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Abstract: Tryptophan (TRP) is an essential dietary amino acid that, unless otherwise committed to
protein synthesis, undergoes metabolism via the Tryptophan-Kynurenine (TRP-KYN) pathway in
vertebrate organisms. TRP and its metabolites have key roles in diverse physiological processes
including cell growth and maintenance, immunity, disease states and the coordination of adaptive
responses to environmental and dietary cues. Changes in TRP metabolism can alter the availability
of TRP for protein and serotonin biosynthesis as well as alter levels of the immune-active KYN
pathway metabolites. There is now considerable evidence which has shown that the TRP-KYN
pathway can be influenced by various stressors including glucocorticoids (marker of chronic stress),
infection, inflammation and oxidative stress, and environmental toxicants. While there is little known
regarding the role of TRP metabolism following exposure to environmental contaminants, there is
evidence of linkages between chemically induced metabolic perturbations and altered TRP enzymes
and KYN metabolites. Moreover, the TRP-KYN pathway is conserved across vertebrate species
and can be influenced by exposure to xenobiotics, therefore, understanding how this pathway is
regulated may have broader implications for environmental and wildlife toxicology. The goal of
this narrative review is to (1) identify key pathways affecting Trp-Kyn metabolism in vertebrates
and (2) highlight consequences of altered tryptophan metabolism in mammals, birds, amphibians,
and fish. We discuss current literature available across species, highlight gaps in the current state
of knowledge, and further postulate that the kynurenine to tryptophan ratio can be used as a novel
biomarker for assessing organismal and, more broadly, ecosystem health.

Keywords: tryptophan; kynurenine; metabolites; glucocorticoids; stress; inflammation; oxidative
stress; toxicants; environmental contaminants; biomarker

1. Introduction

The aromatic amino acid L-tryptophan (TRP) is one of nine essential amino acids
required by all living organisms for protein synthesis. Although bacteria, fungi and plants
can synthesize TRP from phosphoenolpyruvic acid via the shikimate pathway [1], verte-
brates must obtain TRP from dietary sources [2,3], such as plants and plant products (i.e.,
fruit, nuts, oats, chocolate) and other animals and animal products (i.e., fish, turkey, dairy).
In addition to its role in protein synthesis, TRP is the precursor of the monoaminergic
neurotransmitter, serotonin (5-hydroxytryptamine, 5-HT) [2–5]. 5-HT is known to regulate
behaviour and adaptive responses towards environmental stress. These responses include
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mood (anxiety) [6–8], cognition [9,10], nociception, aggressiveness, appetite [11,12], and
temperature homeostasis [13]. Furthermore, there is evidence that 5-HT and its deriva-
tive melatonin regulate reproductive processes in vertebrates through the hypothalamo-
hypophyseal system and by direct effects on reproductive organs [14–16]. Although the
role of TRP and its metabolites may differ among mammals, birds, and fish, all vertebrates
produce 5-HT in the central nervous system [4,5,17–19]. More recently, peripheral 5-HT
synthesis and signaling has been identified in mammals [20,21] and fish [15,22]. Peripheral
5-HT has been reported to modulate gonadal hormone secretion, immune and inflamma-
tory responses, and metabolic homeostasis in the gut [4,23]. Although TRP is a critical
precursor for serotonin synthesis, only 1–2% of dietary TRP is converted to 5-HT; approxi-
mately 95% of dietary TRP is metabolized through the tryptophan-kynurenine (TRP-KYN)
pathway [3].

1.1. Tryptophan Metabolites

The kynurenine (KYN) pathway of TRP metabolism produces biologically active metabo-
lites involved in inflammation, immune responses, and excitatory neurotransmission [3,24,25].
The first step involves the oxidation of the indole ring and is catalyzed by two enzymes
that are differentially distributed: tryptophan 2,3-dioxygenase (TDO) (predominantly ex-
pressed in the liver and brain) and indoleamine 2,3-dioxygenease (IDO) (expressed in most
peripheral tissues) [3,26,27] (Figure 1). These heme-containing enzymes are structurally dis-
tinct proteins that have evolved to catalyze the conversion of TRP to N-formylkynurenine.
N-formylkynurenine is rapidly converted to KYN by N-formylkynurenine formamidase. At
this point, KYN metabolism can follow one of two branches: (1) it can be metabolized to
kynurenic acid (KYNA) and anthranilic acid (AA) via kynurenine aminotransferase (KAT)
and kynureninase (KYNU), respectively, or (2) it can be converted to the neurotoxic and
free-radical generator 3-hydroxykynurenine (3-HK), which is further transaminated to xan-
thurenic acid (XA). KYNU catalyzes the hydrolysis of 3-HK to form the immunomodulatory
and free-radical generator 3-hydroxyanthranilic acid (3-HAA), which can spontaneously
transform to nicotinic acid (NIC) via 3-hydroxyanthranilate 3,4-dioxygenase (3-HAAO) or be
completely oxidized to carbon dioxide (CO2). Initially, 3-HAAO converts 3-HAA to the unsta-
ble intermediate 2-amino-3-carboxymuconic semialdehyde (ACMS), which spontaneously
rearranges to the excitotoxin and N-methyl-D-aspartate (NMDA) receptor agonist quinolinic
acid (QUIN) or is further converted to the neuroprotective picolinic acid (PIC) after enzymatic
decarboxylation via 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD).
QUIN is decarboxylated to form NIC, the NAD+ coenzyme precursor. QUIN is also the
substrate for quinolinate phosphoribosyltransferase (QPRT), which initiates several metabolic
steps to ultimately produce the essential cofactor, NAD+ [3,4,25].

1.2. Kynurenine Metabolites as Biomarkers of Human Disease

TRP and its metabolites have key roles in diverse physiological processes such as
cell growth and maintenance (where TRP serves as a building block for proteins) and
the coordination of adaptive responses to environmental and dietary cues (where TRP
metabolites serve as neurotransmitters and signaling molecules). For example, many KYN
metabolites are neuroactive and are considered cytoprotective (such as KYNA) or cytotoxic
(such as 3-HK, 3-HAA, QUIN, and NIC) [3,28]. These effects are highly dependent on the
accumulation of metabolites within specific tissues [Reviewed In: [29]]. KYNA acts as an
antagonist to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), NMDA and
kainate glutamate receptors, while QUIN acts as an NMDA receptor agonist [30,31]. NAD+

is an important coenzyme in many energy metabolism pathways including glycolysis,
β-oxidation, and oxidative phosphorylation [32], and picolinic acid modulates immune
function and antimicrobial activity [33].
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Figure 1. Key enzymes regulating TRP metabolism. The pathway depicting key regulators and
targets that play a role on the TRP metabolism with a connection to KYN and 5-HT. Figure created on
biorender.com.

Over the past 15 years, there has been increasing interest in the role of KYN metabolites
in human disease models (Table S1). Indeed, altered levels of TRP-KYN pathway metabo-
lites have been reported in aging and sleep disorders [34,35], metabolic syndrome [23,24,36],
cardiovascular disease [37,38], cancer [39], autoimmune disease [40–42], anxiety and depres-
sion [6,7], neurodegenerative diseases [30], as well as obesity, anorexia and bulimia nervosa,
and other diseases presenting peripheral symptoms [19,42]. Changes in TRP metabolism
can alter the availability of TRP for protein and 5-HT biosynthesis and dysregulate the
levels of immuno- and neuro-active KYN metabolites. Recently, research has begun to
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assess KYN metabolites as biomarkers to many neuro- and immune-associated illnesses,
including Alzheimer’s Disease [43–45], ALS [46], and Major Depressive Disorder [47].

1.3. Objective of Study

However, to assess KYN enzymes and metabolites as markers of altered homeostasis,
it is critical to understand and appreciate the integration of TRP catabolism. KYN pathway
activation, enzymatic activity, and metabolite formation and function is dependent on
exogenous stimuli and endogenous ligand binding. There is now considerable evidence
showing that the KYN pathway of TRP metabolism can be influenced by various stressors
including glucocorticoids (GCs) [24,47–51], infection [52–56], inflammation and oxidative
stress [57–63], and environmental contaminants [3,64–66].

Importantly, the TRP-KYN pathway is conserved across vertebrate species, under-
standing how this pathway is regulated may have broader implications for environmental
and wildlife toxicology. In mammalian species and birds with monogastric systems includ-
ing duck (Anatidae) and chicken (Gallus gallus), the KYN pathway is the central catabolic
route for TRP’s indole ring [2,3]. As reviewed by Ball and colleagues [67], the genes of the
major TRP catabolizing enzymes IDO and TDO have undergone gene duplications leading
to multiple isoforms of IDO. For example, all mammals have two IDO genes (IDO1 and
IDO2) via gene duplication, whereas fish and amphibians have IDO2-like genes. Inter-
estingly, while IDO and TDO enzymes show functional convergence, TDO has a higher
catalytic efficiency for TRP catabolism, and as such, its conservation across metazoans
and vertebrates is clear [27]. More importantly, the expression of these enzymes differ
across species by tissue/organ/cellular localization, by enzymatic characteristics, signaling
properties, and by biological function following induction by distinct stimuli [27,67].

The goal of this narrative review is to identify (1) key pathways affecting TRP-KYN
metabolism in vertebrates and (2) consequences of altered TRP metabolism in mammals,
birds, amphibians, and fish. We provide evidence of studies linking exposure to environ-
mental contaminants and altered TRP-KYN metabolites, which contribute to a range of
adverse health outcomes. Furthermore, we postulate that alterations in TRP metabolism,
KYN metabolites, and the TRP:KYN ratio may be an indication of exposure to environ-
mental contaminants. Thus, we suggest that levels of KYN metabolites and the TRP:KYN
ratio can be used as a novel integrative biomarker for assessing organismal exposure to
environmental contaminants and, more broadly, ecosystem health.

2. Methods

A literature search was conducted in NCBI using MeSH on “Tryptophan” OR “Kynure-
nine” AND the terms: “Glucocorticoids”, “Stress, Physiological”, “Infections”, “Inflam-
mation”, “Oxidative Stress”, “Environmental Pollution/adverse effects”, “Environmen-
tal Pollution/genetics”, “Environmental Pollution/immunology”, “Environmental Pol-
lution/metabolism”, “Environmental Pollution/pathogenicity”, “Environmental Pollu-
tion/pathology”, “Environmental Pollution/physiology”, “Environmental Pollution/phys
iopathology”, and “Environmental Pollution/toxicity”. Collectively, between the years
1970–2021, a total of 1959 publications were identified. From these, we selected publica-
tions that specifically identified changes in key cellular/physiological pathways that led to
alterations in TRP-KYN metabolites in vertebrates (i.e., mammals, birds, fish, amphibians),
and publications that identified altered tryptophan metabolites and their physiological
consequences. A total of 265 papers were selected, and of those 185 were used in this review
to focus on (1) glucocorticoids and stress, (2) infection, inflammation, and oxidative stress
and (3) environmental contaminants. The break down by species and by physiological
processes/pathways is depicted in Figure 2.
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An additional screening was completed to identify enzyme and metabolite presence
across vertebrate animal kingdoms (Figure 3). Both gene detection (i.e., PCR of mRNA,
RNA, and DNA) and protein levels (i.e., HPLC, LC, MS, Western Blots) were method-
ologically screened using literature searches and databases. Gene data was collected
through PubMed and NCBI searches specified for “gene name” (i.e., IDO, TDO, TPH,
KYN, KYNA etc.) AND “homo sapiens” OR for mammals [“mammal”, “rat”, “mouse”,
“rabbit”] OR for fish [“fish”, “medaka”, “salmon”, “trout”, “carp”] OR for birds [“bird”,
“pigeon”, “chicken”], OR for amphibians [“amphibian”, “frog”]. It is important to note
that when screening for enzyme and gene names, all isoforms of IDO and KAT were
identified and used as “gene name”. If genomic information was present, it was considered
“detected”. For protein levels, the UNIPROT database was screened with “kingdom” (i.e.,
mammal, bird, fish, frog, amphibian) and “Enzyme Name”. Entries were then confirmed
by identifying protein name, organism, and whether or not it was reviewed (Swiss-Prot)
or unreviewed (TrEMBL, computational curation). If it was reviewed, it was considered
“detected”. If it was unreviewed, a PubMed and NCBI check was conducted, using MeSH
terms for “Enzyme Name”, selecting “Other Animals” and a species name if needed (e.g.,
Gallus gallus). If an enzyme was unreviewed, and PubMed and NCBI identified primary
articles that showed protein levels of the enzyme, it was considered “detected”. If an
enzyme was unreviewed and no additional information could be found, it was considered
“orthologs may be present but have not been confirmed”. If no information was found,
it was considered “unknown”. Metabolites could not be screened using UNIPROT, so
literature data was used primarily to identify the presence across animal kingdoms.
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information could be found yet, it was considered unknown and labelled white.

3. Discussion

In the following sections, we discuss critical stress-inducing pathways that may play
a role in driving TRP metabolism down the KYN pathway. As the TRP-KYN pathway
is altered in response to glucocorticoids and chronic stress, infection, inflammation, and
oxidative stress, and environmental toxicants, and these stressors are ubiquitous phe-
nomenon across animal kingdoms, we explore the current literature available with regard
to mammals, birds, fish, and amphibians.

3.1. Glucocorticoids and Chronic Stress

Glucocorticoids (GCs) are hormones of the endocrine system responsible for regu-
lating stress responses. GCs are modulated by the hypothalamic-pituitary-adrenal (HPA)
axis through the release of tropic hormones and negative feedback regulation. Although
GCs exhibit circadian variation, they can be induced in response to physical, chemical,
and psychological stressors. The molecular mechanism begins with the binding of GCs
to the nuclear glucocorticoid receptor (GR), which functions as a transcription factor and
modulates downstream gene expression. In general, increased GC signaling has anti-
inflammatory and immunosuppressive activity. When responding to stress, the body
mobilizes energy through sympathetic activation, which governs the “fight-or-flight” re-
sponse. For this reason, the stress response sits at the interface of neuroendocrine, immune,
and behavioural systems.

The degree of the stress response often depends on the duration and intensity of the
stressor. Acute, immediate stress responses tend to be protective and allow an organism to
adapt to a changing environment [63,68]. Conversely, chronic, prolonged stress activation
can lead to the accumulation of wear-and-tear on physiological systems and result in
impaired health outcomes. For this reason, it is important to manage the balance between
protective and damaging stress responses. In environmental toxicology, biomarkers such
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as metabolic cytochrome P450 (CYP) enzymes and heat shock proteins are often used as
indicators for exposure to acute stressors and environmental insults [69]. Not only are these
markers sensitive to contaminants and inexpensive for use in field monitoring, they are
reliable in a wide variety of organisms. While acute stress-induced GC increase in plasma
is associated with increased 5-HT production through TRP hydroxylase activity, chronic
stress reduces 5-HT turnover and release and favours the KYN pathway [7]. Given the role
of the TRP-KYN pathway in stress responses, its metabolites and enzymes may be useful
biomarkers for stress across species.

It is generally accepted that GCs increase the expression and activity of hepatic TDO
in rats and mice [29,70–73]. GC signaling involves de novo synthesis of TDO at the
transcriptional level, which is mediated by GC-responsive elements on the promoter region
of TDO [72,73]. TDO activity can be increased through substrate activation by TRP and
cofactor activation by heme, neither of which involve de novo synthesis. Chronic stress
responses, which involve both HPA signaling and sympathetic activation, increase the
metabolism of TRP to KYN by TDO, which reduces the availability and transport of TRP to
the brain [3] for 5-HT production. While IDO expression is not directly induced by GCs,
HPA tropic hormones and/or stress can increase the expression and activity of IDO. This
has been shown in the hippocampus of mice treated with adrenocorticotropic hormone [74],
and in the serum and frontal cortex of rats exposed to chronic mild stress [75,76]. Some
studies have suggested that TRP uptake into the brain is increased with acute stress and
HPA activation. For example, in rats, foot shock stress increased levels of TRP, KYN, KYNA,
and 3-HK in the brain. Similarly, acute stress induced by physical restraint in mice increased
TRP metabolism to KYN in the brain and plasma, along with an increase in IDO1, IDO2,
and TDO2 [77]. Moreover, following exposure to a novel stressor, brain TRP and KYN
levels were raised in mice with no change in the TRP:KYN ratio and a reduction in the
5-HT:TRP ratio [78]. This suggests that while brain TRP levels increase with stress, brain
IDO activity may also be induced, which increases KYN levels and shifts metabolism away
from the 5-HT pathway [5].

Stress-induced alterations in TRP metabolism in the brain and periphery in mammals
can also be due to an interaction between the immune system and the HPA axis [78]. Expo-
sure to stressors induces the release of proinflammatory cytokines, which further activate
the HPA axis. For example, proinflammatory interleukin-1 (IL-1) is a potent stimulant for
corticotropin releasing hormone (CRH) synthesis. By increasing CRH levels, GC production
can be increased. Additionally, the proinflammatory cytokine interferon-gamma (IFN-γ)
induces IDO expression in hypothalamic and pituitary neurons, which produce 3-HK and
QUIN [78]. Induction of IDO by IFN-γ can be potentiated by dexamethasone, which has
no effect when administered alone in human monocytes [79]. In mice, stimulation of the
HPA axis through immune activation by IL-1 and lipopolysaccharide has been shown to
increase brain TRP levels. However, since stress-induced changes in brain TRP levels occur
in adrenalectomized rats and mice, this is not necessarily dependent on adrenocortical
activation [78]. Similarly, Rose et al. (2020) reported increased KYN and decreased TRP
levels in plasma, and decreased expression of monoamine oxidase A (MAOA) following
exposure to ozone; the addition of metyrapone, a GC inhibitor, was able to reverse the
effects of ozone on MAOA and kynurenine monooxygenase (KMO), but did not change
the effects on TRP and KYN levels [80]. Interestingly, it has been shown that GC release
is inhibited with increased KYNA levels in some areas of the central nervous system [81].
Furthermore, the enol tautomer of indole-3-pyruvic acid (IPA), another metabolite in the
TRP-KYN pathway, has been reported to reduce plasma GC levels and GR activity in the
hippocampus following repeated stress [81]. Taken together, these data suggest that stress
plays a key role in mammalian TRP-KYN metabolism through both GC-dependent and
-independent mechanisms.

There is little known regarding the molecular effects of stress on the regulation of the
TRP-KYN pathway in birds. However, in avian species, the TRP-KYN metabolic pathway is
associated with undesirable behavioural patterns. For example, when chickens were under
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socially disruptive stress due to housing changes and manual restraint, it was found that
increased destructive feather-pecking behaviour was associated with decreased plasma
TRP:KYN ratios. In the same study, the socially disrupted group had gained more weight.
Since plasma metabolite levels can vary with food intake, and stress can either increase or
decrease feeding behaviours, it is unclear whether the observed results were due to a stress
response or increased food intake [82]. Similar to rats, it was found that chickens with a
TRP-supplemented diet showed reduced aggressive behaviour such as feather pecking;
however, it is not clear if this is due to alterations in TRP-KYN pathway metabolites or
increased 5-HT production [82].

In fish, stress responses involve the release of catecholamines from chromaffin tissue
in the head, kidney and adrenergic nerves, as well as cortisol from the interrenal tissue
into the circulation. Chronic, prolonged stress responses can lead to metabolic dysfunc-
tion and immunosuppression, which are characteristic of HPA hyperactivity [83]. The
majority of work in fish has focused on the impact of TRP-supplemented diets on stress
response reduction [84–89]. For example, studies in meagre (Argyosomus regius), rain-
bow trout (Oncorhynchus mykiss), Sengalese soles (Solea sengalensis kaup), Atlantic salmon
(Salmo salar) and Atlantic cod (Gadus morhua) species have investigated the effects of a
TRP-supplemented diet and chronic stress on TRP-KYN metabolism. Chronic stress in
fish fed a control diet did not affect brain levels of 5-HT or TRP concentrations, but liver
TRP, KYN, and QUIN were increased; in fish given a TRP-supplemented diet, brain 5-HT
and liver TRP were reduced, and hepatic KYN and QUIN were increased [84]. Similarly,
Wish et al. (2022) have found increased KYN levels in the brain and liver of rainbow trout
following exposure to an acute stressor [90]. Taken together, this suggests that the KYN
pathway is enhanced in stressed fish, regardless of diet.

Across species, it appears that mammals, birds, and fish have similar responses to
stress with respect to changes in TRP-KYN metabolism (Figure 4). Increased GC and cate-
cholamine signaling, which are characteristic of stress responses, elevate TRP metabolism
through the KYN pathway, as indicated by the levels of downstream metabolites. While
it is generally accepted that this occurs through hepatic TDO induction in mammals, the
molecular mechanism is not yet clear in other vertebrate species. In bird and fish species,
TRP-enhanced diets have been shown to reduce stress-induced plasma GC levels and
aggressive behaviours.

3.2. Infection, Inflammation and Oxidative Stress

In all species, there is an interaction between the neuroendocrine and immune systems.
Both immune and endocrine cells share common receptors, and different hormones and
cytokines are involved in many of the same physiological processes. TRP functions similarly
in all higher vertebrates to regulate (1) the activation, proliferation, and migration of
immune-surveillant cells (i.e., T- and B-lymphocytes, macrophages, and natural killer cells)
and (2) the production of inflammatory signaling molecules, cytokines, nitric oxides and
superoxides (Figure 5). In mammals, KYN metabolites are reported to be involved in
inflammation, immune response, and excitatory neurotransmission [24]. In recent years,
metabolites including KYN, KYNA, and QUIN are emerging as key targets in diseases
such as diabetes, HIV [91], atherosclerosis [92], neurodegenerative diseases including
schizophrenia, Alzheimer’s and Huntington’s [93–95], and cancer [24,96]. Primarily, these
pathologies converge on inflammatory events which include target organ infiltration of
circulating immune cells, activation of pro-inflammatory signaling pathways, expression of
cytokines [24]/chemokines [97], and the production of reactive oxygen species (ROS) [92].
Recent studies have reported that TRP deficiencies result in immunosuppression and a
significant increase in the susceptibility of humans [60], pigs, and teleost fish [98] to disease,
infection, morbidity, and mortality. As such, the TRP-KYN pathway is recognized as an
important player in inflammation and immune response [94,99].
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Of the rate-limiting enzymes in the TRP-KYN pathway, the IDO enzymes are known
to play a role in modulating infection and autoimmunity [100]. In fact, the biological role
of IDO on the infiltration of circulating immune cells has been coined the TRP-depletion
hypothesis; IDO suppresses microbial infection by reducing TRP availability in infected
tissues [101,102]. Furthermore, IDO is highly regulated by superoxides and inflammatory
mediators, where its expression is increased by IFN-γ[102–105], tumor necrosis factor-
alpha (TNFα) [105,106], tumour growth factor-beta (TGF-β) [96], interleukins 1-beta, 2,
12, 18 (IL1β, IL2, IL12, and IL18) [96], and prostaglandins (PGE2) [105,107,108], as well
as pathogenic infections including parasites, viruses, and bacteria. Downstream of IDO
activation, the metabolite KYNA promotes monocyte extravasation and IL6 production
and controls cytokine release [24,109], while the metabolite 3-HAA can induce apopto-
sis in T-cells through glutathione depletion [110]. In line with this, high KYN levels
can increase the proliferation and migratory capacity of cancer cells and aid tumours in
evading immune surveillance. In addition, KYN metabolites can then act via the aryl
hydrocarbon receptor (AhR) to mediate T-cell anergy and apoptosis, proliferation of T-
regulatory and T-helper(Th)17 cells, and the Th1/Th2 response [100]. Similarly, KYN
metabolite KYNA has also been found to activate human, mouse, and rat GPR35—a G
protein-couple receptor with orthologs found in a variety of mammals and one amphibian
species (Xenopus tropicalis). While KYNA has been found to be an endogenous activator
of GPR35 in humans and rats altering immune responses in inflammation, pain, cancer,
cardiovascular disease and energy homeostasis [Reviewed In: [111]], its role as an activator
of GPR35 in other species remains unknown.

There is increasing evidence that IDO’s role in immune function may begin in gestation.
Histochemical studies of the human decidua have reported alterations in the expression
of IDO and KMO throughout pregnancy. In the first trimester, IDO and KMO expression
is present in stromal and glandular epithelial cells of the decidua. In both the first and
second trimester placenta, they become localized to the syncytiotrophoblast, stroma, and
macrophages before shifting to fetal endothelial cells and macrophages in terminal villi
of term placenta [112–115]. This shift in expression suggests that the function of these
enzymes may change from a role of immunosuppression at the maternal-fetal interface
in early pregnancy to one associated with the regulation of fetoplacental blood flow or
placental metabolism in late gestation [112]. Work done by Williams and colleagues found
that 24 h following inflammation induced by intrauterine endotoxin administration, there
was a significant upregulation of IDO in the placenta and fetal brain, which was associated
with increased IFN-γ expression and increased in KYN, KYNA and QUIN levels. These
increases occurred in parallel with decreased levels of 5-hydroxyindole acetic acid, a
precursor for 5-HT [105]. Taken together, these results indicate that maternal inflammation
can shunt TRP metabolism away from 5-HT and down the KYN pathway.

IFN-γ also upregulates other enzymes in the KYN pathway, including KMO, KYNU,
and 3-HAAO activities [116]. For example, in adipose tissues, which have resident
macrophages with high levels of KMO, the catabolism of TRP via KMO induction fol-
lowing immune system activation leads to the increased production of QUIN rather than
KYNA, which is reported to have anti-inflammatory properties [117]. Interestingly, plasma
neopterin levels, an indicator of IFN-γ activity, have been paralleled by increased lev-
els of the TRP:KYN ratio, which is reflective of IDO activity in patients with metabolic
disorders such as type 2 diabetes [118] and neurodegenerative disorders such as Hunt-
ington’s Disease [95]. In fact, in Huntington’s patients, the TRP:KYN ratio was higher
and associated with elevated levels of C-reactive protein, neopterin and lipid peroxidation
products. Increased plasma KYN levels and TRP:KYN ratios have been found in patients
with systemic inflammatory response syndrome, sepsis and septic shock, but the biological
significance and prognostic value of these findings have remained uncertain [119]. Together,
TRP:KYN and plasma neopterin levels are considered systemic markers of inflammation
and oxidative stress [92,95].
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Similar to mammalian IFN-γ, chicken IFN-γ is a known regulator of the immune
response through the regulation of proinflammatory cytokines that correlate to immune
activation and antiviral status. In fact, studies have previously shown that immunocom-
promised chickens have downregulated IFN-γ [120], which resulted in higher mortality
following viral infection than normal chickens. Yuk and colleagues (2016) showed that
siRNA suppression of IFN-γ in chicken embryo fibroblasts results in increased replication
of viral genes during infection [121]. Taken together, these studies suggest that the immune
state of chickens and other avian species are mediated by interferons [122,123]. Interest-
ingly, Emadi and colleagues (2010) have shown that supplementing broiler chicken feed
with double the National Research Council’s recommended levels of TRP enhanced the
IFN-α, IFN-γ, and immunoglobulin G response to infection [124]. Taken together, these
studies show that TRP may also be playing a vital role in the immunity of avian species.

In fish, TRP plays a critical role in macrophage and lymphocyte function. When faced
with infection, TRP and IDO levels are related to the induction of anti-inflammatory signal-
ing molecules, the main effectors being T-cells (Reviewed in: [125,126]). Similar to the other
vertebrates discussed, interferons that regulate IDO play analogous antiviral roles in teleost
fish (Reviewed in: [127,128]). Notably, fish interferons possess the same exon/intron struc-
ture as mammalian IFN-γ [127], also playing a similar critical role in adaptive cell-mediated
immune responses produced by Th1 and cytotoxic T-lymphocytes [127,129]. Interestingly,
TRP supplementation has not shown improvement in immune status in European seabass
(Dicentrarchus labrax) [130] or Persian sturgeon (Acipenser persicus) [131]. Furthermore,
Machado et al. (2015) have shown that following TRP supplementation and subsequent
increases in cortisol, European seabass had decreased monocyte/macrophage activation in
response to infection. The decreased levels of lymphocytes and monocytes/macrophages
were accompanied with decreased mRNA expression of proinflammatory cytokines (IL1β,
IL8 and TGFβ), diminished IFN-γ, and lowered levels of superoxide dismutase (SOD),
an enzyme involved in antioxidant defence [130]. Conversely, in mice [132] and broiler
chickens [124], dietary TRP supplementation was able to alleviate inflammatory responses
by attenuating the migration of inflammatory cells. While an interesting difference amongst
vertebrates, it has been suggested that these differences may be a result of teleost fish re-
quiring an optimal amount of dietary TRP for growth—in fact, alterations to dietary TRP
has resulted in osmotic-based acute stress [98,133,134], where TRP supplementation in
non-stressed fish has resulted in increased plasma cortisol levels, while the opposite effect
has been observed in stressed groups [13,85]. Moreover, exogenous TRP supplementation
varies depending on fish species and size, as well as exposure to stressful environments
(i.e., crowding, high stocking density, pollutants, etc.) [98,134–136].

Oxidative stress (OS) is another mechanism by which cell and tissue damage can
occur. OS is an increase between the production and accumulation of ROS, which are
generated as by-products of oxygen metabolism in processes including immune activation,
apoptosis, cell differentiation, and protein phosphorylation, as well as through exposure to
environmental stressors and xenobiotics [137]. The consequences of increased cell exposure
to ROS include reduced levels of adenosine triphosphate (ATP), lipid peroxidation, cell
membrane depolarization, morphological changes in cell surfaces, and DNA damage [138].
Cellular damage marked by OS includes lipid peroxidation, increased levels of protein car-
bonyl, and decreased levels of antioxidant enzymes (SOD, catalase [CAT] and glutathione
peroxidase [GPx]) [137]. The TRP-KYN pathway plays a role in the onset of OS (Reviewed
in: [139]) and it has been proposed that TRP exhibits antioxidant activity as it reacts with
free radicals and modulates antioxidant enzyme activities. In fact, there is accumulating
evidence to support the use of TRP and its metabolites as antioxidants [140]. In rabbits,
dietary TRP supplementation was effective in protecting against free radical generation
and lipid oxidative damage produced by hypoxic myocardial injury [141]. Similarly, in
weaned piglets, increasing dietary TRP levels resulted in enhanced antioxidant capacity
(SOD and GPx), which attenuated the OS response induced by diquat injection [142]. In line
with the work done in mammals, dietary TRP supplementation in ducks alleviated stress
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and improved growth performance and antioxidant activity (GPx and CAT). Similarly,
(Reviewed In: [143,144]) it has been shown in fish that while increased supplementation of
dietary TRP increases total SOD, CAT, glutathione activity, and total antioxidant capacity,
an optimal range of TRP supplementation, is dependent on species [145].

Some TRP metabolites including 5-hydroxytryptophan (5-HTP), indole-3-acetic acid
(IAA), 3-HAA, 3-HK and XA can act as ROS scavengers and modulate antioxidant enzymes.
Interestingly, other KYN metabolites including QUIN, 3-HK and 3-HAA can generate oxy-
gen radicals and ROS, thereby modulating OS [146–148]. Accordingly, the pharmacological
inhibition of the KYN pathway can decrease levels of OS. For example, in a rat model of
schizophrenia, inhibitors of TDO, IDO and KMO were able to prevent lipid peroxidation,
decrease protein carbonyl levels, and increase SOD levels and catalase activity [149]. There
is also considerable evidence linking aging with OS; in many aging-associated disorders,
there are consistent reports of upregulated IDO (Reviewed in: [150,151]). Currently, reliable
markers of OS include carbonylated proteins, malondialdehyde, 4-hydroxy-2-nonenal,
and F2-isoprostanes analyzed by LC-MS/MS [152]. However, given that TRP and KYN
metabolite levels have been repeatedly shown to be sensitive and specific to antioxidant
capacity and associated gene changes, TRP-KYN levels, or varying ratios of the metabolites
(i.e., 3-HAA/AA), may be surrogate markers for the organism’s response to insults causing
increased ROS.

3.3. Environmental Contaminants

Environmental stressors are factors that constrain the productivity, survival, and repro-
ductive success of organisms. These stressors can range from biological or social stress (i.e.,
predation, competition, and disease); physical disturbances to the landscape (i.e., weather
events like tsunamis, hurricanes, volcanic eruptions, and wildfires, or anthropogenic de-
forestation, machinery trampling, and hikers); and chemical pollution (i.e., pesticides,
flame retardants, personal care products, waste chemicals from industrial development,
and air pollution). Increasingly, stressors due to anthropogenic activities have become
the most critical influence on species and ecosystems [153]. Rapid industrialization and
urbanization can dramatically change the composition and diversity of biotic communi-
ties. Alongside urbanization comes the increased distribution of environmental toxins
through human activity. Some of these contaminants include heavy metals; polycyclic
aromatic compounds (PACs) which include benzo[a]pyrene (BaP), polycyclic aromatic hy-
drocarbons (PAHs) and their heterocyclic, alkylated, halogenated, oxygenated, sulphated
and nitrated analogs (Reviewed In: [154]); dioxins, including 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD), polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-
dioxins (PCDDs); organochlorine compounds including polychlorinated biphenyls (PCBs),
hexachlorocyclohexane isomers, dichlorodiphenyltrichloroethane (DDT) compounds, and
hexachlorobenzenes (Reviewed In: [155]). Many of these contaminants can be released into
the environment from natural and anthropogenic sources and have become ubiquitous
in recent years. For example, PACs can be found in sea ice in the Arctic, industrialized
harbors, the oil sands region in Canada, and major oil spills (e.g., the Exxon Valdez oil spill,
Alaska; Prestige oil spill, Spain; Deepwater Horizon oil spill, Gulf of Mexico) [154,156].
Similarly, exposure to dioxins and furans can occur naturally through wildfires and through
industrial processes such as waste incineration, the burning of fuels (i.e., wood, coal, and
oil), and accidental/residential/structural fires. Other contaminants such as pesticides
have an even greater public health concern; while they are designed to kill specific plants
and insects, they often have harmful effects on non-target species. In mammals, exposure
to pesticides has been linked to cancer, neurotoxicity and immunotoxicity [157]; endocrine
disruption [158], reproductive effects, and birth and developmental defects (Reviewed
In: [159]), and changes in energy homeostatic organs such as the liver and adipose tis-
sue [160]. Similarly, in birds, organophosphates, neonicotinoids [161], carbamates and
second-generation insecticides can result in decreased food consumption, weight loss,
delayed migration, and decreases in the production, fertility, and hatchability of eggs
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(Reviewed In: [157,162]). Fish and other aquatic organisms are the most exposed in their
environments due to the runoff of pesticides [163–165], oil spills [166–169], wastewaters
from sewage containing personal care products [170–173], and chemical plant disposals;
and have been extensively reviewed. Animal and human exposure to these chemicals can
occur directly through pollution, or indirectly through food chain effects [174–176].

Many physiological homeostatic responses to environmental contaminants can be
attributed to perturbations in pathways associated with GC signaling, inflammation, OS
and, ultimately, alterations in TRP metabolism (Figure 6). For example, rats exposed to
pyrethroid pesticides (deltamethrin and fenpropathrin) had significantly lowered KYNA
production in cortical brain slices [177]. In chicken embryos, exposure to organophosphate
and methylcarbamate insecticides was associated with lowered embryo NAD+ levels [178];
this effect was attributed to the inhibition of KYN formamidase, which impairs conversion
of TRP to essential pyridine nucleotide cofactors. The majority of research in this area
has focused on the link between environmental contaminants that act as AhR ligands and
perturbations in the TRP-KYN pathway. Many environmental contaminants, particularly
PACs, are known to act as AhR ligands; these compounds are also known to regulate
IDO and TDO expression, thereby affecting the production of immunomodulatory TRP
metabolites. For example, in mammals, it is well established that IDO expression and
activity can be induced by AhR ligands including TCDD, BaP, and several PAHs [179,
180]. Interestingly, KYN metabolites, including L-KYN, KYNA, XA, cinnabarinic acid,
indigo, indirubin, and ultraviolet (UV) photoproducts of TRP such as 6-formylindolo[3,2-
b]carbazole (FICZ) can act as AhR ligands and induce AhR target genes (CYP1A1, CYP1A2,
and CYP1B1) (Reviewed In: [181]). Novikov et al. (2016) investigated the role of TRP-
derived metabolites within malignant and non-malignant breast cancer cell lines and
showed that (1) cell lines that expressed TDO produced sufficient intracellular KYN and
XA concentrations to activate the AhR; (2) TDO overexpression led to excess KYN and XA,
which accelerated the migration of tumour cells in an AhR-dependent manner; and (3) the
environmental ligands TCDD and BaP, as well as the endogenous TRP-derivative FICZ
mimic this effect [182]. Furthermore, AhR knockdown or inhibition significantly reduced
TDO2 expression. KYN has also been shown to activate AhR in an autocrine/paracrine
fashion, resulting in the suppression of antitumour immune responses and the promotion
of tumour cell survival and motility [179]. Furthermore, FICZ—the UV photoproduct
of TRP—binds to AhR with the highest affinity known to date of endogenous ligands;
at high concentrations, FICZ behaves similarly to TCDD, exhibiting toxicity in fish and
bird embryos, and playing a role in immunosuppression [183]. In birds, including the
chicken (Gallus gallus domesticus), ring-necked pheasant (Phasianus colchicus), Japanese quail,
and common tern (Sterna hirundo), FICZ has been identified as an avian AhR ligand [184],
However, with the exception of changes in the avian CYP1A gene, other pathways mediated
by AhR remain to be studied. 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl
ester (ITE)—a dietary TRP derivative—was discovered in porcine lung tissues and has
been shown to be a high-affinity AhR ligand in humans, mice, and fish [185]. Taken
together, these data suggest that across vertebrates, environmental exposure to certain
contaminants can result in altered TRP-KYN metabolites that can contribute to a range of
adverse health outcomes.
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4. Conclusions

Many physiological responses to environmental contaminants can be attributed to
perturbations in pathways associated with GC signaling, inflammation, oxidative stress,
and, ultimately, alterations in TRP metabolism. Notably, environmental contaminants
and their responses in vertebrate species are strikingly similar. Given that AhR and TRP
metabolism are evolutionarily conserved across vertebrates (i.e., mammals, birds, fish),
the crosstalk between xenobiotic receptors such as AhR, IDO/TDO immunoregulatory
pathways, and altered stress indicators (i.e., antioxidant levels, ROS levels, and cortisol)
suggest that alterations in TRP-KYN metabolism, metabolite levels, and ratio can be a
cross-species marker of environmental exposure to chemical contaminants. Moreover, as
ecotoxicological assessments are slowly moving away from evaluating the effects of a
single compound to complex environmental mixtures, the TRP-KYN pathway provides a
promising avenue to model the impacts of exposure to complex mixtures. Given its role in
other biological processes, the TRP-KYN pathway provides many integrative biomarkers;
both enzymatic ratios and metabolite levels can link environmental exposures to animal
health, and broadly, ecosystem health. These integrative markers can be used as part
of environmental effects monitoring (EEM) programs, where a few biomarkers could be
monitored over a larger spatial area, across multiple species, trigger “investigation of
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cause” (IOC) studies or lead to focused studies to aid in the identification of mixtures and
environmental factors that cause sublethal effects over acute and chronic time points.
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3-HAA 3-hydroxyanthranilic acid
3-HAAO 3-hydroxyanthranilate 3,4-dioxygenase
3-HK 3-hydroxykynurenine
5-HT 5-hydroxytryptamine
5-HTP 5-hydroxytryptophan
AA Anthranilic acid
ACMS 2-amino-3-carboxymuconic semialdehyde
ACMSD 2-amino-3-carboxymuconate semialdehyde decarboxylase
AhR Aryl hydrocarbon receptor
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
ATP Adenosine triphosphate
BaP Benzo[a]pyrene
CAT Catalase
CO2 Carbon dioxide
CRH Corticotropin releasing hormone
CYP Cytochrome P450
DDT Dichlorodiphenyltrichloroethane
FICZ 6-formylindolo[3,2-b]carbazole
GC Glucocorticoid
GPx Glutathione peroxide
GR Glucocorticoid receptor
HPA Hypothalamic-pituitary-adrenocortical
IAA Indole-3-acetic Acid
IDO Indoleamine 2,3-dioxygenase
IFN-γ Proinflammatory interferon-gamma
IL Interleukin
IPA Indole-3-pyruvic acid
ITE 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester
KAT Kynurenine aminotransferase
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KMO Kynurenine monooxygenase
KYN Kynurenine
KYNA Kynurenic acid
KYNU Kynureninase
MAOA Monoamine oxidase A
NAD+ Nicotinamide adenine dinucleotide
NIC Nicotinic acid
NMDA N-methyl-D-aspartate
OS Oxidative stress
PAC Polycyclic aromatic compound
PAH Polycyclic aromatic hydrocarbon
PIC Picolinic acid
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzo-p-dioxin
PCDF Polychlorinated dibenzofuran
PGE3 Prostaglandin
QPRT Quinolinate phosphoribosyltransferase
QUIN Quinolinic acid
ROS Reactive oxygen species
SOD Superoxide dismutase
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TDO Tryptophan 2,3-dioxygenase
TGF-b Tumor growth factor-beta
Th T-helper
TNFa Tumor necrosis factor-alpha
TRP Tryptophan
TRP-KYN Tryptophan-kynurenine
UV Ultraviolet
XA Xanthurenic acid
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