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The small nucleolar RNA host genes (SNHGs) are a group of long non-coding RNAs,

which are reported in many studies as being overexpressed in various cancers. With

very few exceptions, the SNHGs (SNHG1, SNHG3, SNHG5, SNHG6, SNHG7, SNHG12,

SNHG15, SNHG16, SNHG20) are recognized as inducing increased proliferation, cell

cycle progression, invasion, and metastasis of cancer cells, which makes this class of

transcripts a viable biomarker for cancer development and aggressiveness. Through

our literature research, we also found that silencing of SNHGs through small interfering

RNAs or short hairpin RNAs is very effective in both in vitro and in vivo experiments by

lowering the aggressiveness of solid cancers. The knockdown of SNHG as a new cancer

therapeutic option should be investigated more in the future.
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INTRODUCTION

Worldwide, in 91 developed countries, cancer is the first or second leading cause of mortality with
18.1 million new cases and 9.5 million deaths estimated in 2018 (1). According to Siegel et al., in the
United States, between 2000 and 2014, the most frequently diagnosed types of cancer in men are:
prostate, lung, and colorectal cancer; while in women, these are: breast, lung, and colorectal cancer
(2). These statistics show that the malignant disease has a high impact over the socioeconomical
welfare of developed countries; thus, each new discovery of its molecular context should be carefully
analyzed and evaluated for its potential as biomarker and/or therapeutic target.

In malignant diseases, the imbalance between overactivation of proto-oncogenes and inhibition
of tumor suppressor genes is usually the consequence of a faulty regulatory system, which includes,
among others, the non-coding RNAs (3–5). Most of these transcripts do not have the ability to
interact with the ribosome and are not translated into proteins (6–11); however, they interact with
other coding or non-coding RNAs (ncRNAs), being part of complex regulatory networks (12).
The ncRNAs are divided into two classes: the small ncRNAs (with <200 nt) and the long ncRNAs
(lncRNAs), with>200 nt (13). The short ncRNAs are generated throughmultistep processing of the
primary transcript, while the lncRNAs remain highly similar to their primary transcripts (14–17).
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The short ncRNAs are divided into: small interfering RNAs
(siRNAs), microRNAs (miRNA), piwi-interacting RNAs
(piRNAs), and others (18). The lncRNAs, even if very
heterogeneous in terms of biogenesis, structure, mechanism of
action, and biological functions, are still mentioned under the
general term of lncRNAs (6, 19, 20).

The snoRNAs (small nucleolar RNAs) were discovered in
the late 1980s (21). However, only recently these transcripts
were considered as potential biomarkers of cancer (22). The
snoRNAs have the general characteristics of small ncRNAs, with
the processed transcripts having between 65 and 300 nt. The
snoRNAs do not have a poly-A tail and are 5′Cap, which means
that they are not exported from the nucleus. They are transcribed
from clusters of protein-coding genes or genes coding for other
ncRNAs, and a small franction of snoRNAs are originated in
the intergenetic regions. Only three snoRNAs (U3, U8, and
U13] and telomerase snoRNA are transcribed and processed
as single units. The polycistronic transcription of snoRNAs
has a phylogenetic progression, which means that in higher
organisms, more snoRNAs originating from clusters of genes are
found (23).

There are two types of snoRNAs: C/D box snoRNA and
H/ACA snoRNA. The C/D box snoRNAs have a C box
(RUGAUGA, R = A/G) and two D boxes (CUGA). The H/ACA
snoRNAs contain the H box (ANANNA, N = A/T/C/G) and
the ACA sequence (24). The C/D box snoRNAs are involved in
the 2-O′-methylation of rRNA, and the H/ACA snoRNA cause
the pseudouridylation of rRNAs. Some snoRNAs are further
processed into microRNAs, which repress the translation of
mRNA in the cytoplsm (23) or into piwi-interacting RNAs,
essential in the regulation of transposomes mobility in the
nucleus (25).

The snoRNA host genes are mainly located in the introns
of protein-coding genes, with ancestral positionally conserved
(APC) snoRNA sequences constituting only 2% of host genes
(26). However, the intronic sequences of snoRNAs show a
high degree of conservation across species (27) in comparioson
with intergenetic regions (26). The generation of snoRNAs
across species may be a result of mobility of the nested
snoRNAs in protein-coding genes, since orthologous introns
can encode for non-orthologous snoRNAs in different species.
However, as the new element of non-coding sequence moves
in a protein-coding gene, it results in loss-of-function genetic
variants (28).

Some snoRNA genes, without any capacity to code for
proteins, still contain both introns and exons in their sequences
However, snoRNAs are generated only from introns. If the
full-length transcript, including exons, is kept, it will function
as a type of lncRNA, named small nucleolar RNA host gene
(SNHG) (29). A pan-cancer analysis of 31 cancer types based
on “omics” data retrieved from TCGA revealed that the snoRNA
host genes are enriched in non-protein coding genomic regions
and that these have higher expression (30). There seems to be
a positive correlation between SNHGs and their corresponding
snoRNAs. More precisely, the intracellular level of snoRNAs
is influenced by their structure and the availability of SNHGs
(23). In murine genome, Zfas1 is an antisense transcript, which
shares a bidirectional promoter with the protein coding gene

Znfx1 (zinc finger NFX-1-type containing), their expression
in different tissues being positively correlated. Zfas is also an
lncRNA from an snoRNA gene, and it can be processed into
three types of intronic snoRNAs: SNORD12, SNORD12b, and
SNORD12c. SNORD12b has a higher expression than SNORD12
and SNORD12c, in cells with a lower degree of differentiation,
due to a higher stability of the processed structure, which
contains an additional short hairpin structure. The snoRNAs
are located only in the nucleus, whereas Zfas is present in
the cytoplasm and nucleus as well. The siRNA knockdown
of Zfas only slightly affected the expression of snoRNAs (31).
In addition, SNHG12 knockdown in hepatocellular carcinoma
did not statistically significantly affect the expression of its
snoRNAs (SNORA44, SNORA61, SNORA16A, and SNORD99]
(32). However, the expression of some SNHGs, such as SNHG17,
is regulated by the copy number variations (CNV) of their host
gene, this being also correlated with the aggressiveness of non-
small cell lung cancer and squamous cell lung cancer. A change in
SNHG intracellular level can generate a significant downstream
effect, such as siRNA inhibition of SNHG17 that caused 637
protein coding RNAs to be up-regulated and 581 to be down-
regulated (33).

The proteins that target the SNHGs can also target their
corresponding snoRNAs. A recent article reported that p53
activation repressed the intracellular level of SNHG1 that also
reduces the level of snoRNAs: SNORD22, SNORD25, SNORD26,
SNORD27, SNORD28, and SNORD75. The SNORD28 is further
processed into an miRNA, named sno-miR-28. This miRNA
repressed the expression of TAF9B, a coactivator of p53. As
follows, a positive feedback loop forms between sno-miR-28-p53-
SNHG1-SNRD28 (34).

The cellular location differs between snoRNAs and SNHGs.
While the snoRNAs remain in the nucleus (35), SNHGs are
present in the nucleus as well as in the cytoplasm (29) (Figure 1).

Through our research of literature on SNHGs, we have
identified five main types of molecular mechanism of action, with
different cellular localizations.
Nuclear:

1. Influencing DNA methylation through modulation of
methylation enzymes

2. Interaction with transcription factors and repression of
gene transcription.

Cytoplasm:

3. MiRNA sponging and the releasing of miRNA targets
4. Direct binding to the mRNA and repression of translation
5. Prevention of protein ubiquitination through single protein

interaction or multi-protein complex.

In the nucleus, SNHG1 binds to the Mediator complex and
facilitates the interaction of the enhancer and promoter
DNA region corresponding to SLC3A2 gene (36). SLC3A2
is a well-known cancer-promoting gene (37, 38). The
Mediator complex is composed of multiple proteins and
non-coding RNAs that cooperate with RNA polymerase II
during transcription initiation (39). SNHG1 competitively
binds to the Far Upstream Element Binding Protein 1
(FUBP1), and it prevents FUBP1 interaction with its
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FIGURE 1 | The snoRNA host gene are transcribed to SNHG. Some of these transcripts generate from their introns C/D box snoRNAs or A/ACA box snoRNAs. The

snoRNAs can influence the methylation of their SNHG of origin. The SNHGs are then associated with Cajal bodies and nucleolus, thus participating in rRNA and

mRNA primary processing. The SNHGs in the nucleus fulfill the following functions: 1. Influencing DNA methylation through interaction with methyltransferases (MT),

such as EZH2. 2. Regulating transcription through interaction with transcription factors (TF), such as E2F1. The SNHGs are then exported into the cytoplasm, where:

3. Can directly interact and repress mRNA translation; 4. act as ceRNA for miRNAs (miRNA sponging) and indirectly up-regulating the translation of miRNA targets. 5.

Stabilizing proteins, by preventing protein ubiquitination.

repressor, followed by overstimulated transcription of c-MYC
gene (39).

In hepatocellular carcinoma, SNHG6 lowers DNA
methylation through inhibition of S-adenosylmethionine and
down-regulation of MAT1A (methionine adenosyltransferase
1A). SNHG3 binds to enhancer of zeste homolog 2 (EZH2) and
causes the methylation of several genes (40, 41).

In the cytoplasm, SNHGs fulfill the role of competing
endogenous RNAs (ceRNAs) for miRNAs (42). ceRNA is a
term used for the non-coding RNA species that share common
miRNA binding sites with mRNAs. The process is also known
under the name of miRNA sponging (43). The SNHGs can also
interact directly to the mRNA and cause their overexpression,
such as in the case of SNHG1 and p53 in colorectal
cancer (44).

The SNHGs can also post-translationally interact with
proteins and prevent their ubiquitination. This is the case of
SNHG15 and SLUG in colorectal cancer (45).

The SNHGs have an oncogenic role in cancer through the
versatility of their interactions at DNA–RNA–protein level. The

correlation between SNHGs and cancer still lacks important
information on the general activity of SNHGs,mainly because the
data are still fractioned and focused on each SNHG. In current
article, we reviewed over 200 articles on the role of SNHG in
different malignancies. We first briefly consider the oncogenic
activity of each SNHG separately, and in the final section of
the article, we draw some general lines of consideration on the
realistic potential of SNHGs to reach clinical applications, in the
context of a comprehensive overview of their biological influence.
To our knowledge, this is the first time that a comprehensive
clarification of the general mechanism of action of SNHGs in
cancer is given.

SMALL NUCLEOLAR RNA HOST GENE 1
(SNHG1)

SNHG1 generates, through alternative splicing, eight snoRNAs:
SNORD22 (46), SNORD25, SNORD26, SNORD27, SNORD28,
SNORD29, SNORD30, and SNORD31 (47).
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In colorectal cancer, SNHG1 leads to poor prognosis (44,
48, 49). It promotes cancer cell viability, proliferation, cell cycle
progression, tumor growth, and increased invasion/migration
capacity (44, 48–50). Its mechanism of action consists of
targeting the p53 gene (44) and overstimulating the Wnt/β-
catenin signaling pathway (48, 50]. It also acts as a ceRNA for
miR-145 (50), a suppressor of a colorectal cancer invasion and
migration (51).

In ovarian cancer, SNHG1 promotes cell proliferation,
invasion, and new colony formation, while impairing
cell apoptosis (52). In prostate cancer, SNHG1 acts as
an miR-199a sponge, thus increasing the level of CDK7
(cyclin-dependent kinase 7), which stimulates cell division
(53), and HIF-1α (hypoxia-inducible factor 1-alpha),
which leads to enhanced angiogenesis (54). HIF-1α is
a transcription factor (TF) activated in case of hypoxic
microenvironment present at the tumor site. This TF
stimulates the expression of VEGFα, an important promoter
of tumor neoangiogenesis. This process is essential for
tumor survival (provision of nutrients) and spreading to
new sites of the body (connection with systemic blood
circulation) (55).

In esophageal cancer, SNGH1 sponges miR-338 (42) miR-338
is involved in stimulating the radiotherapy-induced apoptosis
of esophageal cancer cells, by targeting Survivin gene (56).
SNHG1 in esophageal cancer promotes cell proliferation and
EMT (epithelial to mesenchymal transition)-mediated invasion
(56), by down-regulation E-CAD (E-cadherin) and up-regulation
VIM (Vimentin) and N-CAD, as well as activation of Notch
signaling pathway (57). EMT is the process through which
epithelial cells lose their tight junctions and cell polarity, while
acquiring a higher degree of mobility and ability of invasion
through basement membrane. There are three types of EMTs:
(1) during embryogenesis, this process is necessary for the
transformation of epiblast into mesinchyme; (2) during wound
healing and chronic inflammation when an additional supply
of fibroblasts are locally needed; (3) during cancer progression,
when the cells from the in situ primary tumor invade the
local lymph nodes or enter into systemic blood circulation
in order to from distant metastasis (58). E-cadherin is a cell
adhesion molecule (CAM) specific for the formation of adherent
junctions between epithelial cells. It is also considered as a
tumor suppressor through DNA methylation of oncogenes (59).
N-CAD suppresses the activity of E-CAD and stimulates the
motility of cells. During embryonic development, it supports
gastrulation and the formation of neuronal crest; however,
N-CAD can be reactivated during malignant development to
support EMT progression (60). VIM is a component of the
intermediate filaments from cytoskeleton that keep the organelles
in place, while also allowing to some degree their mobility.
VIM is a highly flexible component found in all cells, but its
overexpression is specific for mesenchymal cells. In cancer, VIM
is a major stimulator of EMT and inhibitor of autophagy through
its repression of Beclin 1 and 14-3-3 (61).

In hepatocellular carcinoma, SNHG1 was associated with
advanced stages, larger tumor size, and poor differentiation
due to its interaction with the tumor suppressor p53 (62).

SNHG1 sponges miR-195 (63), a miRNA that inhibits
metastasis and angiogenesis in hepatocellular carcinoma
by targeting FGF2 (fibroblast growth factor) and VEGFA
(vascular endothelial growth factor alpha) (62, 64). Similarly,
SNHG1 overexpression results in worse prognosis in glioma
because it increases proliferation and invasion while inhibiting
apoptosis (65).

In lung cancer, SNHG1 acts as a tumor-promoter by
sponging miR-145 (66) and miR-101 (67) and enhancing
the Wnt/β-catenin signaling pathway (67). miR-145 acts
as a tumor suppressor in lung cancer by impairing cell
migration and invasion (68, 69). In lung cancer, miR-101
underexpression is associated with advanced stages and lymph
node metastasis and it induces cell apoptosis by targeting
MCL-1 (70).

In osteosarcoma, SNHG1 promotes cell proliferation, tumor
growth, invasion, and EMT by sponging miR-326, resulting
in overexpression of NOB1 [NIN1 (RPN12) Binding Protein
1 Homolog] (70). miR-326 suppresses the antiapoptotic gene
BCL-2 in osteosarcoma and acts as a tumor suppressor
(71). BCL-2 is a major antiapoptotic marker that inhibits
the liberation of cytochrome C from mitochondria (72),
thus impairing the cleavage of the effector caspases CASP3
and CASP7.

SNHG1 also represses miR-577 and activates WNT/β-
catenin pathway (73). WNT2B, a member of WNT signaling
pathway, plays a significant oncogenic role in osteosarcoma
(73). Further research and details regarding the latest studies
on SNHG1 oncogenic function in malignant disease are
presented in Supplementary Table 1.

SMALL NUCLEOLAR RNA HOST GENE 3
(SNHG3)

SNHG3 is an oncogenic lncRNA that generates SNORD17 (74).
In osteosarcoma, SNHG3 overexpression facilitates cell

invasion and migration in vitro, through the inhibition of miR-
151a-3p (75) and miR-196a-5p (76).

In glioma, SNHG3 induces a more aggressive phenotype
through increased cell proliferation and apoptosis resistance
of malignant cells. SNHG3 interacts with the protein EZH2,
which determines the methylation of KLF2 (Krüppel-like Factor
2), and p21 gene promoters, which inhibit their transcription
through an epigenetic mechanism (40). KLF2 is a zinc-
finger transcription factor that activates CD4+ T cells (77).
As a tumor suppressor, KLF2 also impairs invasion and
stimulates apoptosis through down-regulation of MMP9 and
BCL-2 (78). P21 is a major tumor suppressor activated by
p53 in cancer. During cell cycle, p21 activates CDK4 (cyclin-
dependent kinase 4) and CDK6 (cyclin-dependent kinase 6),
resulting in transition of cells from G1 to S phase. During
S phase, however, it impairs the interaction between CDK2
(cyclin-dependent kinase 2) and cyclin E, hence stopping the
transition of cells from S to G2 phase. Moreover, in G2, P21
also functions as a disruptor of CDK1 (cyclin- dependent
kinase 1) and Cyclin B1 interaction, thus preventing mitosis
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initiation (79). In gastric cancer, SNHG3 binds to EZH2 and
epigenetically silence MED18 (Mediator Complex Subunit 18)
expression (41).

Furthermore, SNHG3 causes proliferation of colorectal cancer
cells by sponging miR-182 and allowing the overexpression
of the tumor promoting transcription factor c-MYC (80). In
hepatocellular carcinoma, SNHG3 is positively associated with
larger tumor size and relapse (81), in addition to Sorafenib
resistance, as a consequence of ceRNA activity on miR-128.
Further research and details on the role of SNHG3 in malignant
diseases are presented in Supplementary Table 2.

SMALL NUCLEOLAR RNA HOST GENE 5
(SNHG5)

SNHG5 is processed into SNORD 50 and SNORD50′ (82).
In SNHG5, overexpression increases the ability of breast

cancer cells to proliferate and go through cell cycle, by releasing
PCNA (proliferating cell nuclear antigen) from the inhibition of
miR-154-5p (83).

In bladder cancer, SNHG5 induces p27 silencing, followed by
enhanced proliferation rate and cell cycle progression, associated
with apoptosis inhibition (84). In chronic myelogenous leukemia
(CML), SNHG5 up-regulation stimulates imatinib resistance,
through down-regulation of miR-205 and up-regulation of
ABCC2 (ATP binding cassette subfamily C member 2) (85).
In CML patients with rare BCR-ABL variants, this microRNA
was found to be down-regulated in imatinib resistant patients
compared with imatinib responsive patients (86).

In gastric cancer, there are controversial results. One study
reported SNHG5 as an oncogene that stimulates cell proliferation
and migration, by sponging miR-32 and up-regulation of KLF4
(Krüppel-like factor 4) (87), while another study reported that
SNHG5 is a tumor suppressor, which interacts with MTA2
(metastasis associated 1 family member 2), and it impairs the
MTA2 translocation from the cytoplasm to the nucleus. The
overexpression of SNHG5 was also associated with a lower level
of MMP9 (metalloproteinase 9), MMP1 (metalloproteinase 1),
MMP13 (metalloproteinase 13), and EGFR (epithelial growth
factor receptor) (88). MTA2 is a major repressor of E-CAD; thus,
it stimulates EMT (89). MMPs are a class of metalloproteinases
that degrade non-cellular components of extracellular matrix,
such as collagen, gelatin, lamins, and others. The secretion of
MMPs helps malignant cells to degrade the basement membrane
from their site of origin and to get access to the local blood vessels
and lymphatic system (90).

In colorectal cancer, SNHG5 interacts with the SPATS2
(spermatogenesis associated serine rich 2) and increases its
stability by blocking the mRNA degradation in the cytoplasm,
caused by STATS2 mRNA interaction with STAU1 (staufen
double-stranded RNA binding protein 1) (82).

Through miR-26 sponging and up-regulation of TRPC3
(transient receptor potential channel 3), SNHG5 stimulates
melanoma cell growth. The exogenous knockdown of SNHG5
in melanoma cells in vitro decreases their proliferation rate and
invasive capacity, while it stimulated apoptosis (91). Further

research and details on the role of SNHG5 in malignant diseases
are presented in Supplementary Table 3.

SMALL NUCLEOLAR RNA HOST GENE 6
(SNHG6)

SNHG6 is the lncRNA of origin for U87 SNORD (92) and U88
small Cajal bodies (93).

SNHG6 has an oncogenic role in gastric cancer by promoting
cell growth, migration, and EMT-mediated invasion. These
effects are a consequence of miR-101 (94) and miR-26a sponging
(95). In colorectal cancer, the shRNA inhibition of SNHG6
causes increased level of miR-181a-5p and decreased level of
E2F5 (E2F transcription factor 5), a transcription factor, which
further decreases the number of colonies and invasive cells, as
well as cell cycle arrest during in vitro studies (96). SNHG6
sponging of miR-26a/b and miR-214 causes an increased level of
EZH2 (enhancer of zeste homolog 2), which further affects the
epigenetic landscape of the colorectal cells (97).

SNHG6 sponges miR-101 causing the EMT through up-
regulation of N-CAD and VIM and down-regulation of
E-CAD and β-catenin (94). By suppressing SOCS2 (suppressor
of cytokine signaling 2), miR-101 inhibits Helicobacter
pylori–induced gastric cancer tumorigenesis (98) and tumor
growth (99).

SNHG6 level has a positive correlation with disease
progression and formation of local lymph node metastasis
in the case of esophageal carcinoma (100).

In hepatocellular carcinoma, SNHG6 promotes cell cycle
progression and apoptosis evasion. miR-101 is targeted by
SNHG6, which further stimulates ZEB1 (zinc finger E-box-
binding homeobox 1) expression (101).

In osteosarcoma, SNHG6 exogenous suppression impairs
cell autophagy, apoptosis, colony formation, and invasion
through miR-26a-5p sponging, which results in ATF3 (activating
transcription factor 3) up-regulation. ULK1 (autophagy
activating kinase) is a positive up-stream regulator of SNHG6
(102). Further research and details on the role of SNHG6 in
malignant diseases are presented in Supplementary Table 4.

SMALL NUCLEOLAR RNA HOST GENE 7
(SNHG7)

SNHG7 is the origin for SNORA17 and SNORA43 (103).
SNHG7 is up-regulated in high grade bladder cancer. siRNA-

mediated inhibition of SNHG7 leads to decreased wound closure
speed in scratch assay, lower number of invasive cells in transwell
assay, and an increased intracellular level of the proapoptotic
marker BAX (Bcl-2-associated X protein), cell cycle inhibitor p21,
and anti-invasive adhesion molecule, E-cadherin (104), while
the expression of mesenchymal promoting proteins, namely, N-
cadherin, VIM, and SNAIL are increased (105). SNHG7 activity
in bladder cancer also extends to the activation of WNT/β-
catenin pathway (106). BAX is an important proapoptotic
marker. Its expression and activation are stimulated by p53
during apoptosis, when BAX is released from nucleus into
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the cytoplasm, where it binds to mitochondrial membrane.
This is followed by mitochondrial pore formation necessary
for the release of cytochrome C. BAX also directly interacts
and represses the antiapoptotic protein BCL-2 (107). During
WNT/β-catenin pathway activation, WNT protein binds to
Frizzled receptor and stimulates its interaction with the LRP6
(lipoprotein receptor related protein 6). This is followed by
accumulation and nuclear translocation of β-catenin. In the
nucleus, β-catenin disrupts the interaction between T cell factor
and lymphoid enhancer factor (TCF/LEF), thus stimulating
the transcription of genes involved in cell self-renewal and
proliferation capacity, necessary for tumorigenesis. In cancer,
different components of this pathway acquire gain-of-function
mutations (108).

In breast cancer, when comparing exogenous silencing of
SNHG7with controls, the following was observed: decreased self-
renewal capacity of malignant cells, lower number of invasive
cells during transwell assay, and smaller volume of xenograft
tumors. At the molecular level, SNHG7 silencing lowered VIM
and SNAIL level while increasing E-cadherin expression. SNHG7
overexpression leads to up-regulation of the antiapoptotic gene
Survivin and the cell cycle promoting gene, Cyclin D, through
the activation of Notch signaling pathway (109). In breast cancer,
SNHG7 acts as ceRNA for several tumor suppressor miRNAs:
miR-34a (109), miR-186 (110), and miR-381 (111).

Overexpression of SNHG7 stimulates the in vitro invasion
capacity of colorectal cancer cell lines. The siRNA mediated
silencing of SNHG7 increases cleaved PARP and cleaved Caspase
3 levels leading to apoptosis initiation. In vivo, colon cancer
cells transfected with SNHG7 siRNA form smaller tumors, in
comparison with negative control (112), while the overexpression
of SNHG7 causes increased liver metastasis from primary colon
tumors (113). In colon cancer, SNHG7 also targets miR-34a (112)
and miR-216b (113).

In both esophageal (114) and gastric cancer, this lncRNA
represses expression of p15 and p16, two tumor suppressors.
Consequently, it stimulates proliferation and cell cycle
progression and it inhibits apoptosis (114, 115).

In glioblastoma, SNHG7 induces proliferation, migration,
and invasion of malignant cells, by inhibiting miR-5095 and by
activating the WNT/β-catenin signaling pathway (116).

In hepatocellular carcinoma, inhibition of SNHG7 decreases
the invasion capacity of malignant cells. The protein expression
of RBM5 (RNA binding motif protein 5) was increased after
SNHG7 silencing (117).

In melanoma, SNHG7 is overexpressed in malignant tissue vs.
normal tissue. It increases cell invasion and migration capacity
through positive correlation with SOX4 (SRY-box transcription
factor 4) (118). miR-503, in prostate cancer, targets RNF31
and inhibits proliferation and metastasis (119). In prostate
cancer, this lncRNA represses miR-503 and leads to tumor
cell proliferation, cell cycle progression, and xenograft tumor
growth (120).

In lung cancer, SNHG7 stimulates proliferation, migration,
and invasion while inhibiting apoptosis through up-regulation of
FAIM2 (Fas apoptotic inhibitorymolecule 2) (121) andmiR-193b
sponging (122).

In neuroblastoma, it forms a positive feedback loop with
miR-653-5p and STAT2 (signal transducer and activator of
transcription 2), which sustains an aggressive phenotype of
malignant cells (123). Further research and details on the
role of SNHG7 in malignant diseases are presented in
Supplementary Table 5.

SMALL NUCLEOLAR RNA HOST GENE 12
(SNHG12)

From the introns of SNHG12, four different types of snoRNAs are
processed: SNORA44, SNORA61, SNORA16A, and SNORD99
(32). Latest studies show the SNHG12 up-regulation, and the
inhibition of tumor suppressor miRNAs, in many cancer types
(Supplementary Table 6).

SNHG12 has various biological functions through targeting of
cell proliferation, invasion, migration, and apoptosis. SNHG12 is
involved in different types of malignant diseases by targeting the
following microRNAs: miR-424-5p in cervical cancer (124), miR-
320 in gastric cancer (125), miR-199a-5p in renal cell carcinoma
(126), miR-199a/b in hepatocellular carcinoma (32), miR-199a/b
in gastric cancer (127), miR-138 in lung cancer (32), miR-
181a in lung cancer (128), miR-16-5p in thyroid carcinoma
(129), miR-129-5p in laryngeal squamous cell carcinoma (130),
miR-199-5p in renal carcinoma (126), and miR-195-5p in
osteosarcoma (131).

SNHG12 stimulates EMT in lung cancer by ceRNA
targeting of miR-218 (132), and mediates doxorubicin
resistance via miR-320a repression and MCL1 (MCL1
apoptosis regulator, BCL2 family member) up-regulation in
osteosarcoma (133).

In glioma, SNHG12 targeting of miR-101-2 leads to enhanced
cell growth (134), malignant progression via TDP43 (TAR DNA-
binding protein 43) (135), and enhanced proliferation/migration
capacity due to the association with the Hu antigen
R (136).

In cervical cancer, SNHG12 promotes proliferation, invasion,
and migration, by targeting miR-424-5p (124). This microRNA
acts as a tumor suppressor in cervical cancer, by down-regulation
of CHK1 (checkpoint kinase 1) gene (137) and up-regulation of
aprataxin, which leads to radiosensitivity (138).

SNHG12 activation of PI3K/AKT signaling pathway in
gastric cancer promoted cell proliferation, cell cycle progression,
and inhibition of apoptosis (139). SNHG12 stimulation of
PI3K/AKT pathway in colorectal cancer leads to cell growth
(140). PI3K/AKT is a signaling pathway that becomes activated
in response to growth factor stimulation. This signaling pathway
is a master regulator of cell activity, and it acts by inhibiting
p21, p53, and BAX, while activating the MDM2 oncogene
(141, 142).

SNHG12 inhibits miR-320 (125), which acts as a tumor
suppressor in gastric cancer, by lowering the expression of FoxM1
and P27KIP1 (143).

In hepatocellular carcinoma, SNHG12 induces miR-199a/b-
5p underexpression, which leads to the overexpression of MLK3
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(mixed-lineage kinase 3) and the stimulation of the NF-κB
pathway (32).

In the non-small cell lung cancer, SNHG12 acts as a
ceRNA for miR-138 (144) and miR-181a (128), causing
increased proliferation and colony-formation capabilities, as
well as impaired apoptosis (128, 144). MiR-138 is an inhibitor
of proliferation, autophagy, and metastasis (145). Its down-
regulation also leads to chemoresistance (146). MiR-181a hinders
lung cancer cell proliferation and migration by targeting CDK1
(cyclin dependent kinase 1) (147) and KRAS (148). According to
a recent meta-analysis, miR-181a is majorly linked to lung cancer
patient’s survival rate (149).

In osteosarcoma, SNHG12 causes increased cell proliferation
and migration as well as stimulated angiogenesis, through
up-regulation of AMOT (angiomotin) (150). In triple
negative breast cancer, it also leads to increased cell
proliferation, migration, and inhibited apoptosis, through
the stimulation of MMP13 and SNHG12 genes activated by
c-Myc (151).

SMALL NUCLEOLAR RNA HOST GENE 15
(SNHG15)

The SNHG15 is the origin for SNORA 9 (152).
The main molecular activity of SNHG15 is related to its

targeting of miRNAs, as follows: miR-141-3p in hepatocellular
carcinoma (153), miR-338-3p in prostate cancer (154), miR-211-
3p in lung cancer (155, 156), and miR-211-3p in breast cancer
(157). SNHG15 also leads to activation of NF-KB pathway in
renal cell carcinoma (158).

SNHG15 is involved in colorectal cancer cell proliferation and
migration via miR-141 (159) and miR-338-3p sponging (160),
along with up-regulation of AIF (Allograft Inflammatory Factor
1) (152), and activation of transcription factor SLUG (45). In
thyroid cancer, SNHG15 is a ceRNA for miR-510-5p (161) and
miR-200a-3p (162).

In osteosarcoma, SNHG15 promotes cell proliferation,
autophagy, and migration by acting as a ceRNA for miR-
141. The involvement of SNHG15 was also responsible for the
proliferation, autophagy, and invasion of osteosarcoma cells
(163). MiR-141 is a tumor suppressor in osteosarcoma, inhibiting
proliferation and activating apoptosis (164). In pancreatic cancer,
SNHG15 was found to be up-regulated and to suppress the
transcription of P15 andKLF2 (Kruppel Like Factor 2) by binding
to EZH2 and the subsequent methylation at the promoter region
of the histone 3 (H3K27me3) (165). This lncRNA is also involved
in stimulating the proliferation of endothelial cells from glioma.
SNHG15 silencing leads to down-regulation of VEGFA (vascular
endothelial growth factor A) and CDC42 (cell division cycle
42), both being proangiogenic genes (166). In gastric cancer,
this SNHG15 functions as a tumor promoter by up-regulating
MMP2 and MMP9, followed by stimulation of proliferation and
invasion (167).

In colorectal cancer, a new mechanism for SNHG15 was
found: this lncRNA binds to the zinc-finger domain of SLUG
and prevents its ubiquitination. The synchronous coexpression of

SNHG and SLUG leads to increased colon cancer cell migration
and tumorigenesis capacity (45). Further research and details
on the role of SNHG15 in malignant diseases are presented
in Supplementary Table 7.

SMALL NUCLEOLAR RNA HOST GENE 16
(SNHG16)

From the introns of SNHG16, the snoRD1A, snoRD1B, and
snoRD1C are generated (168). SNHG16 sponges miR-4518
and activates the PI3K/Akt pathway in glioma, thus causing
increased tumor cell proliferation and migration (169). In
esophageal cancer, SNHG16 maintains cancer cell viability,
impairs apoptosis, and enhances cell migration, by means
of miR-140 entrapment, which further results in ZEB1 up-
regulation (170).

In cervical cancer, the lncRNA SNHG16 is involved in cell
proliferation, apoptosis, and migration by down-regulating miR-
216 and up-regulating ZEB1 (171).

In breast cancer, SNHG16 is positively associated with
increased proliferation rate, apoptosis evasion, and cell cycle
progression through ceRNA binding of miR-98, followed by
E2F5 up-regulation (172). Moreover, this lncRNA also has the
potential to become a biomarker of early-stage pulmonary
malignancy, which is very difficult to diagnose with currently
available methods (173). In ovarian cancer, SNHG16 increases
malignant cell migration capacity through phosphorylation-
mediated activation of AKT (AKT serine/threonine kinase 1)
and overexpression of MMP9 (174). Further research and details
on the role of SNHG16 in malignant disease are presented
in Supplementary Table 8.

SMALL NUCLEOLAR RNA HOST GENE 20
(SNHG20)

The SNHG20 has 2183 nt (175), and its introns encode for
SCARNA16 (176). The SNHG20 is up-regulated in colorectal
cancer, hepatocellular cancer, lung cancer, ovarian cancer, and
breast cancer. This lncRNA was proven in many studies to
interact with p21 (Supplementary Table 9).

SNHG20 down-regulates p21 and E-cadherin in ovarian
cancer (177), activates STAT6 in hepatocellular carcinoma
(178), represses miR140 in laryngeal squamous cell carcinoma
(179), modulates ATM (ataxia telangiectasia mutated)–JAK
(janus kinase 2)–PD-L1 (programmed death-ligand 1) pathway
in esophageal carcinoma (180), up-regulates TGF-B1 in
nasopharyngeal carcinoma (181), and enhances EMT and
apoptosis via miR-139 -RUNX2 (runt-related transcription
factor 2) in osteosarcoma (182, 183). In breast cancer, SNHG20
causes miR-495 sponging (184), while in oral cancer, it induces
cell proliferation via down-regulating PCNA and Ki67 (185) and
via targeting miR-197/LIN28 axis (186).

SNHG20, like all SNHG transcripts, is involved in many
biological processes, such as: cell proliferation, cell cycle
progression, tumorigenesis, apoptosis evasion, and resistance
to therapy.
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In gastric cancer, it inhibits p21 expression (187), it can
interact with miR140-5p to induce resistance to therapy (188), or
it can sponge miR-495-3p in order to enhance cell proliferation
(189). In ovarian cancer, SNHG20 can activate WNT/β-catenin
signaling pathway, which promotes cell proliferation (190).

SNHG20 supports glioma cell survival by sponging miR-4486
and up-regulating MDM2-p53 pathway (191), and silencing p21
(192). This lncRNA is also involved in vasculogenic mimicry,
a process of pseudo-vascular formation in highly aggressive
cancers, via enhancement of ZRANB2/SNHG20/FOX1
axis (193).

SNHG20 promotes gastric cancer by stimulating cancer cell
proliferation, cell cycle progression, invasion, and migration.
This is done by down-regulating the expression of the p21 and by
activating GSK-3β/β-catenin signaling pathway (187). In ovarian
cancer, the overexpression of this lncRNAs also leads to enhanced
proliferation and invasion through the activation of the WNT/β-
catenin signaling pathway (194).

A number of proinvasion proteins such as ZEB1, ZEB2, N-
CAD, and VIM are positively correlated with SNHG20, thus
leading to stimulated cell cycle progression, proliferation rate,
and migration capacity hepatocellular carcinoma (195) and
breast cancer (184).

In lung cancer, SNHG20 overexpression causes increased
cell proliferation, invasion, and migration capacity, by changing
the DNA methylation pattern, after interaction with EZH2
and epigenetic repression of p21 (175). p21 is suppressed by
SNHG20 in colorectal cancer, where it stimulates cyclin A1,
leading to intensification of proliferation and migration (196)
P21 is classically considered as a tumor suppressor, being
involved in the downstream pathway of the p53 cell cycle
arrest and in the assembly of cyclin D-CDK4/CDK6. However,
when p53 is dysregulated or when p21 acquires mutations, it
becomes an oncogene (197). Further research and details on
the role of SNHG20 in malignant diseases are presented in
Supplementary Table 9.

SNHGs are overexpressed from the malignant transformation
of a normal cell to the installment of metastasis. They
sustain replicative immortality, speeding up of proliferation
rate, resistance to programmed cell death, tumor growth,
neoangiogenesis (and in some instances vascular mimicry),
local invasion, migration, and formation of metastasis. The
overall representation of different SNHGs’ involvement in cancer
initiation and progression is found in Figure 2.

FUTURE APPLICATIONS BASED ON
CURRENT KNOWLEDGE-DISCUSSIONS

Through our research of literature, we identified that the general
activity of SNHGs inmalignant disease is related to stimulation of
the following malignant processes: EMT, invasion, proliferation,
cell cycle progression, and apoptosis evasion. The most common
signaling pathways activated by SNHGs are: WNT/β-catenin (67,
198) andmTOR/PI3K/AKT (199–201). SNHGs also influence the
NF-kB (202) and Hippo signaling pathways (203); however, more

data are needed to include these two pathways in the general
mechanisms of SNHG activity (Figure 3).

The oncogenic role of SNHGs in malignancies is supported
by solid scientific data. These ncRNAs act on multiple levels to
induce a more aggressive phenotype of cancer cell, and their
overexpression is correlated with lower overall and progression-
free survival. There are a number of meta-analyses that
offer additional support in favor of bringing the research of
SNHGs into clinical trials. SNHG16 is associated with advanced
clinicopathological features and worse overall survival in the case
of malignancies located in the lung, ovaries, cervix, bladder, and
esophagus (204). SNHG1 has a progressive increase in expression
correlated with disease progression in the case of the following
tumor localizations: lung, esophagus, bone, brain, stomach, liver,
and colon. A high level of SNHG1 is associated with poor overall
and disease-free survival in all of these malignancies (205–207).
SNHG6 leads to worse prognosis and a propensity of distant
metastasis formation (208).

The oncogenic activity of SNHGs can be impaired by the
temporary silencing of SNHGs at RNA level with the help of
RNA interference (194, 209) or the permanent deletion of these
lncRNAs in cancer cells through genome editing techniques
(152, 210).

A careful evaluation of the SNHGs inhibition in normal cells
would be extremely useful in evaluating the potential druggability
of SNHGs. From what we know so far, the downstream
effect of SNHG inhibition on their corresponding snoRNAs-
miRNAs/piRNAs will be dependent on the type of change: knock
out or knockdown. SNHGs are targeted through permanent
changes at the DNA level through gene therapy. This is a
desired effect if the therapy is carefully monitored to have high
specificity for tumor cells and to avoid normal cells. In normal
cells, snoRNAs have essential physiological functions in rRNA
and mRNA processing. A recent study has already evaluated
the ability of the CRISPR/Cas9 to target protospacer adjacent
motifs (PAMs) located in the structure of snoRNAs from the
same SNHG, GAS5. The induced mutations affected specifically
the ability to form secondary Kink-turn structure in each SNORD
(SNORD74, SNORD77, and SNORD80). Moreover, the editing
of PAM located in the D’ box of SNORD75 affected the alternative
splicing of SNHG, thus showing that snoRNAs can modulate the
alternative splicing of their SNHG of origin by affecting the m6A
methyltransferase complex (211). A better alternative to genome
editing is the temporal inhibition of SNHGs through siRNAs.
This is also the main therapeutic strategy evaluated across
various studies. For instance, in renal cell carcinoma, the RNAi
silencing of SNHG15, in vitro, led to decreased proliferation,
invasion, and migration capacity (158). The silencing of SNHG1
in colon cancer cells lowered their malignant potential (212).
The knockdown of SNHG6 in glioma causes a reduced growth
rate of treated cells (213). The SNHG inhibition can reverse
chemotherapeutic resistance, as in the case of sorafenib and
SNHG1 (200). However, because of their ability of acting as
ceRNAs for miRNAs (214) or being the primary transcript for
various snoRNAs, piRNAs, and miRNAs, the down-stream effect
of SNHG therapeutic modulation would be very difficult to
predict and control, especially in case of non-specific targeting
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FIGURE 2 | The SNHGs’ involvement in the following malignant processes: replicative immortality, sustained proliferation, angiogenesis, resisting cell death, invasion,

and metastasis and tumor growth. All SNHGs promote tumor development and progression.

of tumor cells. For instance, we still don’t know whether siRNA
silencing of SNHGs affects the downstream levels of snoRNAs-
piRNAs/miRNAs originated from the targeted SNHG.

CONCLUSION

Because of the versatility and function in the majority of
cancers, SNHGs are becoming increasingly important for
molecular research in cancer. The data on these non-coding
RNAs are abundant, and the validation of their role in the
progression and severity of malignant diseases has been made
clear during the last year. However, a general overlook on
these lncRNAs is still lacking as well as a better understanding
of their influence at the molecular level. The majority of
SNHGs (SNHG1, SNHG12, SNHG20, SNHG15, SNHG16,

SNHG3, SNHG5, SNHG6, SNHG7) function by sponging tumor-
suppressing microRNAs, allowing the oncogene transcripts to
be expressed. The SNHGs can also cause epigenetic alterations
in the genome, transcription initiation through interaction
with transcription factors, direct binding and up-regulation
of mRNAs and extension of protein life through prevention
of ubiquitination. SNHGs also activate the signaling pathways
commonly involved in cancer development and progression,
such as Wnt/β-catenin and mTOR/PI3K/AKT. The SNHGs have
the potential to act as cancer biomarkers or even therapeutic
targets because of their ability to retain the tumor suppressor
microRNAs. The studies on SNHGs increase by the day,
and these classes of non-coding RNAs might constitute the
next miRNAs in the field of molecular oncology. However,
intrapopulation heterogeneity is still a matter of concern
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FIGURE 3 | Chord plot representing the most frequently modulated genes by SNHGs. These are: BAX (Bcl-2-associated X protein), CASP3 (caspase 3), CASP9

(caspase 9), CCND1 (cyclin-D1), CDH1 (E-cadherin), CDH2 (N-cadherin), CDK4 (cyclin-dependent kinase 4), CDK6 (cyclin-dependent kinase 6), MAPK8

(mitogen-activated protein kinase), MMP2 (metalloproteinase 2), NOTCH1 (Notch homolog 1), PARP1 (poly [ADP-ribose] polymerase 1), PIK3CA

(phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha), SNAI1, STAT3 (signal transducer and activator of transcription 3), TP53, AKT1 (AKT

serine/threonine kinase 1), CDH5 (vascular endothelial cadherin), CTNNB1 (beta-catenin), EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit), MMP9

(metalloproteinase 9), SNAI2 (snail family transcriptional repressor 2), TWIST1, mTOR, VIM (vimentin), and ZEB1 (zinc finger E-box binding homeobox 1). These are

associate in a different degree to the most frequently dysregulated cellular processes in cancer: invasion, EMT, cell cycle, and apoptosis. SNHGs also act by activating

two major signaling pathways: WNT/β-catenin and mTOR/PI3K/AKT.

in the analysis of every transcript as biomarker and more
data are needed considering especially that there are some
reports, even if scarce, on the role of these lncRNAs acting
as tumor suppressors. More analysis should also be done on
regulatory mechanism at DNA and protein level and SNHGs
stability maintenance in the disadvantage of snoRNAs, although
data present a positive correlation between SNHGs and their
corresponding snoRNAs.
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