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Spinal cord and other local injuries often lead to
partial paralysis while the brain stays fully functional.  
When this partial paralysis occurs in the hand, these
individuals are not able to execute daily activities on
their own even if their arms are functional.  To
remedy this problem, a lightweight, low-profile
orthotic exoskeleton has been designed to restore
dexterity to paralyzed hands. The exoskeleton’s
movements are controlled by the user’s available
electromyography (EMG) signals. The device has two
actuators controlling the index finger flexion that can
be used to perform a pinching motion against a fixed
thumb. Using this orthotic device, a new control
technique was developed to allow for a natural
reaching and pinching sequence by utilizing the
natural residual muscle activation patterns. To design 
this controller, two actuator control algorithms were
explored with a quadriplegic (C5/C6) subject and it
was determined that a simple binary control
algorithm allowed for faster interaction with objects
over a variable control algorithm. The binary
algorithm was then used as an enabling algorithm to
activate the exoskeleton movements when the natural
sequence of muscle activities found a pattern related
to a pinch. This natural pinching technique has shown 
significant promise toward realistic neural control of
wearable robotic devices to assist paralyzed
individuals.
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1. Introduction

In the United States alone, there are over 11,000 new
spinal cord injury cases every year [1]. Nearly half of
these cases result in a loss of sensation or motion to the
arms and hands. One realistic solution to this problem is
the use of a functional electrical stimulation (FES)
system to stimulate muscles that are no longer receiving
signals from the central nervous system. While this
solution shows promise, it still has significant technical
barriers to overcome such as fast fatigue. In addition,

even when it becomes available, FES is not applicable to 
those subjects who have inflicted local trauma to the
muscles. To remedy this problem, a low-profile hand
orthotic exoskeleton could provide assistive forces to the 
user’s fingers.  

Several hand orthotic exoskeletons have been
constructed in the past [2–4]. These devices generally
consist of rigid molded plastic as a basic support and
hard metal hinges as the manipulation method. Grasping
motions are achieved by mechanical actuation of the
main hinge through gear or ratchet systems so that the
device remains rigid when the actuator is not active.
They are self-contained (all actuators are on board) but
the entire mechanisms tend to be bulky and heavy.  

Common controller inputs to the exoskeletons have
been either voice or EMG signals [2, 3]. Voice activation 
systems use verbal commands such as “grasp” or “grip”
to trigger the opening/closing of the actuated clasping
mechanism in which the user’s hand sits.  Such systems
allow for good control of objects during steady state
operation, however, typical problems with voice
recognition systems include background noise or false
signals.  

On the other hand, control strategies based on EMG
signals could provide commands without suffering from
the common voice recognition problems. For example,
the electrical signal of the muscle activation from a
working leg muscle could be amplified and used directly 
to control the actuators that control the finger
movements. When the leg muscle was contracted
beyond a threshold level, the fingers could be
commanded to curl. When the leg muscle was relaxed
below the same threshold, the fingers could be
commanded to open.  In a similar manner, EMG signals
have also been used to control  mechanical hardware
[5–7] and  simulations [8].  

Most of the current work in this area uses EMG
signals from muscles that are unrelated to the actual
sequence of reaching and grasping movements. This
technique successfully avoids the conflict between the
movements to position to hand and to command the
grasping movements. For example, if the right biceps
signals were used to control the right hand grasping
motion, the user’s elbow motion used to reach for the
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object could trigger the exoskeleton to curl the fingers
before the hand is positioned in the right place. However, 
by avoiding using related muscles, the control is
unnatural and it is difficult for the users to adapt to this
new mapping. Furthermore, when the muscles used for
the control command are used for other activities (e.g.,
walking, etc.), the exoskeleton would open and close
unnecessarily.  

To address these issues, we constructed a low-profile
and lightweight exoskeleton that allows a basic pinching
motion using a natural sequence of muscle activation.
The pinching motion between the index finger and the
thumb provides the ability to perform a wide range of
daily tasks such as picking up small objects, turning
knobs, flipping switches, and opening bottles. We
targeted the patient group with injuries in spinal column
C5 and C6 (very common) that results in paralyzed
hands while having some functions left in their
shoulders, elbows, and/or wrists. We present results in
extracting the residual muscle signals related to the
actual reaching and pinching movements and utilizing
them to trigger the correct pinching movements with the
exoskeleton. Our results include data from a quadriplegic 
subject with C5/C6 injuries to determine the benefits of
binary and variable algorithms.

2. Design of the Orthotic Exoskeleton

2.1. Mechanical Design

The human index finger has three joints and four
degrees of freedom. From the distal end, the joints are:
the DIP (distal interphalangeal), PIP (proximal
interphalangeal), and MCP (metacarpophalangeal).  The
DIP and PIP joints have flexion/extension degree of
freedom, while the MCP joint has both flexion/extension 
and abduction/adduction degrees of freedom.  To enable
a steady pinching motion to the fixed thumb, flexion and
extension of all three joints are required.  The
flexion/extension of the DIP and PIP joints are coupled,
but the DIP/PIP and MCP flexion/extension are
independent.  Active abduction/adduction movements
are not used to allow the tip of the index finger to meet
the thumb, but passive abduction/adduction movement is 
allowed so as to aid the finger in conforming to its target
object.   

To support such movements, we needed to provide
(1) a coupled active degree of freedom for the DIP and
PIP flexion/extension, (2) an active degree of freedom
for the MCP flexion/extension, and (3) a passive degree
of freedom for the MCP abduction/adduction.  For both
active degrees of freedom, we used pneumatic pistons
(models 007 and 007-R from Bimba Manufacturing
Company, Monee, IL) activating a cabling system. 
These pistons were connected to variable pressure
pneumatic valves (model 4088x from Herion USA, Inc.).  
Our analysis showed that these movements could be

accomplished by a linear actuation of 1 to 1.5 inches,
depending on the hand size of the user, and the required
7 lbs of contact force could be accomplished by 10 lbs of 
linear force.  We did not use artificial muscle actuators
such as McKibben pneumatic muscles and shaped
memory alloys, used in similar devices [4, 9–11], to
keep the small profile while maintaining the required
force and displacement.  

Figure 1 shows our orthotic exoskeleton system. The 
mechanical framework of the exoskeleton consisted of
an aluminum anchoring plate mounted to the back of the
hand and three aluminum bands, one for each of the
finger bones.  The aluminum bands were designed to be
adjustable for different finger sizes. The flexion of the
PIP and DIP joints was produced by steel cable running
along the front of each finger band and through to the
backside of the hand. These cables were pulled by a
pneumatic cylinder acting in compression. The MCP
flexion, on the other hand, was achieved by a linkage
mechanism: a floating link was mounted between the
finger band closest to the base plate and a second
pneumatic actuator, acting in extension. When the
extension pneumatic piston pushed this link mechanism
forward (distal), the MCP joint resulted in flexion. To
achieve smooth repeatable motion and the passive
abduction/adduction motion, we added a flexible
coupling between the base-plate and first finger band
made from a canvas-like cloth material.  The cloth was
rigid in tension but was easily deformable along its
length, which allowed for the device to maintain a set
distance between the base plate and first finger band
while not inhibiting flexion.  Small springs were used at
all three joints to extend them passively. When the finger 
was at rest, the springs kept the finger at full extension,
and the pistons worked against the spring forces during
flexion.  

Figure 2 illustrates system components including all
of the electronics and pneumatics which would be
located in the user’s wheelchair or in an appropriate
carrying case. The mechanical and electrical components 
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Fig. 1. Our orthotic exoskeleton system. It is a low-profile
lightweight exoskeleton that allows basic pinching motion
using natural sequence of muscle activation.  Pinching
motion between the index finger and the thumb provides
the ability to perform a wide range of daily tasks.



of our system did not contain any sensors to establish the
closed-loop system. Instead, the user judged the output
and controlled their muscle contraction in a closed-loop
format.  

2.2. EMG Signal Processing

Our exoskeleton is targeted for those with some
residual EMG signals on their arm, even if it is not strong 
enough to move the joints. For this paper, we used the
biceps as the example because quadriplegics with C5
and/or C6 injuries typically have good control of their
biceps even though they are mostly unable to control
their hands. Also biceps muscles are easily accessible
from the skin surface, and it is intuitive to control the
signals by moving the elbow.  

The biceps EMG signal was recorded using a Delsys
Bagnoli-8 system. The signal was amplified and
digitized at 500Hz. The digitized EMG data was then
rectified and smoothed using a Butterworth low-pass
filter.  This data was normalized using the maximum
voluntary contraction (MVC) level of the user. This
processed EMG signal was then used to control the
pressure level in the pneumatic valves.

3. Actuator Control Algorithm

3.1. Binary Control Algorithm

To design the new natural control strategy, we first
determined whether to control the actuator valves using
binary or variable algorithm with a spinal cord injured
individual.  The binary control algorithm resembles the
ones employed by [2]. This algorithm is called a binary

controller because its output to the pneumatic valves was 
either off (0V) or on (10V). The output binary value was
determined by the EMG signal: when it was above a
specified EMG threshold value, the output was “on”, and 
when it was below, the output was “off”.  We
implemented a hysteresis in the valve triggering system
to prevent the output oscillation.  The mean threshold
value was originally set to be at 55% MVC to turn on,
and 45% MVC to turn off, but we adjusted it to the
subject’s comfortable setting before each experiment.  

While we tested for the validity of the binary versus
variable control algorithm, we used the biceps signals
from the side without the exoskeleton (contralateral
biceps).  When the bicep was contracted above the
threshold value, both pneumatic pistons produced
120 psi at the same time. This resulted in the
compression piston to flex the PIP and DIP joints and the 
extension piston to flex the MCP joint together in
approximately 0.5 seconds.  Once the full flexion was
established, the exoskeleton maintained the same
posture. When the EMG signal dropped below the
threshold value, both valves turned off completely and
the springs in each joint pulled the finger to full
extension.  

3.2. Variable Control Algorithm

While the binary control algorithm is simple to
design and use, we compared its performance with a
variable control algorithm that was designed to explore
the benefit of continuous variable control of the
pneumatic pressure. To accomplish this controller, a
simple proportional controller was employed using the
filtered EMG signal of the contralateral biceps. We set
the minimum pressure level (20 psi) to be at 15% of the
maximum muscle contraction level to avoid the
twitching of the pneumatic system. Also, we set the
maximum pressure level (120 psi) to be at 70% of the
maximum muscle contraction level. As in the previous
control algorithm, we adjusted these values to the
subject’s comfortable setting before each experiment.

3.3. Experimental Protocol

We tested the efficiency and usability of binary and
variable control algorithms on an individual with an
upper spinal cord injury (quadriplegic). The individual
was 19 years old, 6 years post-injury, with diffused
C5/C6 injury. He was able to move both shoulders and
the right elbow, had some control over his right wrist and 
the left elbow, and no control on his left wrist and both
of his hands. We used his right biceps muscle to control
the orthotic exoskeleton on his left hand as shown in
Fig.3.

After placing the surface electrode on the subject’s
right biceps and putting the exoskeleton on his left hand,
we collected his EMG signals at rest and at MVC for 5
seconds.  The mean of the filtered signals were used as 0
and 100% contraction levels. The on/off threshold was
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Fig. 2. The figure shows system components. The
mechanical and electrical components of our system did
not contain any sensors to establish the closed-loop system. 
Instead, the user judged the output and controlled their
muscle contraction in a closed-loop format.



set to 50% of his contraction level at first (which
corresponded to an amplifier gain of 500) and we
allowed the subject to adjust this level until he was
comfortable with the threshold level. His final gain
selection was at 200 (which corresponded to
approximately 28% on and 18% off).  We also calibrated 
the variable controller’s range to be comfortable for the
subject, and it was set to have the minimum pressure
level at 15% of MVC and maximum pressure level at
40% of MVC.

We compared these two controllers by having the
subject attempt a pinch grasp of six different objects
spanning a range of size, weight, and compliance: a
rubber ball, a plastic hockey puck, a roll of masking tape, 
an electric toothbrush, a deck of cards, and a TwinkieTM. 
For all of these objects, we asked the subject to reach,
pinch, lift, place, and release as fast as he could without
failing the task. He repeated the reach/pinch/lift/
place/release for 5-7 trials per object per control strategy.  
He was also instructed to not break the TwinkieTM in
multiple pieces, requiring him to control his force level
and pinch it delicately.  

3.4. Results

Figure 4 shows typical EMG signals recorded during 
pinch/release for both actuator control algorithms.
Table 1 shows the success rate (i.e. whether the object
was successfully lifted off the table) for each object. 
These results indicate that the exoskeleton was
extremely effective (100% success rate) in pinching four
out of six objects. An electric toothbrush and a packaged
deck of cards were too slippery for the exoskeleton’s
metallic tip. Fig.5 shows the average total time it took
for both the quadriplegic and an able-bodied subjects
from the initial go signal until the object was fully
pinched (the toothbrush and the deck of cards were
excluded from Fig.5 because the disabled subject was
never able to pinch these objects). The disabled subject
executed the task slightly slower (on average by 0.44
seconds) but comparable to the able-bodied subject. 
There was a trend that the tasks were executed faster
with the binary control algorithm, and it was statistically
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Fig. 3. A spinal cord injured (C5/C6) individual using our 
orthotic exoskeleton to lift a roll of tape. He has no
voluntary control over his hands.

 

Fig. 4. Typical EMG signals recorded during reach/
pinch/lift/place/release sequence for binary and variable
control algorithms. Line A indicates initial contact, B
indicates full closure, and C indicates final release.

Trial Object
Pinching

Thickness
(inches)

Weight
(lbs)

Frequency of Grasping
Success (minimum 5
trials) Binary Variable

Roll of Tape 3/4 0.33 100% 100%

Rubber Ball 1 0.23 100% 100%

Plastic
Hockey Puck 1 0.13 100% 100%

TwinkieTM 1 0.09 50% 60%

Toothbrush 1  3/16 0.71 0% 0%

Deck of
Cards 1/2 0.31 0% 0%

Table 1. The properties of objects used in the
reach/pinch/lift/place/release task and their execution
success rate for the quadriplegic individual. The rate was
determined based on 5-7 trials.
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different for the hockey puck. There was a high
correlation with the amount of time it took to pinch the
object and the object weight (correlation coefficient: .89) 
while there was no significant correlation between the
size of the object and the execution time (correlation
coefficient: .57).  

While the binary and variable control algorithms
were proven to give similar results, we chose to use the
binary algorithm for the natural control strategy
described in the next section to allow faster execution of
tasks.

4. Natural Pinching Technique

4.1. Methods

Ideally, the control signal would be a part of the
natural reach and pinch movement rather than using the
contralateral arm to control the pinching motion.  If we
could tap into the residual EMG signal of a muscle that
used to control the index finger flexion and amplify it, it
would make the most natural controller. However, most
patients (including our subject) do not have detectable or 
usable amount of EMG signal on those muscles. The
muscle that is most reliably available for the target
population is the biceps muscle. Therefore, for the third
control algorithm, we used the ipsilateral biceps (the arm 
with the exoskeleton) and used the signals that were part
of the natural reach and pinch movements.  

To understand the relationship between the biceps
EMG signal and the timing of the pinch, we collected
data from two able-bodied subjects while they reached
and pinched a cylinder.  The EMG signal was collected
and filtered the same way as for the other algorithms. 
The cylinder was instrumented with a touch sensor to
detect the exact contact timing.  Subjects were asked to
repeat this movement 60 times. Using these 60
movements, a clear trend between the pinching and the
slope of the EMG signal was determined.  As shown in
Fig.6, the pinch occurred after the first peak and where a
negative slope was observed for a few hundred
milliseconds.  The slope, S, at time sample T of the
smoothed EMG function was calculated by 
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where E(t) is the smoothed EMG signal at sample time T.
To use the data from the future EMG data, the slope

calculation was delayed by 50 sample points (100msec).  
Due to this additional delay, we implement a 6th order
low-pass Butterworth filter, which gives us the ability to
use fewer coefficients without compromising on the
quality of information about the pinching timing.
Combining the faster low-pass filter and the slope trend
detection in (1), the algorithm executed a pinch when

S(T) was negative 50 samples in a row.  For subject 2, we 
added additional 80msec before executing the pinch.
Once one pinch was detected, the algorithm terminated.  

When the pinch was detected, we used the binary
control algorithm to flex the MCP and curl the DIP and
PIP at once. For this experiment, we did not train for
release timing, and performance was judged based on
correlation between EMG data and the actual pinch
recorded by the touch sensor. We tested this algorithm
using two sets of data: the original test data collected
from two subjects (without wearing the exoskeleton) and 
new real-time data collected when two subjects made 20
reaches for an object located 40cm above and below the
table height in addition the one on the table. For this
real-time experiment, subjects had the exoskeleton on a
mockup finger next to them to measure the timing
difference between the actual and the exoskeleton
pinches. We chose this method so that the accurate
timing differences could be gathered (if the subjects
wore the exoskeleton, the timing for the intended pinch
would not be captured).

4.2. Results

4.2.1. Test Data
Out of the 120 reach/pinch test trials collected, the

natural pinching algorithm detected pinching sequence
on 117 trials correctly. The three failure trials occurred
early in the experiment (3rd, 7th, and 14th trials). The
average error between the predicted and real pinching
timing was 0.31 seconds (SD = 0.32) for the first subject, 
and 0.28 seconds (SD = 0.30) for the second subject. 
The pinch was detected after the actual pinch for 67% of
the trials.  In reality, if the predicted pinches happened
close to but before the desired pinches, it may not
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Fig. 6. Typical EMG signals recorded while two
able-bodied subjects reached and pinched a cylinder. The
thick line below represents the time that the hand was in
contact with the object.



successfully pinch the object.  We determined that if we
added an additional 200msec delay before the pinch, all
but three predicted pinches would occur after the desired
pinch.

4.2.2. Real-Time Data
Figure 7 shows the timing differences between the

actual and exoskeleton pinches for three different
objects. One cylinder was placed 40cm above the table
top (high), another was placed on the table (straight), and 
another was placed 40cm below the table top (low).
Because the biceps are used in different ways to reach to
objects at different heights, this test shows the robustness 
of our simple algorithm. Our results indicate that there
was no significant difference in the results between the
three levels of pinching when two subjects made 20
reaches for each object. Across all three experiments, the 
average delay of pinch timing was 0.45 seconds (0.53
seconds (SD = 0.16) for low, 0.39 seconds (SD = 0.29)
for straight, and 0.43 seconds (SD = 0.15) for high). 
While we observed a longer delay between the desired
and the actual pinch for the real-time experiment, the
users described the difference to be hardly noticeable.
There were 6 trials that the pinch was never detected and
7 false positive trials when the exoskeleton pinched
before the subject started reaching for the object.  

5. Discussion

Our exoskeleton system has shown to be effective in
enabling pinching movements to those who lack hand
mobility regardless of the control algorithms used.  We
met many of the mechanical design criteria that we
specified. First, the device was constructed to be
comfortable. The user showed no signs of having to
adjust the exoskeleton to perform any of the desired

motions. Second, our design kept minimal materials on
the palmer side of the hand. The exoskeleton never
interfered with the manipulated objects.  In addition, the
exoskeleton only weighed 6.67oz and kept a low profile
on the hand.

We found that binary control algorithm allowed for
faster interaction with objects, while variable control
provided more success with deformable objects. To pick
up the TwinkieTM without breaking it into many pieces
required a well-calibrated light pinching force. To
provide this light and controllable pinching force, the
variable control algorithm proved to be more successful
than the binary control. In a few trials on the variable
control, the subject was able to bring the TwinkieTM to
his mouth, release it into his mouth and eat it.  The use of 
our device marked the spinal cord injured individual’s
first active control of the limb to lift a heavy object since
his injury, an experience that he found to be exhilarating.

These contralateral arm algorithms may be used for
non-repetitive pinching tasks that may require more
intense user feedback.  For example, a user who wants to 
pick up an object that may harm their fingers (heat or
cold) can use the binary or variable control algorithms in 
order to provide instant feedback to the exoskeleton to
release or decrease grip strength on the object.  This
method guarantees that as long as the user provides
enough bicep signal feedback, the exoskeleton will react
consistently.

While the variable control algorithm also had
significant benefits, the binary control algorithm was
used for the natural pinching technique for its speed. 
The advantage of having a natural pinching motion with
an EMG signal from the ipsilateral biceps is that the user
does not have to physically command the pinch through
voice or unrelated muscle activation. We have shown
that even with one muscle signal from the natural
reaching sequence, a reliable and robust pinching motion 
can be produced with the exoskeleton. With the use of
more residual muscles, the algorithm could because
sophisticated enough to allow subjects to never “think”
of pinching, similar to the way healthy individuals pinch
objects.
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