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1 IntroductionMathematicians are increasingly recognizing the usefulness of experiments withcomputers to help advance mathematical theory. Experiments can be used torefute conjectures. For example, Euler conjectured that no nth power could bewritten as the sum of fewer than n other nth powers. This was disproved by Landerand Parkin in 1957 using a computer search through 5th powers.1 Experimentscan also provide strong evidence to support conjectures. For instance, Sinisalohas used a computer to show that Goldbach's conjecture (that every even numbergreater than two is the sum of two primes) holds to at least 4�1011. Experimentscan also be used to suggest conjectures and generate new insights. Chaos theoryand non-linear dynamics are two areas which have bene�tted greatly from suchexperimentation.It is surprising therefore that one area of mathematics which has bene�ttedlittle from empirical results is the theory of algorithms. Indeed, it is somewhatironic as algorithms, the objects of this theory, are merely abstract descriptions ofcomputer programs. Of course, we should in principle be able to reason about theproperties of an algorithm entirely deductively. However, such theoretical analysisis often too complex for our current mathematical tools. Where theoretical ana-lysis is practical, it is often limited to (unrealistically) simple cases. For example,results presented in [7] for the greedy algorithm for satis�ability do not apply tointeresting and hard region of problems as described in x3. In addition, actualbehaviour on real problems is sometimes quite di�erent to worst and average caseanalyses. We therefore support the calls of McGeoch [9], Hooker [6] and others forthe development of an empirical science of algorithms. In such a science, experi-ments as well as theory are used to advance our understanding of the propertiesof algorithms. One of the aims of this paper is to demonstrate the bene�ts of suchan empirical approach. We will present some surprising experimental results anddemonstrate how such results can direct future e�orts for a theoretical analysis.The algorithm studied in this paper is GSAT, a randomized hill-climbing pro-cedure for propositional satis�ability (or SAT) [13, 12]. Propositional satis�abilityis the problem of deciding if there is an assignment for the variables in a proposi-tional formula that makes the formula true. Recently, there has been considerableinterest in GSAT as it appears to be able to solve large and di�cult satis�abilityproblems beyond the range of conventional procedures like Davis-Putnam [13].We believe that the results we give here will actually apply to a larger family ofprocedures for satis�ability called GenSAT [3]. Understanding such proceduresmore fully is of considerable practical interest since SAT is, in many ways, thearchetypical (and intractable) NP-hard problem. In addition, many AI problemscan be encoded quite naturally in SAT (eg. constraint satisfaction, diagnosis and1275 + 845 + 1105 + 1335 = 1445 to be precise. More recently, Noam Elkies has used aConnection Machine to �nd a 4th power which is the sum of three other 4th powers. The readeris not advised to search for a 3rd power which is the sum of two other 3rd powers, but thisfootnote is too brief to explain why. 2



vision interpretation, refutational theorem proving, planning).This paper is structured as follows. In x2 we introduce GSAT, the algorithmstudied in the rest of the paper. In x3 we de�ne and motivate the choice ofproblems used in our experiments. The experiments themselves are described inx4. These experiments provide a more complete picture of GSAT's search thanprevious informal accounts. The results of these experiments are analysed moreclosely in x5 using some powerful statistical tools. This analysis allow us to makevarious experimentally veri�able conjectures about GSAT's search. For example,we are able to conjecture: the length of GSAT's initial hill-climbing phase; theaverage gradient of this phase; the linear scaling of various important features likethe score (on which hill-climbing is performed) and the branching rate. In x6 weshow how such results can be used to direct future theoretical analysis. Finally,in x7 we describe related work and end with some brief conclusions in x8.2 GSATGSAT is a random greedy hill-climbing procedure. GSAT deals with formulae inconjunctive normal form (CNF); a formula, � is in CNF i� it is a conjunction ofclauses, where a clause is a disjunction of literals. GSAT starts with a randomlygenerated truth assignment. and hill-climbs by 
ipping the variable assignmentwhich gives the largest increase in the number of clauses satis�ed (which we willcall the \score" from now on). Given the choice between several equally good
ips, GSAT picks one at random. If there exists no 
ip which increases the score,then a variable is 
ipped which does not change the score or (failing that) whichdecreases the score the least.procedure GSAT(�)for i := 1 to Max-triesT := random truth assignmentfor j := 1 to Max-
ipsif T satis�es � then return Telse Poss-
ips := set of vars which increase satis�ability mostV := a random element of Poss-
ipsT := T with V's truth assignment 
ippedendendreturn \no satisfying assignment found"In [3] we describe a large number of experiments which suggest that neithergreediness not randomness is important for the performance of this procedure.These experiments also suggest various other conjectures. For instance, for random3-SAT problems (see x3) the log of the runtime appears to scale with a less3



than linear dependency on the problem size. Conjectures such as these could,as we noted in the introduction, be very pro�tably used to direct future e�ortsto analyse GSAT theoretically. Indeed, we believe that the experiments reportedhere suggest various conjectures which would be useful in a proof of the relationshipbetween runtime and problem size (see x6 for more details)3 Problem SpaceTo be able to perform experiments on an algorithm, you need a source of prob-lems on which to run the algorithm. Ideally the problems should come from aprobability distribution with some well-de�ned properties, contain a few simpleparameters and be representative of problems which occur in real situations. Un-fortunately, it is often di�cult to meet all these criteria. In practice, one is usuallyforced to accept either problems from a well-de�ned distribution with a few simpleparameters or a benchmark set of real problems, necessarily from some unknowndistribution. In these experiments we adopt the former approach and use CNFformulae randomly generated according to the random k-SAT model.Problems in random k-SAT with N variables and L clauses are generated asfollows: a random subset of size k of the N variables is selected for each clause, andeach variable is made positive or negative with probability 12. For random 3-SAT,there is a phase transition from satis�able to unsatis�able when L is approximately4.3N [11, 8, 2]. At lower L, most problems generated are under-constrained and arethus satis�able; at higher L, most problems generated are over-constrained and arethus unsatis�able. As with many NP-complete problems, problems in the phasetransition are typically much more di�cult to solve than problems away from thetransition [1]. The region L=4.3N is thus generally considered to be a good sourceof hard SAT problems and has been the focus of much recent experimental e�ort.4 GSAT's searchWhen GSAT was �rst introduced, it was noted that search in each try is dividedinto two phases. In the �rst phase of a try, each 
ip increases the score. However,this phase is relatively short and is followed by a second phase in which most
ips do not increase the score, but are instead sideways moves which leave thesame number of clauses satis�ed. This phase is a search of a \plateau" for theoccasional 
ip that can increase the score.2 One of the aims of this paper is toimprove upon such informal observations by making quantitative measurements ofGSAT's search, and by using these measurements to make several experimentallytestable predictions.2Informal observations to this e�ect were made by Bart Selman during the presentation of[13] at AAAI-92. These observations were enlarged upon in [4].4



To achieve such aims, three points of methodology are essential. First, exper-iments should be performed with the largest problem size possible and as manytimes as possible. There may well be emergent properties at large problem sizes,whilst performing many experiments reduces variance. Second, a good view of thedata must be sought. That is, we must look for features of performance whichare meaningful and which are as predictable as possible: these features may notbe the most immediately obvious to record. Third, data must be analysed, notsimply measured. Suitable analysis of data may show features which are not clearfrom a simple (graphical) presentation. Invaluable discussion of all these researchprinciples is contained in [9]. In the rest of this paper we show how these principlesenable us to make very detailed numerical predictions about GSAT's search.Many features of GSAT's search space can be graphically illustrated by plot-ting how they vary during a try. The most obvious feature to plot is the score, thenumber of satis�ed clauses. In our quest for a good view of GSAT's search space,we also decided to plot \poss-
ips" at each 
ip: that is, the number of equallygood 
ips between which GSAT randomly picks. This is an interesting measuresince it indicates the branching rate of GSAT's search space.We begin with one try of GSAT on a 500 variable random 3-SAT problemin the di�cult region of L/N = 4.3 (Figure 1a). Although there is considerablevariation between tries, this graph illustrates features common to all tries. Bothscore (in Figure 1a) and poss-
ips (in Figure 1b) are plotted as percentages oftheir maximal values, that is L and N respectively. The percentage score startsjust above 87.5%, which might seem surprisingly high. Theoretically, however,we expect a random truth assignment in k-SAT to satisfy 2k�12k of all clauses (inthis instance, 78). As expected from the earlier informal description, the scoreclimbs rapidly at �rst, and then 
attens o� as we mount the plateau. The graphis discrete since positive moves increase the score by a �xed amount, but some ofthis discreteness is lost due to the small scale. To illustrate the discreteness, inFigure 1b we plot the change in the number of satis�ed clauses made by each 
ip(as its exact value, unscaled). Note that the x-axis for both plots in Figure 1b isthe same.The behaviour of poss-
ips is considerably more complicated than that of thescore. It is easiest �rst to consider poss-
ips once on the plateau. The start ofplateau search, after 115 
ips, coincides with a very large increase in poss-
ips,corresponding to a change from the region where a small number of 
ips canincrease the score by 1 to a region where a large number of 
ips can be madewhich leave the score unchanged. Once on the plateau, there are several sharpdips in poss-
ips. These correspond to 
ips where an increase by 1 in the scorewas e�ected, as can be seen from Figure 1b. It seems that if you can increase thescore on the plateau, you only have a very small number of ways to do it. Also,the dominance of 
ips which make no change in score graphically illustrates theneed for such \sideways" 
ips, a need that has been noted before [13, 3].Perhaps the most fascinating feature is the initial behaviour of poss-
ips. There5
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ipsare four well de�ned wedges starting at 5, 16, 26, and 57 
ips, with occasional sharpdips. These wedges demonstrate behaviour analogous to the that of poss-
ips onthe plateau. The plateau spans the region where 
ips typically do not change thescore: we call this region H0 since hill-climbing typically makes zero change to thescore. The last wedge spans the region H1 where hill-climbing typically increasesthe score by 1, as can be seen very clearly from Figure 1b. Again Figure 1b showsthat the next three wedges (reading right to left) span regions H2, H3, and H4. Aswith the transition onto the plateau, the transition between each region is markedby a sharp increase in poss-
ips. Dips in the wedges represent unusual 
ips whichincrease the score by more than the characteristic value for that region, just asthe dips in poss-
ips on the plateau represent 
ips where an increase in score waspossible. This exact correlation can be seen clearly in Figure 1b. Note that inno region Hj did a change in score of j + 2 occur, and that there was no changein score of �1 at all. In addition, each wedge in poss-
ips appears to decay closeto linearly. This is explained by the facts that once a variable is 
ipped it nolonger appears in poss-
ips (
ipping it back would decrease score), that most ofthe variables in poss-
ips can be 
ipped independently of each other, and thatnew variables are rarely added to poss-
ips as a consequence of an earlier 
ip. Onthe plateau, however, when a variable is 
ipped which does not change the score,it remains in poss-
ips since 
ipping it back also does not change the score.To determine if this behaviour is typical, we generated 500 random 3-SATproblems with N=500 and L/N=4.3, and ran 10 tries of GSAT on each problem.Figure 2a shows the mean percentage score3 while Figure 2b presents the meanpercentage poss-
ips together with the mean change in score at each 
ip. (Thesmall discreteness in this �gure is due to the discreteness of Postscript's plotting.)3In this paper we assign a score of 100% to 
ips which were not performed because a satisfyingtruth assignment had already been found. 6
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ips, L/N = 4.3Figure 4: Scaling of mean GSAT behaviour, N = 100, 200, 300, 400, 500are plotted for each N with the x-axis scaled by N, behaviour is almost identical.To illustrate this, Figure 3 shows the mean percentage score, percentage poss-
ips,and change in score, for N = 500, 750, and 1000, for L = 4.3N and for the �rst0.5N 
ips (250 
ips at N = 500). Both Figure 3a and Figure 3b demonstrate thecloseness of the scaling. Indeed, in each graph the scaling is so exact that the�gures appear to contain just one, thick, line! However, in Figure 3b there is aslight tendency for the di�erent regions of hill-climbing to become better de�nedwith increasing N.The �gures we have presented clearly show scaling behaviour, but only reacha very early stage of plateau search. To investigate further along the plateau, weperformed experiments with 100, 200, 300, 400, and 500 variables from 0 to 2.5N
ips. In Figure 4a shows the mean percentage score in each case, while Figure 4bshows the mean percentage poss-
ips, magni�ed on the y-axis for clarity. Boththese �gures demonstrate the closeness of the scaling on the plateau. Again, inFigure 4a the �ve average score graphs scale so well that the �gure appears tocontain only one line. In Figure 4b the graphs are not quite so close together.During hill-climbing the wedges become much better de�ned with increasing N.During plateau search, although separate lines are distinguishable, the di�erenceis always considerably less than 1% of the total number of variables.The problems used in these experiments (random 3-SAT with L/N=4.3) arebelieved to be unusually hard and are satis�able with probability approximately12 . Neither of these facts appears to be relevant to the scaling of GSAT's search.To check this we performed a similar range of experiments with a ratio of clausesto variables of 6. Although almost all such problems are unsatis�able, we observedexactly the same scaling behaviour. The score does not reach such a high value asin Figure 4a, as is to be expected, but nevertheless shows the same linear scaling.On the plateau, the mean value of poss-
ips is lower than before. We again ob-8



served this behaviour for L/N = 3, where almost all problems are satis�able. Scoreapproaches 100% faster than before, and a higher value of poss-
ips is reached onthe plateau, but the decay in the value of poss-
ips seen in Figure 4b does notseem to be present.To summarise, we have shown that GSAT's hill-climbing goes through severaldistinct phases, and that the average behaviour of certain important features scalelinearly with N. These results provide a considerable advance on previous informaldescriptions of GSAT's search.5 Numerical AnalysisIn this section, we will show that even more useful results can be obtained if thedata presented graphically in x4 is analysed numerically. We divide our analysisinto two parts: �rst we deal with the plateau search, where behaviour is relativelysimple, then we analyse the hill-climbing search.5.1 Plateau SearchOn the plateau, both average score and poss-
ips seem to scale linearly with N.We now examine this phenomenon more closely. Since both score and poss-
ipsappear to decay in an exponential fashion, we performed regression analysis onour experimental data using an exponential model. As neither score nor possible-
ips decay to an obvious asymptote (for example, the average score does not seemto get arbitrarily close to 100%), it was not possible to use linear regression onlogarithmic values of our data. We therefore performed non-linear regression usingthe CNLR option from SPSS [14]. Taking into account the prediction of linearscaling along both axes, and the direction fromwhich the asymptote is approached,the models we are testing are:S(x) = N � (B � C � e� xA�N ) (1)P (x) = N � (E + F � e� xD�N ) (2)where x represents the number of 
ips, S(x) the average score at 
ip x and P (x)the average number of possible 
ips. To determineGSAT's behaviour just on theplateau, we analysed data starting from 0.4N 
ips, a time when plateau searchalways appears to have started (see x5.2). The data used was the same as thatpresented in x4, from 0.4N 
ips to 2.5N 
ips.Table 1 shows the results of our analysis on average score. As expected, val-ues of A and C are positive, indicating exponential decay upwards towards theasymptote B �N. This asymptote is always slightly less than L. As L/N increasesit becomes more di�cult to satisfy all the clauses, and the di�erence betweenB �N and L increases. The �t of the data for each experiment is extremely close,suggesting that the model is good. Also, for each value of L/N, the predicted9



L/N N A B C R23 100 0.481 2.996 0.0473 0.9943 200 0.504 2.997 0.0431 0.9953 300 0.510 2.997 0.0439 0.9963 400 0.504 2.997 0.0438 0.9963 500 0.511 2.997 0.0428 0.9954.3 100 0.535 4.27 0.0815 0.9954.3 200 0.549 4.27 0.0794 0.9954.3 300 0.558 4.27 0.0783 0.9944.3 400 0.557 4.27 0.0778 0.9944.3 500 0.566 4.27 0.0772 0.9956 100 0.462 5.89 0.117 0.9946 200 0.488 5.89 0.114 0.9946 300 0.496 5.89 0.112 0.9946 400 0.492 5.89 0.114 0.9936 500 0.492 5.89 0.112 0.993Table 1: Regression results for average score of GSAT.4parameters vary only slightly with N, providing further evidence for the scaling ofGSAT's behaviour.Some care is needed in interpreting these results. We cannot be sure of thedistribution of average values of score. Such information is important to perform-ing accurate regressions. We have also observed variation in the parameters A, B,and C if we perform regressions on larger numbers of 
ips than 2.5N. However,an excellent �t is still found whose predictions for the average score di�er onlyvery slightly. We suspect that the discreteness in S(x), especially at large numberof 
ips, may a�ect regression using a continuous model. All these points shouldbe set against the fact that a remarkably good �t is found in each experiment,and that this is so despite the experiments being completely independent of eachother.Table 2 shows regression results for average poss-
ips data based on the model(2), again with data taken from each experiment from 0.4N 
ips to 2.5N 
ips. ForL/N = 4.3 and 6, we �nd that the data �ts the model extremely well, and thatthe parameters D, E, and F are very consistent for varying N and �xed L/N. Inparticular, it seems that for L/N = 4.3 the asymptotic value of poss-
ips is about10% of N and that for 6 it is about 5% of N. We could not �nd, however, a good�t to the model at L/N = 3. It is likely that in this case GSAT performs too well4The value of R2 is a number in the interval [0; 1] indicating how well the variance in data isexplained by the regression formula. 1 � R2 is the ratio between variance of the data from itspredicted value, and the variance of the data from the mean of all the data. A value of R2 closeto 1 indicates that the regression formula �ts the data very well.10



L/N N D E F R24.3 100 0.993 0.101 0.0359 0.9964.3 200 0.878 0.101 0.0348 0.9984.3 300 0.888 0.100 0.0348 0.9974.3 400 0.871 0.100 0.0338 0.9974.3 500 0.838 0.100 0.0348 0.9966 100 0.800 0.0553 0.0398 0.9986 200 0.817 0.0513 0.0391 0.9996 300 0.821 0.0504 0.0377 0.9986 400 0.782 0.0504 0.0372 0.9986 500 0.789 0.0502 0.0373 0.999Table 2: Regression results on average poss-
ips of GSAT.to give a consistent story on the plateau and many tries solve problems in a smallnumber of 
ips, and indeed that the mean value of poss-
ips on the plateau maysimply be a constant.To summarise, we have performed a detailed analysis of GSAT's average scoreand poss-
ips behaviour during plateau search. For L/N = 3, 4.3, 6, the averagevalue of score can be predicted very well by a simple model of exponential decaytowards an asymptotic value. For L/N = 3 this value is very close to 100% ofclauses being satis�ed, while for L/N = 4.3 it is approximately 99.3% of clausesand for L/N = 6 it is approximately 98.2% of clauses. The average value of poss-
ips on the plateau can also be modelled very well by exponential decay for L/N= 4.3, 6 but not for L/N = 3. Our models predict that average behaviour varieslinearly with N, with parameters that appear to be constant given �xed L/N.5.2 Hill-climbingWe have also analysed GSAT's behaviour during its hill-climbing phase. In x4we identi�ed di�erent phases of GSAT's hill-climbing: phases where most 
ipsincrease the score by 3, then by 2, then by 1. In Figures 1 & 2 each phase appearsto last roughly twice the length of the previous one: that is, the phase where 
ipsare on average size 2 is about twice as long as the phase where 
ips are on averagesize 3, etc. This motivates the following conjectures: GSAT moves through asequence of regions Hj for j = :::; 3; 2; 1 in which the majority of 
ips increase thescore by j, and where the length of each region Hj is proportional to 2�j (exceptfor the region H0 which represents plateau search). In addition, the total lengthof these hill-climbing regions depends linearly on N.To investigate this conjecture, we analysed 1000 tries (50 tries each on 20di�erent problems) for random 3-SAT problems at N=500 and L/N=4.3. Becausewe very rarely observe 
ips in Hj that increase the score by less than j, we de�ned11



Hj as the region between the �rst 
ip which increases the score by exactly j andthe �rst 
ip which increases the score by less than j (unless the latter actuallyappears before the former, in which case Hj is empty). One simple test of ourconjecture is to compare the total time spent in Hj with the total time up to theend of Hj ; we predict that this ratio will be 12 . For j = 1 to 4 the mean andstandard deviations of this ratio and the length of each region were:5Region mean ratio s.d. mean length s.d.All climbing | | 112 7.59H1 0.486 0.0510 54.7 7.69H2 0.513 0.0672 29.5 5.12H3 0.564 0.0959 15.7 3.61H4 0.574 0.0161 7.00 2.48This data supports our conjecture although as j increases each region is slightlylonger than predicted. Note, however, that the region H4 is only about 7 
ipslong and occurs at the start of the search when we would expect more variablebehaviour (indeed in two tries the regionH4 was empty). It is thus di�cult to drawconclusions from the deviation of the ratio from 12: this could either be a genuinee�ect or due to noise. Examination of a frequency distribution of the lengths ofeach of these regions suggests they are normally distributed, but the fact that thestandard deviation in the length of all climbing is less than that of H1 suggeststhat the lengths of di�erent regions within a given try are not independent. Note�nally that the total length of hill-climbing at N=500 is 0.22N 
ips. At N=100 itis 0.23N. This is consistent with the scaling behaviour observed in x4.Our conjecture has an appealing corollary. Namely, that if there are i non-empty hill-climbing regions, the average change in score per 
ip during hill-climbing is: 12 � 1 + 14 � 2 + 18 � 3 + 116 � 4 + � � � + 12i � i � 2: (3)This approximation will improve as N and i increase. It follows from this thatthe average score at the end of hill-climbing is simply the initial score plus twicethe length of hill-climbing (ignoring errors due to 
ips that do better or worsethan expected). At N=500, we observed a mean ratio of change in score per 
ipduring hill-climbing of 1.94 with a standard deviation of 0.1. At N=100, the ratiois 1.95 with a standard deviation of 0.2. Both these �gures are slightly lower thanpredicted. This can be accounted for by the above approximation which slightlyover-estimates the average change in score.This simplemodel also ignores 
ips inHj which increase the score by more thanj. Such 
ips were seen in Figure 1b in regions H3 to H0, and are not uncommon.In the experiment reported on earlier in this section, 9.8% of 
ips in H1 were ofsize 2, 6.3% of 
ips in H2 were of size 3. However, 
ips of size j + 2 were very5the data for \All climbing" is the length to the start of H0.12



rare, forming only about 0.02% of all 
ips in H1 and H2. By examining graphs ofthe average di�erence in score, we conjectured that an exponential decay similarto that in H0 occurs in each Hj . To be precise, we conjecture that the averagechange in number of satis�ed clauses from 
ip x to 
ip x+ 1 in Hj is given by:j + Ej � e� xDj �N (4)In the next section we argue that this may correspond to a model of GSAT'ssearch in which there are a certain number of 
ips of size j + 1 in each region Hj ,and the probability of making a j + 1 
ip is merely dependent on the number ofsuch 
ips left. The rest of the time, GSAT is obliged to make a 
ip of size j. Wetested this model using the non-linear regression option from SPSS. our data from1000 tries �tted the model well, giving values of R2 of 96.8% for H1 and 97.5% forH2. The regression gave estimates for the parameters of: D1 = 0:045, E1 = 0:25,D2 = 0:025, E2 = 0:15. Not surprisingly, since the region H3 is very short, datawas too noisy to obtain a better �t with the model (4) than with one of lineardecay. These results do, however, support our conjecture, but more experimentson larger problems are needed to lengthen the region Hj for j � 3.6 Theoretical AnalysisEmpirical results like those given in x5 can be used to direct e�orts to analysealgorithms theoretically. For example, consider the plateau region of GSAT'ssearch. The results of x5.1 suggest that the average score at 
ip x is given by themodel, S(x) = N � (B � C � e� xA�N )where A, B and C are independent of N. On successful tries, N �B = L. Thus,S(x) = L � C �N � e� xA�NDi�erentiating with respect to x we get,dS(x)dx = CA � e� xa�N= L � S(x)A �NNow the gradient is a good approximation for Dx, the average size of a 
ip at x.Hence, Dx = L� S(x)A �N13



But, Dx = LXj=�L j � prob(Dx = j)where prob(Dx = j) is the probability that a 
ip at x is of size j. Our experimentssuggest that downward 
ips and those of more than +1 are very rare on theplateau. Thus, a good (�rst order) approximation is that,Dx = 1Xj=0 j � prob(Dx = j)= prob(Dx = 1)Hence, prob(Dx = 1) = L� S(x)A �NThat is, on the plateau the probability of making a 
ip of size +1 is directlyproportional to L � S(x), the average number of clauses remaining unsatis�edand inversely proportional N, to the number of variables. A similar analysis andresult can be given for prob(Dx = j + 1) in the hill-climbing region Hj, whichwould explain the model (4) proposed in 5.2. We expect that such conjectureswill be very useful in determining various properties of GSAT like the averageruntime and the optimal setting for a parameter like Max-
ips. In addition, if wecan develop a model of GSAT's search in which prob(Dx = j) is related to thenumber of unsatisifed clauses and N as in the above equation, then the exponentialbehaviour and linear scaling of the score we have observed immediately follows.7 Related WorkGSAT was introduced in [13]. In [3] we describe an empirical study of GenSAT,a family of procedures related to GSAT. This study focuses on the importance ofrandomness, greediness and hill-climbing for the e�ectiveness of these procedures.In addition, we determine how performance depends on parameters like Max-triesand Max-
ips. We showed also that certain variants ofGenSAT could outperformGSAT on random problems. It would be very interesting to perform a similaranalysis to that given here of these closely related procedures.A closely related set of procedures has also been studied by Gu [5]. However,these procedures have a di�erent control structure to GSAT which allows them,for instance, to make sideways moves when upwards moves are possible. Thismakes it di�cult to compare results directly. Nevertheless, we are con�dent thatthe approach taken here would apply equally well to these procedures, and thatsimilar results could be expected. 14



Procedures like GSAT have also been successfully applied to constraint sat-isfaction problems other than satis�ability. For example, [10] have proposed agreedy local search procedure which performed well scheduling observations on theHubble Space Telescope, and other constraint problems like the million-queens,and 3-colourability. It would be very interesting to see how the results given heremap across to these new problem domains.8 ConclusionsWe have described an empirical study of search in GSAT, an approximationprocedure for satis�ability. We performed detailed analysis of the two basic phasesofGSAT's search, an initial period of fast hill-climbing followed by a longer periodof plateau search. We have shown that the hill-climbing phases can be broken downfurther into a number of distinct phases each corresponding to progressively slowerclimbing, and each phase lasting twice as long as the last. We have also shown that,in certain well de�ned problem classes, the average behaviour of certain importantfeatures of GSAT's search (the average score and the average branching rate ata given point) scale in a remarkably simple way: linearly with the number ofvariables. We have also demonstrated that the behaviour of these features canbe modelled very well by simple exponential decay, both in the plateau and inthe hill-climbing phase. Finally, we used our experiments to conjecture variousproperties (eg. the probability of making a 
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