o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T

1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
w_
©
= C
e o
=
Q35
Z-c
=<

Information Systems Research

Vol. 21, No. 1, March 2010, pp. 115-132
1sSN 1047-7047 | 1sSN 1526-5536 | 10| 2101 | 0115

[l lorms}

po110.1287 /isre.1080.0226
©2010 INFORMS

An Empirical Analysis of Software
Vendors” Patch Release Behavior:
Impact of Vulnerability Disclosure

Ashish Arora, Ramayya Krishnan, Rahul Telang, Yubao Yang

H. John Heinz IIT College, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
{ashish@andrew.cmu.edu, rk2x@andrew.cmu.edu, rtelang@andrew.cmu.edu, yubaoy@andrew.cmu.edu}

key aspect of better and more secure software is timely patch release by software vendors for the vulnera-

bilities in their products. Software vulnerability disclosure, which refers to the publication of vulnerability
information, has generated intense debate. An important consideration in this debate is the behavior of software
vendors. How quickly do vendors patch vulnerabilities and how does disclosure affect patch release time? This
paper compiles a unique data set from the Computer Emergency Response Team/Coordination Center (CERT)
and SecurityFocus to answer this question. Our results suggest that disclosure accelerates patch release. The
instantaneous probability of releasing the patch rises by nearly two and a half times because of disclosure. Open
source vendors release patches more quickly than closed source vendors. Vendors are more responsive to more
severe vulnerabilities. We also find that vendors respond more slowly to vulnerabilities not disclosed by CERT.
We verify our results by using another publicly available data set and find that results are consistent. We also
show how our estimates can aid policy makers in their decision making.

Key words: security vulnerability; disclosure policy; patch release time; open source vendors; information

security; software vendors; hazard model

History: Sanjeev Dewan, Senior Editor; Gautam Ray, Associate Editor. This paper was received on
November 1, 2006, and was with the authors 6 months for 2 revisions. Published online in Articles

in Advance June 12, 2009.

1. Introduction

Information security breaches pose a significant
and increasing threat to national security and eco-
nomic well-being. According to the Symantec Inter-
net Security Threat Report (Symantec Inc. 2003), firms
experienced an average of about 30 attacks per week.
Anecdotal evidence suggests that losses from cyber
attacks can run into millions of dollars. The CSI-FBI
survey (2005) estimates that the loss per company was
more than $500,000 in 2004 and more than $200,000
in 2005.!

These cyber attacks often exploit software vul-
nerabilities. Over the last few years, the number
of vulnerabilities found and disclosed has increased
dramatically. The Computer Emergency Response
Team/Coordination Center (CERT) has published
more than 2,000 security bulletins for operating
systems-related vulnerabilities in 2005 alone and has

Thttp://www.cpppe.umd.edu/Bookstore/Documents/2005CSISurvey.pdf.

reported more than 82,000 incidents involving vari-
ous cyber attacks in 2003. Software vendors, including
Microsoft, have announced their intention to increase
the quality of their products and reduce vulnerabili-
ties. Despite this, it is likely that vulnerabilities will
continue to be discovered and disclosed in foreseeable
future.

One key aspect of better and more secure software
is the timely release of patches by vendors for the
vulnerabilities in their products. Patch release can be
viewed as postsales product support. The following
quote highlights the role of patches*:

Developing and deploying patches is an increasingly

important part of the software development process.
— Joseph Dadzie, Microsoft Corporation, March 2005.

However, though vendors’ incentives to release
timely, high-quality software has been well-studied

2 Accessed June 19, 2005, http: //www.acmqueue.org/modules.php?
name=Content&pa=showpage&pid=287.



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T

1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure

116

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

(Krishnan et al. 2000), their patch release behavior is
an underinvestigated component of overall software
quality and security (Arora et al. 2006a). The issue of
patches has also gained prominence because of the
public disclosure of vulnerabilities. Typically, once a
vulnerability is made known to the vendor, the ven-
dor is expected to release a timely patch. However,
not everyone sees the vulnerability disclosure pro-
cess as working well. Many users believe that ven-
dors are not responsive enough and that their patches
are of poor quality. As a result, some in the informa-
tion technology (IT) community disclose vulnerability
information on discovery, even before the patch is out.
The argument is that quick disclosure increases public
awareness, makes public the information needed for
users to protect themselves, puts pressure on the ven-
dors to issue patches quickly, and, over time, results
in better quality software. This belief fuelled the cre-
ation of full-disclosure mailing lists such as Bug-
traq by SecurityFocus in late 1990s. However, many
believe that vulnerability disclosure, especially with-
out a good patch, is dangerous because it leaves users
defenseless against attackers.®> Richard Clarke, Pres-
ident George W. Bush’s former special advisor for
cyberspace security, criticizing full disclosure said: “It
is irresponsible and sometimes extremely damaging
to release information before the patch is out.”*
Vulnerability disclosure is a critical issue for soft-
ware vendors, IT managers, and policy makers who
have to devote significant resources to release patches,
implement patches, and manage information dissem-
ination, respectively. CERT, an influential nonprofit
organization and probably the most important con-
duit for disclosing vulnerabilities, favors a cautious
approach to vulnerability disclosure. After learning of

®One of the recent examples is vulnerability of Cisco IOS (Inter-
network Operating System, the OS that runs Cisco’s routers and
some of its switches). The exploitation techniques for this vulnera-
bility were disclosed at a Black Hat conference in July 2005 by an
individual researcher. This provoked a lawsuit from Cisco against
the researcher and the conference organizers as well as an injunc-
tion to prevent further public discussion. Customers were warned
by Symantec that information revealed at the conference “repre-
sents a significant threat against existing infrastructure currently
deployed” (Information Week 2005, http://www.informationweek.
com/news/security /showarticle jhtml?articleid=166403842).

*See http://www.govtech.com/gt/article/18179.

a vulnerability, CERT contacts the vendor(s) and pro-
vides a time window, which we refer to as the “pro-
tected period,” within which the vendor(s) should
release the patch for the vulnerability. The declared
policy (and the de facto policy since October 2000)
is to give vendors a 45-day “protected period.” Typ-
ically, the vulnerability is disclosed when the period
ends or when a patch is made available, whichever
comes first. Other organizations have proposed their
own policies. For example, Organization for Inter-
net Safety (OIS), which represents a consortium of 11
software vendors, has suggested its own guidelines
(mainly that the vendors be given 30 days).® In addi-
tion, firms such as iDefense and TippingPoint/3Com
buy vulnerability information from users for their
clients and have their own policies for disclosing
vulnerabilities.

There are theoretical models of how disclosure poli-
cies affect software vendors’ patch release behavior
(see Arora et al. 2008 for details), but there is little
empirical research on vendors’ patch release behavior
in general and of the impact of disclosure in particu-
lar. A sensible disclosure policy is possible only if we
can quantify vendors’ response to disclosure. Thus,
the major goal of our paper is to empirically estimate
(i) the key factors that affect vendors” patch release
decisions, and (ii) whether actual disclosure induces
vendors to release the patch faster and by how
much.

We compile a unique data set of 420 vulnerabilities,
published by National Vulnerability Database (previ-
ously the NIST ICAT METABASE) from September 26,
2000 to August 11, 2003. Because a vulnerability may
involve more than one vendor, our empirical analysis
is based on 1,429 observations, each involving a vul-
nerability vendor pair. For each vulnerability vendor
pair, we gather information on when the vendor was
notified, if and when a patch was made available,®

5Members include @stake, BindView, Caldera International (The
SCO Group), Foundstone, Guardent, Information Security Systems
(ISS), Microsoft, National Associates (NAI), Oracle, Silicon Graph-
ics, Inc. (SGI), and Symantec. For more details, see http://www.
oisafety.org.

© A software patch can be an upgrade (adding increased features),
a bug fix, or a new hardware driver or update to address new
issues such as security or stability problems. Most patches are free
to download. In some cases, customers need to purchase and install
a new version.



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

117

if and when the vulnerability was publicly disclosed,
the nature and severity of the vulnerability, and ven-
dor characteristics.

We find that disclosure increases the vendor’s patch
release speed considerably. A vendor is nearly two
and a half times more likely to patch after disclo-
sure than before. In particular, if a vulnerability is
disclosed instantly (i.e., at the same time that the ven-
dor is informed of it), then on average the patch
comes out 35 days earlier than without disclosure.
We find that open source vendors patch more quickly
than closed source vendors and severe vulnerabili-
ties are patched faster. More interestingly, we find
that vendors respond more expeditiously to vulner-
abilities disclosed by CERT. This potentially reflects
the stronger lines of communication between CERT
and vendors, the value of the vulnerability analy-
sis by CERT, and, more important, the reputation of
the source in interacting with the vendor. We also
do an external validity check by using data collected
by another source and find that results are consistent
with our estimates.”

The rest of the paper is organized as follows. Sec-
tion 2 reviews the related literature. Section 3 sets out
a model of vendors’ patch release decisions, §4 pro-
vides a description of the data and variables, and
§5 presents the empirical model and the estimation
results. We conclude and discuss limitations of this
research in §6.

2. Literature Review
Our work draws from multiple literature streams. The
first is the literature on software quality. Krishnan
et al. (2000) show that better personnel, more use of
computer-aided software engineering (CASE) tools,
and more upfront investments in planning and design
can improve product quality. Banker et al. (1998)
focus on ex post software support—namely, software
maintenance—and examine how complexity and pro-
grammer capabilities affect maintenance costs. How-
ever, patch release behavior has not been studied.
The second stream of work we draw from is
the literature on economics of information security.

7Brian Krebs of The Washington Post collected and posted
data on Microsoft patching times on his website (http://blog.
washingtonpost.com/securityfix/2006/01/a_time_to_patch.html).

Anderson and Moore (2006) provide a good overview
of the issues related to economics of information
security, including software vulnerabilities. Several
papers in the literature examine the effects of creat-
ing a market for vulnerabilities. Camp and Wolfram
(2000) describe how a market for vulnerabilities may
be created to increase the security of systems. Kannan
and Telang (2005) use a formal model to examine
whether a market-based mechanism is better than the
setting in which a public agency like CERT acts as
an intermediary. They show that markets always per-
form worse than CERT because privately optimal dis-
closure rules are socially suboptimal. Along the same
lines, Ozment (2004) analyzes how auctions perform
in such markets.

Recently, some attention has been paid to issues
related to vulnerability disclosure and vendor patch
release. Choi et al. (2005) model a firm’s decisions
on upfront investment in the quality of the soft-
ware to reduce potential vulnerabilities and whether
to announce vulnerabilities and whether to apply a
patch. They also model a rational consumer’s decision
on whether to purchase the software. Nizovtsev and
Thursby (2007) model the incentives of users to dis-
close software vulnerabilities through an open public
forum and derive conditions under which instant dis-
closure is socially optimal. August and Tunca (2006)
examine the role of patching by end users and how
unpatched users exert externalities on other users.
Png et al. (2006) model a game between users and
attackers. They show that externalities cause users
to underinvest in security and they suggest policy
measures to remedy the problem. Telang and Wattal
(2007) show through an event study that disclosure
of vulnerability information lowers the stock prices of
software vendors, especially if a patch is not released
at the same time, which suggest that disclosure is
costly to vendors.

Our paper is more directly related to Arora et al.
(2008) and Cavusoglu et al. (2004) who analyze vul-
nerability disclosure policy. In both, the threat of dis-
closure conditions when the vendor releases a patch.
However, our focus in this paper is on the impact of
disclosure itself, rather than on the threat of disclo-
sure. Another key distinction of our paper is that most
of the work in the area of economics of information
security is analytical and theoretical in nature. In con-
trast, our paper brings data to some of these theories.



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure

118

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

3. Vendor’s Patch Release Decision

A software vendor makes two decisions in the patch
release process. First, it decides the initial patch
release time when it learns about the vulnerability.
At some point, the vulnerability may be disclosed.
If the vendor has not come up with a patch by the
disclosure time, then it needs to make a second deci-
sion on whether and how much to accelerate the
patch release. The influence of disclosure, the sub-
ject of this paper, refers to the second decision. More
precisely, we estimate if and how disclosure affects
patch release time relative to the baseline (the first
decision).

Fully characterizing a software vendor’s patch
release decision (a stochastic dynamic programming
problem) is beyond the scope of this paper (whose
focus is primarily empirical). However, the under-
lying intuition of how disclosure and other factors
condition the vendor’s patch release decision can be
illuminated with a simple model. In this model, we
compare the vendor’s incentives to release the patch
in two cases, one where the vulnerability has been
disclosed and the other where it may be disclosed in
the future.

The vendor faces two types of costs in deciding
when to release the patch. The first is the direct cost
of developing a patch. To develop a patch, the vendor
commits resources. All else equal, the faster a patch is
released, the more it costs. Thus, if the patch release
time is 7 (measured from the time when the vendor
was informed of the vulnerability), the cost of patch
development is C(7; Z), where Z represents vendor
characteristics such as size. We expect that C(7) is
decreasing in 7.

Second, the vendor’s customers suffer losses if that
vulnerability is discovered and exploited by attackers.
Let the expected total customer loss be represented
by a function L(7; X), where X are exogenous factors
that condition customer loss such as the vulnerability
severity. Unlike other products, the product liability
laws do not apply to software. Thus, we assume that
a vendor internalizes a fraction A of customer losses
potentially because of loss of reputation, loss of future
sales, and contractual service obligations. The vendor
chooses the patch release time 7 to minimize

V =C(1)+ AL(7; X).

The analysis for two polar cases is helpful. First,
if the vulnerability has not been disclosed, attack-
ers may discover the vulnerability on their own
or a third party (researchers, users, or even other
vendors) may disclose the vulnerability at a future
date z.® The vendor releases the patch because he is
threatened with disclosure in the future. In this case,
L(7, X)=E,[l(t — z; X)], where (T — z; X) is the loss
suffered by users if attackers discover the vulnerabil-
ity at time z. Because z is uncertain, we take expecta-
tions over z.

Now, consider the second case where the vulnera-
bility has been disclosed at time zero. Disclosure will
reveal the vulnerability to attackers with certainty.
In this case, L(7, X) =I(7, X), there is no uncertainty
unlike the first case. We show in Appendix A that, all
else equal, the total customer loss will be higher if the
vulnerability has been disclosed than if the attackers
have to find it for themselves (as is the case when dis-
closure is uncertain). We also show that the marginal
benefit of releasing the patch will be higher when the
vulnerability has been disclosed than when the vul-
nerability is still a secret. It follows that the vendor
will release the patch faster when the vulnerability
has been disclosed versus otherwise. This intuition
should carry over to the more realistic but also more
complicated setting where the vendor can adjust the
target patch release time as events unfold.

To anticipate our empirical exercise, we expect that
the instantaneous probability of releasing the patch
should increase after disclosure. Formally, we state
the following.

Hyrotnesis 1 (H1). Disclosure reduces the software
vendor’s patch release time.

Next, we briefly discuss the factors that condition
the baseline rate of patch release. We hypothesize
(and the Appendix A sketches out the proof) that
factors that increase patch development costs should
increase the patch release time, and the factors that
increase customer losses should decrease the patch
release time. In the following, we identify some key
factors that affect a vendor’s patch release time. Note
that we do not actually observe C and L and, hence,

8 Disclosure increases customer loss L(7, X) because disclosure
makes it easier for the attackers to find the vulnerabilities (see
Arbaugh et al. 2000, Arora et al. 2006b for details).



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

Arora et al.: Empirical Analysis of Software Vendors’ Patch Release Behavior: Impact of Vulnerability Disclosure

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

119

our model should be interpreted as reduced form in
nature.

Vendor Size: Large vendors typically have higher
sales volume and a large customer base (not directly
controlled for in our analysis), which implies higher
customer loss from vulnerability disclosure. Large
vendors may also care more about reputation loss
because of the spillover effect on other products sold
by the vendor. Hence, larger vendors may have a
higher A. Large vendors may also release the patch
faster if they are better able to afford larger patch
development teams. Because patch development costs
do not vary significantly with the number of software
users, the model suggests that large vendors should
release the patch faster than smaller vendors (both
because of higher L and higher A and perhaps because
of the lower marginal cost of patch release). Thus,
we hypothesize as follows.

HyrotnEsis 2 (H2). Larger vendors release patches
faster than smaller vendors.

Severity of Vulnerability: The severity of a vulnera-
bility is a multifaceted concept. The availability of an
exploit tool or exploit code, the ability to exploit the
vulnerability remotely, the number and importance of
systems affected by the vulnerability, and the level
of control gained by a successful exploit all imply a
higher severity. It is plausible that each of these fac-
tors increases the loss users suffer. It is also very likely
that the loss per unit time to which users are exposed
is higher for more severe vulnerabilities. It follows
that severe vulnerabilities necessitate quicker patches.

HyrotnEsis 3 (H3). Vendors release patches more
quickly for more severe vulnerabilities.

There is ample evidence that the credibility of
information depends on its source and also on who
validates it. It is likely that vendors respond more
quickly to vulnerabilities disclosed by CERT because
it enjoys a strong reputation and its pronouncements
have more visibility with customers as well. In part,
CERT’s pronouncements are taken more seriously
than other sources because CERT staff investigates the
vulnerability before contacting vendors. Identifying
this CERT effect is tricky because it is plausible that
vulnerability-specific unobserved effects may also be
correlated with whether CERT handles (publishes)

the vulnerability. For example, CERT may handle
only important vulnerabilities. To capture the cred-
ibility and visibility that CERT has in the commu-
nity, we focus on the vulnerability published by both
CERT and SecurityFocus (in our sample, a majority
of the vulnerabilities are published by both). Within
this set of vulnerabilities published by both CERT and
SecurityFocus, we compare patch release times for
vulnerabilities disclosed by CERT to those disclosed
by SecurityFocus or other parties. Thus, our approach
controls for the potential selection bias that may
arise from unobserved heterogeneity. See the follow-
ing hypothesis.

HyrotHesis 4 (H4). Vendors respond faster to the vul-
nerability disclosed by CERT than by other parties.

Open Source Vendors: A stream of work has argued
that open source vendors provide better quality and
are more responsive to customers (Wheeler 2002).
A typical argument presented is that because open
source code is viewed and reviewed by many, it is
inherently of good quality. Similarly, bug reports in
open source projects are also acted on quickly because
many users are constantly paying attention to them.
Thus, we hypothesize as follows.

HyrotnEsis 5 (H5). Open  source vendors release
patches faster than closed source vendors.

4. Data and Variables

4.1. Data Sources

The vulnerabilities studied in our research are from
the two most important sources of information on
vulnerabilities, CERT and SecurityFocus. CERT pub-
lishes information on a wide variety of software
vulnerabilities in the form of “CERT Vulnerability
Notes.” SecurityFocus hosts a well-known full dis-
closure mailing list, Bugtraq, for the detailed discus-
sion and announcement of software vulnerabilities.
Both CERT and SecurityFocus cross-reference their
vulnerability databases with the National Vulnerabil-
ity Database (NVD) through the Common Vulnerabil-
ities and Exposures (CVE) catalog.” The NVD tracks a
large number of security problems, but not all CERT
or SecurityFocus vulnerabilities meet its criteria of

®The CVE name is the 13-character ID used by the “CVE” group
to uniquely identify a vulnerability.



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T

1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure

120

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

being listed in the database. For the purpose of our
empirical analysis, we consider only the NVD-listed
vulnerabilities that are published by CERT, Security-
Focus, or both. Because a vulnerability may affect
many products, our unit of observation is a vendor
vulnerability pair. We augment these data by adding
information about whether and when patches were
released, using a variety of sources including ven-
dor websites. We also collect data on vendor size and
other characteristics from vendor websites and from
Hoover’s online database (http://www.hoovers.com).

4.2. CERT vs. SecurityFocus

The vulnerability publications of CERT and Secu-
rityFocus follow different processes. Upon receiv-
ing a vulnerability report from an identifier, CERT
researches the vulnerability; for vulnerabilities that
meet its criteria, CERT contacts the affected vendor(s)
and coordinates patch development before making
the vulnerability public, i.e., by publishing it. On aver-
age, about 3,000 vulnerabilities per year get reported
to CERT and only about 10% are published. CERT
reports a list of affected vendors for each vulnerabil-
ity. Additional summary information is provided for
each vendor as well, including the date when CERT
notified the vendor.

A vendor typically responds to the CERT vulner-
ability notification in one of the following forms:
(i) acknowledging the presence of the vulnerabil-
ity and collaborating with CERT to release a patch,
or (ii) contending that the product(s) in question is not
vulnerable, in which case CERT just lists the vendor
as not vulnerable or as vulnerable without a patch.
If a vendor chooses not to respond, CERT records the
vendor as vulnerable without a patch or as vulnerable
status unknown, as appropriate.

SecurityFocus does not require advance notifica-
tion to the affected vendors before the vulnerability
is made public. However, the discoverer of the vul-
nerability may choose to notify the vendor before
reporting it to SecurityFocus. Our data show that in
about 35% of cases when a vulnerability is published
by SecurityFocus, the identifiers informed the ven-
dors prior to the disclosing it on SecurityFocus. Fur-
thermore, the identifiers tend to include the vendor
notification date and sometimes the notification itself

into their vulnerability reports to SecurityFocus.'
When a vulnerability is published by SecurityFo-
cus, the affected vendors can post their solutions to
the Bugtraq mailing list. Sometimes, a reference to a
vendor’s solution published elsewhere is posted to
Bugtraq by others.

To summarize, there are three differences between
CERT and SecurityFocus in terms of the publica-
tion of vulnerability and its disclosure. First, the vul-
nerability information published by SecurityFocus is
from the discussion on the Bugtrag mailing list and
vendor statements, while CERT researchers perform
additional research that is eventually published in its
“vulnerability notes.” Second, CERT notifies vendors
before publishing information and provides them
with a protected period, typically 45 days. Though an
identifier of a vulnerability may also notify the ven-
dor before posting the vulnerability information on
SecurityFocus, SecurityFocus generally does not con-
tact the vendor itself. The default in SecurityFocus is
instant disclosure. Third, CERT has a well-established
relationship with many software vendors and, there-
fore, can communicate its information to the right
person at the vendor. Overall, compared to Security-
Focus, CERT is more selective about the vulnerabili-
ties it publishes. CERT publishes information that has
undergone greater prepublication scrutiny, communi-
cates with vendors regularly, and provides them with
a longer protected period.

4.3. Sample Generation

From September 26, 2000 to August 11, 2003, the NVD
documented a total of 2,820 vulnerabilities, which
were published by CERT, SecurityFocus, or both.
Out of this, 139 vulnerability notes are published by
CERT alone and 354 vulnerabilities are published
by both. The remaining vulnerabilities are published
by SecuritfyFocus only. From this, we randomly sam-
pled 131 vulnerabilities. To ensure a representative
sample of vulnerability from each year of this time
period, we use a stratified sampling technique where
the strata are the years in which the vulnerabilities
were disclosed.

¥Some of the original postings of the discoverers have recently
been removed by SecurityFocus from the vulnerability Web pages
but were available at the time we collected the data.



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

121

For some of the vulnerabilities published by both
CERT and SecurityFocus, discrepancies were found
between the reports published by SecurityFocus and
CERT. For example, CERT tends to have a longer
list of vulnerable vendors. For the empirical analy-
sis, we have included all the vendors that are listed
as vulnerable by CERT. When the discrepancy con-
cerns the date a vulnerability is known to be public,
we have used the earlier date as the date of disclosure.

In all, this resulted in a sample of 624 vulnerabili-
ties: 354 vulnerabilities are published by both Security-
Focus and CERT, 139 are published by CERT alone,
and 131 are published by SecurityFocus alone. A total
of 643 vendors are affected by these vulnerabilities,
resulting in 4,874 observations. Of these, 2,944 obser-
vations involved vendors that were listed as “not vul-
nerable” or “vulnerable status unknown” by CERT.
We dropped these observations and retain only those
vendors listed as vulnerable by CERT. This resulted
in 596 vulnerabilities and 1,930 observations. From
this, we dropped observations where the vendor noti-
fication date or the patch release date cannot be
determined (see §5.2 for more details). Further inves-
tigation revealed that 18 vulnerabilities had been dis-
closed (by other sources) before year 2000, although
they were officially published by CERT, SecurityFocus,
or both, after September 26, 2000. We dropped these
vulnerabilities from our sample as well. Our final sam-
ple contains 420 distinct vulnerabilities. A total of 310
vendors are affected by these vulnerabilities. These
constitute 1,429 observations, of which 158 observa-
tions come from SecurityFocus alone involving 57 ven-
dors and 89 vulnerabilities (i.e., CERT did not publish
them at all), and 99 observations come from CERT
alone involving 52 vulnerabilities and 37 vendors (i.e.,
SecurityFocus did not publish them all). The rest were
jointly published by both.

44. Definition of Important Terms

Vendor Notification. Vendor notification is defined as
the date that a vendor is notified of the vulnerability.
CERT provided information to us (as well as in its
vulnerability notes) about when it contacted vendors.
For SecurityFocus, if the identifier contacted a ven-
dor, the vendor notification date is available. In the
absence of advance notification, vendor notification is
assumed to take place when the vulnerability is first

made public by sources other than the vendor itself."
Therefore, in such cases, disclosure and vendor noti-
fication are assumed to take place on the same day.

Vulnerability Publication. Vulnerability publica-
tion is the date when CERT or SecurityFocus pub-
lishes information about a vulnerability on its web-
site. Note that publication is only one of the ways in
which a vulnerability is disclosed. Sometimes, some
third parties (including some other vendors) disclose
information on other forums, which is later published
by CERT or SecurityFocus.

Patch Release Time. The patch release time is our
dependent variable, measured as the number of days
elapsed between the vendor notification date and the
path release date. The information on whether and
when a vendor released a patch is obtained from the
vendor’s response to CERT notification for vulnerabil-
ities published by CERT. For a vulnerability published
by SecurityFocus alone, we determined the patch
release date through a variety of sources, including
the vendor’s announcement of advisory on the vul-
nerability, release notes of the patch, and time stamps
of the patch. Though we have exercised great care
in collecting information on patch release times, mea-
surement error is possible. However, measurement
error in the dependent variable does not introduce
bias in the estimation (Green 1992).

Vulnerability Disclosure. We define disclosure as
the event when information about the vulnerability
becomes public. Disclosure can happen when CERT
or SecurityFocus publish information about the vul-
nerability. However, the vulnerability information can
be made public by other parties as well. The sources
of disclosure include SecurityFocus, CERT, and third
parties such as researchers or other vendors. CERT
vulnerability notes provide information on the date
the vulnerability was known to be public.

In our paper, disclosure is defined as a dummy
variable such that disclosure of vulnerability i for ven-
dor j at time t takes value one if vulnerability i is
disclosed before time ¢ and vendor j has not released
a patch for it, and zero otherwise. Whenever vulner-
ability information is made public by anyone before

' When the vulnerability is first made public by a vendor itself, the
true notification date and therefore the patch release time cannot
be determined. As noted earlier, these observations are excluded
from the final sample.



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure

122

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

the patch has been released, the vulnerability is dis-
closed. Note that, by definition, disclosure is a time-
varying variable. For a vulnerability i and vendor j,
if the vendor is notified at ¢,, disclosure happens at
time ¢, and patch is released at f such that {, <t <.
Then, disclosure = 0 before t; and disclosure =1 after #;.
There are two extreme cases as well. The observations
with disclosure always equal to one (disclosure hap-
pens at the same time as the vendor is notified) are
referred to as instant disclosure. Observations with dis-
closure always equal to zero (vulnerability is made
public at the same time as the vendor release a patch)
are referred to as no disclosure. Note that, by defini-
tion, no disclosure observations are always patched.

For the same vulnerability, disclosure conditions
may vary across vendors. For instance, a vendor may
have released the patch 10 days after notification
and posted this information on SecurityFocus, which
would constitute disclosure for other vendors that are
also affected by the same vulnerability but have not
yet released a patch.

4.5. Example of a Vulnerability
Before we proceed, we provide an example of how
we coded a vulnerability. Consider the vulnerabil-
ity ID CVE-2001-0803 (CERT VU 172583; Security-
Focus Bugtraq 3517). This vulnerability was originally
discovered by Chris Spencer of the Internet Security
Systems (ISS) X-Force, and CERT was notified. The
vulnerability is “remotely exploitable buffer overflow
exists in the common desktop environment (CDE)
subprocess control service (dtspcd). An attacker who
successfully exploits this vulnerability can execute
arbitrary code as root.” It is rated with a Common
Vulnerability Scoring System (CVSS) severity score of
10 out of 10 by the National Vulnerability Database.
The CERT report listed eight vendors to be vul-
nerable to this vulnerability. CERT issued formal
notification on October 29, 2001 to all the vendors
that were potentially affected by this vulnerability.
The vulnerability was published by SecurityFocus on
November 6, 2001, which essentially disclosed this
vulnerability and CERT eventually published the vul-
nerability on November 12, 2001. All vendors affected
by this vulnerability released patches. Patch release
dates and times are summarized in Table 1. In this
example, disclosure is zero for IBM. For the rest, it is
zero before November 6, 2001, and one thereafter.

Table 1 Vendors for Vulnerability CVE-2001-0803
Patch release

Vendor Patch release date time (days)
Compag Computer Corporation 09-Nov-01 11
Hewlett-Packard Company 07-Nov-01 9
IBM 30-0ct-01 1

SGI 07-Nov-01 9
Sun Microsystems Inc. 12-Nov-01 14

The Open Group 10-Nov-01 12

The SCO Group (SCO UnixWare)  06-Nov-01 8

Xi Graphics 09-Nov-01 11

Notification: 29-Oct-01; Disclosure: 06-Nov-01; CERT publication 12-Nov-01

4.6. Descriptive Statistics
Patch Release Time and Disclosure. Statistics on
patch release times and disclosure for the final sample
are presented in Table 2. Note that a significant num-
ber of vulnerabilities are instantly disclosed in our
sample. This may appear surprising, but many vul-
nerabilities are publicly announced first, picked up by
CERT later, and patched by the vendors later.

Severity. We use the CVSS score published by the
NVD as our measure of vulnerability severity, which
is a number between 0 and 10.'* For example, the
vulnerability highlighted in the vulnerability example
has a severity score of 10. The CVSS score reflects sev-
eral factors, including the ease of exploitation of the
vulnerability, the estimated number of affected sys-
tems, and the impact of the vulnerability.”® In par-
ticular, the availability of an exploit tool or exploit
code, the ability to exploit the vulnerability remotely,
the number and importance of systems affected by
the vulnerability, and the level of control gained by a
successful exploit all imply a higher severity metric.
Table 3 summarizes the severity of the vulnerabil-
ity measured by the CVSS score and the number of
affected vendors per vulnerability.

Publication Source. We classified the vulnerabilities
in our data set into three groups: (i) vulnerabilities

12CERT also has its own severity rating. Our results are similar
using either metric, but the CERT metric is available for only a
subset of vulnerabilities.

13 Detailed information about the CVSS score can be found at http://
www.first.org/cvss/and http://nvd.nist.gov/cvss.



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
._gQ.
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
w_
©
= C
e o
=
Q35
Z-c
=<

Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS 123
Table2  Statistics on Patch Release Time and Disclosure Table 4  Statistics Conditioned on Source of Publication
Patch release time (in days) Published by
Mean 51.40 (95.47) Péﬂi:htid by SecurlityFocus Pl;lblli)sr;ﬁd
Median 18 alone alone y bo
Percent of patched by end of sample period 90 Percent of patched (%) 81.82 62.66 94.54
) o ) o Percent of no disclosure (%) 5.05 15.19 15.70
Disclosure time (in days) (of the observations facing disclosure) Disclosure time 255 (12.66) 3.35(13.46) 9.95 (33.16)
Mean 8.65 (30.54) (of the observations
Percent of no disclosure 14.91 s fam_r;yg disclosure) 585223 550216 610252
. ) everi . . . . . .
Percent of instant disclosure 66.13 Observations/vuls 99/52 158/80  1,172/279

Notes. N =1,429. Standard errors are in parentheses.

published by both CERT and SecurityFocus, (ii) pub-
lished by CERT only (but not published by Security-
Focus), and (iii) published by SecurityFocus only (but
not by CERT). The statistics of the three groups are
presented in Table 4.

As seen from the first row in Table 4, a vulnerability
is patched with higher probability if it is published
by both sources. This possibly captures the fact that
more important vulnerabilities are published by both
sources.

SecurityFocus is well known for its instant disclo-
sure policy, but not all vulnerabilities published by
SecurityFocus are instantly disclosed, as can be seen
from the disclosure time in Table 4. The reason is,
as we have discussed above, that some of the identi-
fiers may choose to notify the affected vendors before
they report the vulnerability to SecurityFocus. On the
other hand, though CERT has a stated 45-day dis-
closure policy, in many instances the vulnerabilities
get disclosed much earlier. Some reasons for this one
(i) not all vendors are notified at the same time, per-
haps because it takes time to determine if a vendor is
vulnerable—in some cases, this may result in a vendor
being notified when the vulnerability is publicly dis-
closed; (ii) CERT may disclose the vulnerability before
the 45-day period if more than 80% of the vulnerable

Table 3 Vulnerability Severity Metric

Mean  Std. dev.  Median Min Max
Severity 5.96 2.42 7 1.9 10
Number of affected 3.55 7.69 1 1 93

vendors/vulnerability

Note. N =420.

Patch release time
(of the patched
observations)

46.05 (78.91) 70.88 (122.52) 50.05 (93.70)

Note. Standard errors are in parentheses.

vendors have the patch ready;"* and (iii) while CERT
tries to keep the vulnerability confidential during the
protected period, a vulnerability can be disclosed by
others such as SecurityFocus or a vendor.

Disclosure Source. As discussed, we distinguish
between vulnerability disclosure and vulnerability
publication. In the case of vulnerability CVE-2001-
0803 discussed earlier, the disclosure was done by
SecurityFocus. The key difference is that the disclo-
sure source is unique and refers to the entity that first
makes the vulnerability public. By contrast, a vulner-
ability may be published by more than one entity.
As noted, publication sources for our sample are con-
fined to CERT and SecurityFocus.

In Table 5, we include only those vulnerabilities
that are published by both SecurityFocus and CERT.
As reported in Table 4, this constitutes 279 vulnera-
bilities and 1,220 observations. Table 5 provides key
descriptive statistics by the source of disclosure for
this subsample.

Vendor Characteristics. We include vendor size
(measured as number of employees) and a dummy
variable for whether the vendor is an open source
vendor. The total number of vulnerable vendors
in our sample is 310. However, we found reliable
information for only 142 of them. The others are
mostly small or foreign vendors and we code them
as a dummy variable, small, which takes value one
for observations where firm size is missing. In the
empirical analysis, we interact (1 — small) with size

4 Conversations with CERT staff suggest this possibility.



Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure
124 Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

Table 5 Statistics Conditioned on Disclosure Source for Vulnerabilities Published by Both CERT and SecurityFocus

CERT SecurityFocus Others No disclosure

Patched and unpatched observations
Percent patched (%) 97.06 90.89 94.44 100

Disclosure time (of the observations 20.40 (44.26) 7.02 (28.41) 2.21 (19.20) N/A
facing disclosure)

Severity 6.88 (2.83) 5.95 (2.55) 6.12 (2.34) 6.40 (2.63)

Obs/vuls? 281/28 527/183 180/52 184/48

Patched observations only

Patch release time 54.93 (95.69) 49.34 (100.07) 61.00 (110.59) 34.46 (39.47)

Note. Standard errors are in parentheses.

aThe sum of vulnerabilities reported is 324, which is greater than 294, the number of vulnerabilities published by both SecurityFocus
and CERT. The explanation for the apparent discrepancy is that disclosure conditions, including disclosure source, may vary for the
same vulnerability across vendors. As a result, the same vulnerability may feature more than once in Table 5.

PP
=)
£5
24
<
5 E
© o
o
o c
=
©
e c
5
22
23
o
3 =
o <
-
© ©
nQ
© O
o8
=
O ®©
» .2
£g
55
3o
2 2
® 9
= 0
S 9
°
e E
S ©
02
o2
T ©
T
2]
wn
c 2
=l
o
==
— O
£5
D)0
==
E -
C
o
8 e
35
<E
w_
©
= C
e o
—
035
Z-c
= <

when estimating the impact of employee size.'® The
reported statistics in Table 6 are averaged over only
those vendors for which information is available.

Year of publication. Finally, the number of vul-
nerabilities published in each year is summarized in
Table 7.

We also include a dummy for operating systems-
related vulnerabilities and a dummy for server appli-
cations to account for differences across products and
applications that may affect patch release times.

5. Empirical Strategy

Our goal is to examine the impact of exogenous fac-
tors, including disclosure at time ¢, on the patch
release time. Note that running a linear regression of
patch release time on disclosure is misleading because
of the definition of disclosure (disclosure can happen
only before a patch). Thus, we estimate a conditional
hazard model that estimates how disclosure affects
the probability of the vendor releasing a patch, given
that the vendor has not released patch until then.
Conceptually, this is similar to comparing the patch
release time of two vendors who have not patched
until time ¢, but one of them faces disclosure at time ¢
and the other does not.

We use a proportional hazard model, which is
widely used in management science and economics
(Kalbfleisch and Prentice 2002). In our case, an obser-
vation is considered as an event under risk following

15 Alternative specifications (in which vendors with missing size
information were given a value of zero) yield similar results.

vendor notification at some time (f,). The event is con-
sidered “failed” when the vulnerability is patched at
some time (t). The regressors shift the baseline haz-
ard rate proportionally. The key to note in our case
is that disclosure is a time-varying covariate. Thus, if
disclosure happens at some time ¢, before the patch
release, then disclosure = 0 before t;, and disclosure =1
after .

Let A,(t) denote the hazard rate of patch release for
vulnerability i at time ¢. Then, the proportional haz-
ards model (PHM) is

A, X, B) = Ao(t) exp(BX), @

where Ay(t) is the baseline hazard rate at time ¢,
B is the vector of coefficients to be estimated, and
X is a vector of vulnerability-specific or vendor-
specific characteristics. Disclosure is time-varying but
the other covariates (see §4.4) do not change with
time.

To control for unobserved heterogeneity across ven-
dors, we also consider a frailty hazard model (Vaupel
et al. 1979). The frailty hazard model function is spec-
ified as follows:

Aji(t, X, B) = Ao(t) exp(BX +¢)), )

Table 6 Vendor Characteristics

Mean Std. dev.

Vendor employee size (in 000’s) 17.60 66.12
Open source 0.23 0.42

Note. N =142.




-
D)
‘;"6
24
£
5 E
© o
o
o c
=
©
e c
5
22
23
o
3 =
o <
-
© ®
nQ
L ie)
-
=
O ®©
» .2
£g
(&)
o
3o
el
® 9
= 0
S o
°
e E
c ©
o2
=T
O c
T ©
T
2
wn
c 2
=l
o
==
— O
£5
D ©
==
E -
C
o
8 e
35
<E
w_
IS
= C
e o
=
035
Z-c
= <

Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

125

Table 7 Number of Vulnerabilities Published in

Each Year

Number of vulnerabilities First known to be public

64 2000
170 2001
123 2002

63 2003

where i indexes vulnerability and j indexes vendor
and e; =log(z;). The term z is unobserved frailty and
is assumed to be gamma distributed with mean 1 and
variance o? where the variance is to be estimated.
The frailty model is akin to a “random-effects” model,
where a random variable z is fixed within the group
of interest but varies across different groups according
to a distribution. To control for vendor-specific unob-
served, we let z remain fixed within vendors. The idea
is that the vendors may have specific patch release
policies that affect their patch release decisions but
are unobserved by us.'

Before proceeding to the estimations, in Figure 1 we
present the Kaplan and Meier (1958) estimate of the
survivor function or the probability of survival (no
patch) past time ¢, with and without disclosure. It is
clear from Figure 1 that the patch release probabil-
ity is higher for disclosed vulnerabilities. By day 50
after notification, almost 75% of the vulnerabilities are
patched if disclosure has taken place, and fewer than
50% are patched if no disclosure has taken place.

5.1. Results and Discussion

There are two ways to estimate the models in Equa-
tions (1) and (2). We can either specify the base-
line hazard function (},) parametrically (e.g., as a
Weibull distribution) or characterize it nonparametri-
cally, as in the Cox proportional model (Cox 1975).
Parametric hazard forms are easier to work with,
especially for prediction. Nonparametric forms, how-
ever, require fewer restrictions.

We report estimates for models (1) and (2) by the
maximum likelihood method, assuming that the base-
line hazard has the form of Weibull distribution. The
Weibull distribution is a flexible distribution with two
parameters y and p and has a baseline hazard of the

16 We also estimated a specification where z was fixed within vul-
nerabilities instead (recall that a vulnerability affects multiple ven-
dors), with results that are similar to those reported here.

Figure 1 Kaplan-Meier Survival Estimates, by Disclosure

1.00 A

! —— Disclosure =0
e Disclosure = 1

0.75 v \_‘_\
0.50 e

0.25

0.00

T T T T
0 100 200 300 400
Analysis time

form A, = ypt’~!. Parameter y is the scale parame-
ter and p is the shape parameter that determines the
shape of the distribution. We also tried the partial
likelihood method with the nonparametric baseline
hazard suggested by Cox (1975), which yielded very
similar results (see Appendix D where we report the
Cox estimates).

First, we estimate the model without distinguish-
ing between disclosure sources. Later, we distinguish
between various disclosure sources. Estimates with
and without frailty models are presented in Table 8.

Table 8 Determinants of Patch Release: Estimates (Hazard Ratio)
(1) With frailty (2) Without frailty
Hazard ratio Std. error Hazard ratio Std. error
Disclosure 2.45% 0.20 2.33 0.18
Published by CERT only 0.69+ 0.08 0.70%* 0.08
Published by 0.29+* 0.03 0.29% 0.03
SecurityFocus only
Vendor size (small) 0.87 0.50 0.82* 0.09
(1 —small) « Ln(vendor size) ~ 1.04 0.02 1.02* 0.01
Open source software 1.53* 0.26 1.37 0.11
Ln(severity) 1.23+* 0.08 1.15* 0.07
Operating system 1.29* 0.10 1.31% 0.09
Server application 1.25% 0.09 1.22% 0.09
Published in 2001 1,52 0.19 1.58% 0.19
Published in 2002 2.84% 0.37 2.97+ 0.37
Published in 2003 3,15 0.42 3.31% 0.42
Ln(p)(shape parameter) —0.55% 0.02 —0.61% 0.02
o (frailty parameter) 0.30% 0.08
Log likelihood -2,850 -2,873

Notes. Weibull hazard model, N = 1,429. The constant for the proportional
hazard model is not identified when hazard ratio is estimated.

*Significant at 10% level; **significant at 5% level; **significant at 1%
level.



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure

126

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

We report hazard ratios, which are easier to interpret
(the hazard ratio is simply exp(B)). A hazard ratio
less than one signifies that the covariate decreases
the instantaneous probability (hazard) of releasing the
patch, while a hazard ratio greater than one implies
that the covariate increases the instantaneous proba-
bility of releasing the patch.

The frailty parameter (o) is significant, indicating
that controlling for frailty is important. Note that
the parameters estimates are similar in both speci-
fications. The shape parameter (p) for the Weibull
distribution is significant as well. Because p is less
than one, this suggests that the instantaneous prob-
ability of patch release (given that the vulnerability
remains unpatched until then) falls over time (see Fig-
ure 1 as well).

The key variable of interest is disclosure. The es-
timated impact of disclosure is large and in an ex-
pected direction. The instantaneous probability of
patch release is almost 2.5 times higher after the
vulnerability is disclosed than before. Thus, (H1) is
supported. The estimated dummies for CERT alone
and SecurityFocus alone are less than one. Because
the left-out category is the vulnerabilities published
by both CERT and SecurityFocus, this suggests that
vulnerabilities published by both sources lead to a
quicker patch. This indicates that there are important
unobserved differences across vulnerabilities and that
the vulnerabilities published by both sources tend to
be more important.

Severity is highly significant and in the expected
direction, supporting (H3). A unit increase in the
log of severity increases the instantaneous probabil-
ity of patch release by about 23%. Another interpre-
tation of these estimates is their impact on duration
of patch release time instead of on the instantaneous
probability of patch release.!” Thus, we can state that
a 10% increase in the severity score leads to about
3.6% decrease in the patch release time. Open source

7 These models are known as accelerated failure time models
(AFTs). Weibull model allows for both the AFT and the propor-
tional hazard model. In AFT, the dependent variable is the log of
duration (patch release time, in our case). The estimates from the
PHP model is = —estimates on AFT % p, where p is the estimated
variance of the error term (estimate on p in 0.57 in our model).
Thus, the PHP estimate of 1.23 on severity can be restated as the
AFT estimate of —Ln(1.23)/0.57 = —0.36.

vendors also patch significantly faster than closed
source vendors. On average, at any given time open
source vendors have an instantaneous probability of
releasing a patch that is 1.5 times higher than the
closed source vendors, which translates to about 50%
reduction in average patch release time. Thus, (H5) is
supported. Vendor size is insignificant both statisti-
cally and economically, thus (H2) (that large vendors
release patches more quickly) is rejected. Vulnerabil-
ities in operating systems and in server applications
are patched faster. Vulnerabilities that are published
in later years (2003 as opposed to 2000) are patched
faster. This may reflect the growing awareness among
consumers about vulnerabilities and, in turn, more
responsive vendors.

We also examine if the impact of disclosure varies
with severity or firm size. To do this, we split the
sample in low-severity (below median) and high-
severity (above median) vulnerabilities and see if
impact of disclosure is different across the sample. We
do the same with firm size. We report these results
in Appendix B and find that the impact of disclosure
is higher for more severe vulnerabilities. We find no
such evidence for the firm size.

While the estimate on disclosure highlights the fact
that disclosure increases the pace of patch deliv-
ery, but we still want to examine how disclosing a
vulnerability at different times changes the time to
patch. In particular, a policy maker like CERT may
be interested in knowing how disclosing vulnera-
bilities at different times would affect the expected
patch delivery times. To accomplish this, we calcu-
late the predicted expected patch release time with
and without disclosure using the estimates of disclo-
sure in Table 8. Because disclosure is a time-varying
covariate, we calculate these predictions for differ-
ent disclosure times. The calculations and the for-
mula are derived in Appendix C. The results showing
the impact of disclosure at various times on average
patching speed are shown in Table 9.

Thus, for a typical vulnerability, if disclosure does
not take place before a patch is released, on average
the patch will come in about 63 days. However,
if the vulnerability has been disclosed immediately,
then patch would come in approximately 28 days.
Thus, instant disclosure will hasten the patch by
almost 35 days. Of course, this does not mean that



-
D)
‘;"6
24
£
5 E
© o
o
o c
=
©
e c
5
22
23
o
3 =
o <
-
© ®
nQ
L ie)
-
=
O ®©
» .2
£g
(&)
o
3o
el
® 9
= 0
S o
°
e E
c ©
o2
=T
O c
T ©
T
2
wn
c 2
=l
o
==
— O
£5
D ©
==
E -
C
o
8 e
35
<E
w_
IS
= C
e o
=
035
Z-c
= <

Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

127

Table 9 The Estimated Effect of Disclosure on Time to Release a
Patch (in Days)
Expected patch
release time Expected patch
if disclosed release time Effect of
Disclosure attime T without disclosure  disclosure
time T (1) 2) (2)—(1)
0 (Instant disclosure) 28 63 35
1 29 63 34
2 31 63 32
3 32 63 31
4 33 63 30
5 34 63 29
6 35 63 28
7 36 63 27
8 37 63 26
9 37 63 26
10 38 63 25

Notes. These calculations are done at the mean value of the covariates in
our sample. For example, average employee size and average severity level.
The year chosen is 2003; the application is server application; and both CERT
and SecurityFocus have published the vulnerability.

instant disclosure is the optimal policy. Recall that
disclosure exposes users to much higher risks of
attacks until the patch arrives. With instant disclo-
sure, users are exposed for 28 days. Delayed disclo-
sure also provides the vendor with time to develop
and test the patch. Without additional data on the
losses from exposure and the time cost trade-offs in
patch development, the optimal disclosure point can-
not be computed. However, our results provide pol-
icy makers with a decision tool where some kind of
“what-if” analysis can be performed and the expected
impact of various disclosure times can be understood
and measured. This is the key contribution of our
paper.

To test (H4), we estimate the model using the sam-
ples that are published by both CERT and Security-
Focus and we include the disclosure source. Recall
that in our data, a vulnerability could be first dis-
closed by CERT, SecurityFocus, or a third party. We
include three separate dummies to indicate disclosure
by these sources. As before, these dummies are time-
varying. The reference category is all observations
with disclosure equal to zero. We present the results
with and without frailty in Table 10.

Table 10 Estimates (Hazard Ratio) with Disclosure Source Included

(1) With frailty (2) Without frailty

Hazard ratio Std. error Hazard ratio Std. error

Disclosed by CERT 3.97 0.42 3.38" 0.34
Disclosed by SecurityFocus ~ 2.34** 0.23 2.25% 0.20
Disclosed by others 2.58* 0.31 2.58% 0.29
Vendor size (small) 0.67 0.38 0.86 0.11
(1 —small) x Ln(size) 1.02 0.03 1.03* 0.01
Open source software 1.43 0.26 1.40% 0.12
Ln(severity) 1.20* 0.09 1.12+ 0.08
Operating system 1.21% 0.10 1.27+ 0.10
Server application 1.36% 0.11 1.320 0.1
Published in 2001 1.79% 0.26 1.85% 0.26
Published in 2002 2.92+ 0.44 3.08"* 0.45
Published in 2003 3.63 0.56 3.76% 0.55
Ln(p) (shape parameter) —0.51% 0.02 —0.57+ 0.02
o (frailty parameter) 0.26" 0.08

Log likelihood —2,306 —2,324

*Significant at 10% level; **significant at 5% level; **significant at 1%
level. (W =1,218).

We find that, all else the same, vulnerabilities ini-
tially disclosed by CERT have a higher instanta-
neous probability of releasing a patch. The difference
(3.91 — 2.58 = 1.33) captures the true impact of dis-
closure by CERT over other sources, netting out the
effect of unobserved differences across vulnerabili-
ties. Put differently, the difference in patch release
times between vulnerabilities disclosed by CERT and
by other sources potentially points to CERT’s cred-
ibility with vendors, research into the vulnerability,
and ability to communicate with the right persons
inside the vendor organization. Because we identify
this effect using the sample of vulnerabilities that
are published by both sources, we eliminate possible
selection issues. Other estimates are also consistent
with results in Table 9, indicating the robustness of
our analysis.

5.2. [External Validity

Brian Krebs of The Washington Post posted some data
on Microsoft’s patch release times for some vulner-
abilities on his website (see footnote 6). This addi-
tional data set provides an opportunity to verify our
results. The data covered three years (2003, 2004,
and 2005) and Krebs collected the data using public



o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
w_
©
= C
e o
=
Q35
Z-c
=<

Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure

128

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

Table 11 Estimates with Microsoft Data (Krebs’
Sample, NV =99)
Hazard ratio Std. error
Disclosure 3.05% 0.81
Ln(severity) 1,53 0.44
Log likelihood —352.04

~+Significance at 1% level.

sources as well as directly from Microsoft staff.
Krebs also collected data on when Microsoft became
aware of each vulnerability (which roughly corre-
sponds to notification in our terms). Because our data
are hand-collected and do not extend beyond 2003,
validating our results using third-party data for a
later period is useful. Moreover, because these vulner-
abilities were first published by Microsoft (the ven-
dor), it adds richness to our sample from the previous
section.

The data set collected by Krebs contains 99 vulner-
abilities, of which 83 were first disclosed by Microsoft
itself at the time when it released patches for the vul-
nerabilities in question. The average severity score is
7.06 and the mean patch release time is 130 days. The
remaining 16 vulnerabilities were disclosed before
Microsoft could release a patch; 14 were disclosed
instantaneously and 2 were disclosed after Microsoft
became aware of them. The average severity score is
6.4 with mean patch release time of 62 days for the
disclosed vulnerabilities. There are no other covari-
ates because all observations come from the same
vendor.!® We estimate a Cox model (a Weibull model
leads to similar estimates).

As is evident from Table 11, the impact of disclo-
sure in Krebs” sample is large and significant and
even greater than the impact estimated in our sam-
ple. Severity is also significant and in expected direc-
tion. More severe vulnerabilities lead to a quicker
patch. Both of these results are reassuring. Interest-
ingly, Krebs also shows in a separate sample (which
we could not match with the NVD data set and,
hence, do not use) that an open source vendor like
Mozilla is quicker to patch than Microsoft. This also
confirms our estimate on open source.

8 CVE stopped including some vulnerability characteristics for the
data in later periods (2003 onward). Therefore, we cannot ascertain
easily if the vulnerability pertained to operating systems or server
applications and, hence, do not include those dummies.

5.3. Robustness of the Estimates

We also perform various other robustness checks.
Note that our results are not sensitive to the assump-
tion of the Weibull distribution because the Cox non-
parametric specification yields similar results (see
Appendix D). Furthermore, controlling for the source
of disclosure and for unobserved heterogeneity in
vulnerabilities also does not qualitatively affect the
results. We also controlled for vulnerability-specific
random effect (rather than vendor-specific random
effects) and find that the results remain unchanged.
We also conducted sensitivity analysis around patch
release times by including only patched observations
or by dropping patch release times of more than
one year. The impact of disclosure remains qualita-
tively unchanged. In short, we find that the disclosure
effect is quite prominent and significant and unlikely
to be the artifact of modeling techniques or data col-
lection strategies. We also tested the assumption of
proportionality (which is required in a PHM hazard
specification). Though we detected some evidence of
nonproportionality in the CERT estimate, after cor-
recting it the results do not change in any significant
fashion.

Endogeneity of Disclosure. One of the issues is
whether disclosure is exogenous in our model. For
example, are there some systematic variations in vul-
nerability characteristics that make their disclosure
faster and affect the patch release time as well? One
big factor would be severity. It is possible that severe
vulnerabilities are disclosed earlier and patched faster.
However, we control for severity. To detect differ-
ences between instantly disclosed and noninstantly
disclosed vulnerabilities, we present key statistics in
Table 12. In general, they do not seem to be very
different (if anything, the severity of noninstantly dis-
closed vulnerabilities is higher). Vendor size is the

Table 12 Comparison Between Instantly and Noninstantly Disclosed

Vulnerabilities

Noninstant disclosure Instant disclosure

Observations/vulnerabilties 484/113 945/346
CVSS score 5.90 (2.5) 6.03 (2.4)
Vendor employee size (in 000’s) 28.81 (83.2) 17.08 (67.8)
Open source (%) 23 25




o~
&, 1
p—

o
23
=

5 E
© o
RSl
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
i
b
58
O ®©
2
£y
32
=
.-QQ-
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

O O
= £
E -
c
[e]
8 e
S =
o O
<E
U,_
©
= C
e o
=
Q35
Z-c
=<

Arora et al.: Empirical Analysis of Software Vendors’ Patch Release Behavior: Impact of Vulnerability Disclosure

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

129

only difference across the two, which again is explic-
itly controlled for in our estimation.

Table 12 is reassuring because an instrumental vari-
able approach (the only option for dealing with endo-
geneity of disclosure) is extremely difficult in a hazard
model (see Belzil 1995, p. 116) and potentially not as
reliable as the commonly used two-stage least squares
approach. Therefore, we do not pursue it any further.

In this paper, a vulnerability is considered disclosed
if CERT published it, if SecurityFocus published it,
or if it was already public as reported in CERT data.
Usually, large vendors automatically inform CERT or
SecurityFocus when they release the patch, or Secu-
rityFocus picks up that information and publishes it.
However, it is conceivable that every time a ven-
dor releases a patch on its website, it constitutes dis-
closure for other vendors. To account for this, we
estimate our model in Table 10 by adding an addi-
tional dummy “disclosed by other vendors” (even
if this patch release information was not captured
by CERT or SecurityFocus). The estimates are pre-
sented in Appendix E. It can be seen that this estimate
is also statistically significant and leads to the same
conclusion that disclosure effect and CERT effect are
significant.

In our paper, a significant number of vulnerabilities
are disclosed instantly. To make sure that our results
are not driven by instant disclosure, we re-estimate
the model but without the observations with instant
disclosure (see Appendix F). The results are again con-
sistent that disclosure effect is robust and significant.

6. Conclusions

In recent times, vulnerability disclosure has become a
controversial topic. Vendors, policy makers, and soft-
ware users have not found consensus about when
and how to disclose a vulnerability. Vendors argue for
more time and sometimes take steps such as using
the courts to stop vulnerability information disclosure.
Policy makers like CERT need to decide on reasonable
times for vendors to come up with patches. Critical to
any such policy is how vendor patch release behav-
ior is affected by disclosure. To our knowledge, this
is the first systematic empirical examination of this
question. In particular, a policy maker can use these
results to decide how disclosing the vulnerability at

any given time will affect a vendor’s expected patch
release time.

We estimate a proportional hazard model of patch
release times from a unique data set that we col-
lected. We find that disclosure accelerates vendors’
patch release times. This verifies earlier conjectures
that vendors respond to disclosure. In particular, we
find that instant disclosure increases the instant prob-
ability of patch release by almost 2.5 times. Put dif-
ferently, compared to no disclosure, instant disclosure
will force a vendor to release the patch 35 days ear-
lier. Severe vulnerabilities are patched sooner than less
severe ones, consistent with a rational model in which
vendors internalize some of the customers’ losses. We
can also identify the CERT effect by highlighting that
the vendors are more responsive to vulnerabilities dis-
closed by CERT. This probably reflects the stronger
lines of communication between CERT and vendors,
the value of the vulnerability analysis by CERT, and
hence the reputation of CERT. Open source vendors
are quicker to release a patch than closed source ven-
dors when vulnerability is found in their products.
Given the attention on the open source versus closed
source debate, this is an important finding because the
quality of a software product also depends on the ex
post support a vendor provides (Arora et al. 2006a).
We also tested our model on a different data set for
external validity and find that our results on disclo-
sure are consistent.

Though our results are interesting, there are quali-
fications. In particular, our model doesn’t control for
the patch quality. Additional resources allocated to
patch development could result in a higher quality
patch than a patch that is released sooner. We test the
impact of actual disclosure on vendor behavior but
not the impact of threat of disclosure. Future work
that can distinguish the impact of actual disclosure
from threat of disclosure will be very useful for pol-
icy makers and vendors. Our model is also reduced
form in nature. Future work can estimate more pre-
cise structural models. Though disclosing informa-
tion always leads to quicker patches, this does not
mean that instant disclosure is optimal. To devise an
optimal policy, one also needs to understand how
attack propensity changes with disclosure, and under-
stand the resulting changes in the extent of customer
losses. We also need the estimates of the time cost



PP
=)
£5
24
<
5 E
© o
o
o c
=
©
e c
5
22
23
o
3 =
o <
-
© ©
nQ
© O
o8
=
O ®©
» .2
£g
55
3o
2 2
® 9
= 0
S 9
°
e E
S ©
02
o2
T ©
T
2]
wn
c 2
=l
o
==
— O
£5
D)0
==
E -
C
o
8 e
35
<E
w_
©
= C
e o
—
035
Z-c
= <

Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure

130

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

trade-offs for vendors in patch development. Given
the importance of these issues and the paucity of
empirical work, we hope that our study paves the way
for more research with new and possibly better data
sources.

Acknowledgments

The author names are in alphabetical order. The authors
thank the staff of CERT for data as well as valuable insight
into disclosure process. The authors also thank participants
in the 2005 Workshop on Economics of Information Secu-
rity (WEIS), Boston; the 2005 Workshop on Information Sys-
tems and Economics (WISE), Irvine; the 2006 International
Conference on Information Systems (ICIS), Milwaukee, as
well as researchers at the University of Pittsburgh; Uni-
versity of Texas, Austin; American University; and Uni-
versity of Maryland, College Park for their useful feed-
back. The authors acknowledge generous financial support
from Cylab and Carnegie Mellon University. Rahul Telang
acknowledges generous support from the National Sci-
ence Foundation (NSF) through the CAREER Award CNS-
0546009.

Appendix A

The time gap between when attackers discover (or are
told of) a vulnerability and when a patch is released is 7 —z,
and customer loss, therefore, is [(7 — z). It is reasonable to
assume that customer losses are increasing at an increasing
rate in the gap, i.e., I'(-) > 0 and ["(-) > 0. It follows directly
that E,_.I(T — z) < I(7), where E,_. represents the expecta-
tion operator conditional on 7 > z. It is also reasonable to
assume that the cost of patch development falls with the
time taken to patch, albeit at a decreasing rate, i.e., C'(-) <0,
C"(-) > 0. Let 7,; be the optimal choice of 7 when there is no
disclosure, and 7, be the optimal choice when the vulner-
ability has been disclosed. In an interior solution, C'(7,,;) +
AE,_ I'(1,y—2z)=0and C'(7;) + Al'(1;) =0.

Proor or HypotHEsis 1. Because I’(-) >0, E,_,I'(T—z) <
I'(r) for all 7. It follows that C'(7,;) + Al'(t,,) < O.
Note that C”(:) + Al”(-) > 0. This implies that 7; < 7,4
because by definition C'(1;) 4+ Al'(1;) =0. This shows that
the vendor will patch more quickly under disclosure than
otherwise.

Proor oF HyPoTHESIS 2. An increase in size can be mod-
eled as an upward shift in the customer loss function I(-).
A simple way to accomplish this is to assume a propor-
tionate shift. This is formally equivalent to assuming that
larger firms have higher A values. It is easy to see that an
increase in A will reduce 7 in both the disclosure and the
nondisclosure case.

Proor ofF HyroTHEsIs 3. The proof follows directly on
noting that more severe vulnerabilities imply higher cus-
tomer losses and, therefore, are formally equivalent to an
increase in A.

Appendix B. Testing if Impact of Disclosure Varies
with Severity and Firm Size

Frailty model

High severity
(N=669)
above median

Low severity
(N=760)
below median

Hazard Std. Hazard Std.
ratio error ratio error
Disclosure 3.06+ 0.36  2.00" 0.24
Published by 0.62 018 0.73+ 0.10
CERT only
Published by 0.37=+ 0.09  0.30" 0.04
SecurityFocus only
Small 057 038 096 0.45
(1-small) « Ln(size) 1.00 0.03 1.05+ 0.03
Open source 098 022 195+ 0.38
Ln(severity) 3.56 1.68  1.21* 0.13
Operating system 1.29+ 016 131 0.14
Server application 111 014  1.30 0.12
Published in 2001 115 032  1.53" 0.23
Published in 2002 239~ 0.65  2.61 0.41
Published in 2003 270 0.75  3.07 0.50
Ln(p) -0.46~+ 0.03 -0.61" 0.03
(shape parameter)
o (frailty parameter)  0.38*+ 0.11  0.17* 0.10
Log likelihood -1,295.6 -1,543.9

Note. The results indicate that the estimate on disclosure is
larger for more severe vulnerabilities.

Frailty model

Large size Small size
(N=683) (N=746)
above median below median
Hazard  Std. Hazard  Std.
ratio error ratio error
Disclosure 235~ 0.25 253~ 033
Published by 0.83 0.14 0.57+  0.10
CERT only
Published by 0.33  0.06 0.27  0.04
SecurityFocus only
Open source 1.14 0.36 159+ 035
Ln(severity) 1.23+ 0.12 1.18 0.12
Operating system 1.19 0.13 147+ 0.15
Server application 1.49~  0.16 1.07 0.11
Published in 2001 145+  0.26 1.50=  0.28
Published in 2002 215 040 3.60  0.66
Published in 2003 277+ 0.54 3.46  0.65
Ln(p) -0.50~ 0.03 058+  0.03
(shape parameter)
o (frailty parameter) 0.25+  0.10 0.49~  0.23
Log likelihood -1,349.4 -1,484.1

Note. The results indicate that the estimate on disclosure
remains the same for large or small firm size.



-
D)
‘;”6
24
£
5 E
© o
o
o c
=
©
e c
5
22
23
o
3 =
o <
-
© ®
nQ
L ie)
-
=
O ®©
» .2
£g
55
3o
el
® 9
= 0
S o
°
2 E
c ©
o2
=T
O c
T ©
T
2
wn
c 2
=l
o
==
— O
£5
o0
==
E -
C
(o]
8 e
35
<E
w_
IS
= C
e o
=
035
Z-c
= <

Arora et al.: Empirical Analysis of Software Vendors’ Patch Release Behavior: Impact of Vulnerability Disclosure

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS 131
Appendix C. Calculation of the Estimated Appendix D. Estimates Using Nonparametric
Effect of Disclosure Cox Model
For a Weibull distribution, the hazard function is A(t, 8, x) = (1) @
exp(xB)Ag, where Ag(t,y,p) =y -p - 7' is the base- With frail Without frailt
line hazard function. Because 1 — F(t) = f(t)/A(t) where 1th fratty Hhout ratty
F(-) and f(-) are the associated distribution and density Hazard Std. Hazard  Std.
functions, we can solve this as a first-order differenti- ratio error ratio error
ation equation to get F(t) or the probability of patch- _
ing as F(t,y,p,B,x) =1 — exp(—exp(xB) - v - t/). With Dlscl'osure 2.64=  0.21 2.59% 0.20
the estimated parameter 3, y, and p, we can construct P ug]l?j;}’}‘ed tiy 0.72= 0.09 0.73=  0.09
F(t | discl =1,x=X F iscl = =X only
; (t] disclosure =1, x = X) and F(t | disclosure =0, ¥ =X) =, 1 40 035% 004 035+ 004
or any given observation X. Ignoring X for convenience of S ‘tvE 1
. define ecurityFocus only
notation, we de . Small 097 034 088 0.10
P(t|T) =Pr(patch before ¢ | d¥sclosure atT), (1 —small) « Ln(size) 1.03* 0.02 1.02+ 0.01
K(t) = Pr(patch before | disclosure = 0) Open source software 1.45= 0.19 1.35=  0.11
= F(t | disclosure = 0), Ln(severity) 1.03=  0.01 1.02¢ 0.01
G(t) = Pr(patch before t | disclosure = 1) Operating system 1.25~  0.09 1.26=  0.09
= F(t| disclosure =1). Server application 1.22=  0.09 1.20=  0.08
Assuming that disclosure is not affected by the decision to g ul;#sﬁeg m %88; %S;* 8;2 ;%g** 8;2
: : ublished in 07+ 0. 10+ .
release a patch, it follov.vs .that whgn a patC}} is released Published in 2003 2925+  0.29 229+ 029
before disclosure, the timing of disclosure is irrelevant . -
.\ . o (frailty parameter) 0.10 0.05
(as long as it is after the patch is released). L
Log likelihood -8,197 -8,203
Then,
* Significant at 10%; **significant at 5%; **significant at 1%.
K(t) ift<T, (N=1,429).
P(t|T)= Q- K(T))[G(t) - G(T)] LK(T) ift=T. Appen.dix E. Estimates with D.isclosure Source,
1-G(T) Including Vendor Patch as a Disclosure

For t < T, the patch comes before disclosure. For ¢t > T,
the probability that a patch arrives in the interval [0, T] is
K(T). The probability that it arrives in (T, t] is given by
the first term, in which (1 — K(T)) is the probability of not
patching until T and the term multiplying it is the proba-
bility of patching by ¢ conditional on not having patched
until T. It can be verified that P(-) is a well-defined dis-
tribution function because P( ) is monotonically increasing
int, P(0) = K(0) =0, P(c0) =1, and P( ) is continuous every-
where on its domain.

To calculate the expected number of days, we construct
the discrete version of the probability density function. The
probability of patching on day f conditional on disclosure at
T is equal to P(t | T) — P(t —1| T). Then, the expected num-
ber of days for patching conditional on disclosure at time
E(t| T) = YN, t[P(t/T) — P(t —1/T)]. Because we know all
values and distribution functions, we can calculate E(-) for
various values of disclosure time T.

Source

M) @)
With frailty Without frailty
Hazard Std. Hazard Std.
ratio error ratio error
Disclosed by CERT 456  1.09 4.59 1.08
Disclosed 2.28=  0.37 2.28 0.36
by SecurityFocus
Disclosed by others 2.50=  0.44 261 0.46
Disclosed by vendor 2.79=  0.45 2.83= 045
Small 0.84 0.33 0.86 0.10
(1 —small) x Ln(size) 1.03 0.02 1.03* 0.01
Open source 146~ 021 1.31% 0.11
software
Ln(severity) 1.14* 0.08 1.09 0.07
Operating system 1.29~  0.10 1.29+ 0.10
Server application 1.50=  0.12 1.44 0.11
Published in 2001 1.63 021 1.64 0.21
Published in 2002 2.37+ 0.31 2.48 0.31
Published in 2003 3.84= 0.52 3.84" 0.51
Ln(p) -0.47= 0.02  -0.51* 0.02
(shape parameter)
o (frailty parameter) 0.13=  0.06
Log likelihood -2,423 -2,431

ok

*Significant at 10%; **significant at 5%;
(N=1,218).

significant at 1%.



o~
&, 1
.

o
23
=

5 E
© o
L
o c
=
©
2
=
@2
23
> 2
O +
o <
=
@ ©
nQ
(e}
>£
=+
O ®©
2
£y
32
=
._QQ.
= C
@ 9
S 3
o2
2 E
T O
o2
o2
T ©
T
1]
0 £
c .2
e

o
==
— O
£ 3

o) O
= £
E -
c
(]
8 e
S =
o O
<E
w_

[
= C
e o

=
Q35
z-c
=<

Arora et al.: Empirical Analysis of Software Vendors” Patch Release Behavior: Impact of Vulnerability Disclosure

132

Information Systems Research 21(1), pp. 115-132, ©2010 INFORMS

Appendix F. Estimates Without Instant Disclosure
Observations Using Weibull Distribution

1) @)
With frailty Without frailty

Hazard Std. Hazard Std.

ratio error ratio  error
Disclosure 3.81~ 042 3.26~ 0.38
Published by CERT only 1.01 032 0.84 0.25
Published by 0.59+ 0.12  0.54+ 0.10

SecurityFocus only

Small 046 036 1.09 0.23
(1 —small)*Ln(employment) 099 0.04 1.04~ 0.02
Open source software 1.27 039 128 0.19
Ln(severity) 1.40= 0.17 1.24~ 0.14
Operating system 121 018 124 018
Server application 149+ 023 126+ 0.18
Published in 2001 195 099 171 0.76
Published in 2002 258+ 129 276 123
Published in 2003 232+ 115 275 1.20
Ln(p) (shape parameter) —0.45+ 0.04 -0.58= 0.05
o (frailty parameter) 0.47+ 0.13
Log likelihood -840 -863

Note. The constant for the proportional hazard model is not iden-
tified when hazard ratio is estimated.

*Significant at 10% level; **significant at 5% level; ***significant
at 1% level. (N =484).

References

Anderson, R., T. Moore. 2006. The economics of information secu-
rity. Science 27(314) 610-613.

Arbaugh, W. A., W. L. Fithen, ]. McHugh. 2000. Windows of vul-
nerability: A case study analysis. IEEE Comput. 33(12) 52-59.

Arora, A, J. P. Caulkins, R. Telang. 2006a. Sell first, fix later:
Impact of patching on software quality. Management Sci. 52(3)
465-471.

Arora, A., A. Nandkumar, R. Telang. 2006b. Impact of patches and
software vulnerability information on frequency of security
attacks—An empirical analysis. Inform. Systems Frontier 8(5)
350-362.

Arora, A., R. Telang, H. Xu. 2008. Optimal policy for vulnerability
disclosure. Management Sci. 54(4) 642-656.

August, T, T. Tunca. 2006. Network software security and user
incentives. Management Sci. 52(11) 1703-1720.

Banker, R., G. Davis, S. Slaughter. 1998. Software development
practices, software complexities, and software maintenance.
Management Sci. 44(4) 433-450.

Belzil, C. 1995. Unemployment insurance and unemployment over
time: An analysis with event history data. Rev. Econom. Statist.
77(1) 113-126.

Camp, L., C. Wolfram. 2000. Pricing security. Proc. CERT Inform.
Survivability Workshop, Boston, 31-39.

Cavusoglu, H., H. Cavusoglu, S. Raghunathan. 2004. How should
we disclose software vulnerabilities? Proc. 14th Annual Work-
shop Inform. Tech. Systems, Washington, D.C.

Choi, J. P, C. Fershtman, N. Gandal. 2005. Internet security, vulner-
ability disclosure, and software provision. Proc. 4th Workshop
Econom. Inform. Systems, Boston.

Cox, D. R. 1975. Partial likelihood. Biometrika 62(2, May/August)
269-276.

Green, W. 1992. Econometric Analysis. Macmillan Publishing Com-
pany, New York.

Information Week. 2005. Cisco details IOS vulnerability spilled at
Black Hat. http://www.informationweek.com/story /showArticle.
jhtml?articlelD=166403842 (July 29).

Kalbfleisch, J. D., R. L. Prentice. 2002. The Statistical Analysis of
Failure Time Data, 2nd ed. John Wiley & Sons, New York.
Kannan, K., R. Telang. 2005. Market for software vulnerabilities?

Think again. Management Sci. 51(5) 726-740.

Kaplan, E. L., P. Meier. 1958. Nonparametric estimation from
incomplete observations. J. Amer. Statist. Assoc. 53 457-548.

Krishnan, M. S., C. Kriebel, S. Kekre, T. Mukhopadhyay. 2000. An
empirical analysis of cost and conformance quality in software
products. Management Sci. 46 745-759.

National Vulnerability Database (NVD). http: //www.nvd.nist.gov/.

Nizovtsev, D., M. Thursby. 2007. To disclose or not? An analysis
of software user behavior. Inform. Econom. Policy 19(1) 43-64.

Ozment, A. 2004. Bug auctions: Vulnerability markets reconsidered.
3rd Workshop Econom. Inform. Security, Minneapolis.

Png, 1, C. Tang, Q.-H. Wang. 2006. Information security: User
precaution and hacker targeting. http://ssrn.com/abstract=
912161.

Symantec  Inc.  Symantec  Internet
Report. Accessed June 24,
www.symantec.com.

Telang, R., S. Wattal. 2007. Impact of vulnerability disclosure on
market value of software vendors: An empirical analysis. IEEE
Trans. Software Engrg. 33(8) 544-557.

Vaupel, J. W.,, K. G. Manton, E. Stallard. 1979. The impact of het-
erogeneity in individual frailty on the dynamics of mortality.
Demography 16 439-454.

Wheeler, D. 2002. Why open source software/free software
(OSS/FS)? Look at the numbers! Accessed June 19, 2007,
https://wideopennews.com/archives/open-source-now-list/2002-
May /pdf00000.pdf.

Threat
http://

Security
2003,



