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AN EMPIRICAL BAYES MIXTURE METHOD FOR EFFECT SIZE
AND FALSE DISCOVERY RATE ESTIMATION

BY OMKAR MURALIDHARAN1

Stanford University

Many statistical problems involve data from thousands of parallel cases.
Each case has some associated effect size, and most cases will have no ef-
fect. It is often important to estimate the effect size and the local or tail-area
false discovery rate for each case. Most current methods do this separately,
and most are designed for normal data. This paper uses an empirical Bayes
mixture model approach to estimate both quantities together for exponential
family data. The proposed method yields simple, interpretable models that
can still be used nonparametrically. It can also estimate an empirical null and
incorporate it fully into the model. The method outperforms existing effect
size and false discovery rate estimation procedures in normal data simula-
tions; it nearly acheives the Bayes error for effect size estimation. The method
is implemented in an R package (mixfdr), freely available from CRAN.

Suppose we have N parallel cases, each with some effect size δi . We observe a
measurement zi ∼ fδi

independently for each case. We want to estimate how big
each effect is and narrow in on the few cases of interest. To do this, we must esti-
mate δi and either the local false discovery rate, fdr(z) = P(δi = 0|zi), or the tail-
area false discovery rate, FDR(z) = P(δi = 0||zi | ≥ z). This problem comes up in
many different areas: microarrays motivate this paper, but the question also arises
in data mining, model selection and image processing [Abramovich et al. (2006),
Abramovich, Grinshtein and Pensky (2007), Johnstone and Silverman (2004)].

We present a mixture model empirical Bayes method to solve this problem in
Section 1. A simple hierarchical model lets us estimate effect sizes and false dis-
covery rates in a flexible, conceptually neat way. The approach works for gen-
eral exponential families fδ , and can estimate an empirical null. We illustrate the
method for binomial data in Section 2. Simulation results in Section 3 show that
the method performs well on normal data: it estimates δ nearly as well as the Bayes
rule, and is a better fdr estimator than existing methods.

1. Model. Our model is a specialization of the Brown–Stein model used by
Efron (2008a). This model supposes (δi, zi) are independently generated by the
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following hierarchical sampling scheme:

δ ∼ g(δ),

z|δ ∼ fδ(z),

where fδ(z) is an exponential family with natural parameter δ. Given the prior g,
we can calculate fdr(z), FDR(z) and the Bayes estimator of δ, E(δ|z). However,
we usually do not want to specify g in advance. Instead, we can take an empirical
Bayes approach: use the data to estimate g, and use this estimated prior to get
effect size and false discovery rate estimates.

Mixture prior. Modeling g as a mixture gives us the flexibility of a nonpara-
metric model for g with the convenience and stability of a parametric one. We
model g as a mixture of J priors gj :

g(δ) =
J−1∑
j=0

πjgj (δ).(1)

The priors gj are taken from some parametric family of priors for δ, and each has
a hyperparameter vector θj . We usually think that the marginal distribution of z,
f (z), has a known null component f0, corresponding to the many cases with δ = 0.
To model this, we think of the 0th mixture component as null, and fix θ0 so that g0
is a point mass at 0. The other parameters θj and the mixture proportions πj are
unknown, and must be estimated. We fit them using marginal maximum likelihood
via the EM algorithm. We can also incorporate case-specific nuisance parameters
into the model as long as they can be estimated. Details for these issues are given
in the supplementary information [Muralidharan (2009)].

We can choose any family of priors as long as we can calculate the posteriors,
and the family is rich enough to model g nonparametrically given enough compo-
nents. With such a family, we can go from a strongly parametric model to a nearly
nonparametric model by increasing J . It is often very convenient to work with
conjugate priors for fδ , since the posterior distributions are easy to calculate.

The mixture model gives the posterior distribution of δ|z a simple form, making
it easy to calculate fdr(z) and E(δ|z). Let f (j) = ∫

fδgj (δ) dδ be the j th group
marginal, so the marginal distribution of z is f (z) = ∑

πjf
(j)(z), and let F (j)

and F be corresponding cdfs (the superscripts are to avoid confusion with fδ).

Let pj (z) = πjf (j)(z)

f (z)
be the posterior probability that z came from group j , and

gj (δ|z) be the posterior for the j th group (that is, the posterior corresponding to
prior gj ). Then under model (1), the posterior distribution is a mixture:

δ|z ∼
J−1∑
j=0

pj (z)gj (δ|z).(2)
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In particular, this gives us our estimates:

fdr(z) = p0(z),

FDR(z) = π0(1 − F (0)(z) + F (0)(−z))

1 − F(z) + F(−z)
,

E(δ|z) =
J−1∑
j=0

pj (z)Ej (δ|z),

where Ej denotes the expectation under gj (δ|z). Other quantities, like the posterior
variance Var(δ|z), can be calculated easily using equation 2. These formulas are
derived in the supplementary information [Muralidharan (2009)].

Empirical nulls. This model can accommodate empirical nulls by penalizing
the mixture proportions and allowing the null component g0 to vary. Sometimes,
because of correlation or other issues, it is no longer true that most z ∼ f0 [Efron
(2008b)]. This makes the theoretical null inappropriate; instead, Efron suggests
fitting an empirical null so that most z have the empirical null distribution. In the
mixture model, using an empirical null corresponds to g0 not being a point mass
at 0 and π0 being larger than the other π ’s. We can therefore fit an empirical null
by letting g0 vary and putting a penalty on the proportions π . The most conve-
nient and interpretable penalty corresponds to a Dirichlet(β) prior on π . These
modifications are easy to incorporate into the fitting process (details are in the sup-
plementary information [Muralidharan (2009)]). Penalizing π is useful even for
the theoretical null—it stabilizes the parameter estimates by mitigating the effect
of the likelihood’s multiple local maxima.

Tuning parameters and how to choose them. This method has two tuning
parameters—the penalization parameter β and the number of mixture compo-
nents J . Perhaps somewhat counterintuitively, J is less important and easier to
choose. This is because for typical datasets, it has little effect on the fitted den-
sity f , and E(δ|z) is a function of f (as Lemma 1 will show). If we treat nearly
null components as null (see the next subsection), fdr and FDR estimates are in-
sensitive to J as well. The literature on mixture models has many methods to
choose J [McLachlan and Peel (2000)]; one easy method is to use the Bayes In-
formation Criterion. For most purposes, however, we can just fix J . Taking J = 3
works particularly well. This choice gives a group each to null, positive effect and
negative effect cases.

The penalization β can be more important. It is usually best to choose β =
(P,0,0, . . . ,0). With this choice, the exact value of P is not important for effect
size estimation and fdr/FDR estimation with the theoretical null. With empirical
nulls, however, P can be more important. A larger P forces a bigger null group,
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and so increases estimates of the null variance. This can have a big effect on fdr
estmates.

We can choose P with a simple parametric bootstrap calibration scheme. First
list some candidate penalizations P1, . . . ,PK (usually 20 penalizations evenly
spaced between 100 and N

2 ). Then, fit a preliminary model m to the data using
some reasonable default penalization (P = 1

5N is a good choice). Next, create
perturbed models m1, . . . ,mL by changing the null parameters slightly, and pos-
sibly changing the alternatives. We will choose P to be the Pk that performs best
over the perturbed models. To assess performance, generate B random data sets
of size N from each ml . Fit k mixture models to each bootstrap data set, one for
each penalization Pk , and see how close each of the fitted models is to the true
model for that data set (which will be one of the ml’s). The best P is the one that
performs best over all the bootstrap data sets.

It is worth emphasizing, however, that the mixture model is relatively insensitive
to parameter choice. Both J and P have little effect on the fitted density, and so
do not affect effect size and theoretical null fdr/FDR estimates too much. This is
seen in the simulations of Section 3, where the mixture model nearly acheives the
Bayes effect size estimation error for many different combinations of J and P .

Choosing a null hypothesis. The mixture model also raises a new question:
how should we treat nearly null mixture components? Fitting often gives mixture
components that are nearly, but not quite, null. For example, g1 might not be a
point mass at 0, but still give δ close to 0 with high probability. We need to decide
whether to include these components in the null when estimating fdr’s and FDR’s.
Efron (2004) argues that the answer depends on whether the nearly null compo-
nents are still interesting in the presence of strongly null components. The nearly
null components, however, are usually highly sensitive to tuning parameters—
different parameters can change the nearly null components dramatically with little
effect on the overall density f . It is thus usually best to include the nearly null com-
ponents in the null. If the components are insensitive to parameter choice, though,
Efron’s answer is correct, and the question becomes a scientific one.

Identifiability concerns. One problem with this method is that mixture models
can be nearly unidentifiable. We can have very different models for g that give
nearly the same marginal f . We cannot choose between such models based on
the data, so estimates of g cannot always be taken seriously. The following result,
however, shows that the mean and variance of the posterior distribution g(δ|z) are
simple functions of f , and thus can be taken seriously. The result is a generaliza-
tion of Efron’s calculations in Efron (2008a) to exponential families, though the
formula goes back to Robbins (1954). It applies for the Brown–Stein model in
general, not just to the mixture model.
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LEMMA 1. Assume we are in the Brown–Stein model for exponential families
and z is continuous. Then the mean and variance of the posterior distribution
g(δ|z) are given by

E(δ|z) = − d

dz

(
log

f0(z)

f (z)

)
,

Var(δ|z) = − d2

dz2

(
log

f0(z)

f (z)

)
.

If we use the theoretical null and π0 is known, then fdr(z) = π0f0(z)
f (z)

and

FDR(z) = π0(1−F0(z)+F0(−z))
1−F(z)+F(−z)

are also functions of f (z).

PROOF. The proof follows [Efron (2008a)] closely. Recall that in the Brown–
Stein model we assume only that δ has prior g(δ), and z|δ ∼ fδ . The posterior of
δ|z is

gδ|z(δ) = fδ(z)g(δ)

f (z)

= exp
(
zδ − log

f (z)

f0(z)

)
e−ψ(δ)g(δ).

Thus, δ|z is distributed according to an exponential family with natural parameter z

and cumulant generating function − log f0(z)
f (z)

. The cumulants of δ|z are immedi-
ately obtained by differentiating this function. Note that this proof goes through
for multiparameter exponential families as well. �

Lemma 1 connects effect size and fdr estimation in exponential families, and
is thus useful beyond the mixture model—any density (or equivalently, fdr) es-
timation method gives us effect size estimates. Such an approach is even useful
for discrete families, where the lemma does not apply. The proof shows that gδ|z
is well defined for z in some convex set that includes the sample space of z. The
problem in the discrete case is that we only know the value of the cumulant gener-
ating function in the sample space, and this is not enough to differentiate. We can,
however, estimate the cgf by interpolating the known or estimated values. Differ-
entiating this gives us estimates of E(δ|z) and Var(δ|z) corresponding to priors
whose posterior cgfs are not too wild. This method performs well on simulated
binomial and Poisson data despite its somewhat shaky theoretical foundations.

Connections to existing methods. This model differs from most fdr and effect
size estimation methods in three important ways. First, it estimates fdr’s and effect
sizes together, not separately. Second, it incorporates its empirical null estimate
into its overall density estimate. Finally, it works in general exponential families,
not just for normal data or p-values.
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That said, this mixture model is closely connected to many existing fdr and
effect size estimation procedures. fdr estimation under the theoretical null reduces
to estimating π0 [see, for example, Storey (2002), Cai, Jin and Low (2007), Jin
and Cai (2007), Meinshausen and Rice (2006)] and f [examples include Efron
(2008b), Strimmer (2008)] since fdr = π0f0

f
[Efron et al. (2001), Storey (2002)].

In this context, the proposed method corresponds to using a mixture model density
estimation method. This approach has been successfully used for normal data [Pan,
Lin and Le (2003), McLachlan and Peel (2000)], p-values [Allison et al. (2002)]
and Gamma data [Newton et al. (2004)]. In particular, our treatment of empirical
nulls is similar to that of McLachlan and Peel (2000). The proposed method goes
further than these methods by incorporating an empirical null estimate into the
density estimate and using the mixture model to estimate effect sizes.

The proposed method is also similar to many effect size estimation procedures.
Many effect size estimation methods use a two group mixture model for g and esti-
mate δ with the posterior mean, median or mode. The model can either be specified
in advance or estimated empirically—both approaches can yield theoretically at-
tractive estimators [Johnstone and Silverman (2004), Pensky (2006), Abramovich,
Grinshtein and Pensky (2007)]. Our mixture model can be viewed as a particu-
lar instance of this general recipe for effect size estimation, adapted to estimate
fdr’s as well. The model is also closely related to another family of procedures
that use density estimates and a normal data version of Lemma 1 to estimate ef-
fect sizes [Efron (2008a), Brown (2008)]. For continuous z, the proposed method
corresponds to using a particular mixture density estimator and the more general
Lemma 1 to transform the density estimate to an effect size estimate.

2. Binomial data example. To illustrate the mixture model, we use it to pre-
dict Major League Baseball batting averages. The data consist of batting records
for Major League Baseball players in the 2005 season. We assume that each player
has a true batting average δi , and that his hit total Hi is Binomial(Ni, δi), where Ni

is the number of at bats. The goal is to estimate each players’ batting average δi

based on the first half of the season. We restrict our attention to players with at
least 11 at bats in this period (567 players).

Brown’s analysis. Brown (2008) analyzes the data using a normalizing and
variance stabilizing transformation. He transforms the data (H,N) to

Xi = arcsin

√
Hi + 1/4

Ni + 1/2
,

and the transformed data are approximately normal

Xi ∼̇ N
(
μi,

1

4Ni

)
,

μi = arcsin
√

δi.
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He estimates μi using the following methods:

• The naive estimator, μ̂i = Xi .
• The overall mean, μ̂i = X̄.
• A parametric empirical Bayes method that models μi ∼ N (μ, τ 2). The prior

parameters μ and τ are fit either by method of moments or maximum likelihood.
• A nonparametric empirical Bayes method. First, Brown estimates the marginal

density of each Xi with a kernel density estimator (tweaked because of the un-
equal variances). Then he uses a normal version of Lemma 1 from Brown (1971)
to estimate μ.

• The positive part James–Stein estimator.
• A Bayesian estimator that models μi ∼ N (μ, τ 2), μ ∼ Unif(R), τ 2 ∼ Unif(0,

∞).

Finally, Brown estimates the estimation error of these methods using their predic-
tion error on the second half of the season. Let (H̃i, Ñi) be the data for the second
half of the season. Brown’s error criterion is

TSE = ∑
(μ̂i − X̃i)

2 − 1

4Ñi

.(3)

By construction, E(TSE) = ∑
(μ̂i − μi)

2. The methods are assessed over all play-
ers who had at least 11 at bats in each half of the data (499 players).

Mixture model. We can analyze the data on the original scale using a bino-
mial mixture model. We model the data using the Brown–Stein model [δi ∼ g(δ),
Hi |δi ∼ Binomial(Ni, δi)], and model g as a mixture of Beta distributions

g(δ) =
J∑

j=0

πj Be(δ;αj ,βj ).

This model makes the marginal distribution of Hi a mixture of Beta-binomial
distributions, f (Hi;Ni) = ∑

πjf
(j)(Hi;Ni). The conjugate property of the Beta

prior makes the posterior distributions simple:

g(δi |Hi) =
J∑

j=0

pj (Hi)Be(δ;αj + Hi,βj + Ni),

where pj (Hi) = πjf (j)(Hi;Ni)

f (Hi;Ni)
. The parameters π , α and β are fitted by marginal

maximum likelihood via the EM algorithm (details are in the supplementary in-
formation [Muralidharan (2009)]). For easy comparison with Brown’s results, we
estimate μi by its posterior mean E(arcsin

√
δ|z).
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TABLE 1
Estimated estimation accuracy [equation (3)] for the methods. The naive estimator is normalized to
have error 1. Values for all methods except the binomial mixture model are from Brown (2008). The
first column gives the errors on the data as a whole (single model), and the next two give errors for

pitchers and nonpitchers considered separately. Standard errors range from 0.05 to 0.2 on
nonpitchers, are higher for pitchers, and are in between for the overall data [Brown (2008)]

Overall Pitchers Nonpitchers

Number of training players 567 81 486
Number of test players 499 64 435
Naive 1 1 1
Group mean 0.852 0.127 0.378
Parametric empirical Bayes (Moments) 0.593 0.129 0.387
Parametric empirical Bayes (ML) 0.902 0.117 0.398
Nonparametric empirical Bayes 0.508 0.212 0.372
Bayesian estimator 0.884 0.128 0.391
James–Stein 0.525 0.164 0.359

Binomial mixture model 0.588 0.156 0.314

Results. Table 1 compares the mixture model to Brown’s methods — the mix-
ture model is a good performer, but not the best. It performs about 15% worse than
the nonparametric empirical Bayes and James–Stein estimators. Brown observes
that the number of at bats is correlated with the batting averages—better batters bat
more. This violates all methods’ assumptions, but has a particularly strong effect
on the more parametric methods. Splitting the players into pitchers (81 training,
64 test) and nonpitchers (486 training, 435 test) reduces this effect.

The results, also in Table 1, show that splitting makes the mixture model the
best performer for nonpitchers and an average performer for pitchers. Splitting
also reduces the differences between the methods. Both the nonparametric empir-
ical Bayes estimator and the binomial mixture model do relatively better on non-
pitchers than on pitchers. This is probably because the smaller number of pitchers
makes it difficult to estimate the marginal density. Simple simulations show that
the binomial mixture model is probably truly better than the other methods for
nonpitchers, but no firm conclusions can be drawn about the methods’ relative
performance on pitchers or the combined data.

The binomial mixture model has advantages beyond possible performance
gains. It removes the need for a normalizing and variance stabilizing transforma-
tion by working with the original data. It can estimate any function h(δ), since
E(h(δ)|z) can be calculated numerically. Finally, the mixture prior can be informa-
tive. For example, the estimated prior for nonpitchers was a single Beta(302,884)

distribution, while the estimated pitchers’ prior was a mixture of Beta(90,983)

and Beta(219,928) distributions. These prior estimates were stable under differ-
ent choices of J and starting points for the EM algorithm. This could indicate
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that nonpitchers are about the same across the league, but pitchers come in two
different types.

3. Normal data simulations. In this section we shall see that the mixture
model performs very well in the important normal case. The mixture model is
particularly simple for normal data. We use the Brown–Stein model [δ ∼ g(δ),
z|δ ∼ N (δ,1)] and model the prior g as a normal mixture:

g(δ) =
J−1∑
j=0

πjϕ(δ;μj ,σ
2
j ),

where ϕ(x;μ,σ 2) is the N (μ,σ 2) density function. This model makes the mar-
ginal f a normal mixture, f (z) = ∑

πjϕ(z;μj ,σ
2
j + 1). Fixing μ0 = 0, σ0 = 0

corresponds to using a theoretical null, and letting them vary corresponds to using
an empirical null. Normality makes the posterior g(δ|z) simple. It is easy to check
that

g(δ|z) =
J∑

j=0

pj (z)ϕ

(
δ; 1

σ 2
j + 1

μj + σ 2
j

σ 2
j + 1

z,
σ 2

j

σ 2
j + 1

)
,

fdr(z) = p0(z),

E(δ|z) = ∑
pj (z)

(
1

σ 2
j + 1

μj + σ 2
j

σ 2
j + 1

z

)
,

where pj (z) = πjϕ(z;μj ,σ 2
j +1)

f
. The parameters π , μ and σ are estimated by mar-

ginal maximum likelihood via the EM algorithm. We used a Dirichlet(P,0, . . . ,0)

penalty on π to stabilize the model. The normal mixture model approach is imple-
mented in an R package “mixfdr,” available from CRAN and the author’s website.

Effect size estimation. We can investigate the effect size estimation perfor-
mance of the normal mixture model with simulation closely based on one done by
Johnstone and Silverman (2004). We generate zi ∼ N (δi,1), for i = 1, . . . ,N =
1000. The goal is to estimate δi based on z and minimize the squared error∑

(δi − δ̂i )
2. K of the δi were nonzero. In the one-sided case, the nonzero δi

were i.i.d. Unif(μ − 1
2 ,μ + 1

2); in the two-sided case, two-thirds of the δi were
Unif(μ − 1

2 ,μ + 1
2) and one-third were Unif(−μ − 1

2 ,−μ + 1
2). Different values

of K and μ were used to simulate different combinations of sparsity and effect
strengths. We will compare the mixture model to the following effect size estima-
tion methods:

• A spline density method used by Efron (2009).
• EBayesThresh, an empirical Bayes approach taken by Johnstone and Silverman

(2004).
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• SUREShrink, a method based on minimizing Stein’s Unbiased Risk Estimate
for thresholding [Donoho and Johnstone (1995)].

• FDR-based thresholding [Abramovich et al. (2006)], at threshold q = 0.1.
• Soft and hard thresholding using the “universal threshold”

√
2 logN ≈ 3.7 from

Donoho and Johnstone (1994).

All methods use the known variance of z, and when applicable, assume a theo-
retical N (0,1) null. All methods’ tuning parameters were hand-picked for good
performance over the simulation scenarios, but none were rigorously optimized
(including the mixture model, which used J = 10 and P = 50). The whole sim-
ulation was repeated 100 times, and the same random noise was used for each
scenario and each method. Code for the simulation, a slightly modified version of
the code used by Johnstone and Silverman (2004), is available in the Supplemen-
tary Material online.

The mixture model was the best performer overall and in most of the cases.
Figures 1 and 2 show the performance of the various methods relative to the Bayes
estimator for each scenario. The mixture model does a little better than the other
methods on sparse δ (K = 5) and nearly achieves the Bayes error for moderate and
dense δ (K = 50,500). Table 2 gives the mean and median relative error over the
24 scenarios; the mixture model is often within 5% of the Bayes rule, and is the
clear winner overall.

FIG. 1. Simulation results for the one-sided scenario. Each panel corresponds to one value of
K (5, 50 or 500). Within each panel, μ increases from 2 to 5. The y-axis plots the squared error
[
∑

(δi − δ̂i )
2], averaged over 100 replications. Errors are normalized so that the Bayes estimator for

each choice of K and μ has error 1. Estimation methods are listed in the text. In the dense case, the
universal soft and hard thresholding methods are hidden because their relative errors range from 4
to 40.
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FIG. 2. Simulation results for the two-sided scenario. Each panel corresponds to one value of
K (5, 50 or 500). Within each panel, μ increases from 2 to 5. The y-axis plots the squared error
[
∑

(δi − δ̂i )
2], averaged over 100 replications. Errors are normalized so that the Bayes estimator for

each choice of K and μ has error 1. Estimation methods are listed in the text. In the dense case, the
universal soft and hard thresholding methods are hidden because their relative errors range from 4
to 50.

The mixture model’s performance is not because it is fitting the true model—
taking J as low as 3 gives the same excellent performance (see Figure 3) even
though the data are certainly not generated from a three group normal mixture.
Neither is its performance due to careful tuning. Performance was insensitive to
parameter choice, as Figure 3 shows. The number of groups J does not matter
much and as long as there is some penalization, the exact value of P is not too
important, especially in the moderate and dense cases.

TABLE 2
Mean and median relative error for the methods over the simulation scenarios.
The relative error is the average of the squared error

∑
(δi − δ̂i )

2 over the 100
replications, divided by the average squared error for the Bayes estimator

Method Mean Median

Mixture Model (J = 10, P = 50) 1.10 1.04

Spline 2.08 1.43
EBayesThresh 1.70 1.39
FDR 1.92 1.70
SUREShrink 2.11 1.64
Universal hard 3.60 2.47
Universal soft 8.24 4.52
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FIG. 3. Relative errors for various parameter choices. Each panel corresponds to one value of
K (5, 50 or 500). Within each panel, μ increases from 2 to 5. The y-axis plots the squared error
[
∑

(δi − δ̂i )
2], averaged over 100 replications. Errors are normalized so that the Bayes estimator

for each choice of K and μ has error 1. The parameter J gives the number of groups in the mixture
model, and P is a penalization parameter.

fdr estimation. We can also investigate the mixture model’s fdr and FDR
estimation performance by examining a specific simulation. We generate zi ∼
N (δi,1), i = 1, . . . ,N = 1000. 950 of the δi were 0. The other 50 were drawn
(once and for all) from a Unif(2,4) distribution. Various methods were used to
estimate the fdr(z) = P(δi null|zi = z) and FDR(z) = P(δi null||zi | ≥ z) curves
based on zi , using either theoretical or empirical nulls:

• The normal mixture model with J = 3 and P = 50. For this simulation, nearly
null components were counted as null.

• Locfdr, from Efron (2008b). This fits the overall density using spline estimation.
It fits the empirical null by truncated maximum likelihood (“ML”) or fitting a
quadratic to logf near the center (“CM” for central matching). The implemen-
tation in the R package “locfdr” was used.

• Fdrtool, from Strimmer (2008). This fits the overall density using the Grenander
density estimator, and the empirical null by truncated maximum likelihood. The
implementation in the R package “Fdrtool” was used.

The whole simulation was run 100 times, and the same random noise was used
for each method. The results are similar for other scenarios and parameter choices;
the simulation code is available in the Supplementary Information online, and its
parameters can be changed easily.

The mixture model is probably the best fdr and FDR estimator, but not by much,
and the situation is more complicated than the effect size situation. Figure 4 shows
the expectation and standard deviation of f̂dr(z) for the various methods. Fdrtool’s
high bias and variance, and central matching’s high variance, make them poor fdr
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FIG. 4. E( ˆfdr(z)) and Sd( ˆfdr(z)) for various values of z and the methods under consideration.
“Th” means the theoretical null was used, while “Emp” means an empirical null was used. Locfdr
MLE and CM use the truncated maximum likelihood and central matching empirical null estimates,
respectively.

estimators. This leaves Locfdr (and its ML empirical null method) as the mixture
model’s only real competitor. Both methods are nearly unbiased for positive z, and
their bias for negative z is unlikely to be misleading. The mixture model is slightly
more stable than Locfdr, especially in the tails. Results for FDR estimation, seen
in Figure 5, were similar.

The mixture model is nevertheless a little better, especially if we need an
empirical null. This is because of the way fdr and FDR estimates are usually
used—we typically estimate fdr(z), and use our estimate to find rejection regions
{z|fdr(z) ≤ q}. For moderate q (0.01 to 0.2), the rejection regions are in the tails,
where the mixture model is stabler. This means that the mixture model is a stabler
estimator of the rejection region than Locfdr. In our simulation, the rejection region
for a given q corresponds to rejecting all z greater than some threshold t (q). We
can use the fdr estimation methods to estimate the rejection thresholds. Figure 6
shows the expectation and standard deviation of t̂ (q) for the various methods. Both
the mixture model and Locfdr are nearly unbiased for the true threshold, for both
theoretical and empirical nulls. Locfdr, however, gives more variable threshold es-
timates, especially with an empirical null. This makes the mixture model a better
choice for threshold estimation. This result held for almost all parameter choices,
and is true for FDR-based threshholds as well (Figure 7).

4. Summary and extensions. To summarize, the mixture model approach is
a simple, flexible and accurate way to estimate fdr’s, FDR’s and effect sizes. It esti-
mates them together, instead of separately, and can fit an empirical null if required.
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FIG. 5. E( ˆFDR(z)) and Sd( ˆFDR(z)) for various values of z and the methods under consideration.
“Th” means the theoretical null was used, while “Emp” means an empirical null was used. Locfdr
MLE and CM use the truncated maximum likelihood and central matching empirical null estimates,
respectively.

The method yields simple, interpretable models that can be strongly parametric or
quite nonparametric. The method has two tuning parameters—the number of mix-
ture components and the penalization. It is quite insensitive to the first, and, for

FIG. 6. Expectation and standard deviation of rejection threshold estimates t̂ (q) for the various
methods. The threshholds are fdr based.
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FIG. 7. Expectation and standard deviation of rejection threshold estimates t̂ (q) for the various
methods. The threshholds are FDR based.

most purposes, the second. We can choose the penalization by bootstrap calibra-
tion. Finally, the method works for exponential families, and can easily accommo-
date nuisance parameters. It is worth considering a few extensions of the mixture
model approach before we close.

The mixture model can be useful even when we are only interested in fdr or
FDR estimates. In these situations, the Brown–Stein model imposes unnecessary
restrictions on the marginal distribution of the data; it makes sense to drop the
model and work with the marginal distribution directly, as much of the fdr litera-
ture does [Storey (2002), Efron (2008b)]. The mixture model approach can still be
useful in these situations - model the marginal as mixture and penalize the mixture
proportions. For example, for normal data, this amounts to modeling the marginal
as a normal mixture. This approach can incorporate empirical nulls just as before.
The mixture model’s good performance should extend to these approaches.

The mixture model can also be useful beyond exponential families. Section 1
used exponential families for a convenient definition of effect size, for their con-
jugate priors and for Lemma 1. None of these is central, so if we have data with a
natural notion of effect size, we can follow the mixture model’s approach: model
the data using a prior on effect sizes, fit a mixture prior by marginal maximum like-
lihood, then use the Bayes estimates with the estimated prior. The loss of Lemma 1
means that there may be some identifiability issues, but the approach will often still
be successful.
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SUPPLEMENTARY MATERIAL

Supplement A: Model and Simulation Code (DOI: 10.1214/09-
AOAS276SUPPA; .zip). This file contains the batting average data, R code to fit
binomial normal mixture models, and scripts to carry out the simulations and data
analysis performed in the paper. The R package “mixfdr,” available from CRAN
and the author’s website, has the code for the normal mixture model.

Supplement B: Fitting Details and Derivations (DOI: 10.1214/09-
AOAS276SUPPB; .pdf). This document has more details on the EM algorithm
used to fit the model and derivations of some posterior distribution formulas.
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