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Abstract: People and things can be connected through the Internet of Things (IoT), and speech
synthesis is one of the key technologies. At this stage, end-to-end speech synthesis systems are
capable of synthesizing relatively realistic human voices, but the current commonly used parallel
text-to-speech suffers from loss of useful information during the two-stage delivery process, and the
control features of the synthesized speech are monotonous, with insufficient expression of features,
including emotion, leading to emotional speech synthesis becoming a challenging task. In this paper,
we propose a new system named Emo-VITS, which is based on the highly expressive speech synthesis
module VITS, to realize the emotion control of text-to-speech synthesis. We designed the emotion
network to extract the global and local features of the reference audio, and then fused the global and
local features through the emotion feature fusion module based on the attention mechanism, so as
to achieve more accurate and comprehensive emotion speech synthesis. The experimental results
show that the Emo-VITS system’s error rate went up a little bit compared with the network without
emotionality and does not affect the semantic understanding. However, this system is superior to
other networks in naturalness, sound quality, and emotional similarity.

Keywords: IoT; Emo-VITS; emotional speech synthesis; emotion feature fusion

1. Introduction

People and things can be connected through the IoT [1–3], such as the answering
function of smart speakers, etc. Speech synthesis is one of the key technologies [4,5]. Text-
to-speech (TTS) is a kind of technology that can convert any input text into corresponding
speech. It is one of the indispensable modules in human–computer speech interaction.
It is not only used in audiobooks, voice guidance of public service facilities, and other
fields, but is also an important part of intelligent driving and robotics. At present, speech
synthesis has been able to achieve excellent synthesis effects; the naturalness of speech can
be close to the real human. As a classical algorithm in neural network-based sequence-to-
sequence (Seq2Seq) models, Tacotron2 [6] uses a modified WaveNet [7] as a vocoder on
the basis of Tacotron’s framework [8]. On the same dataset, the MOS value of Tacotron2
reached 4.53 compared with 4.58 for human speech. However, the autoregressive model
uses spectrum sequences to synthesize speech, which cannot avoid the operation process
of cyclic network, which leads to slow training and prediction in the speech synthesis
process. Non-autoregressive TTS models use parallel structures that can effectively speed
up synthesis, such as FastSpeech [9], FastSpeech 2 [10], and TransformerTTS [11].

Although the synthesized speech of the current TTS model has achieved excellent
performance, it is still difficult for people to control the emotion and style of speech
well. Therefore, it is still difficult to express emotions flexibly without affecting the text
expression itself in current speech synthesis. The reason is that the emotion of speech is
affected by many aspects, such as pitch, tone, and prosody, among which there are so
many details that it is difficult for people to completely decouple various paralinguistic
features. So far, emotional embedding in speech synthesis is still very challenging work. In
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addition, emotional information is also affected by various paralanguage features, which
are difficult to extract and decouple from other paralanguage features. Some affective
speech synthesis methods rely on artificially annotated affective speech datasets [12,13],
but artificially annotated datasets are costly and difficult to obtain, and it is difficult to
popularize this training method. Therefore, more and more researchers have studied
unsupervised methods.

The classical unsupervised method is to extract global emotional information from
reference audio [14–16], such as Global Style Tokens (GST) based on the Tacotron2 emotion
speech synthesis model. The basic idea of emotion embedding is to learn an embedding
vector for each emotion and introduce a global style token to obtain utterance-level embed-
ding. In recent studies, Variational AutoEncoder (VAE) [17] showed stronger capabilities in
disentanglement, scaling, and interpolation for style control, and VAE for explicit modeling
of potential variables has become one of the most popular methods.

However, there are still some problems in the emotion embedding methods of speech
synthesis. First of all, there is the problem of useful information loss in the two-stage
transmission of parallel TTS. At present, the parallel speech synthesis algorithm is generally
simplified into two stages. The first stage analyzes the input text information, generates
the corresponding linguistic specification input, and predicts the spectrum waveform. In
the second stage, according to the spectrum waveform provided by the speech analysis
section, the corresponding audio is generated to realize the sound. In general, the modules
of the two-stage model are trained separately, and there will be a certain gap between the
spectrum generated in the first stage and the real spectrum. Therefore, when the spectrum
generated in the first stage is applied to the second stage, this gap will be preserved, and the
effective information will be lost in transmission, thus reducing the final audio synthesis
effect. On the other hand, the training of the two-stage model is separate, so the connection
relies on pre-defined intermediate features, which makes it difficult to learn the hidden
representation directly from the previous stage to further improve performance [18]. A
complete end-to-end model, on the other hand, does not require separate training, so it
avoids these problems to some extent.

Second, if the control features of synthesized speech have only one granularity, the
result is likely to be boring. In expressive TTS, variation information can be modeled at
different granularity. It can be roughly divided into coarse-grained levels of information
that reflect global features and fine-grained levels of information that reflect local features.
For example, speaker level, paragraph level, and utterance level information are coarse-
grained information, while word level, phoneme level, and frame level are fine-grained
information [19]. The emotions of human speech are notoriously complex. When an intense
emotion is extracted and applied to a new text, the veracity of the voice is often reduced
because of the sharp intonation. Selecting a single emotion feature to control will make the
emotion expression of synthesized speech decline.

In this paper, to solve the above problems, we put forward the Emo-VITS system.
Emo-VITS is based on the Variational Inference with adversarial learning for end-to-end
Text-to-Speech (VITS) emotional speech synthesis method. VITS is a completely parallel
end-to-end TTS method proposed by Kim et al. [18], which connects two modules of the
TTS system through latent variables and generates sound audio that is more natural than
that generated by the two-stage model. VITS has wider application prospects in the field of
emotion speech synthesis because the structure, which is based on VAE, is more controllable
than other structures, such as Tacotron. In this paper, Emo-VITS is proposed based on VITS.
Emo-VITS has two emotion encoders to encode the extracted reference speech emotion
features and transform the synthesized speech emotion features from both global and local
perspectives. At the same time, an emotion feature fusion layer was used to integrate the
extracted global and local emotion features, following the example of Attention Feature
Fusion (AFF) [20]. In the prediction process, when given a reference audio with a given
emotion, the Emo-VITS model is able to extract its features and synthesize a speech with
that emotional feature, while achieving intensity control of that emotional feature. At the



Appl. Sci. 2023, 13, 2225 3 of 12

same time, we also cluster the emotional feature vectors of the training data so that the
desired type of features can be synthesized without reference to the audio. Emo-VITS also
supports the fusion of the global features of one reference voice with the local features of
the other reference voice, and then generates the emotional voice with two speech features.

2. VITS

VITS is a high-performance speech synthesis model that combines variational infer-
ence augmented with normalizing flows and an adversarial training process. VITS uses
Variational AutoEncoder (VAE) and applies normalized flows [21] to conditional prior
distribution and adversarial training on waveform domains to improve the quality of the
speech waveform. By connecting the two modules of the TTS system with latent variables,
complete end-to-end learning is achieved, which can produce a more natural sound audio
than the current two-stage model. Through random modeling on hidden variables and
using a random duration predictor, the diversity of synthesized speech is improved. The
same text input can synthesize speech with different tones and prosody.

VITS can be regarded as a conditioned VAE for a maximized variational Lower Bound,
namely ELBO (Evidence Lower Bound):

logpθ(x|c) ≥ Eqφ(z|x)

[
logpθ(x|z)− log

qφ(z|x)
pθ(z|c)

]
(1)

In the formula, pθ(z|c) and qφ(z|x), respectively, represent the prior distribution of
the potential variable z and an approximate posterior distribution, and logpθ(x|z) is the
likelihood function of a data point x. The sum of reconstructed loss, −logpθ(x|z), and kl
divergence, logqφ(z|x)− logpθ(z|c), can be used as the loss of training, namely -ELBO.

VITS use mel-spectrogram instead of the original waveforms, represented by xmel . L1
losses are calculated between the predicted and target mel-spectrogram as reconstruction
losses in training:

Lrecon = ‖ xmel − x̂mel ‖1 (2)

The kl divergence is as follows, where xlin is the linear-scale spectrogram of tar-
get speech:

Lkl = logqφ(z|xlin)− logpθ(z|ctext, A), (3)

z ∼ qφ(z|xlin) = N
(
z; µφ(xlin), σφ(xlin)

)
To estimate the alignment between the input text and the target speech A, VITS

adopts the Monotonic Alignment Search (MAS), which maximizes the likelihood of data
parameterized by a normalizing flow, f :

A = argmax
Â

logp
(
x
∣∣ctext, Â

)
= argmax

Â
logN

(
f (x); µ

(
ctext, Â

)
, σ
(
ctext, Â

)
)

(4)

VITS can calculate the duration of each input tag, d, by adding all the columns in each
of the estimated aligned rows. In order to achieve a more realistic rhythm of human speech,
VITS adds a stochastic duration predictor and introduces two random variables, u and
ν, which have the same time resolution and dimension as the duration series, d, and are
used for variational dequatization and variational data augmentation, respectively. The
two variables are sampled by an approximate posterior distribution. The resulting goal is
a variational lower bound on the logarithmic likelihood value of the phoneme duration.
Training loss, Ldur, is the lower bound of negative variation:

logpθ(d|ctext) ≥ Eqφ(u,v|d,ctext)

[
log

pθ(d− u, v|ctext)

qφ(u, v|d, ctext)

]
(5)
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VITS uses adversarial training, with a discriminator, D, distinguishing between the
output generated by the decoder, G, and the ground-truth waveform, y. Below is their
loss, where T represents the total number of layers of the discriminator and Dl outputs the
feature map of the l layer of the discriminator with Nl feature numbers:

Ladv(G) = Ez

[
(D(G(z))− 1)2

]
(6)

L f m(G) = E(y,z)

[
∑T

l=1
1
Nl
‖ Dl(y)− Dl(G(z)) ‖

1

]
(7)

With the combination of VAE and GAN training, the total loss for training can be
expressed as follows:

Lvae = Lrecon + Lkl + Ldur + Ladv(G) + L f m(G) (8)

The overall architecture of the model includes a posterior encoder, prior encoder,
decoder, discriminator, and stochastic duration predictor, as shown in Figures 1 and 2.

The prior encoder consists of two parts, the text encoder and the normalized stream
fθ . The text encoder is a Transformer [22] encoder. The normalized flow can improve the
variation range of prior distribution, so as to improve the final speech synthesis effect. A
posteriori encoder uses the non-causal WaveNet [7] residuals block used in Glow-TTS [23].
The decoder is an improved HIFI-GAN [24] generator, which consists of multiple trans-
posed convolutions with Multi-Receptive field Fusion (MRF). The random duration pre-
dictor estimates the distribution of phoneme duration based on conditional inputs. The
discriminator uses the method of adversarial training, reconstructs the one-dimensional
sequence into a two-dimensional plane through the sub-discriminator, and carries out
two-dimensional convolution operation to judge the true probability of the sample, thus
realizing the function of the discriminator.
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Figure 1. Training procedure of VITS. The slices of different colors represent different text embedding,
and the number of slices of the same color represents the duration.
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3. Emo-VITS

In order to synthesize emotion speech with high naturalness and taking into account
different granularities of information, we incorporated the emotion network into VITS and
propose the Emo-VITS system. Compared with other acoustic models, VITS has a very high
synthetic naturalness [18]. The Emo-VITS model inherited the high performance of the
VITS, and on this basis, the design of emotion network is concerned, including the emotion
encoder network and emotion feature fusion module. The goal of the emotion network is to
extract the emotion features of different receptive fields from the reference audio, integrate
them based on the attention mechanism, and send them to the VITS module.

Figures 3 and 4 shows an overview of the Emo-VITS system. In the figure, Wav2Vec2.0
is used for feature extraction, a global emotion feature extractor and local emotion feature
extractor is used for feature extraction of different granularities, and emotional feature
fusion is used for feature fusion. In the training stage, the training audio as the raw audio is
used as the emotion reference audio to extract the global and local emotion features. After
feature fusion of the two feature vectors, they are added into the text encoder as emotion
embedding and text embedding. In the prediction stage, emotional embedding is obtained
according to the given reference audio and emotional speech is synthesized.
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3.1. Emotional Encoder Network

The voice with emotion is extracted through wav2vec for emotion features. The global
and local sentiment encoder networks of the features are carried out to obtain the global
and local sentiment feature embedding, respectively. Figure 5 shows the structure of the
emotional encoder network.
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Wav2vec [25] in the figure is composed of an encoder and prediction model trans-
former. Wav2vec can be trained in an unsupervised manner to learn the representation
vector of the audio and use the vector in the training of improved acoustic models. Wav2vec
can also be used as a general feature extractor for speech. The resulting representation is
used to improve acoustic model training and can be used as a general feature extractor
for speech. Compared with traditional spectrum-based features, wav2vec 2.0 [26], as a
transformer model, can extract features that are suitable for attention-based fusion. In
addition, compared with the original waveform or spectrum features, features extracted
from the network with wav2vec 2.0 make it more difficult to restore the original audio
content and reconstruct the original reference audio. Therefore, using wav2vec 2.0 as a
feature extractor can reduce the influence of text information of the reference audio [27].

Here we use the wav2vec pre-training model from [28]. This model was created by
fine-tuning the pre-trained wav2vec2-large-robust model on the MSP-Podcast (v1.7). The
pre-trained model was pruned from 24 to 12 transformer layers before fine-tuning.

The global emotion encoder network in the figure processes the output features of
wav2vec 2.0 through a linear layer with ReLU activation. Then, through the single-layer
LSTM [29], the culture is further improved. Finally, the feature sequences are aggregated
into the mean vector representation after a certain step length by the MaskAvg module,
and 192-dimensional global affective feature embedding is formed.

Different from the global emotion encoder network, the local emotion encoder network
needs to keep the time information of feature extraction of Wav2vec 2.0. Specifically, the
output characteristics of wav2vec2.0 are first changed through a linear layer, and then the
representation is smoothed using average pooling. While expanding the Kernel field of
perception, the local significant features are effectively preserved. Local emotional features
contain time dimension, so the final extracted local emotional features and global emotional
features will be matched and fused through the broadcast mechanism.

Wav2vec 2.0 extracts the emotion feature vectors of reference audio files, generates
corresponding feature vectors through the local emotion encoder and global emotion
encoder, respectively, and then enters the emotion feature fusion module below.

3.2. Emotional Feature Fusion Module

The purpose of this module is to fuse the global and local emotion features to facilitate
the introduction of emotion features into the text encoder, as shown in Figure 6.

The calculation formula of feature fusion is as follows:

Z = α
⊗

X + (1− α)
⊗

Y (9)

where, X and Y are global and local emotion feature vectors, respectively. α is the new
feature weight obtained by vectors X and Y through the feature fusion network, and the
magnitude is between 0 and 1. It is the result obtained by the sum of X and Y, the sum of
output obtained by the global and local attention modules, respectively, and then the result
is obtained by Sigmoid.

In the training process, the local emotion embedding and the global emotion embed-
ding are added to obtain a new vector, and then enter the local attention module and the
global attention module, respectively. The partial attention module first passes through
the convolution layer, then through the Batch Normolization layer, Relu layer, and finally
through a convolution layer. The global attention module has one more global average
pooling layer than the local attention module, so as to extract the global salient features.
The sum of the results obtained by the two modules can be obtained by a sigmoid ac-
tivation function to obtain the weight reassigned by the two parts of the features, and
then the feature reweighted summation is carried out. The two parts of the network will
determine their respective network weights in the training. In the process of prediction,
the local and global emotional features of a single reference audio can be selected. We also
provide local and global emotional signatures using different reference audio for a more
three-dimensional effect.
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4. Experiment and Result
4.1. Experimental Data and Training Configuration

In our experiment, we used two Chinese datasets. The first is a publicly avail-
able dataset of female speakers, which we call the Biaobei dataset. The dataset contains
10,000 Chinese female utterancess with a total duration of about 12 h in uncompressed
PCM WAV format with a sampling rate of 48 kHz and 16 bit. Phonological proofreading,
prosodic labeling, and Chinese vowel boundary segmentation were performed. It was
divided into a training set of 9400 utterances, a test set of 500 utterances, and a verification
set of 100 utterances. The dataset is mainly used to test the accuracy of synthesis. Since most
of the expression of emotion in the open dataset was not strong enough, and the expression
of emotion was often not obvious in the test of affective speech synthesis, we also used an
emotionally intense Chinese dataset from online games, which was pronounced by female
speakers, which we later called Pm. This dataset is for performance testing purposes only
and will not be made public or commercially available. This dataset contains 2210 sen-
tences of Chinese female voices, of which 2200 sentences are used, and the sampling rate
is 22,050 Hz, 16 bit. It was divided into a training set of 1800 utterances, a test set of
300 utterances, and a verification set of 100 utterances. This dataset is derived from the
actual use of life, so its emotional intensity is very strong. However, the amount of data in
this dataset is not large, so it is more appropriate for us to use it for the test of emotional
synthesis strength and subjective evaluation.

When training the model, the network training uses the AdamW optimizer [30],
β1 = 0.8, β2 = 0.99, and weight attenuation λ = 0.01. The initial learning rate is 2 × 10−4,
and the decay time of the learning rate is 0.9991/8 factor. We trained on an NVIDIA RTX3060
GPU. The batch size was set to 16 and the model was trained to 200k steps. We also trained
the LST-A [27] model for comparative experiments, not only because the author shared
the source code, but also because the synthesis effect of this model is more excellent in
recent years.
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4.2. Objective Evaluation

Firstly, an accuracy test was conducted, which was mainly used to evaluate whether
emotion embedding had an impact on the accuracy of speech synthesis itself. Generally
speaking, compared with pure speech synthesis, the naturalness of emotion speech syn-
thesis will decrease due to the addition of emotion factors. Therefore, what we want to
evaluate with word error rate (WER) is whether the inclusion of emotional embedment
will lead to the decrease of naturalness and accuracy of speech [27]. The random audio
within the training dataset was used as the reference audio, with 100 synthesized sentences
of audio, and the WER was tested through a speech recognition (ASR) code. The speech
recognition code here is provided by Baidu AI, and the accuracy rate has reached more
than 98.4%. The results are shown in Table 1.

Table 1. Objective evaluation of Biaobei and Pm datasets.

Biaobei Pm

VITS Emo-VITS LST-A VITS Emo-VITS LST-A

WER (%) 8.1% 9.2% 14% 15.9% 19.6% 25.1%

As can be seen from the table, after the emotional network is added to the acoustic
model VITS, WER increases, but the amplitude of increase is acceptable. In our test, WER
did not increase much after the addition of the emotion module to the Biaobei dataset, but
the increase in the Pm dataset was greater than that of Biaobei dataset. This may be because
Pm is a homemade dataset. When the amount of data is small, the influence of adding an
emotion module on the accuracy of synthesis will be amplified. It is worth mentioning that
the LST-A structure is not effective in this accuracy experiment, and the error rate is very
high. We believe that the reason is that LST-A’s TransformerTTS is not robust enough, and
its performance is not as stable as that of VITS in the case of small data. This is also an
advantage of our use of the VITS model.

Next, we did an emotional classification test. First of all, we used the audio in the test
dataset Pm as the reference audio for corresponding emotion synthesis, and then used the
pre-trained emotion recognition model to detect whether our emotion speech synthesis
based on reference audio can restore the emotion. The accuracy of the speech emotion
recognition model used here is around 80% [31].

In emotion recognition, WA (Weighted Accuracy) and UA (Unweighted Accuracy) are
generally used to measure the accuracy rate. The formula is as follows:

WA =
∑N

i=1 TPi

∑N
i=1 TPi + FPi

× 100% (10)

where N represents the total number of categories. TP represents the sample with a positive
true value and a positive predicted value, and FP represents the sample with a negative
true value and a positive predicted value.

acci =
TPi

TPi + FPi
× 100% (11)

UA =
1
N ∑N

i=1 acci × 100%

where, acc represents the accuracy rate of each category, and N represents the total number
of categories.

A total of 100 sentences of audio were selected as reference audio in the dataset. We
controlled the same text information. At the same time, in order to minimize the impact
brought by the accuracy of the emotion recognition model itself, we took the result of the
reference audio used for testing after passing the emotion recognition model as the correct
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emotion. The total accuracy of emotion synthesis and the accuracy of emotion transfer are
shown in Table 2.

Table 2. Emotion objective evaluation of Emo-VITS.

Angry Happy Fear Sad Surprise

100% 72.7% 46.9% 28.2% 50%

Total Accuracy (WA) 61%

Total Accuracy (UA) 59.6%

Emotion objective evaluation of LSA-A

Angry Happy Fear Sad Surprise

67% 34.6% 39.1% 75.0% 30%

Total Accuracy (WA) 48.5%

Total Accuracy (UA) 49.1%

It can be seen that under the classification test of five emotions, the model in this paper
can finally achieve 61% accuracy of emotion synthesis. That is, after more than half of the
audio is used as the reference audio, the output audio still retains the original emotional
features and is classified into the same category in the emotional classification. Interestingly,
the model in this paper has a high accuracy for Angry and Happy, but it is not accurate for
Sad synthesis. We think it may be because when Sad is used as a reference audio mood,
its synthesized audio is discriminated into the Fear category because of the obvious ups
and downs of the sound, which leads to a decrease in accuracy. As for the LSA-A model, it
seems that the synthetic effect of Happy and Surprised is not good.

Finally, we use the Emotional Speech Dataset (ESD) [32] to do the same experiment.
This time, we used the test audio of five emotions for each of the eight speakers in the
dataset, with 30 sentences for each emotion and a total of 1200 sentences. Similarly, we
controlled the text information the same way, and in order to minimize the impact brought
by the accuracy of the emotion recognition model itself, we used the reference audio for
testing as the correct emotion after passing the emotion recognition model. Our overall
classification accuracy for audio synthesis using the ESD dataset was 52.67%.

4.3. Subjective Evaluation

We evaluated the naturalness and emotional similarity of our system through a subjec-
tive evaluation test. Twenty groups, consisting of text and reference speech, were randomly
selected from the test set, and a total of 40 pieces of audio were synthesized by the two emo-
tion systems. The reference audio and synthetic speech were grouped, and the 13 workers
who had never touched speech synthesis rated the naturalness and emotional similarity of
the speech on a scale of 5, respectively. The naturalness was from 1 (bad) to 5 (excellent),
and the emotional similarity was from 1 (not similar at all) to 5 (highly similar). Each audio
was rated by different workers, and we reported an average opinion score (MOS) and a
95% confidence interval. In the table, Emo-VITS (Global) represents that only global vectors
are used as the result of emotion embedding, while Emo-VITS (Local) represents that only
local vectors are used as the result of emotion embedding. The results are shown in Table 3.

From this table, we can see that our model is obviously better than LST-A in terms of
naturalness, although there is still a big gap with the ground truth. Through experiments,
we found that our advantage over LST-A was reflected in long statement modeling. When
the text information is too long, LST-A often has the phenomenon of repetition and missing
words. The reason this happens is that the alignment of the TransformerTTS depends on
the attention mechanism, and it is not stable enough. This kind of problem can greatly
affect the naturalness of speech. In contrast, Emo-VITS is more stable. Even if there is a
problem, it will only appear in the pronunciation of a certain word and will not cause a
greater impact on the overall structure of the sentence, so the negative effect is limited.
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Table 3. MOS with 95% confidence interval on Pm datasets.

Naturalness Emotion Similarity

Ground Truth 4.01 ± (0.14)

Emo-VITS 3.24 ± (0.16) 3.26 ± (0.15)

LST-A 2.83 ± (0.14) 3.01 ± (0.15)

VITS + GST 3.02 ± (0.14) 2.60 ± (0.14)

Emo-VITS (Global) 3.01 ± (0.13) 2.10 ± (0.14)

Emo-VITS (Local) 2.71 ± (0.14) 2.71 ± (0.14)

However, under the same acoustic model of Emo-VITS and VITS + GST, Emo-VITS’s
emotional similarity is significantly better than VITS + GST’s, which can show that the
Emo-VITS embedding method is better. By comparing the separate embedding results of
the global and local vectors of Emo-VITS, it can be found that the global emotion vector of
Emo-VITS focuses on maintaining the naturalness of the whole statement, while the local
emotion focuses on the expression of emotion.

5. Conclusions

We have developed a VITS-based emotional speech synthesis model, called Emo-VITS,
to better serve the IoT. We evaluated the accuracy, naturalness, and emotional similarity of
the synthesized speech, and the subjective and objective evaluations prove that the Emo-
VITS system can achieve significant results in characterizing emotions. We took advantage
of the VITS structure in synthetic speech. The global emotional feature embedding and local
emotional feature embedding of the reference audio are extracted separately by designing
an emotional encoder network, which is used to better express the emotional factors in the
reference audio. The attention-based mechanism is used to design the emotional feature
fusion module, which not only preserves the emotional information, but also facilitates the
embedding into the text encoder. We plan to continue to improve the method of emotional
features extraction and fusion and refine our dataset in the future based on the specific
application scenarios of IoT.
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