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An Empirical Analysis of Forecast Sharing in the

Semiconductor Equipment Supply Chain

Christian Terwiesch, Z. Justin Ren, Teck H. Ho, Morris A. Cohen

March 9, 2004

Abstract

We study the demand forecast sharing process between a buyer of customized

production equipment and a set of equipment suppliers. Based on a large data col-

lection we undertook in the semiconductor equipment supply chain, we empirically

investigate the relationship between the buyer’s forecasting behavior and the sup-

plier’s delivery performance. The buyer’s forecasting behavior is characterized by

the frequency and magnitude of forecast revisions she requests (forecast volatility)

as well as by the fraction of orders that were forecasted, yet never actually pur-

chased (forecast inflation). The supplier’s delivery performance is measured by the

supplier’s ability to meet delivery dates requested by the customers. Based on a du-

ration analysis, we are able to show that suppliers penalize the buyer for unreliable

forecasts by providing lower service levels. Vice versa, we also show that the buyer

penalizes suppliers with a history of poor service by providing them with overly

inflated forecasts.

1 Introduction

Sharing demand forecast information has been recognized as a key element in supply

chain coordination (Cachon 2001). Over the last decade, companies have engaged in var-

ious forecast sharing practices, including the commonly known Collaborative Planning,

Forecasting and Replenishment (CPFR) initiative, which was launched to “create collabo-

rative relationships between buyers and sellers through co-managed processes and shared

information.”1 Retailers such as Wal-mart and Best Buy, along with suppliers such as

Procter & Gamble and Kimberly-Clark, have all reported substantial benefits from CPFR

1Web site: http://www.cpfr.org.



projects. For example, GlobalNetXchange, a consortium consisting of over 30 trade part-

ners including Sears, Kroger, Unilever, Procter& Gamble, and Kimberly-Clark, have re-

ported a 5-20% reduction in inventory costs, and an increase in off-the-shelf availability of

2-12% following the launch of their CPFR program (VICS CPFR Committee, 2002).

Despite these success stories, forecast sharing still suffers from several problems in

practice. In this article, we analyze two types of problems related to forecast sharing.

First, forecasts change and are continually updated as the buyer receives new information

about the demand he faces. This problem, to which we refer to as forecast volatility,

raises the question of when the forecast information provided by the buyer is sufficiently

accurate to justify the supplier acting on it. A supplier who will act immediately on any

given forecast will likely face significant future adjustment and rework costs.

Second, forecasts provide information about what the buyer intends to do in a given

future state of the world. These intentions, however, are not verifiable and cannot be en-

forced. This makes contracting based on shared forecasts extremely difficult. In absence of

a contractual obligation for the buyer to purchase what she has forecasted, the buyer has

an incentive to inflate forecasts to assure sufficient supply (forecast inflation, see e.g. Ca-

chon and Lariviere 2001). Fearing inflated forecasts, the supplier might prefer to delay his

actions to a point in time when the buyer is willing to commit to his forecast. This set-up

shares many similarities with the classical prisoner’s dilemma: as is illustrated by Figure

1, both parties can either cooperate (buyer shares forecasts truthfully, supplier trusts the

forecast), achieving the Pareto-optimal outcome, or, as predicted by the one-period equi-

librium model, decide to act non-cooperatively (buyer inflates forecasts, supplier discounts

forecast) foregoing the benefits of forecast sharing.

The extent to which the two parties will choose cooperative actions depends on the rele-

vant planning horizon. Most of the existing analytical research on supply chain contracting

considers one-shot games (Cachon and Netessine 2003). As we demonstrated in an earlier

paper (Cohen et al. 2003), this single period game induces the buyer to over-forecast and

the supplier to delay the initiation of a production order. More recently, there has been

a growing interest in the supply chain literature (e.g. Taylor and Plambeck 2003, Debo

1999) and beyond (see e.g. Sommer and Loch 2003 for an application in project manage-

ment) in the role of trust and reputation in multi-period games. This paper complements

this emerging area of research with an empirical foundation. Taking a multi-period per-

spective, we demonstrate that both parties consider the outcome of previous periods when

deciding if they should cooperate in the present period.

Our study is grounded on detailed data related to forecast sharing and order fulfillment

2



that we collected in the semiconductor equipment supply chain. We created a unique

proprietary data set, capturing transactions between one buyer and 78 suppliers. Over a

period of 2 years we collected data on more than 3000 orders. This allows us to make the

following contributions. First, we show that suppliers in the semiconductor equipment

supply chain penalize the buyer for unreliable forecasts by delaying the fulfillment of fore-

casted orders. Specifically, we show that suppliers who have experienced large amounts of

forecast volatility from the buyer are less willing to allocate capacity towards forecasted

orders, leading to over-proportionally long tool delivery times. Second, we show that

suppliers who have been exposed to forecast inflation in the form of excessive order can-

cellations are less willing to allocate capacity towards forecasted orders, also leading to

over-proportionally long tool delivery times. Third, we show that the buyer penalizes

those suppliers that have not been able to meet prior delivery requests by providing them

with overly inflated forecasts. Together with the actions of the supplier, this penalty

scheme from the buyer creates a “tit for tat” strategy, which is in line with earlier pre-

diction from the economics literature for repeated prisoner dilemma games (e.g. Axelrod

1981, Kreps et al. 1982).

2 Research Setting

Our empirical analysis is based on a proprietary data set that we created in the semicon-

ductor equipment industry. The data set consists of one buyer and a set of 78 suppliers.

The buyer in our sample is one of the largest chip manufacturers in the industry and is

the most important buyer of semiconductor equipment worldwide. This equips the buyer

with a substantial amount of power and allows the buyer to implement forecast sharing

agreements that equipment suppliers might not agree to when facing smaller equipment

buyers. This includes the design of contracts, the implementation of information systems

as well as the request for short delivery lead-times. Given the technological complexity of

the pieces of equipment requested by the buyer and the large amount of buyer specific in-

vestments that suppliers incur, there exists only one supplier for every piece of equipment

(i.e. for any piece of equipment, the buyer is committed to a single-sourcing strategy).

While the powerful position of the buyer clearly limits the generalizability of our findings,

it is advantageous from a research design perspective, as it holds the forecast sharing

mechanism constant across all 78 suppliers in our sample.

As in many customized capital goods industries, the semiconductor equipment supply

chain faces an order fulfillment dilemma. On the one hand, buyers of equipment expect
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their suppliers to be responsive and to be able to fulfill orders within a relatively short

delivery time. On the other hand, the high value and the customized nature of the product

makes it risky for the supplier to keep finished products or sub-systems in inventory, leading

to long and variable manufacturing lead-times. Given the integral nature of the equipment,

postponement strategies, that have been found useful to shorten delivery times and to

reduce inventory risks (e.g. Lee 1996), have not yet been implemented in this industry.

To resolve this dilemma, the buyers (producers of micro chips) provide their equipment

suppliers with order forecasts for the next 24 months and longer. Unlike firm purchase

orders, such forecasted orders — also referred to as “soft orders” — are a reflection of the

buyer’s purchase intent and are not legally binding.

Demand for semiconductor production equipment is triggered by the (projected) de-

mand for chips, including micro-processors and memory chips. Given that the demand for

chips is in turn generated by the demand for electronic devices, semiconductor equipment

makers find themselves at the wrong end of the “bullwhip”(e.g. Lee et al. 1997). They

face business cycles that flood them with orders in one year and starve them for work in

the next (see Figure 2). The large chip producers create market forecasts on a monthly

or quarterly basis. These forecasts are used to project production capacity needs for the

next 2-5 years. Forecasts and capacity plans are updated on the basis of a rolling horizon

principle. Chip manufacturers use these product level demand forecasts combined with

equipment output models to allocate forecasted capacity requirements to both existing

and potentially new fabs. If the forecasted capacity requirement is not supported by the

size and productivity of the installed equipment base, additional equipment must be or-

dered. This projected need for additional equipment is shared with equipment suppliers

in the form of forecasted (soft) orders consistent with the principle of forecast sharing and

collaborative planning.

The chip manufacturer is unlikely to actually commit to purchase equipment at the time

of the initial placement of the soft order. Over the next two years, the chip manufacturer

will obtain new information about demand for chips as well as about the effective capacity

of the currently installed equipment base (based on production yields, throughput time,

and machine up-time). As a result, the chip manufacturer may update the soft order and

will usually delay making a firm order (i.e., issue a purchase order) until about 3-6 months

prior to the projected delivery date. This flexibility of the buyer, delaying a commitment

until relatively close to the delivery date, reflects the buyer’s strong bargaining position.

During the time between the initial placement of the soft order and the final place-

ment of the purchase order, the buyer and the supplier continue to exchange information.
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Specifically, the buyer will inform the supplier about changes to the requested delivery

date, the location of the fab where the tool will be operating, and other delivery related

information. In contrast to these changes in delivery details, the buyer does not change

the specification of the equipment. This reflects the buyer’s policy known as “Copy Exact”

(see Terwiesch and Xu 2004 for details), which postulates that every piece of production

equipment has to be absolutely identical. In absence of specification changes, a soft order

can be modified in one of the following two ways.

(1) The requested delivery date might be moved forwards or backwards in time, reflect-

ing new information the buyer has about detailed capacity planning at the fab. Given

the high capital costs associated with acquiring the equipment, the buyer prefers to delay

the requested delivery date rather than to receive the equipment earlier than needed and

having it be idle.

(2) The soft order may be cancelled if market demand is less than initially projected or

if existing equipment operates at higher yield levels or at a higher level of productivity.

Alternatively, the soft order remains unchanged in the forecast sharing system. Figure

3 shows the sequence of events for a soft order that is ultimately converted into a firm

order.

Table 1 shows an example of four soft-orders representative of the type of data we

collected. This includes when the soft order was placed, how the requested delivery date

changed, and whether or not the soft-order ended up being purchased or being cancelled.

Tool #197 has a stable forecast history, but was cancelled six months after it was fore-

casted. The requested delivery date for tool #199 changed three times. Tool #316 has a

relatively stable forecasting history, and was delivered earlier than requested. In contrast,

tool #365 has a volatile forecasting history, with its requested delivery date changing

widely from as early as 8/16/2000, to as late as 12/30/2002. This order ultimately was

delivered almost 2 months later than requested.

Figure 4 shows an aggregation of order forecasts for one specific supplier. Each of the

shared forecasts is a time series consisting of the seven quarters included in the relevant

forecast window. For example, in Q2 2000, the buyer provides forecast quantities for the

time interval from Q3 2000 to Q1 2002. We observe that forecasts vary widely, both over

time (what is forecasted in Q1 2000 for the time period of Q2 2000 to Q4 2001) as well

as from one forecast to the next (e.g. what is forecasted in e.g. Q4 1998 for Q2 1999 vs.

what is forecasted in Q1 1999 for Q2 1999). Figure 4 also contrasts the forecasts with the

actual tool purchases. On average, the buyer places significantly more soft orders than

hard orders, suggesting the presence of forecast inflation.
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3 Research Objectives and Hypotheses

Our objective is to identify patterns of shared order forecasting that lead to an on-time tool

delivery. Given that when a purchase order is placed, its production lead-time exceeds the

residual time available to the requested delivery date (see Figure 3), an on-time delivery

requires that the supplier has started working on an order while it was still a forecast (soft

order).

Unfortunately, the effectiveness of working with forecasted orders can be greatly reduced

through non-cooperative behavior of either party, buyer and supplier. The buyer can place

more soft orders than he anticipates to place firm orders in the hope that this will secure

him production capacity of the supplier. Vice versa, the supplier can discount or even

ignore the information provided to him in the form of a soft order, knowing that he is the

single supplier for a specific tool and is almost impossible to be held accountable for a

delay in court. Consequently, the single period game between the buyer and the supplier

resembles the traditional “prisoner’s dilemma”, which is known to have a Pareto inefficient

equilibrium (Figure 1).

While playing a game once can lead to mistrust and a non-cooperative outcome, the

economics literature suggests that playing a game repeatedly can lead to more cooperative

outcomes. Specifically, it has been argued that in the repeated game, parties are likely

to adopt a “tit-for-tat” strategy, i.e., cooperate (the buyer forecasts orders correctly on

average and the supplier reacts to the forecasted order) as long as the other party does the

same, and retaliate (the buyer over-forecasts and the supplier ignores forecasted orders)

upon the other party’s defection (Axelrod 1981; Kreps et al. 1982). Our hypotheses

derived below attempt to document that buyer and supplier indeed follow such a “tit-for-

tat” strategy.

The Perspective of the Supplier

Consider the perspective of the supplier first. Given that the buyer has the right to

change the delivery dates of soft orders and can cancel any open soft order, the supplier

carries the risk of commencing production prior to receiving a firm order. However, since

the supplier depends on the buyer for business for future technology generations, the sup-

plier is unlikely to completely discount every piece of information he receives from the

buyer. Instead, the supplier will evaluate the reputation of the buyer based on prior trans-

actions, rewarding good forecasting behavior with early commencement of the production

process and penalizing bad forecasting behavior with delays.

In our context, bad forecasting behavior of the buyer is constituted by two forces,
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forecast volatility and forecast inflation. Forecast volatility arises as forecasted orders are

based on preliminary information and made at a point in time at which the buyer of the

equipment still faces substantial uncertainty about his actual needs for the equipment.

This uncertainty is likely to make the forecasts volatile, which in turn makes the supplier

reluctant to commit resources to it. Forecast volatility has been analyzed by several

prior studies (for example, Heath and Jackson 1994, Graves et al. 1998, Cakanyildirim

and Roundy 1999, and Kaminsky and Swaminathan 2001). Cattani and Hausman (2000)

show that demand forecasts do not necessarily become more accurate as they are updated.

They argue that such forecast churning can cause inefficiencies if the firm reacts to the

wrong forecast update. A similar result has been provided by Toktay and Wein (2001).

Similar observations have also been made in the coordination and project management

literature2.

In our research setting, forecast volatility can take one of two forms, order-specific

forecast volatility and buyer-specific forecast volatility. With order-specific volatility, we

refer to the number of change requests the buyer places for a particular order3. In contrast,

we label the number of change requests (across orders) the buyer has placed with the

supplier as buyer specific forecast volatility4. Buyer specific forecast volatility thereby

captures the recent history of forecast behavior of the buyer.

Hypothesis 1a (order specific forecast volatility): The more the customer changes the

requested delivery date of a particular soft order, the more likely this particular order will

be delayed.

Hypothesis 1b (buyer specific forecast volatility): The more the buyer has changed re-

quested delivery dates for his soft orders in the past, the more likely it is for his current

order to be delayed.

A second reason why a supplier might not be willing to initiate work for a soft order

relates to the perceived probability of order cancellation. Given the complex and capital

intense production process of semiconductor manufacturing, the buyer faces severe costs if

2See Krishnan et al. (1997), Loch and Terwiesch (1998), and Roemer and Ahmadi (2000) for models of

sharing preliminary information in which an information receiving task needs to decide when it is willing

to commit resources to information supplied by other, concurrently executed, tasks.
3Consider, for example, a supplier in February 2001 who has received a soft-order in May 2000 with

an initially requested delivery date of July 2001. However, between May 2000 and February 2001, the

soft-order has been modified (e.g. pushed out) multiple times.
4Consider, again, a supplier who has received a soft-order in May 2000 with a requested delivery date

of July 2001. In January 2001, the supplier considers initiating the order fulfillment process. Yet, from

prior experience with the same buyer, the supplier knows that in more than half of the cases the buyer

has delayed the requested delivery date within five months from the initially requested delivery date
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the equipment does not arrive on the required delivery date. Late shipments of equipment,

and consequently late availability of capacity, can lead to idle time for other equipment

in the fab and potentially lost wafer output. Industry observer estimate that a one hour

delay in installing capacity of a fab is worth in excess of $100k. This creates an incentive

for the buyer to provide overly aggressive forecasts to the supplier, i.e. place more soft

orders than firm orders. As the real capacity needs of the buyer are unobservable to

the supplier, the buyer can always cancel the order and justify such change based on

information that is not verifiable by the supplier, e.g. an unexpected drop in demand, or

increased production yields from existing equipment. Note that, in contrast to forecast

volatility which would also exist in a vertically integrated firm, forecast inflation reflects

an opportunistic (non-cooperative) behavior of the buyer.

Forecast inflation has been analyzed by Lee et al. (1997), Celikbas et al. (1999), and

Cachon and Lariviere (2001). While these models are based on one-shot games, there

has been a growing interest in the role of trust and reputation in supply chains from a

multi-period perspective (Taylor and Plambeck 2003, Debo 1999, Cachon and Netessine

2003). These studies, directly or indirectly, fit the repeated prisoner’s dilemma framework

outlined in Figure 1, and hence predict that the supplier will penalize the buyer for order

cancellations by providing longer delivery times:

Hypothesis 1c (forecast inflation): Past soft order cancellations prolong current order

lead time. That is, the more frequently the buyer has cancelled soft orders in the past, the

more likely it is for the supplier to delay production, which leads to longer order lead time.

Cancelled orders are especially costly to the supplier while operating at full capacity, as

in such cases the cancellation costs not only include costs of inventory and procurement,

but also the opportunity cost of lost business. We therefore extend our hypothesis as

follows:

Hypothesis 1d (forecast inflation in economic upturn): The delay from order cancellation

is more severe during an economic upturn.

The Perspective of the Buyer

While cooperation from the supplier’s perspective means reacting to the forecasted

orders provided by the buyer, cooperation from the buyer’s perspective means providing

realistic estimates for the forecasted orders. To the extent that buyer and supplier indeed

follow a tit-for-tat strategy, the buyer will react to non-cooperative behavior of the supplier

by acting non-cooperatively himself.

In the eyes of the buyer, non-cooperative supplier behavior is characterized by late

deliveries of equipment. Although the action of the supplier itself is not observable to the
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buyer, the buyer can estimate supplier cooperation based on delivery dates: everything

else equal, a supplier with late equipment deliveries is more likely to have engaged in

non-cooperative behavior than a supplier that has delivered on time.

Once the buyer has decided to punish a supplier, he can do so by placing soft-orders

and then cancelling them over-proportionally often compared to the case of cooperation.

In absence of forced compliance (Cachon and Lariviere 2001) this is the only punishment

mechanism the buyer has available during the interaction with the supplier for this tool

generation. We therefore hypothesize:

Hypothesis 2 (forecast inflation): Past delivery delays lead to an increase in future

cancellations.

4 Model Specification

We model the evolution of a soft-order to a firm order and ultimately to a delivered piece

of equipment in the form of a two stage process. The first stage captures the fact that soft

orders can either end up as firm orders, i.e. the buyer places an order, or can be cancelled.

Conditional on being ordered, a firm order will experience a delivery time, consisting of

the elapsed time between the placement of the firm order and its arrival at the customer’s

fab. These two stages are summarized by Figure 5.

Let (s, j)denote the index of the j-th soft order the buyer places with supplier s. We

use a logit formulation to describe the probability that this soft order is transformed into

a firm order

Prs,j(firm order)=
1

1 + exp (xs,jβ)
(1)

where xs,j is a vector of explanatory variables and β is a parameter vector of appropriate

dimensionality. Since any soft order will be either transformed into a firm order or be

cancelled, the probability of cancellation is:

Prs,j(cancel)=1-Prs,j(firm order)=
exp(xs,jβ)

1 + exp (xs,jβ)
(2)

Conditional upon the placement of a firm order, the firm order will experience a strictly

positive delivery lead time. We model the duration between the placement of a firm order

by the buyer and its delivery by the supplier using a hazard rate model (Cox 1972). Using

the hazard rate as a dependent variable, as opposed to the actual delivery lead time, has

several advantages. First, durations may have a non-normal distribution. Restricted to

be positive, they are often skewed. Thus the normality assumption of standard regression
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is violated. Second, hazard rate models should be chosen instead of standard regression

analysis when working with survival data (Helsen and Schmittlein 1993). In our case,

performing a regression analysis on only those soft orders which have been delivered would

lead to a right-censoring of the data, as many of the soft-orders we traced were not yet

delivered at the end of our data collection. Finally, hazard models are also capable of

capturing interesting dynamics of durations, i.e., the change in hazard rate over time,

which can lead to additional insights in the underlying dynamics of the order fulfillment

process.

Despite their advantages, standard hazard rate models require that observations are

independent of each other. This may be reasonable in the context of a medical life-time

study, yet in a manufacturing environment like the one we study, the order lead-time of

one order is likely to be positively correlated with the order lead-time of the subsequent

order at the same supplier. Such correlation reflects congestion effects: a long lead-time

for one particular order will increase the probability of the next order in the production

pipeline also experiencing a long lead-time. Consequently, the independence assumption

is violated and a refined model specification is needed.

Let (s, i) denote the index of the i-th firm order at supplier s and let Is be the number

of firm orders received by supplier s. Define random variables Ts,i as the logarithm of

the duration between the placement of the firm order (s, i) and the delivery date of the

equipment. Let ts,i be the realizations of these random variables. We model the hazard

rate of one completed order (s, i) conditional upon the completion time of the previous

order to the same supplier, (s, i− 1) , as

h(ts,i|ts,i−1) = h0(ts,i|ts,i−1) · exp (zs,iα) (3)

where h0 (ts,i|ts,i−1) is the correlated baseline hazard function, zs,i is a vector of explanatory

variables, and α is a parameter vector of appropriate dimensionality. According to Cox

(1972), the baseline hazard function is:

h0 (ts,i|ts,i−1) =
f (ts,i|ts,i−1)

1− F (ts,i|ts,i−1)
(4)

where f (.) (F (.)) is the conditional density (distribution) function for a bivariate nor-

mal distribution with identical marginal mean µ, standard deviation σ, and correlation

coefficient ρ. It follows that Ts,i| (Ts,i−1 = ts,i−1) ∼ N(µ + ρ(ts,i−1 − µ), σ2(1 − ρ2)). In

order to formally test to what extent the log-normal distribution indeed represents the

delivery durations in our sample, we performed both, a Kolmogorov-Smirnov test as well

as a traditional Chi-square test (see e.g. Law and Kelton 1991 for details). Both tests
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supported our assumption, i.e. the hypothesis of log-normality could not be rejected. The

importance of the correlation coefficient, ρ, will become apparent in the estimation results

of our model.

Define an indicator variable rs,i = 0 if the duration is censored (i.e., the firm order was

not completed at the time of our data collection), and rs,i = 1 if it is not censored. Then

the likelihood contribution, i.e., the probability of observing duration ts,i conditional upon

it being firm-ordered is (Kalbfleisch and Prentice 1980):

Pr(ts,i|ts,i−1) = [f(ts,i|ts,i−1)]
rs,i[1− F (ts,i|ts,i−1)]

1−rs,i

Given supplier s, the likelihood contribution of observing the vector (ts,1, ..., ts,Is) of

delivery times is:

Prs (ts,1, ..., ts,Is) = Pr (ts,1) · Pr (ts,2|ts,1) · ... · Pr (ts,Is |ts,Is−1) (5)

Finally, we obtain the log-likelihood function of the complete two-stage model as:

LL (α, β, µ, σ, ρ) (6)

=
∑
s

{[∑
j

ln (Prs,j (firm order)) + ln (Prs,j (cancel))

]
+ ln (Prs (ts,1, ..., ts,Is))

}

5 Construct Definition

Over the time period from September 1999 to July 2001 we collected data on all soft and

firm orders the buyer placed with his 78 equipment suppliers, leading to a total of 3031

observations. Our econometric model specified above uses two dependent variables. For

the first stage, the dependent variable is binary, with a value of one denoting that the

soft order was converted into a firm order and a value of zero denoting a cancelation.

In total, 53.2% of the soft orders were converted into firm orders. For the second stage,

the dependent variable is the duration between the placement of the firm order and the

delivery of the equipment to the buyer’s fab.

In addition to these dependent variables, our hypotheses include the following set of

explanatory variables. For a given soft order, we measure order specific volatility (OR-

DER VOLA) as the amount of due date change (forward or backward in time) that this

soft order has experienced prior to becoming a firm order. In other words, we add up

the absolute value of all due date changes this soft order experiences. For example, a soft

order that was initially placed for May 2002, moved forward to March 2002, and finally

11



moved back to June 2002 would have a score of 2+3=5 months. Similarly, we measure

buyer specific volatility (BUYER VOLA) for a given soft order as the average amount of

due date change (forward or backward in time) across all soft orders the buyer submitted

to the supplier within the last three months prior to this soft order. Both, BUYER VOLA

and ORDER VOLA, are measured in months. BUYER VOLA ranges between 0 and 16.4

months with an average of 3.76 months. In our data set, ORDER VOLA ranges from 0

to 51.2 months. The average is - coincidentally - also 3.76 months. Forecast inflation is

measured by comparing the number of soft order cancellations over the past three months

to the total number of (soft and firm) orders. The corresponding ratio, which we label as

CANCEL, can be interpreted as the probability of order cancellation.

We measure the overall economic conditions by including the industry’s book-to-bill

ratio, as defined and tracked by Semiconductor Equipment and Materials International.

It is defined as a ratio of the three-month moving average bookings to the three-month

moving average shipments for the North American semiconductor equipment industry.

This statistic characterizes the relative balance of supply and demand in the industry. If

the ratio is larger than one, demand exceeds current supply. We define a binary variable,

BOOK BILL, that is equal to one if demand exceeds supply (indicating an economic

upturn) and zero otherwise. Finally, we measure the past delivery performance of the

supplier for a given soft order as the total delay across all tool deliveries that occurred

within the last six months of this soft order. The mean value of this variable, which we

label as PAST LATE, was 0.14 month.

In addition to the variables relating directly to our hypotheses, we include several control

variables into our analysis. First, we include a binary variable DEV FAB to indicate if the

corresponding tool is requested by a development fab. Development fabs play a crucial

role in the development of new equipment technologies and thereby order tools only at

the very beginning of the tool’s product lifecycle. About 19% of the tools in our sample

were ordered for a development fab. We expect tools for development fabs to take longer

compared to tools shipped to high volume manufacturing facilities.

A second tool characteristic reflects differences between the traditional 8 inch wafer

technology and the new 12 inch technology. A binary variable NEW TECH is set equal

to 1 if the corresponding tool is based on 12-inch technology. Since mid 1999, fabs are

gradually shifting towards using wafers of 12 inch diameter, which leads to a much higher

number of chips on a wafer, and consequently improved productivity. Roughly 10% of

tool orders in our sample were for the new 12 inch technology. Tools for the 12-inch

technology are expected to require longer lead-times compared to tools based on 6 or 8
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inch technologies.

Third, we use the variable TOOL PRICE to reflect the price of the tool as stated in

the contract between buyer and supplier. Prices for tools in our sample averaged around

$1.4 million, but in some cases went as high as $10 Million per tool. We expect expensive

tools to have longer lead-times, reflecting that expensive tools are typically based on more

complex technologies. Fourth, we define a binary variable FOREIGN indicating if a tool

was requested for a non US fab. Production in these fabs, all of which are owned by the

buyer, is managed locally and our interviews suggested differences between the behavior

of fabs in the US and abroad. About 16% of the tools were for non-US fabs.

Fifth, about 8.5% of the tools in our sample were re-used tools, i.e. tools that were

initially built based on an older technology and then upgraded to be usable for the latest

process technologies. Such upgrades, also referred to as converted tools, require that the

tool’s critical components are replaced. A binary variable CONVERTED is equal to one

if the tool has been converted at least once. Converted tools are expected to have shorter

lead-times.

Sixth, and finally, we need to control for the lead-time requested by the buyer when

writing a purchase order to the supplier (REQ LEADT). The fact that a tool with a

long requested lead-time will take longer until it is delivered has nothing to do with our

research focus on forecast sharing. It is the deviation from this requested lead-time that

is of interest to us. The average requested lead-time was about 5 months.

6 Estimation Results

To test our hypotheses, we specified and estimated a sequence of five models. The spec-

ifications as well as the parameter estimates are reported in Table 2. Model 1 contains a

constant and the control variables DEV FAB, FOREIGN, TOOL PRICE, CONVERTED,

NEW TECH, and BOOK BILL, and - for the duration analysis only - the requested lead

time REQ LEADT. The effect of the control variables are as predicted.

All models indicate that the correlation coefficient between subsequent orders to the

same supplier is significant and positive. The actual estimates range between ρ = 0.167

and ρ = 0.172. This significant correlation captures the effect of congestion in the buyer’s

production facility: if the n-th order from a given supplier is experiencing a longer than

average lead-time, chances are that also the (n + 1)st order will be delayed. Thus, our

extension of the traditional duration analysis to include first order correlation was indeed

necessary.
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Consider Hypothesis 1a (Order Specific Forecast Volatility) and Hypothesis 1b (Supplier

Specific Forecast Volatility) first. As shown by Model 2, forecast volatility indeed leads to

longer delivery duration as is indicated by the negative coefficient of BUYER VOLA and

ORDER VOLA. Moreover, comparing the log-likelihood of Model 2 to that of Model 1,

we find that adding these variables improves the explanatory power of the model. This is

indicated by the significant likelihood ratio test as reported in Table 3.

Interestingly, we observe that BUYER VOLA’s impact (ranging from−0.031 to−0.036)

is stronger than that of ORDER VOLA (ranging from −0.026 to −0.031), which sug-

gests that the long-run effect of supplier reputation is more profound than the short-term

effect of changing a single order. Based on the relationship between the hazard rate

and the expected lead time, we obtain the marginal effect on lead-time of an increase of

BUYER VOLA. Each month of delivery date change results in an average of 0.25 month

of additional delay. Thus, for every month the buyer changes the requested delivery date

of an order, she will experience a 0.25 month increase in expected lead-time. A one month

increase in the average change in requested delivery date will lead to a 0.16 month increase

in expected lead-time.

Model 3 indicates that an increase in cancellation (CANCEL) will lead to a significant

decrease in the hazard rate, which is in line with Hypotheses 1c. Moreover, as shown

by Model 4, the business cycle, as indicated by the book-to-bill ratio (BOOK BILL), has

a strong interaction effect with the forecast inflation measure CANCEL, confirming Hy-

pothesis 1d. During a business upturn (BOOK BILL=1), the delaying effect of CANCEL

increases drastically (from −0.491% to −2.838% in elasticity across models). This con-

firms our hypothesis that cancellations prolong delivery times more profoundly during an

economic upturn.

Our results suggest an increasingly delaying impact of CANCEL on the delivery time.

Moreover, the state of the economy, represented by the book-to-bill ratio, aggravates such

negative impact drastically. The impact from each additional percentage increase in

CANCEL ranges from 7.6 days (CANCEL=0%) to 14.1 days (CANCEL=45%) during

an economic downturn. The impact becomes substantially more profound during an eco-

nomic upturn, ranging from a 19.5 days (CANCEL=0%) delay to a delay of 91.2 days

(CANCEL=45%). Thus, a 1 percentage point increase in cancellation frequency leads to

an increase of 1.59 days in delivery duration.

Finally, Model 5 tests the hypothesized effect of prior late shipments on the cancellation

probability. Based on the significant coefficient of PAST LATE in Model 5, we find also

Hypothesis 2 supported. The coefficient of 0.190 indicates that a one week lateness in

14



previous shipments will increase the likelihood of future order cancellations by 19 percent-

age points. This complements the tit-for-tat perspective to the repeated buyer interaction

that we had discussed in the introduction to this manuscript.

7 Model Validation

To validate the robustness of our results with respect to our construct definition, we used

alternative measures for buyer volatility (BUYER VOLA) and cancellation probability

(CANCEL). In addition to measuring these constructs based on the last three months as

defined above, we varied the “memory” of these variables to six and nine months. Similarly,

for the past shipment delays from the supplier (PAST LATE), we used a time window

of three and nine months. All our findings reported in Table 2 remained structurally

unchanged.

To validate the robustness of our results with respect to our sample composition, we ran

our analysis with and without the converted tools. Again, all results of Table 2 remained

structurally unchanged.

To test the validity of our logit model (first stage), we calculated its ability to correctly

predict if a soft order would become a firm order as opposed to being cancelled. Our

logit model predicts more than 70% of the binary outcomes correctly, which is in line with

previous applications of logit models.

To test the validity of our duration analysis (second stage), we performed a May-Hosmer

test. Intuitively, the test is based on a comparison of the observed number of deliveries

with the expected number of deliveries as predicted by the duration analysis (see May

and Hosmer 1998). The test first requires calculating the estimated risk score zα̂ for each

observation, and then grouping the subjects into subgroups indexed g = 1, ..., G. For each

subgroup, we compute and compare the observed and the expected number of uncensored

deliveries. A large p-value (typically, over 10%) accepts the hypothesis that there is no

significant difference between the observed number of deliveries and the expected number

of deliveries, and therefore indicates a good model prediction. The test results are reported

in Table 4.

We observe that our model performs well except for the first and the last decile. The

first decile is not of significance because the corresponding sub-group only contains 2 obser-

vations. The 10th decile has 51 observed deliveries, compared to 31 predicted deliveries.

This is due to the fact that the risk score subgroup contains observations with unusually

large risk scores, and our model fails to predict those outliers. For the other groups,
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which contain 96.5% of the observations in our sample, the test results show that our

model predicts well, with p-values all greater than 10%.

The overall model fit is visualized by plotting the actual observed durations against the

fitted durations (Figure 6). Towards this end, we increase the number of subgroups to

100. A perfect model fit would lead to points lying on the 45 degree line in the graph.

The points obtained from our model are overall close to the 45 degree line, indicating a

good fit. This is formalized by the following regression analysis:

Pr edicted=− 0.28+0.94∗ ×Observed

* indicates significance at 0.1% level. R2 = 90.5%.

Despite this good fit, it should be emphasized that our empirical findings might not

directly generalize to other supply chain setttings. The strong buyer, the fast changing

technology, and the complexity of the orders clearly differentiate the semiconductor equip-

ment supply chain from many other industrial settings. Empirical future research in other

industries is needed to overcome this limited generalizability.

8 Conclusion

Forecast sharing has the potential to dramatically improve supply chain performance. Yet,

as demonstrated by our research findings, a supply chain might not be able to achieve the

potential performance improvements from forecast sharing. From the perspective of the

supplier, the forces that prevent effective forecast sharing are forecast volatility and fore-

cast inflation. Forecast volatility arises as forecasts are based on preliminary information

and made at a point in time at which the equipment buyer still faces substantial un-

certainty about the market demand for chips as well as of the capacity of the presently

installed production equipment. As the buyer is exposed to additional information, she

updates her forecasts provided to the supplier. While always sharing the latest information

with the supply chain seems like a reasonable behavior of the buyer, frequent updates of

information are perceived as disturbing from the perspective of the supplier. As we showed

with respect to Hypothesis 1a, the supplier views a soft order which as been changed al-

ready multiple times, as less reliable than a soft order which has not yet been changed.

Consequently, the supplier is not willing to allocate production capacity to this soft order.

Hypothesis 1b demonstrates that frequent changes to one soft order have externalities on

how the supplier views future soft orders. Specifically, the more a buyer changes the re-
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quested delivery dates for her equipment, the more the supplier will wait for the forecasts

to stabilize when considering subsequent soft orders.

Forecast inflation can occur in the semiconductor equipment supply chain as the buyer

has an incentive to create overly aggressive forecasts. Forecast inflation is facilitated

in our setting as shared forecasts are not verifiable and thereby the supplier will never

be able to validate whether actual inflation occurred. However, as we demonstrate in

conjunction with Hypothesis 1c, frequent forecast inflation can hurt the buyer in the long

run. This penalty for past cancellations is especially severe during an economic upturn,

during which the supplier has many other profitable opportunities to use his production

capacity (Hypothesis 1d).

Similar to the supplier, who penalizes the buyer for inflated forecasts through longer

delivery times, the buyer provides more aggressive forecasts to those suppliers that have

failed to deliver previous orders on time (Hypothesis 2). This follows the logic of the

repeated prisoner’s dilemma game and establishes that both buyer and supplier apply a

“tit-for-tat” strategy.

Our empirical research findings and our multi-period framework of forecast sharing

opens up interesting opportunities for future research. First, we believe additional research

is needed to analyze supply chain coordination in repeated game settings. While repeated

games have been extensively studied in the economics literature, most of the contracting

research in operations management has taken a rather static perspective, ignoring effects

of trust building and reputation.

Second, one needs to overcome the forecast volatility problem. Currently, forecasts pro-

vided by the buyer do not acknowledge that they are based on preliminary information and

are likely to change. Thus, while the buyer shares the expected outcome for a particular

equipment order in the form of a best guess, she does not relay information reflecting possi-

ble alternative outcomes as well as the probabilities that such alternative outcomes occur.

The supplier in turn perceives the - almost unavoidable - iterations as an indication that

the shared forecasts are of low quality and consequently is not willing to commit resources

based on this information. Recent research related to the information sharing in teams

outline alternative approaches to this (Terwiesch et al. 2002), including the concept of

sharing information in the form of sets, which are gradually narrowed over time, opposed

to sharing information in the form of points, which “jump around” in an unpredictable

fashion. In our setting, set-based information sharing could be based on quantities (“we

will order between 5 and 10 tools this year”) or requested delivery times (we need this

soft order between June and December). Addressing some of the concerns related to trust
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and reputation raised by the present research study, the buyer initiated a fundamental

redesign of the forecast sharing mechanism, which included providing information to the

suppliers about forecasted orders in the form of intervals.

While new information technologies have enabled firms involved in a supply chain to

gain visibility into the planning processes of other firms, our findings demonstrate that

their remain substantial organizational barriers preventing firms to fully achieve the ben-

efits of forecast sharing and collaborative planning.
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Table 1: Sample Records 

 
 Model Parameters Model 1 Model 2 Model 3 Model 4 Model 5 

 Constant -0.001 
(0.0001) 

-0.001 
(0.0001) 

-0.001 
(0.0001) 

-0.001 
(0.0001) 

-0.020 
(0.0001) 

 DEV_FAB -1.387 
(0.0009) 

-1.387 
(0.0009) 

-1.387 
(0.0009) 

-1.387 
(0.0009) 

-1.389 
(0.0002) 

 FOREIGN 0.6829 
(0.0004) 

0.6829 
(0.0004) 

0.6829 
(0.0004) 

0.6829 
(0.0004) 

0.8224 
(0.0003) 

β  TOOL_PRICE 0.0857 
(0.0001) 

0.0857 
(0.0001) 

0.0857 
(0.0001) 

0.0857 
(0.0001) 

0.0934 
(0.0003) 

 CONVERTED -0.5290 
(0.0002) 

-0.5290 
(0.0002) 

-0.5290 
(0.0002) 

-0.5290 
(0.0002) 

-0.5686 
(0.0003) 

 NEW_TECH 0.5442 
(0.0018) 

0.5442 
(0.0018) 

0.5442 
(0.0018) 

0.5442 
(0.0018) 

0.5238 
(0.0002) 

 BOOK_BILL -0.009 
(0.0002) 

-0.009 
(0.0002) 

-0.009 
(0.0002) 

-0.009 
(0.0002) 

-0.019 
(0.0001) 

 PAST_LATE     0.190 
(0.0003) 

 Constant 1.043 
(0.0034) 

1.317 
(0.0041) 

1.360 
(0.0036) 

1.329 
(0.0042) 

1.329 
(0.0042) 

 DEV_FAB -0.075 
(0.0022) 

-0.155 
(0.0025) 

-0.117 
(0.0030) 

-0.138 
(0.0031) 

-0.138 
(0.0031) 

 FOREIGN 0.456 
(0.0015) 

0.415 
(0.0041) 

0.422 
(0.0041) 

0.403 
(0.0041) 

0.403 
(0.0041) 

 TOOL_PRICE -0.109 
(0.0006) 

-0.103 
(0.0006) 

-0.091 
(0.0006) 

-0.093 
(0.0006) 

-0.093 
(0.0006) 

 CONVERTED 0.299 
(0.0029) 

0.246 
(0.0031) 

0.325 
(0.0032) 

0.324 
(0.0043) 

0.324 
(0.0043) 

α NEW_TECH -0.369 
(0.0013) 

-0.413 
(0.0015) 

-0.347 
(0.0041) 

-0.335 
(0.0043) 

-0.335 
(0.0043) 

 BOOK_BILL -0.147 
(0.0004) 

-0.200 
(0.0021) 

-0.212 
(0.0022) 

-0.070 
(0.0004) 

-0.070 
(0.0004) 

 REQ_LEADT -0.127 
(0.0021) 

-0.145 
(0.0004) 

-0.146 
(0.0028) 

-0.147 
(0.0027) 

-0.147 
(0.0027) 

 CANCEL   -1.022 
(0.0144) 

-0.491 
(0.0153) 

-0.491 
(0.0153) 

 CANCEL*BOOK_BILL    -2.347 
(0.0304) 

-2.347 
(0.0304) 

 BUYER_VOLA  -0.036 
(0.0006) 

-0.032 
(0.0006) 

-0.031 
(0.0005) 

-0.031 
(0.0005) 

 ORDER_VOLA  -0.026 
(0.0003) 

-0.031 
(0.0003) 

-0.029 
(0.0003) 

-0.029 
(0.0003) 

 
µ 1.682 

(0.0005) 
1.718 

(0.0012) 
1.718 

(0.0013) 
1.722 

(0.0013) 
1.722 

(0.0013) 
 

ρ 0.172 
(0.0005) 

0.172 
(0.0047) 

0.167 
(0.0044) 

0.167 
(0.0006) 

0.167 
(0.0006) 

 LL (In sample) - 2825.808 - 2817.200 -2814.833 -2812.167 -2807.576 

 LL(Out of sample) - 2682.620 - 2678.003 - 2674.764 -2668.180 -2659.400 

 
Table 2: Estimation Results 



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3:  Likelihood Ratio Test 
 
 
 
 
 

 
 

  Actual Expected z score p-value 
1 2 0.218 3.811 0.000 
2 1 0.348 1.106 0.269 
3 3 2.142 0.586 0.558 
4 23 18.245 1.113 0.266 
5 48 53.912 -0.805 0.421 
6 177 169.569 0.571 0.568 
7 545 575.146 -1.257 0.209 
8 607 629.92 -0.913 0.361 
9 259 249.264 0.617 0.537 
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10 51 30.188 3.788 0.000 
Table 4:  May-Hosmer Test 

 
 

 Model 1 Model 2 Model 3 Model 4 Model 5 
LL -2825.808 -2817.200 -2814.833 -2812.167 -2807.576 

  17.216 4.734 5.332 9.182 
LR 

 

 (Model 2  
vs.  

Model 1) 

(Model 3  
vs.  

Model 2) 

(Model 4  
vs.  

Model 3) 

(Model 5  
vs.  

Model 4) 
d.f.  2 1 1 1 

p-value  0.000 0.030 0.021 0.002 
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Figure 2: Changes in spending levels in the semiconductor industry

Figure 1: Forecast sharing and the prisoner dilemma
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Figure 4: Forecasted (soft) orders versus actual orders

Y-Axis is currently blinded

Figure 3: Events leading to a firm order and tool delivery (non cancellation case)
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Figure 5: Two step model
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Figure 6: May-Hosmer Test

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45

Actual

Pr
ed

ic
te

d

 
45 degree line 
 
Linear fit 


	An Empirical Analysis of Forecast Sharing in the Semiconductor Equipment Supply Chain
	Recommended Citation

	An Empirical Analysis of Forecast Sharing in the Semiconductor Equipment Supply Chain
	Abstract
	Keywords
	Disciplines

	rev_march9_jr.dvi

