expansion methods have to be worked out[18]. In this case, it is easily verified that 
resonance overlapping condition[19] is nothing but application of condition (C). 
Because systems are basically non integrable[20], this is a direct evidence of 
increasing effect of internal interactions which reduce system dynamics to stay on 
attractor manifold of degree p < n, so that system dynamics are now layered on this 
manifold. This also expresses the fact that trajectories on the remaining n−p 
dimension space are becoming totally indistinguishable (from outside) when taken 
care of by internal interactions of n−p components going to complex state. So system 
trajectories reorganize here in equivalence classes which cannot be further split, a 
dual way to express the fact that there exists an invariant manifold on which system 
trajectories are lying. Continuing to control these components by regular previous 
control [21] worked out for complicated state and specially designed for tracking a 
prescribed trajectory, is no longer possible and a new approach is required which 
carefully respects internal system action due to complex state self-organization. More 
global methods of functional analysis [22] related to function space embedding in 
adapted function spaces [23] by fixed point theorem[24] are now in order as shown 
for reducible case [25], because they are providing the correct framework to grasp the 
new structure of system trajectory which cannot be fully tracked as before. Basically 
the method is again to counteract impreciseness in an element by robustness to its 
variation, a method very largely followed by living organisms. More generally, 
another very influential parameter is the range of inter-component interaction, 
because this determines completely the build up of system clustering when becoming 
complex. Obviously long range interactions are leading to more intricate response 
with more difficult analysis. Examples are stars in a galaxy, electromagnetic 
interactions between ions and electrons in a plasma, animals in a herd and social 
behaviour of human population in economic trading such as stock market with 
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internet link. In all cases a new element is coming from the size of the neighbouring 
domain each system component is sensitive to, and implies a time extension to past 
neighbouring components trajectories. In this case, the resulting complex behaviour is 
more generally determined by interactive component effects over a past time interval 
and weighted according to their importance [2]. Finally one can summarize previous 
analysis by the universal. 
 
Emergence Principle for Complex Systems: When interaction between some system 
components takes over by satisfying condition (C), they cluster into a subsystem the 
dynamics of which are only guided by the invariants of the generated manifold, and 
which are the only control parameters left by this (internal) reorganization. 
 
This principle provides the way to express explicitly in mathematical terms the 
boundaries of domains in parameter space where complexity state is reached once a 
model of the system is given, and to fix its dynamical behaviour in new state by 
determination of its invariants.  

5   Discussion and Conclusion  

Systems exhibiting behaviours which do not fit with main stream scientific laws 
established from patient observations of Nature over past centuries have been 
repeatedly observed over last decades with the ascent of modern technology, where 
new natural and man made systems with very intricate structure implying a large 
number of heterogeneous components in strong interaction have been observed and 
developed. Application of usual laws is often unable to describe their dynamics, 
because they stay outside the domain of complicated multi component systems only 
covered by use of reductionism method. The main reason is in the overtaking of 
component interaction strength which dominates enough over other effects to force 
the system to close on itself and to manifest an internal self-organization responsible 
of its new behaviour. Differently said in elementary terms, the new paradigm is that 
“increasing interactions between components lead to their isolation” as easily 
verifiable. Such systems are termed as “complex”, and their main feature is that 
components in complex state are internally ruled through this self-organization so that 
they are less sensitive to environment action. So natural complex systems are 
structurally more robust than complicated ones as evidenced by observation of living 
organisms, the most complex known ones. Analysis of complex systems dynamics 
shows the possibility of “emergence” of a new behaviour not included into the set of 
initial components behaviour as a direct consequence of self-organization opening the 
possibility for the “function” to feedback onto the “structure”, as illustrated by 
development of living systems on Earth. The criterion for crossing “complexity” 
barrier has been explicitly expressed in terms of system coupling parameters by 
condition (C), which is verified to cover all known formulae in broad range of 
applications in Physics and Mathematics, thus providing a general emergence 
condition for a complex system.      

Previous properties are of up-most importance when applied to man made 
industrial systems now appearing in open and global economy with an always 
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increasing number of heterogeneous components to be operated all together for 
production of higher value objects. Previous centralized control structure cannot be 
maintained for keeping complete system mastery of larger number of elements going 
to complex state due to higher value of coupling parameters. In parallel, reduction of 
input control parameters by transforming the system into a (partially) complex one by 
clustering some components into bigger parts reduces system fragility. The industrial 
challenge civilisation is facing today justifies if any the needs to study and to create 
these complex systems [26]. On Fig. 2, this would mean to vary adequate parameters 
to move the representative points along complex axis in order to fix exactly new 
system status. In any case, internal non controlled dynamics are taken care of by 
system self organization resulting from passing to complex state, implying that 
precise trajectory control is now delegated to system. The challenging difficulty is 
that to comply with new structure, some “intelligence” has also to be delegated to the 
system, leading for the operator to a more supervisory position [27]. In present case, 
this is contribution to trajectory management by shifting usual (imposed) trajectory 
control to more elaborated task control [28], a way followed by all living creatures in 
their daily life to guarantee strong robustness while still keeping accuracy and 
preciseness. This illustrates the limited possibility of behaviours from laws of Physics 
because they are tightly linking information flux related to the described action to 
power flux implied in them. This opens on searching an adequate merging of 
information flux mastery from recent Information Technology development with 
power flux mastery resulting from classical long term mechanical development [29]. 
Though apparently loosing some hand on such systems, it has been surprisingly 
possible along this line to find explicit conditions in terms of system parameters 
expressing somewhat contradictory high preciseness (by asymptotic stability 
condition) and strong robustness (against unknown system and environment 
parts)[30]. In this way system dynamics are finally controlled and asymptotic stability 
can be demonstrated, but in general to the price of a not necessarily decreasing 
exponential asymptotic type.  
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