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Background

Currently, amyotrophic lateral sclerosis (ALS), or neuropathy, a rapidly progressive, 

invariably fatal neurological disease that affects the neurons responsible for controlling 

voluntary muscles in the arms, legs, and face (Ahdab et al. 2013), is diagnosed in approx-

imately 6000 people each year (ALS Association 2016). In the USA alone, the number of 

patients is estimated to be as many as 20,000. �is disease belongs to a group of motor 

neuron disorders and eventually leads to death. According to previous studies, patients 

who are diagnosed live an average of 3 years, and 20, 10, and 5% of them die in 5, 10, and 
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20 years, respectively. Myopathy is a neuromuscular disorder that causes muscle cramps, 

stiffness, and spasms, and muscle weakness is the primary symptom due to dysfunc-

tion of muscle fibers and eventually causes death. In accordance with the 2005 statis-

tics data of the USA (Oskarsson 2011), approximately 2.97 million patients have been 

diagnosed with myopathy. In diagnosing both aforementioned diseases, medical doctors 

first interview patients, although sometimes the patients are extremely weak and una-

vailable to even speak. In such cases, electromyography (EMG) is used to analyze muscle 

signals to assist a specialized neurological expert to diagnose both myopathy and ALS 

(Kincaid 2015; Weiss et  al. 2015; Gitiaux et  al. 2016). However, the number of neuro-

logical experts is quite limited, and therefore, an automatic system to assist diagnosis is 

urgently required. Such a system could be used not only for assisting diagnosis but also 

for periodic detection and monitoring. In performing diagnoses based on EMG signals, 

a primary issue is that the system must correctly classify an EMG signal as ALS or myo-

pathic, because different therapies and drugs are used to treat the two disorders.

In studying and developing this kind of system, EMG signals is regarded as an excel-

lent approach for acquiring data (Yousefi and Hamilton-Wright 2014), which records the 

corresponding electrical to activity of motor units in the neuromuscular system. Analy-

sis of EMG signals is generally performed in two cases. �e first is for prosthetic device 

control and human–machine interactions (Naik and Kumar 2011; Naik et  al. 2014, 

2016a; Arjunan et al. 2014, 2015; Guo et al. 2015; Naik and Nguyen 2015). �e second is 

for diagnosing disorders (Xie et al. 2014). Neuromuscular disorders are related to patho-

logical changes in the structure of the motor unit and can be generally divided into two 

categories: muscular (myopathy) and neuronal (neuropathy) (Nikolic 2001) disorders. 

�e need for distinct classification between myopathy and neuropathy originates from 

the differences between the causes of the diseases, which is a critical factor in determin-

ing treatment. �e development of a highly accurate diagnostic system based on EMG 

readings would provide a promising way to improve the assessment of neuromuscular 

disorders (Gokgoz and Subasi 2015). Highly accurate classification problems depend on 

the crucial step of feature extraction. If features are extracted sufficiently well, it is pos-

sible to obtain outstanding classification performance.

Previous studies related to feature extraction of EMG signals have been proposed in 

three main domains, the frequency domain, the time–frequency domain, and the com-

plex network domain. In frequency analyses, fast Fourier transform (FFT) and autore-

gressive (AR) spectral models have been employed to extract features (Guler and Kocer 

2005; Subasi et al. 2006; Kocer 2010; Sultornsanee et al. 2011). Power spectral analysis of 

FFT and AR can represent the characteristics of the signal. However, different subjects 

have different signal strengths in addition to nonlinearity and chaos. Various types of 

wavelets have been used to analyze EMG signals in the time–frequency domain (Gok-

goz and Subasi 2015; Hu et al. 2005; Istenic et al. 2010; Subasi 2012a, b, 2013a, b). �e 

advantage of the method is the ability to perform analyses in various sub-bands. How-

ever, computational complexity might occur at the initial stages, such as when selecting 

the mother wavelet. Additionally, the level of decomposition is related to the number 

of sub-bands. Using many sub-bands with various features in each sub-band results in 

a high dimension of input for the classifier. Mishra et al. (2016) and Naik et al. (2016b) 

utilized an empirical mode decomposition technique to analyze EMG signals, which was 
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proven to be quite versatile over a broad range of applications for extracting signals from 

data generated in noisy nonlinear and non-stationary processes.

Finally, for the complex network domain, Campanharo et al. (2011) studied the duality 

between the time series and networks and proposed a map of the time series resulting 

in networks with distinct topological properties. �us, nonlinear signals can be trans-

formed into a complex network using a visibility algorithm. Lacasa et al. (2007) proposed 

a visibility algorithm to convert a time series signal into a graph. �e resulting graph 

inherited several properties of the series in its structure. Luque et al. (2009) employed a 

horizontal visibility algorithm, which is a geometrically simpler and an analytically solv-

able version of the visibility algorithm. All the aforementioned works on the complex 

network domain are pure theoretical concepts without evidence of implementation in 

signal analysis. Tang et al. (2013) used visibility graphs from higher frequency bands to 

classify electroencephalogram (EEG) signals. �ey concluded that their approach is bet-

ter than the simple entropy method. Additionally, Zhu et al. (2012) employed visibility 

graphs with nonlinear feature extraction algorithms on the EEG signal, although their 

algorithms were slower than FFT analysis, which is not suitable for practical purposes. 

Subsequently, Zhu et al. (2014) introduced the fast-weighted horizontal visibility algo-

rithm (FHVA). �e FHVA can be employed using signals that have high amplitude vari-

ations. However, the FHVA is not suitable for EMG signals because the algorithm uses 

a horizontal relationship, which does not distinguish features sufficiently well; thus, the 

classification results using this method are incorrect.

In our previous works, Artameyanant et al. (2014) proposed a feature extraction tech-

nique based on transforming the signal into a complex network using a vertical visibility 

algorithm. �e method yielded excellent accuracy results. However, a rapidly decreas-

ing/increasing signal configuration could yield the same features. �erefore, a classifi-

cation error could occur. �e authors then improved upon the work in Artameyanant 

et al. (2014) by presenting a weight-visibility algorithm for transforming the signal into 

a complex network (Artameyanant et al. 2015). �e method solved the problem of the 

same features being yielded for a different type of signal. However, the drawback was 

the loss of the link in the calculation caused by the same amplitude of the signal. Addi-

tionally, the EMG signal of each subject for the same type of disease can vary in signal 

strength. �us, the various strengths of signals for different patients can induce classifi-

cation problems. In this paper, we overcome the drawbacks of our previous work with 

two steps of feature extraction. First, we propose normalizing the signal with respect 

to the maximum/minimum value of each epoch. �e normalized signal corresponds to 

the visual inspection of the same scale of the signal pattern by neurological expertise 

for classification. Second, we introduce an adjusted-weight vertical visibility algorithm 

to obtain the adjacency matrix for network measurements. �e proposed work shows 

that feature extraction based on network measurements of the adjusted-weight vertical 

visibility algorithm can be used as an analysis tool for EMG signals. Some distinct char-

acteristics inherited in the signal are extracted and employed as a feature vector. Per-

formance is evaluated using several types of classifiers: k-NN, MLPNN, and SVM. �e 

proposed method yields outstanding average accuracy results.

�e organization of the paper is as follows. In “EMG signal analysis and basic concept” 

section, we analyze the research problem and outline the basic concept. In “Proposed 
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method of EMG-based feature extraction” section, we explain the proposed method 

according to the basic concept. We describe the datasets and experimental results in 

“Datasets and experimental results” section, and discuss errors and trade-offs in “Dis-

cussion” section. Finally, the research is concluded in “Conclusions” section.

EMG signal analysis and basic concept

To select efficient tools for feature extraction and classification, we analyze the EMG sig-

nal and explain our ideas in this section.

�e EMG signal originally has a non-periodic and non-stationary character. As shown 

by some samples in Fig. 1, the EMG signals in the normal (healthy), ALS, and myopathy 

groups, which are exactly not the same in each group, seem to have its own pattern. 

�ese signals apparently can be identified as one of three types, normal (healthy), ALS, 

or myopathic, by neurological experts who are practically trained to specifically identify 

ALS. For instance, as shown by the part of the signal surrounded by ellipses in the first 

column, which are expanded in the second column in Fig.  2, normal, ALS, and myo-

pathic signals have different apparent features: a peak of 400 μV with an average pulse 

duration of 15 ms, a peak of 1400 μV with a duration of 20 ms, and a peak of 300 μV with 

duration of 10 ms (Nikolic 2001), respectively. In fact, these time-domain signal features 

are therefore considered as specific patterns for neurological experts to inspect as ALS 

and myopathic statuses. Analytically, an EMG signal is composed of muscle responses 

Fig. 1 Samples of EMG signals in normal, ALS, and myopathy groups. a Normal, b ALS, and c myopathy
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and noise, as indicated by ellipses and circles, respectively, in Fig. 2. Muscle responses 

are the target, which need to be separated from the other signal components. �is can 

be done by determining a threshold value in advance for classifying peaks of muscle 

responses, which are normally located in the upper layer, and then opening windows of 

muscle responses for classification. In the window (ellipse), the peak parts shown by the 

dash-line circles in Fig. 2 are highlighted and considered as normal, ALS, and myopathic 

patterns, and the results are illustrated in the second column of Fig. 2. In conclusion, the 

detection of one, two, or three detected peaks represent normal, ALS, and myopathic, 

respectively, as shown in Fig. 2.

In analyzing the specific apparent patterns of normal, ALS, and myopathy signal 

parts shown in the first column of Fig. 3, the power spectrum density of the three sig-

nals transformed by FFT are nearly the same, as shown by the samples in the second 

column of Fig. 3. �is indicates that it is likely impossible to differentiate these signals, 

especially myopathy and ALS statuses, by such transformation of signals to the fre-

quency domain. Neurological experts generally observe signals in the time domain, 

extract epochs of specific parts of the signal, and classify the signals by finding specific 

apparent patterns. In classifying time-domain signals by specific apparent patterns, 

visibility graphs, or vertical visibility graphs (Lacasa et al. 2007), which convert a time 

series into an associated graph linking every bar with all those that can be seen from 

the top of a given bar, is one candidate tool that can be used in this research prob-

lem. On the other hand, as a tool in the family of visibility graphs, horizontal visibility 

Fig. 2 Characteristics of EMG signals. a Normal, b ALS, and c myopathy
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algorithms (Luque et al. 2009), which finds links in only the horizontal direction from 

the top of a considered bar, is another candidate tool. In one application, Zhu et  al. 

(2014) applied a horizontal visibility algorithm in an EEG problem. However, EMG 

signals generally have a specific pattern of isolated epochs with extremely high peaks. 

�is specific pattern might not be applicable to horizontal visibility algorithms, as 

shown in some samples in the third column of Fig. 3. �e obtained associated graphs 

shown under the horizontal visibility graphs for normal, ALS, and myopathic cases 

in the 3rd column of Fig.  3 reveal classification difficulty, while those of the vertical 

visibility algorithm shown in the 4th column markedly differentiate patterns of nor-

mal, ALS, and myopathy. �ese findings indicate that horizontal visibility algorithms 

cannot address this problem. Unlike horizontal visibility algorithms, vertical visibility 

algorithms are possible for differentiating signals, especially ALS and myopathy sig-

nals, since the differences in the vertical direction are comparatively more obvious 

due to the outstanding differences in signal peak and duration. Clearly, relations or 

links of all pulses with other pulses in vertical visibility in an epoch reveal distinct pat-

terns among normal, ALS, and myopathy signals, as shown by examples in the fourth 

column of Fig. 3. Based on the vertical-visibility results of normal, ALS, and myopa-

thy epochs shown in the 2nd, 4th, and 6th rows, respectively, the number of links and 

their relations in all pulses of each epoch clearly distinguish the disease identities. 

However, the number of nodes and their links may not be sufficient to classify disease 

types in some cases, such as in the example shown in Fig. 4. �ese two epochs (A and 

B) shown in the first column are clearly different to the naked eye. �eir vertical-visi-

bility features shown in the second column, however, look the same (Fig. 4d, h), which 

subsequently leads to a critical error. In fact, the 3rd and 5th pulses of the epochs are 

Fig. 3 Comparison between the horizontal visibility algorithm and vertical visibility algorithm for the normal, 

ALS, and myopathic signals
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physically different, although the vertical visibility algorithm is not able to reflect this 

difference. Another feature implicitly used by humans for differentiating these cases 

is the differences in pulse length related to the peak of epoch as shown by ai and bi in 

Fig. 4c, g. �erefore, a peak in each epoch needs to be normalized in the same stand-

ard such as length “1” for a fair comparison. Apparently, the initial differences among 

all pulses in an epoch are other key features for signal-type differentiation, as shown 

in the third column (Fig. 4c, g). �erefore, these pulse length differences are proposed 

as weights in this study for extraction as another distinct feature. �e differences 

between pulses in epoch A (a1, a2, a3, …) and those of epoch B (b1, b2, b3, …) are col-

lected as weights in the form of an adjacency matrix, as shown in Fig. 5. �e order of 

nodes (1, 2, 3, …, N) and their linked nodes (1, 2, 3, …, N) in the epoch are arranged in 

the matrix column and row directions, respectively. All elements in the matrix express 

the number of links. As a result, the adjacency matrix shown in Fig. 5a, representing 

the number of links obtained from the vertical visibility of epochs A and B, become 

exactly the same. �e adjacency matrices in Fig. 5b, c representing the weights of all 

nodes and links in epochs of A and B, respectively, clearly show evident features.

Proposed method of EMG-based feature extraction

Based on the aforementioned basic concept, our proposed method of EMG-based fea-

ture extraction for ALS and myopathy detection begins with preprocessing, followed 

by feature extraction and classification processes. Process overview of the proposed 

method is explained in “Overview processes of proposed method” section, and all 

Fig. 4 An example of different epochs yielding the same number of nodes and links. a Epoch A, b sampling 

pulse of epoch A, c ai = a1, a2, a3,… an, d vertical visibility algorithm of epoch B, e epoch B, f sampling pulse 

of epoch B, g bi = b1, b2, b3,… bn, and h vertical visibility algorithm of epoch B
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proposed processes, including preprocessing, feature extraction, and classification, are 

described in “Preprocessing”–“Classification” sections, respectively.

Overview processes of proposed method

A typical EMG-based classification system consists of three processes: preprocessing, 

feature extraction, and classification, as shown in Fig.  6. �e first process of preproc-

essing is furthermore divided into (1) epoch windowing and (2) normalization. In these 

steps, epochs of recorded EMG signals are first detected, and the detected epochs are 

then normalized to a standard form wherein all peaks are adjusted to 1. In the next step 

of our proposed feature extraction process shown by the dotted box, normalized epochs 

are converted into features of vertical visibility where links and weights are meas-

ured, and matrices representing links and weights are subsequently formed. Statistical 

mechanics are used to evaluate the results of this feature-extraction process, and fea-

tures, which are confirmed to be powerful for classification, are finally selected for the 

next classification process. �e last step of classification use selected features as inputs 

to various classifiers, such as k-NN, MLPNN, and SVM classifiers, for detection of ALS 

and myopathy.

Fig. 5 Matrices representing the number of links (a) and weights (b, c)
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Preprocessing

In the preprocessing process, EMG signals from normal, ALS, and myopathy cases are 

detected for epochs. As shown in Fig. 7, epochs are generally isolated among non-sig-

nal states such that the epoch boundaries are generally the borders between epochs and 

non-signal states. �e curve of an epoch, which is scanned from left to right, theoreti-

cally starts with a positive slope and is followed by a negative slope, and the non-signal 

states located between the epochs are regarded as zero slope. Based on the pattern of the 

slopes, borders between an epoch and the surrounding non-signal states are detected, 

which becomes a window, and the peak pulse in the window is then considered as the 

center point of the epoch. �e detected epoch peak is subsequently assumed to have 

an amplitude of “1”, and other pulse lengths in the epoch window are normalized to the 

peak, as shown in the epoch examples in Fig. 8. Epochs therefore are normalized via the 

same method.

Feature extraction

In the feature extraction process, as shown by the second dashed rectangle in the flow-

chart in Fig. 6, a normalized epoch is first sampled based on the sampling theory, and 

the sampled pulses are then extracted for vertical visibility features including the num-

ber of node links and weights using the normalized weight vertical visibility algorithm 

(NWVVA) in the process of matrix creation. �ose links and weights are put into matrix 

form, the feature matrices and obtained features are filtered and considered by statistical 

machines for selected powerful features in the next step of statistical feature extraction. 

Effective statistical features are selected during the step of the last process. �e following 

Fig. 6 Proposed methods for EMG classification
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section is divided into two-subsections, extraction of candidate features and feature 

finalization.

Matrix creation

As shown by the example in Fig. 9, the pulses obtained based on the sampling theory are 

subjected to the vertical visibility algorithm, and the links of all nodes are counted, as 

shown in the bottom row of Fig. 9a. Simultaneously, the differences for all pulses com-

pared with the linked nodes are measured according to their weights as shown in the 

upper row of Fig.  9a, and all weights are formed in an adjacency matrix as shown in 

Fig. 9b.

In the example shown in Fig. 9, nine sampling points are obtained. For a given sam-

pling point or node, all other surrounding sampling peaks to which straight lines from 

the considered point can be drawn without any obstacles are defined as related to the 

sampling point, and these related nodes are counted and used to create an adjacency 

matrix. As show the sample of Fig.  9a, the sampling point 4 is related with sampling 

points 1 and 5 via high sight (the node is looking up) and 2 and 3 via low sight (the 

node is looking down). However, the sampling point 6–9 are hidden by sampling point 

5, and therefore, that no relation is counted from them. To account for both the relation 

link and amplitude features, element Wij of the weighted adjacency matrix is obtained 

as follows. If there exists a link between node i and j, Wij is first set to 1 to account for 

the relation link, and then the absolute difference of the normalized amplitudes between 

nodes i and j is added, which produces element (Wij) of the matrix. If node i and j have 

no link, Wij is set to zero. All diagonal elements (Wij), which indicate links with itself are 

set to zero.

�e procedure of the aforementioned concept can be described based on normalized 

weight vertical visibility algorithm (NWVVA) as follows:

Fig. 7 A synthesized signal for illustrating the widowing step in the preprocessing process
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Fig. 8 Normalization of signals. a Original pulses of epoch I, b original pulses of epoch II, c normalized pulses 

of epoch I, and d normalized pulses of epoch II

Fig. 9 Illustration of the weight vertical visibility algorithm; a amplitudes and relation graph and b weight 

adjacency matrix for the amplitudes and relation graph in a
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Algorithm: (NWVVA)

Input: {xi}; i= 1, 2, 3, …, N is a time series of N data

Output: Wij; i, j= 1, 2, 3, …, N is the adjusted-weight adjacency matrix

1.  Normalize {xi} with respect to the maximum and minimum of {xi}

2.  for i = 1: N ; do N loops on rows

3.  for j= i: N ; do loops along the upper main diagonal on columns

4.  if i= j: let Wij= 0; weights of the main diagonal are set to zero

5. elseif j − i= 1: let Wij= abs (xi − xj) + 1; other weights equal the difference plus one

6. elseif ; check if the values of elements between i and j are 

less than values of element i and element j

let Wij= abs (xi − xj) + 1; then the weight equal to the difference plus one

7. else : Wij= 0 ; else the  weight is set to zero

end

8. let Wji= Wij ; symmetry along the main diagonal

end

end

n j
x x (x x ) ,i n jn j j i j i

−
< + − < <

−

�e Eq. (1) summarizes the calculation of Wij,

In the example shown in Fig. 9b, the values of the relations of the weighted adjacency 

matrix are determined as follows. �ere exists a link between the 1st and 2nd data points 

whose amplitudes are 0.87 and 0.49, respectively. Hence, W12 is the absolute value of 

(0.87–0.49); adding “1” equals 1.38, while the same procedure is applied to obtain other 

elements of the matrix. As a result, a weight adjacency matrix for this signal is obtained 

as shown in Fig. 9b.

Statistical feature extraction

In statistical feature extraction, it is complicated and redundant to classify epochs by 

some classifiers using perceptron data and the features extracted in the previous pro-

cess. Because these features hold statistical characteristics in each target classified 

groups (normal, ALS, and myopathy), it is better for users to utilize statistical mechanics 

and statistical measurements as inputs to the appropriate classification tools. However, 

because not all statistical mechanics and measurements are effective for classification, a 

process of selecting effective statistical mechanics is needed in the learning state, which 

could be done in advance. Such a way to select effective statistical mechanics and meas-

urements is introduced as a guideline as follows.

In the learning state, users should first calculate candidate features of the number of 

links and weights obtained via vertical visibility by using possible statistical mechanics 

and measurements and then consider selecting only the effective features based on the 

selected set of training signals. �e selected statistical mechanics and measurements are 

then used to find final features in the testing state.

�e statistical mechanics and measurements as candidates for selection in the learn-

ing state are introduced in “Average degree”–“Kurtosis” sections, respectively, as follows.

Average degree An average degree (AD) indicates the average number of links that con-

nect to one node in a network. �e AD of a node in a graph is defined as (Barabasi 2012):

(1)
Wij =

{

abs(xi − xj) + 1; where xn < xj + (xj − xi)
n−j
j−i , i < n < j, or abs(i − j) = 1

0; elsewhere
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where N is the size of the network, and L is the number of links, which represents the 

total number of interactions between nodes and is given by

where ki is the degree of the ith node in the network.

In the sample in Fig. 9, L = 16, and N = 9, hence AD = 3.55.

Average clustering coefficient �e average clustering coefficient (ACC) represents the 

relationship between the nodes in a complex network and describes the degree of cluster-

ing in the entire network. Let Ci be the local cluster coefficients of node i. �en, the ACC 

is the average of Ci over all nodes i = 1, …, N (Barabasi 2012):

where

where Li described by Eq. (3) is the number of links between the ki neighbors of node i.

In the sample in Fig. 9, N = 9, Li: 4, 3, 3, 4, 6, 3, 3, 4, 2. As a result, Ci = 0.82, 1.29, 1.32, 

0.82, 0.39, 1.29, 1.32, 0.82, and 1.02 for i = 1, 2, …,9, respectively; hence ACC = 1.01.

Transitivity Transitivity (T) is defined as (Newman 2003):

where a triangle is a set of tree vertices that are connected to one another, and a “con-

nected triple” is a single vertex with adjacent edges connected to an unordered pair of 

vertices.

In the sample in Fig. 9, number of triangles in the network and connected triples are 

74.73 and 92, respectively; hence T = 0.81.

Assortativity Assortativity (As) is a correlation coefficient between the degrees of all 

nodes on two opposite ends of a link. It is defined as (Newman 2010):

where Se =

∑
ij Wijkikj, S1 =

∑
i
ki, S2 =

∑
i
k
2

i
, and S3 =

∑
i
k
3

i
.

(2)AD =

2L

N
,

(3)L =

1

2

N∑

i=1

ki,

(4)ACC =

1

N

N∑

i=1

Ci,

(5)Ci =

2Li

ki(ki − 1)
,

(6)T =

3 × number of triangles in network

number of connected triples of vertices
,

(7)As =

S1Se − S
2

2

S1S3 − S
2

2
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A positive value of As indicates that the nodes tend to link to other nodes of an identi-

cal or similar degree. In the example in Fig. 9, AS = −0.32.

Density Density (Den) represents the completeness of a group. �e link density is 

defined as the proportion of the actual number of links to the maximum possible number 

of links among all nodes. Den is the ratio of the actual number of connections over the 

total number of possible connections (Newman 2010):

In the example in Fig. 9, L = 16 and N = 9, hence Den = 0.44.

Central point dominance Node betweenness centrality is the fraction of all the shortest 

paths in the network that contain a given node. Nodes with high values of betweenness 

centrality are part of many shortest paths. �e betweenness centrality Bu of a vertex u is 

defined as follows (Costa et al. 2010):

in which σ (i,  u,  j) is the number of shortest paths between vertices i and j that pass 

through vertex u, σ (i,  j) is the total number of shortest paths between i and j, and the 

sum is over all i,j pairs of distinct vertices. Central point dominance (CPD) is defined as 

follows (Costa et al. 2010):

where Bmax represents the maximum betweenness in the network and Bi represents the 

node betweenness centrality.

In the example in Fig.  9, Bu  =  10, 0, 0, 10, 34, 0, 0, 2, 0 and max(Bu  =  34), hence 

CPD = 25.77.

Closeness centrality Closeness (CC) is a measure of how long it takes to sequentially 

spread information from a node to all other nodes. In the classical definition of CC, the 

spread of information is modeled using the shortest paths (Newman 2010):

(8)Den =

2L

N (N − 1)

(9)Bu =

∑

ij

σ

(

i,u, j
)

σ

(

i, j
)

(10)CPD =

1

N − 1

N∑

i=1

(Bmax − Bi)

(11)CCi =

N
∑

j dij
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In the example in Fig.  9, dij  = 

























0 0.72 0.66 0.96 1 0 0 0 0

0.72 0 0.88 0.74 0 0 0 0 0

0.66 0.88 0 0.68 0 0 0 0 0

0.96 0.74 0.68 0 0.96 0 0 0 0

1 0 0 0.96 0 0.72 0.66 0.96 1

0 0 0 0 0.72 0 0.88 0.74 0

0 0 0 0 0.66 0.88 0 0.68 0

0 0 0 0 0.96 0.74 0.68 0 0.96

0 0 0 0 1 0 0 0.96 0

























 and 

CCi = 0.07, 0.04, 0.04, 0.07, 0.08, 0.05, 0.05, 0.06, and 0.05, and hence CPD = 0.06.

Average shortest path (ASP) A measure of the separation between two nodes in the 

graph is given by the ASP length, also known as the characteristic path length. It is defined 

as the mean of the lengths between all node pairs (Boccaletti et al. 2006):

where dij is the length from node i to node j.

In the example in Fig.  9, dij  = 

























0 0.72 0.66 0.96 1 0 0 0 0

0.72 0 0.88 0.74 0 0 0 0 0

0.66 0.88 0 0.68 0 0 0 0 0

0.96 0.74 0.68 0 0.96 0 0 0 0

1 0 0 0.96 0 0.72 0.66 0.96 1

0 0 0 0 0.72 0 0.88 0.74 0

0 0 0 0 0.66 0.88 0 0.68 0

0 0 0 0 0.96 0.74 0.68 0 0.96

0 0 0 0 1 0 0 0.96 0

























 and 

N = 9, and hence ASP = 0.37.

Global efficiency (E) E is the average of the inverse shortest path length and is inversely 

related to the characteristic path length. �e node eccentricity is the maximum shortest 

path length between a node and any other node (Boccaletti et al. 2006):

In the example in Fig.  9, dij  = 

























0 0.72 0.66 0.96 1 0 0 0 0

0.72 0 0.88 0.74 0 0 0 0 0

0.66 0.88 0 0.68 0 0 0 0 0

0.96 0.74 0.68 0 0.96 0 0 0 0

1 0 0 0.96 0 0.72 0.66 0.96 1

0 0 0 0 0.72 0 0.88 0.74 0

0 0 0 0 0.66 0.88 0 0.68 0

0 0 0 0 0.96 0.74 0.68 0 0.96

0 0 0 0 1 0 0 0.96 0

























 and 

N = 9, hence E = 0.54

Network diameter (D) �e diameter of a network, denoted by D, is the maximum short-

est path in the network. It is the largest recorded distance between any node pairs (Boc-

caletti et al. 2006):

(12)ASP =
1

N (N − 1)

∑

i,j,i �=j

dij

(13)E =
1

N (N − 1)

∑

i,j,i �=j

1

dij
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In the example in Fig. 9, max(dij) = 4, and hence D = 0.96.

Average weight �e average weight (AW) or strength of the network on the possible vis-

ible link is defined using the weight adjacency matrix as follows (Zhu et al. 2014):

In the example in Fig. 9, 
∑

i

∑

j

Wij = 39.64, and hence AW = 4.40.

Skewness �e skewness is the third standardized moment, defined as (Zhu et al. 2014):

where μ is the mean, and s is the standard deviation.

In the example in Fig. 9, μ = 0.49 and s = 0.62, and hence skewness = 0.56.

Kurtosis �e kurtosis is the fourth standardized moment, defined as (Zhu et al. 2014):

where μ is the mean, and s is the standard deviation.

In the example in Fig. 9, μ = 0.49 and s = 0.62, and hence kurtosis = 1.64.

�ese calculation results obtained by the selected statistical mechanics explained 

above are evaluated by ANOVA (Wassernman 2013), and the evaluated results are used 

to construct feature vectors. �ese vectors would be classified into healthy, myopathy 

and ALS statuses, which is explained in the next section.

Selection of e�ective statistical features

In the learning state, users must initially perform pre-testing on some known samples to 

determine effective statistical mechanics and measurements for the testing state. Dur-

ing pre-testing, users should pick existing statistical mechanics and measurements, as 

described in the previous subsection, and perform calculations with the known samples 

as training samples after forming their weight adjacency matrices. Based on the calcula-

tion results of the training samples, users should select only mechanics and measure-

ments, which can clearly classify normal, ALS, and myopathy without any overlap, as 

effective tools for the testing state. Some tools such as ANOVA (Wassernman 2013) 

that can calculate independence levels among the training samples of the three groups 

(normal, ALS, and myopathy) can be theoretically used to finalize statistical mechanics 

and measurements, which are effective in the testing state. In an example of the statisti-

cal mechanics shown in Fig. 10, the training results obtained by the average degree in 

(14)D = max
(

dij
)

(15)AW =

1

N

∑

i

∑

j

Wij .

(16)skewness =

∑

i

∑

j

(

Wij − µ
)3

/N

s3

(17)kutosis =

∑

i

∑

j

(

Wij − µ
)4

/N

s4
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Fig. 10 Distribution of network measurements for EMG signals; a average degree, b average cluster coef-

ficient, c transitivity, d assortativity, e closeness centrality, f central point dominance, g density, h average 

shortest path, i network diameter, and j global efficiency
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Fig. 10a, the average cluster coefficient in Fig. 10b, and the density in Fig. 10f, by which 

those three groups are perfectly separate, are selected as effective statistical mechan-

ics. In another example of statistical measurements shown in Fig. 11, the average weight 

in Fig. 11a, the skewness in Fig. 11d, and the kurtosis in Fig. 11e, which clearly classify 

the three groups, are selected as effective statistical measurements for use in the testing 

state.

In the aforementioned examples, average degree, average cluster coefficient, density, 

average weight, skewness, and kurtosis are statistically selected as six effective features. 

However, users are recommended to undertake this type of pre-testing or training using 

their own samples to obtain effective features for their datasets.

Classi�cation

In classification, the finalized features are converted into vector form, as shown in 

Fig. 12. �e vector has M × N dimensions, where M and N represent the effective fea-

tures and number of test datasets, respectively. �e vectors are fed to the classifiers to 

classify healthy, myopathy and ALS statuses. Users are advised to choose a classifier or 

Fig. 11 Distribution of statistics of the weight adjacency matrix: a average weight, b standard deviation, c 

variance, d skewness, and e kurtosis
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classifiers that work for their applications. In this paper, a k-nearest neighbor classifier 

(Cover and Hart 1967), a multilayer perceptron neural network (Haykin 1994), and a 

support vector machine (Krebel 1999) are recommended tools for classification.

Datasets and experimental results

Datasets

In our experiments, the databases 1 (Physionet 2016) and 2 (Nikolic 2001) used in the 

conventional methods are employed under the objective of fair comparison with the 

results of conventional methods, and the results classified by the k-NN, MLPNN, and 

SVM classifiers are shown and compared with those in the conventional methods, as 

follows.

For both databases, each dataset in the time series was transformed using the weight 

vertical visibility algorithm (NWVVA), and the weight adjacency matrix was obtained. 

�e network measurements including the average degree, average clustering coefficient, 

density, average weight, skewness, and kurtosis were calculated. For database 1, the dis-

tribution of these measurements for each dataset was plotted and is illustrated in Fig. 13. 

�ese measurements were employed to generate a feature vector for classification.

For database 2, the network measurements for each group were plotted and compared 

to analyze the distribution, as shown in Fig. 14. From each measurement on both data-

bases as shown in Figs. 13 and 14, the similarities were in the same trend.

We used ANOVA to verify whether the different values obtained for the three differ-

ent groups represent significant differences. �e p values for both databases as shown in 

Table 1 are very close to zero and therefore indicate that the differences are significant.

Experimental results

We classified EMG signals into three categories: normal, myopathy, and neuropathy. We 

divided a dataset into training and testing data with ratios of testing data of 20, 40, 50, 

60, and 80%. Additionally, we employed a fivefold cross-validation criterion to the train-

ing and testing data. �e performance of the classifier was evaluated based on calculat-

ing of the following statistical parameters:

  • Specificity the number of correctly classified normal subjects divided by the number 

of total normal subjects.

Fig. 12 Feature vector matrix
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  • Sensitivity (myopathy) the number of correctly classified subjects suffering from 

myopathy divided by the number of total subjects suffering from myopathy.

  • Sensitivity (neuropathy) the number of correctly classified subjects suffering from 

neuropathy divided by the number of total subjects suffering from neuropathy.

  • Total classification accuracy the number of correctly classified subjects divided by 

the number of total subjects.

�e performance of the classifiers was evaluated by computing the statistical param-

eters, as shown in Table 2 for databases 1 and 2, respectively.

We report the performance attained by the SVM classifier compared with previous 

works that employed different methods, as specified in Table 3. �e total classification 

accuracies of the proposed method are outstanding for both databases.

Fig. 13 Distribution of database 1 for three classes of neuromuscular disorders: a average degree, b average 

cluster coefficient, c density, d average weight, e skewness, and f kurtosis
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Discussion

�is paper proposes a method of EMG-based feature extraction using a normalized 

weight vertical visibility algorithm for ALS and myopathy detection. Due to the effec-

tiveness of specific features of the vertical visibility algorithm with normalized weights, 

which are well matched with the patterns of ALS and myopathy signals, the proposed 

method yields better classification accuracy results compared with conventional meth-

ods as shown in Table 3. For studies targeting applications in medicine, which is critical 

for improving human life, the experimental results should ideally be perfect without any 

errors. However, the proposed method contributes to a new approach, which currently 

corresponded to best accuracy results that approached 100%. Research on this topic 

should be accepted and continue to be studied until the results successfully meet the 

final goal. Regarding errors in the experiments, their causes and how to prevent errors 

are analyzed and discussed as follows.

Fig. 14 Distribution of database 2 based on three classes of neuromuscular disorders: a average degree, b 

average cluster coefficient, c density, d average weight, e skewness, and f kurtosis
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Unlike typical signal patterns representing normal, ALS, and myopathy statuses, as 

shown in Fig.  15a–c, respectively, the errors that occurred can be grouped based on 

their causes into three cases: normal cases categorized as ALS, as shown in Fig. 15d–f; 

ALS cases categorized as normal, as shown in Fig. 15g–i; and myopathy cases catego-

rized as ALS, as shown in Fig. 15j, k. For the first type of error corresponding to normal 

cases categorized as ALS, as shown in Fig. 15d–f, various sources of noise are regarded 

to have affected the signal and to have caused a transitional phenomenon denoted by 

the dashed circle that the classifier identifies as features of ALS. As a solution in this 

case, smoothing tools and low-pass filters should be considered in the pre-processing 

step. For the second type of error corresponding to ALS cases categorized as normal, 

as shown in Fig. 15g–i, various sources of noise also affect the signal and decrease the 

distinct features of ALS, as indicated by the dashed circle. Some enhancement processes 

should be considered as a solution. For the last type of error corresponding to myopathy 

cases categorized as ALS, as shown in Fig. 15j, k, the key features of myopathy indicated 

by the dashed circle are damaged by noise such that the classifier misses the pattern 

matching. Some enhancements, such as high-pass filters, should be considered in the 

pre-processing step as a solution. Because the second and last types of error are negative 

faults, which must be critically addressed for user-safety, adding a combination of low-

pass filtering for noise reduction and high-pass filtering for feature enhancement may be 

a viable approach in future research.

�e proposed method of EMG-based feature extraction using a normalized weight 

vertical visibility algorithm for myopathy and ALS detection improves classification 

accuracy and advantages. To obtain improved accuracy, computational complexity and 

time implicitly become disadvantages as trade-offs. Although the increase in compu-

tational time is often considered in comparisons with conventional methods, the nec-

essary computational time in the proposed method is on the order of milliseconds, 

which is practically acceptable due to prominent improvements in current computing 

technologies.

During the final classification step of the proposed method, some popular classifiers 

such as k-NN, MLPNN, and SVM classifiers, were recommended and tested here. Users 

are recommended to find their own appropriate tools, which should match their appli-

cations. As shown in Table 2, the k-NN, MLPNN, and SVM classifiers yielded excellent 

accuracies as approximately 96, 97, and 98%, respectively. Although the results show 

that the SVM classifier, which yielded the highest accuracy, should be recommended 

as the classification tool in terms of accuracy, the accuracy differences compared with 

Table 1 The p values of the statistical mechanics for databases 1 and 2 using ANOVA

Feature extraction p value

Database 1 Database 2

AD p < 0.001 p < 0.001

ACC p < 0.001 p < 0.001

Den p < 0.001 p < 0.001

AW p < 0.001 p < 0.001

Skewness p < 0.001 p < 0.001

Kurtosis p < 0.001 p < 0.001
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the other classifiers were not extremely high. In some applications that require highly 

efficient training with low complexity, k-NN classifiers should be considered as another 

choice. On the other hand, MLPNN classifiers, which are theoretically designed as a tool 

to address complicated classification with slightly high complexity, could be a compro-

mise in some applications that require some level of complexity.

Table 2 Summary of the classi�cation performance of the proposed method

Italic values mean total classi�cation accuracy

All values show in mean ± standard deviation

Test (%) Statistical 
parameter

Database 1 Database 2

k-NN MLPNN SVM k-NN MLPNN SVM

20 Specificity 94.86 ± 1.48 96.08 ± 1.24 98.68 ± 1.02 94.50 ± 1.18 95.37 ± 1.64 97.86 ± 0.84

Sensitivity 
(neuropa-
thy)

96.46 ± 0.68 97.18 ± 0.96 98.98 ± 0.58 95.20 ± 1.69 96.26 ± 1.86 98.26 ± 0.94

Sensitivity 
(myopathy)

98.28 ± 1.27 98.82 ± 1.20 99.86 ± 0.86 97.90 ± 1.20 97.23 ± 1.02 98.98 ± 0.62

Total clas-
sification 
accuracy

96.53 ± 0.92 97.36 ± 0.74 99.17 ± 0.68 95.87 ± 0.85 96.28 ± 0.62 98.36 ± 0.48

40 Specificity 92.54 ± 1.84 95.23 ± 1.84 98.42 ± 1.62 91.95 ± 2.01 94.78 ± 1.82 97.08 ± 1.58

Sensitivity 
(neuropa-
thy)

94.98 ± 1.92 96.02 ± 1.69 98.21 ± 1.82 94.55 ± 1.57 95.72 ± 2.02 98.26 ± 1.42

Sensitivity 
(myopathy)

98.18 ± 0.74 98.18 ± 0.92 99.26 ± 0.94 98.15 ± 0.91 97.56 ± 1.24 98.86 ± 1.08

Total clas-
sification 
accuracy

95.23 ± 0.86 96.47 ± 0.76 98.63 ± 0.82 94.88 ± 0.78 96.02 ± 0.89 98.06 ± 0.68

50 Specificity 92.46 ± 2.26 95.46 ± 1.92 97.04 ± 2.12 91.24 ± 2.58 94.18 ± 2.26 96.12 ± 1.98

Sensitivity 
(neuropa-
thy)

93.78 ± 1.69 96.28 ± 1.96 98.98 ± 1.65 92.68 ± 1.72 95.23 ± 1.68 98.62 ± 1.28

Sensitivity 
(myopathy)

98.75 ± 0.94 98.92 ± 0.81 99.98 ± 1.46 98.04 ± 0.83 97.98 ± 1.24 99.24 ± 0.98

Total clas-
sification 
accuracy

94.99 ± 0.83 96.88 ± 0.68 98.63 ± 0.94 93.99 ± 0.97 95.79 ± 0.72 97.99 ± 0.82

60 Specificity 91.89 ± 2.34 93.49 ± 3.02 96.78 ± 2.98 90.97 ± 2.00 92.43 ± 2.98 96.02 ± 2.46

Sensitivity 
(neuropa-
thy)

91.94 ± 2.28 95.82 ± 2.46 97.69 ± 2.46 91.10 ± 2.43 94.39 ± 2.04 96.92 ± 1.48

Sensitivity 
(myopathy)

97.64 ± 0.87 97.46 ± 1.04 99.43 ± 1.24 96.73 ± 0.64 95.45 ± 1.12 98.42 ± 1.12

Total clas-
sification 
accuracy

93.82 ± 0.93 95.59 ± 0.68 97.96 ± 0.86 92.93 ± 0.75 94.09 ± 0.74 97.12 ± 0.84

80 Specificity 88.46 ± 2.46 92.63 ± 1.92 94.98 ± 1.95 87.73 ± 2.05 91.94 ± 2.02 94.76 ± 3.98

Sensitivity 
(neuropa-
thy)

88.12 ± 1.24 93.82 ± 1.28 97.84 ± 1.74 87.65 ± 1.61 92.83 ± 1.76 97.14 ± 1.92

Sensitivity 
(myopathy)

98.06 ± 1.29 95.92 ± 1.24 98.68 ± 1.84 97.60 ± 1.09 93.92 ± 1.82 97.64 ± 2.04

Total clas-
sification 
accuracy

91.54 ± 0.83 94.12 ± 0.98 97.16 ± 0.95 90.99 ± 0.82 92.89 ± 0.94 96.51 ± 0.96
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Conclusions

�is paper proposes a method of EMG-based feature extraction using a normalized 

weight vertical visibility algorithm for myopathy and neuropathy detection. In the pro-

posed method, EMG signals representing muscle responses were sampled based on the 

sampling theory for reversible discrete pulses, and the features of the obtained pulses 

were then extracted via a vertical visibility algorithm with their normalized weights. 

An adjacent matrix, whose elements represent links between nodes and their weights, 

was accordingly created and employed to extract statistical features using statistical 

mechanics and measurements. �ese statistical features were finally classified using k-

NN, MLPNN, and SVM classifiers into normal, ALS, and myopathic cases. To evaluate 

Table 3 Summary of the classi�cation performances of previous methods

Method (feature + classi�cation) Total classi�cation accuracy (%)

Database 1

 RQA + SVM (Sultornsanee et al. 2011) 98.28

 VVA + SVM (Artameyanant et al. 2014) 99.07

 WVA + MLPNN (Artameyanant et al. 2015) 94.73

Proposed method 99.17

Database 2

 AR + WNN (Subasi et al. 2006) 90.70

 CWT + SVM (Istenic et al. 2010) 70.40

 AR + neuro-fuzzy system (Kocer 2010) 90.00

 AR-DWT + DFNN (Subasi 2012a, b) 94.00

 DWT + ESVM (Subasi 2013a) 97.00

 DWT + PSO-SVM (Subasi 2013b) 97.41

 DWT + random forest (Gokgoz and Subasi 2015) 96.67

Proposed method 98.36

Fig. 15 Errors in normal, ALS, and myopathy detection. a–c Typical patterns of normal, ALS, and myopathy, 

d–f normal detected as ALS, g–i ALS detected as normal, and j, k myopathy detected as ALS
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the performance of the proposed method, experiments were performed on conven-

tional 2 databases, and the results revealed 98.36% accuracy, which is approximately 2% 

improvement compared with conventional methods.
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