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ABSTRACT 

In the problem of selecting the best of k populations, Olkin, 

Sobel, and Tong (1976) have introduced the idea of estimating the 

probability of correct selection. In an attempt to improve on 

their estimator we consider an empirical Bayes approach. We com

pare the two estimators via analytic results and a simulation 

study. 

1. INTRODUCTION 

In the problem of selecting the best of k populations, Olkin, 

Sobel and Tong (1976) have introduced (see also Gibbons, Olkin 

and Sobel, 1977) the idea of a post:er:fori analysis of the data. 

They suggested forming an estimator of the probability of correct 

selection (P{CS}). However, this estimator was found to possess 

some shortcomings (Faltin and McCulloch, 1983). Specifically, 

when the means are close together, their estimator greatly over-



estimates P{CS} and when the means are far apart, it tends to 

underestimate P{CS}. 

In an attempt to improve on the Olkin-Sobel-Tong estimator, 

we consider an empirical Bayes approach to estimation of the 

P{CS}. The motivation for this approach was to use shrinkage es

timators to improve performance, especially when the true means 

are close together. Our estimator is constructed in Section 2 

and its properties are evaluated in Section 3. As well as infor

mation on this new estimator, the simulation results in Section 3 

give additional information as to the performance of the Olkin

Sobel-Tong estimator. 

2. AN EMPIRICAL BAYES APPROACH 

Let Xij , 1~i~k, 1~j~n be independent observations from k 

populations with cdf's which are normal with mean pi and variance 

a2 (a2 assumed known) and denote the sample means by 

Xi • ~.1xij/n. Let p[i] denote the ranked parameter values 

p[ 1 ] S p( 2 ] ~ ••• p[k] and let X[i] denote the ranked sample 

means, x[ 1 ] ~ x( 2 ]~ ••• ~ X[k]' Also, let X(i)be defined as the 

sample mean from the population with mean p[i](1 S i ~ k). It is 

assumed that there is no a pr1or1 knowledge of the pairings of 

the Xi and the p[~}' (1 SiS k, 1 S ~ ~ k). 

We wish to obtain an estimator of the probability of correct 

selection (P{CS}) which is given by the formula (Bechhofer,1954) 

where 

and 

0:. k-1 
P{CS} • f ll t(y + nt~i/a) d.(y), 

-<:0 i•1 

t(•) • standard normal c.d.f. 

6i • P[k] - P[i] 

( 2 .1) 

The estimator proposed by Olkin, Sobel and Tong (1977) for the 

normal means case is given by the formula 

P{CS} - p - f_: k=l 
n t(y + nt&ita) dt(y) , 

i•l 
(2.2) 



where 

6i • x[k] - x(i] 

In other words, the ~[i] in (2.1) are replaced by the ranked sam

ple means x(i] to obtain (2.2) 

In an attempt to improve on (2.2), a different estimator for 

6i was used. Since P tends to overestimate P{CS} when the ~i 

are close together, a natural thing to try is a shrinkage estima

tor. This will pull the sample means together, especially when 

the true means are nearly equal, thus reducing the average value 

of the estimator. An empirical Bayes estimator of ~i in the nor

mal means case is given by 

where 

(k-3)a 2 /n 
~ • --~-~~-~~--- X i k 

r ex - x )2 
i•l i . 

+ (l _ k (k-3)a 2 /n 

r (x - x )2 
i•1 i . 

The estimator in (2.3) can be motivated by considering a Bayesian 
k - -framework in which (k-3)a2 /nri•l(Xi- x.) 2 is used as an unbiased 

a2/n 
estimator of 21 2 (k>3) where ~ 2 • var(pi) (see Casella, a n + 't 

1982). Using the Vi' we can form estimators of the 6i from 

~[k]- V[i]' where V[i} represents the ranked pi, 

v[1] ~ V[2] ~ ••• ~ v(k}" This simplifies to 

... (k-3)a2 /n 

Often, the shrinkage factor is not allowed to be negative and the 

positive part (denoted by a +) is taken. To obtain a positive 

part estimator that also works for k • 2 and 3, define 



(1 -
(k-3)a2 /n 

)+ai k > 3 k 
I <x - x >2 

- i•l i • 
4 -i 

(1 -
a 2 /n 

)+ai k 
k. 2,3 

I <x - x )2 
i•1 i • 

We can then form an estimator of P{CS} as 

P{CS} • P • { k;1 t(y + ntiita)dt(y) • 
i•1 

~ 

3. PROPERTIES OF THE ESTIMATORS 

(2.4) 

Analytic Results The positive part estimator defined in (2.4) 

has intuitive appeal for estimating the P{CS}. When the sample 

means are close enough together (1- (k-3~a 2 tni~.1 <xi- x.> 2 < o). 
the shrinkage factor is zero and all the 4i are zero. This 

-yields a value of 1/k for P. This could be interpreted as saying 

that the sample means are not spread out enough to conclude that 

the ~i are different from each other and therefore the best esti

mate of the P{CS} is 1/k. This partially alleviates the problem 

that when the ~i are equal, the x[i] are order statistics from a 

N(~,a2 /n) distribution and lead to overestimates of P{CS}. 

If the means are actually equal, then P{P • 1/k} • 

P{1 < (k-3)a2 /ni(Xi- X,) 2 } • P{xi_1 < k- 3} fork > 3. The 

values are given in Table I for various values of k. 

TABLE 1 

Probability of P • 1/k in the Equal Means Configuration 

k P{P • 1/k} 

2 .304 
3 .199 
4 .091 
5 .151 
6 .192 

7 .221 
8 .243 
9 .261 

10 .275 
15 .321 



The probabilities P{P • 1/k} slowly increase to .5 as k ~ m . 

... 
For k • 2, P can be simplified as follows: 

This can be written as 

n 
2o2 

(X - X ) 2 
i 

t 

f) 

) 

Via numerical integration, using (3.1), we evaluated E[P] for 

nt6 1/o • 0,1,2 and 3. The bias of P and Pare given in Table 2. 

TABLE 2 

Biases of P and p 

Bias 

nt6 1/a E{P] - P{CS} E[P] - P{CS} 

0 .08 .25 
1 -.13 -.03 
2 -.18 -.06 
3 -.13 -.15 

Simulations For the normal means case, for k • 2,4,10 and 15 

and for various parameter configurations (given in Table 3) the 

performance of P and P was simulated. Two types of parameter 

configurations were simulated, a slippage configuration: 



~[1) • ~[2] • ••• • ~[k- 1 ) • ~[k}- 6 and an equally spaced con

figuration ~[i]- ~[i- 1 ] • d (i•k,k-1,···,2). For all cases 

a 2 /n was set equal to 1. For details of the computational tech

niques see Section 5. 

Number of 
Populations, k 

2 

4 

10 

15 

TABLE 3 

Parameter Configurations Simulated 

Configurations 

Slippage: 6 • 0,1,2,3 

Slippage: 6 • 0(.5)5 
Equally spaced: A • .5,1 

Slippage: 6 • 0(.5)5 
Equally spaced: ~ • .5,1 

Slippage: 6 • 0(.5)5 
Equally spaced: A • .5,1 

From the simulation, estimates were derived for the expected 

values and mean squared errors of P and P. Figures 1 through 

6 are plots of the bias and root mean square error as a function 

of the parameter values for k • 4, 10 and 15. 

4. DISCUSSION 

As expected, P performed better than P both in terms of 

root mean square error and bias when the means were close 

together. In addition, for k • 2 and 4, considering overall per

formance, P performed about as well as P. Unfortunately, for 
.... 

cases when the means were moderately far apart P performed 

poorly. This was especially so for k • 10 and 15. Thus P can

not be recommended over P in all circumstances • 
... 

This poor performance of P for large k was somewhat unex--pected. Investigation of the histograms of P from the simula-

tions showed a large incidence of values equal to 1/k, even when 

the means were not equal. For example, in the slippage configu--ration for k • 10, the proportion of estimates, P, between .1 

and .125 was .35 (6•0), .326 (6•1), .142 (6•2), .026 (6•3) and 

.004 (6•4). This could perhaps have been predicted from Table I, -which shows the very high incidence of P • 1/k for large k when 



the means are exactly equal. This suggests that the shrinkage 

factor is too severe, especially for large k. Modification of 

the shrinkage factor may hold out hope for a way to improve the 

estimator. 
5. Computational Details 

Many of the simulations were run on both a mainframe 

(Cornell's IBM 30810) and on an IBM personal computer for compar

ison's sake. On the 3081D all computations were written in 

double precision FORTRAN and used the IMSL routines DCADRE (for 

numerical integration) and GGNML (for normal, pseudo-random num

ber generation). The simulations were replicated 1000 times each 

for the parameter configurations: slippage 6 • 0,1,2,3 and 

equally spaced 6 • .5 for k • 2,4,10, and 15. Common random num

bers were used to compare P and P. 

On the IBM personal computer, all computations were written 

in double precision BASIC and used a Romberg extrapolation tech

nique for numerical integration (adapted from Forsythe and Brown, 

1977). To generate normal, pseudo-random numbers the built-in 

BASIC uniform random number generator and a technique due to 

Marsaglia and Bray (1964) was used. The simulations were repli

cated at least 500 times for the parameter configurations: 

slippage 8 • 0(.5)5 and A • .5,1 fork • 4,10,15. Common random 

numbers were used to compare P and P. 
In Table 2 some comparisons between the two machines are 

made. It also gives an idea of the precision of estimates. 

TABLE 4 

Comparison of some Simulation Results 

for k•4 Populations for Estimating E[P]. 

Parameter 3081D Personal 
Configuration Average SE ReEs Average 

slippage & • 0 .459 .006 1000 .461 
slippage 8 • 1 • 513 .006 1000 • 505 
slippage 4 • 2 .649 .007 1000 .648 
slippage 4 • 3 .810 .006 1000 .814 

equally spaced 6 • .5 .529 .006 1000 .523 

ComEuter 
SE Reps 

.006 1000 

.006 1000 

.007 1000 

.006 1000 

.008 500 
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