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An Empirical Bayesian Approach
to Item Banking
Wim J. van der Linden and Theo J. H. M. Eggen
University of Twente
Enschede, The Netherlands

A procedure for the sequential optimization of the
calibration of an item bank is given. The procedure is
based on an empirical Bayesian approach to a refor-
mulation of the Rasch model as a model for paired
comparisons between the difficulties of test items in
which ties are allowed to occur. First, it is shown how
a paired-comparisons design deals with the usual in-
completeness of calibration data and how the item pa-
rameters can be estimated using this design. Next, the
procedure for a sequential optimization of the item pa-
rameter estimators is given, both for individuals re-
sponding to pairs of items and for item and examinee
groups of any size. The paper concludes with a dis-
cussion of the choice of the first priors in the proce-
dure and the problems involved in its generalization to
other item response models.

An innovative idea produced by modem test the-
ory is the notion of a calibrated item bank. A cal-

ibrated item bank is a large collection of test items,
all measuring the same trait or domain of knowl-
edge, that is stored in a computer together with
empirical estimates of its item parameters. The item
parameters are defined by an appropriate response
model fitting the responses of the examinees to the
items in the bank. The use of a calibrated item

bank has two important advantages over standard-
ized tests. The first advantage is the introduction
of flexibility in the practice of testing in education

and psychology. Using a calibrated item bank, test
scores obtained from any selection of items from

the bank will all measure the trait on the same scale.

This allows test construction solely on the basis of
practical considerations. The second advantage of
item banking is efficient use of response data. Any
new set of data, even the responses of a single
person to only a few items, can be fed back into
the computer for a periodic update of the item pa-
rameter estimates.

Flexibility in item selection is most desirable in
individualized instruction systems such as com-

puter-aided instruction (cal). In such systems, in-
dividual students’ achievements are monitored by
testing them regularly using short tests. The fact
that the test scores are used for instructional de-

cision-making entails the necessity of a high pre-
cision of measurement on a scale that is the same

for all items.

From an optimization point of view, two dif-
ferent stages in item banking can be considered.
The first is the calibration stage, in which response
data are collected in order to estimate the item

parameters accurately (and to assess the fit of the

items to the response model). Two obvious strat-

egies in this stage are (1) to collect the minimal
number of item responses needed to guarantee a
certain level of accuracy for the estimators, or (2) to
maximize the accuracy for a fixed number of re-

sponses. These two strategies can be implemented
by manipulating the sampling design governing the
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collection of response data (see below). The second
stage in item banking is the measurement stage. In
this stage the items have already been calibrated
and their parameters can, up to a tolerable inac-

curacy, be considered as known. Now the opti-
mization problem is to construct tests from the bank
measuring the expected distribution of the persons’
trait levels with prescribed precision. Procedures
for this optimization problem can be derived from
linear programming (Boekkooi-Timminga, in press;
Theunissen, 1985; van der Linden & Boekkooi-

Timminga, 1986).
The present paper deals with optimization of the

item calibration stage. Typically, the design of a
calibration sample has two characteristics: it is

(1) structurally incomplete and (2) sequential by
nature. The former property is a consequence of
the fact that for item banks exceeding the size of
a conventional test, it is physically impossible to
administer all items to each person in the sample.
Hence, when designing the calibration samples, the
item bank constructor must select the item-person
combinations for which responses will be col-

lected. The latter indicates that item responses may
be collected in more than one stage, notably when
the first sample of persons yields some parameter
estimates for which the estimated standard error of

estimation is considered too large and additional
sampling is required.

It is the purpose of this paper to introduce a

procedure that optimizes the calibration of an item
bank fully sequentially and can easily be imple-
mented on a microcomputer. The procedure can be
applied at the level of pairs of item responses; at
this level, it automatically selects each next pair
of items to be administered while guaranteeing any
predetermined level of accuracy for the item pa-
rameter estimates with a minimum number of re-

sponses. An obvious area for this level of appli-
cation is item banking in CAI systems where, for
individual students connected to the system, the

responses to previous items can be used to select
the next items to be administered. However, the
procedure can also be applied to any number of
items and examinees (see below). Basically, the
procedure consists of an empirical Bayesian ap-

proach to a reformulation of the Rasch model as a
model for paired comparisons with ties. Because
this reformulation is a unique property of the Rasch
model, the procedure cannot be used without mod-
ification for the other item response models in use
for item banking.

A Model for Paired Comparisons with Ties

In item response theory, the usual level of mod-
eling is the response of a single person to a single
item. For instance, in the Rasch (1960) model, the
probability of a person p with ability otp responding
correctly to a dichotomous item i with difficulty bi
is formulated as

where ot, E (0, + (0), 8i E (0, + (0), and Xi is the
random variable indicating whether the response is
correct (Xli = 1) or incorrect (Xi = 0). A different
perspective, however, is to consider a person’s re-
sponse to a pair of items, i and j. If the values of
the item parameters are unknown, the outcome of
this experiment can be conceived of as the outcome
of a paired-comparisons experiment in which the
person &dquo;judges&dquo; the relative difficulties of the test
items. Three different outcomes can be distin-

guished :

The first outcome can be interpreted as a com-
parison showing item j likely to be more difficult
than i, whereas the second outcome indicates the
reverse. The last outcome represents a compound
event in which the two elementary events ~Xp; _
0, Xpj = 01 and fxpi = 1, Xpj = 1} have been taken
together because, from the point of view of a com-
parison between the difficulties of the items, either
indicates that i and j are likely to be equally dif-
ficult. In the literature on paired comparisons, such
outcomes are denoted as ties (Bradley, 1976; Dav-
idson, 1970; Glenn & David, 1960; Gridgeman,
1959; Kousgaard, 1976; Rao & Kupper, 1967).
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From the model in Equation 1, completed with
the property of local independence, the probabili-
ties of the three possible outcomes follow straight-
forwardly :

Van der Linden and Eggen (1986) made a thor-
ough study of the model specified by these equa-
tions. An important feature of the model not pre-
viously noted in the literature is that if all possible
comparisons between a vector of n responses are
considered, some of them are dependent. For ex-
ample, if a person p has responded to three items
Z, J, and k and the outcome {X pi > Xp~~ has occurred,
then the outcome fxpi < X~j is impossible. In van
der Linden and Eggen (1986) it is shown that, for
a person with responses to n items, exactly
min~t,a~ - tj of the n(n -1)/2 possible comparisons
are independent, where t = ~n=, Xp~ is the number-
correct score of the person. Algorithms to remove
dependent outcomes from the data are given in the
same paper. The relationship of Equations 2-4 to
other models for paired comparisons with ties is

examined in Eggen and van der Linden (1987).
These authors indicate that one of the well-known
models for ties in the literature, namely the one
proposed by Davidson (1970), can be considered
a simple reparameterization of the Rasch model for
paired comparisons in Equations 2-4.

The outcome fxli = Xp~~ does not contain any
information on the relative difficulties of the items.

Disregarding this outcome, which is the same as
conditioning the model in Equations 2-4 on the
event of a non-tie {Xpi =1= Xpf~, yields the Bradley-
Terry (1952) model:

Thus, for persons responding to a series of test
items, if the dependent outcomes and the ties are
removed from the data, a model extensively studied
in the literature is available to analyze the remain-
ing comparisons and estimate the item parameters.

It should be noted that the parameter Oii in this
model is a monotonic transformation of 8i8j -I and
therefore can be considered as a measure of the

difficulty of item i relative to j.
An important property of Equation 5 is that,

unlike the model in Equations 2-4, it does not

contain the person parameter OLp’ Hence, in order
to estimate the parameters Oij, Si, or 8j the responses
from any sample of examinees may be pooled. The
fact that Equation 5 can be derived from the Rasch
model was already noted in Rasch (1960). Fischer
(1974, 1981) has used this derivation to establish
several properties of the Rasch model. Choppin
(1968), in an early but not widely noted paper,
pointed out the advantage of using Equation 5 in-
stead of Equation 1 for item banking purposes (but
ignored the aforementioned problem of depen-
dency among the comparisons); the interest in the
paired-comparisons design in the present paper was
mainly motivated by this publication.

Parameter Estimation

From Equation 5 it follows that for a pair of
items, the number of outcomes {Xp¡ > Xp) for a
series of independent trials can be described as a
Bernoulli experiment with success parameter Oii,
Therefore, if nij (a, j = 1, ..., n) is the number of
non-ties and Aij the number of times ~Xp; > XpJ~ is
observed, then

Hence, for a set / of independent comparisons be-
tween the rc items, a product-binomial model with
the following likelihood function holds:

The following algorithm for solving the likeli-
hood equations from Equation 7 for (8,, ..., Sn)
has been introduced independently by Zermelo
(1929) and Ford (1957) in the paired comparisons
literature:
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Figure 1
A Paired-Comparisons Design for Item Banking

where i = 1, ... , n cyclically.
In Equation 8 the superscript k indicates the it-

eration step and, as before, aij is a realization of

A~ and nij = aij + aji. The data needed to solve the
likelihood equations are given schematically in Fig-
ure 1.

Existence and Uniqueness of Estimates

Zermelo (1929) and Ford (1957) gave a neces-
sary and sufficient condition for the existence and

uniqueness of a solution to the likelihood equations
defined by Equation 7. The condition reads: In
every possible partition of the set of items into two
non-empty subsets, for some item i in the first set
and some item j in the second one, the outcome
fX,i > Xjl has occurred for at least one value of p.
The theorem has an instructive interpretation in

graph theory: If the items are mapped one-to-one
on the n points of a directed graph with an arrow
from i to j if and only if fxpi > Xp~~ has occurred
at least once, the condition amounts to the require-
ment that the resulting graph be strongly con-

nected. The same condition has been established

by Fischer (1981) for conditional maximum like-
lihood estimation of the item parameters directly
from Equation 1. The condition is very mild and
is commonly met by datasets occurring in practice.
A practical consequence of the Zermelo-Ford

condition is that it is not necessary for the design
matrix in Figure 1 to be balanced (i.e., nij = n for
every i, j). Therefore, the reformulation of the Rasch
model given above deals with incomplete data in
the original person x item matrix in an elegant
fashion. When analyzing the data at the level of
pairs of items, incomplete data simply return as
unequal numbers of comparisons per pair, and
maximum likelihood estimation is still possible as
long as the Zermelo-Ford condition is met. Ex-

periments with an unequal number of repetitions
have a tradition in the paired-comparisons literature
dating back to Dijkstra (1960).

An Empirical Bayesian Approach

As noted earlier, calibration designs are typified
by structural incompleteness and the possibility of
sequential optimization. The analysis above shows
that the paired-comparisons design in Figure 1 has
the simple provision of unequal numbers of repe-
titions nij to deal with structurally incomplete data.
Since the model in Equation 5 no longer contains
the ability parameter a~, data from different ex-
aminees may be pooled together. As a conse-

quence, data from any examinee, even when re-

sponding to only two items from the bank, can be
stored in the format of Figure 1 and used in the
estimation of the item parameters. The fact that
this permits an efficient use of response data in
item banking was already noted in Choppin (1968).
From the point of view of data storage, Figure 1

also shows an efficient format. For n items, irre-

spective of the number of examinees, only an n x n
matrix, containing the counts of the numbers of
times items i and j were compared and i turned out
to be easier, must be stored. Item calibration data
are often collected in a sequential fashion. A paired-
comparisons design would be fully appropriate for
item banking purposes if sequential optimization
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of the calibration procedure were possible. The
following presents such a procedure based on an
empirical Bayesian approach to the paired-com-
parisons model in Equation 5.
As Aij is binomially distributed with

aij - O/Oi + 0)-1 i (9)
as success parameter, the natural choice of a prior
distribution for this parameter in the Bayesian
framework is the beta distribution. A variable 0
has a beta distribution if its density is given by

where C(a,b) = pizza + b)[f(A)f(B)] -’ is a constant
depending on the well-known gamma functions.
Some properties of a beta-distributed variable use-
ful in this context are

(Novick & Jackson, 1974, chap. 5). In general,
the choice of the beta distribution as a prior for the
binomial model is motivated by the following two
properties:
1. The beta distribution is very fiexible. Depend-

ing on the values for the parameters a and b,
it can take many shapes in the interval [0,1 ) .
Nevertheless, its density function contains only
two parameters.

2. The beta distribution is the natural conjugate
of the binomial model. This means that the

family of beta distributions is closed under the
application of ~ayes’ theorem and that the pos-
terior distribution will always be beta again.
In other words, the transition from a prior to
a posterior distribution takes place only at the
parametric level; if 0 has B(a,b) as a prior and
the data consist of n observations containing
k successes, then 0 has B(a + k, b + n - k) as
a posterior. The fact that the parameters a and
b in the prior have the same effect on the
posterior as the statistics k and n, respectively,
gives the information in the prior an instructive
interpretation: It is equal to the information
about 0 in a hypothetical series of n Bernoulli

experiments with k successes.
In an empirical Bayesian approach (Robbins,

1956, 1964), the Bayesian model is applied se-
quentially and the prior distribution for the model
parameter(s) at step k + 1 is based on the obser-
vations at steps 1, ... , k. The process is repeated
until the posterior distribution meets some stopping
rule (e.g., allows making a decision with a certain
expected risk). In the following section an empir-
ical Bayesian procedure optimizing the calibration
of an item bank is given. For a previously deter-
mined level of uncertainty about the item param-
eters, the procedure automatically minimizes the
number of item administrations. The procedure op-
erates at the level of pairs of items. Roughly, it
starts with a first prior for all success parameters
aij and computes the posterior each time a paired
comparison is made. The posterior is used as the
prior for the next observation. At each step the pair
of items with the largest uncertainty about 0;j is

selected for administration. The process is repeated
until for all pairs the posterior uncertainty is below
the maximum specified in a stopping rule.

&reg;ptl ~1 Calibration Procedure

As in the preceding sections, it is assumed that

the Rasch model in Equation 1 holds for i = 1, ... ,

n, so that for every pair of items i < j = 1, ... , n,

the comparisons not resulting in a tie can be con-
ceived of as the outcome of a Bernoulli experiment
with probability of success Oj = 8j(8i + 8) - 1. For
every au (i < j = 1, ... , ~a), as a prior the beta
distribution in Equation 10 with parameters aii and
bii is assumed. The variance

in the distribution of 6~ in Equation 13 is adopted
as a measure for the uncertainty about the value of
the parameter for the relative item difficulty Oii.
Now, administering the pair (i , j ) once at step k,
the prior B(a¡j,b¡) for 0;,,~ will be replaced by one
of the following posteriors:
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Thus the outcome of a comparison between i and
j is equivalent to the observation of which param-
eter of the prior distribution must be updated by a
value of 1. The posterior uncertainty about Oij
(Equation 14) is obtained by the same simple up-
date of the parameters in Equations 15-17.
An optimal calibration procedure based on an

empirical Bayesian approach is as follows:
1. Specify a first prior for the relative item dif-

ficulties Oij (i < j = 1, ... , rc) in the bank, that
is, select starting values for the parameters c~t,
and b,~.

2. Administer the pair of items with maximum
variance (Equation 13):
max aijb;/a¡j+bij+ l)-1(aij+b¡)-2 . (18)
(ili)

If this pair is not unique, select one of the pairs
satisfying Expression 18 at random.

3. Update the prior distribution of aij according
to Equations 15-17.

4. Repeat steps 2 and 3 until the maximum var-
iance in Expression 18 is below a prespecified
level.

This procedure can easily be implemented on a
computer. Only a few lines of computer program-
ming are needed and the data to be stored have
already been displayed in the matrix in Figure 1.

The parameters of the beta distribution are sim-

ply aij, the number of times i turns out to be easier
than j, and bij = a~,j - cai~, the remaining number of
times i and j are compared in this matrix. The

choice of the first priors for the model amounts to
an initialization of the entries in the matrix, and
the priors are simply updated by augmenting the
entry cal; by I if i was easier than j, augmenting bij
by 1 if i was more difficult than j, and augmenting
neither if a tie occurred. The variance used in

Expression 18 can be computed directly from these
entries. The determination of which pair of items
must be administered at each step can be simplified
by storing the data in an array ordered by the size
of the variances, such that at each step the next

pair to be administered is (a random selection of
one of) the final element(s) in the array. The com-

putations are not intricate because no maximum
likelihood estimation of the individual item param-
eters Bi is needed in each step.

The actual estimation of the item parameters is

separated from the procedure optimizing its sam-
pling design, the latter being based on the uncer-
tainty about the relative item difficulties rather than
their absolute values. However, at the same time
the data needed for conditional maximum likeli-

hood estimation are kept in an appropriate format,
and each time actual estimates of the item param-
eters are needed the application of the Zermelo-
Ford algorithm in Equation 8 to the data matrix in
Figure 1 is straightforward.
As already mentioned, a natural environment to

apply the above procedure at the level of pairs of
items is item banking in CAI. If an item bank in
such systems has to be calibrated, the sampling of
item responses can be adapted sequentially to the
posterior uncertainties about the item parameters.
If the calibration is finished, the direction of ad-

aptation can be reversed to tailor the selection of
items to the individual students’ abilities.

Preposterior Analysis

A usual principle in sequential Bayesian deci-
sion-making is preposterior analysis. For the pres-
ent problem, preposterior analysis would mean that
the selection of the pair of items at each step k is
based not on the prior variances of 8;j (i < j = 1,
... , ~) , but on the expected reductions of the var-
iances due to the outcome of the next comparison
between the items. A likely criterion would be to
choose the pair of items for which this reduction
is maximal: 

’

It is easily shown that this expected reduction is
always positive, which is in agreement with the
present authors’ intuition that additional observa-
tions should reduce the uncertainty about parameter
values. Although preposterior analysis is in the

Bayesian tradition, it offers no advantage over
Expression 18 in this case, because in the beta-
binomial model equal prior variances imply equal
expected reductions in variance.

Suppose the prior variances of 0;j, and ei2Î2 are
equal:
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This holds only if

Thus, Equation 20 implies Equations 24-25 or 26-
27. Therefore, because

~(~~b) _ ~(b~a) , (28)

Equation 20 also implies equal reductions of the
variances in Equation 19.

Because preposterior analysis in the present case
does not introduce a more effective sampling of
the item responses and Equation 19 is computa-
tionally more involved than Expression 18, the lat-
ter is the favored criterion.

Generalization to Tests and Groups
of Any Size

Thus far, at each step in the optimization pro-
cedure, only responses of a single examinee to a
pair of items have been considered. Generalizations
to tests and groups of examinees of any size are,
however, straightforward.

The generalization for a single examinee to a test
of any length is as follows: (1) Select a pair of
items, say io jo, according to the above procedure;
(2) suppress io and jo in the array with prior vari-
ances and select the next pair; and (3) continue
until enough items have been selected to fill the

test.

A new aspect in this generalization is the inde-
pendence of the outcomes of the comparisons nec-
essary for using the likelihood equations from
Equation 7. In principle, two strategies are avail-
able to satisfy the condition of independence. The
first is to partition the test into pairs before the
administration and to consider only the outcomes
of the comparisons within these pairs. In this way
independence is obtained by design. The other
strategy is to use the fact that the number of in-

dependent non-ties for a single examinee and a test
of n items is equal to min{~,M&horbar;~}, and to select
this number at random from all non-ties after the

administration of the test under the restriction that
for each examinee an item figures only once in a
pair. This strategy has been followed in van der
Linden and Eggen (1986) and is recommended be-
cause it guarantees the maximum amount of data
from the test.

The generalization to a test of any length for a
group of examinees of any size poses no further

problems. The same test is administered to all ex-
aminees ; the data matrix is filled less efficiently
than when the test for each examinee is selected
in turn while taking the responses of the previous
examinees into account, but this is the tradeoff for

leaving the domain of sequential optimization.

Specifying the First Priors

Four different ways of specifying the ~a(n - 1)/2
first priors in the procedure are possible. The first
two are empirical methods; the other two are sub-
jective. Not all of these methods are feasible with
larger item banks, however.

Empirical Information
From Other Experiments

If the items were administered earlier in an ex-

periment, the data from this experiment can be
edited into the format of the matrix with paired
comparisons in Figure 1; the entries of this matrix
are the first values of the parameters of the priors
in the procedure. Again in this approach, in order
to guarantee independent data either the pairs must
be chosen before inspecting the data or nnn~t,n - tj
comparisons must be sampled at random.
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It should be noted that this method can be used
even if not all of the items have been previously
administered. In that case, the priors for the other
items must be specified using one of the methods
below. Again, this is an example of the efficient
pooling of data from different sources possible be-
cause the model in Equation 5 is free from the

person parameters otp.

Empirical Information
From the Experiment Itself

An obvious variant of the above method is to

begin the calibration experiment without any prior
and collect some data to fill the matrix in Figure
1 with starting values. For instance, before starting
the empirical Bayesian procedure all item pairs could
be selected a few times in a random order to obtain

empirical values for the parameters aii (i < j = 1,
..., n). This approach might appeal to researchers
who do not favor the use of subjective priors.

Nnnl~af&reg;r atgve Priors

The beta distribution with parameter values

a = b =1 is the uniform distribution on the interval

[~,1 ) . The attractive aspect of the choice of this
distribution as the first prior for all item pairs is
the fact that it does not favor any of the items; each
item achieves one &dquo;success&dquo; and one &dquo;failure&dquo; 9

against every other item. Moreover, because the
number of hypothetical comparisons (aa = 2) is small
compared to the amount of data usually collected
in an item calibration study, the effect of the sub-
jectivity of this choice on the eventual estimates
can be neglected. A final advantage of this method
is that from the outset, the data matrix meets the

Zermelo-Ford condition for the existence and

uniqueness of maximum likelihood estimates; an
adjacency matrix with positive (integer) values for
its elements is strongly connected (Harary, Nor-
man, & Cartwright, 1965, theorem 5.14). As the
property of connectedness is maintained when data
are added to the matrix, unique maximum likeli-
hood estimates always exist with uniform priors.

Subjective Priors

The final possibility is to have human judges
specify subjective priors. An obvious procedure is
to use a thought experiment based on the interpre-
tation of the parameters aij in the beta distribution
as the number of successes of item i against item
j in a hypothetical series of nip Bernoulli trials. In
the two steps of this experiment, the judge must
first estimate the percentage of times i will be easier

than j, aijnij - x 100%, and then must indicate the
number of empirical trials, n;j, to which his/her

certainty is equivalent. The subjective estimates
could be smoothed by calculating the maximum
likelihood estimates of 6i (i = 1, ... , n) using the
Zermelo-Ford algorithm and replacing the original
subjective values for aij (i < j = 1, ... , n) by their
estimated expected values under the model. If de-
sired, the residuals could be used to check the judges
for inconsistencies in their judgments, as is usual
in paired-comparison experiments.
A problem with this method of subjective priors

is that it cannot be used for larger numbers of items,
because the number of comparisons would soon
grow forbiddingly large. However, the method can
be used in combination with one of the above meth-

ods, for example, to fill the holes in the data matrix
left after data from previous experiments were used
to get empirical values for the other elements.

Discussion

In the procedure of optimal item bank calibration
presented in this paper, the calculations necessary
to decide which items to administer next were sep-
arated from the actual maximum likelihood esti-

mation of the item parameters. Hence, a procedure
demanding only a few simple calculations was pos-
sible. Nevertheless, the data are stored in a format
for which an efficient algorithm for conditional
maximum likelihood estimation is available. An

advantage of this procedure for conditional maxi-
mum likelihood estimation from paired compari-
sons data is that, as opposed to regular conditional
maximum likelihood estimation, there are no nu-
merical problems due to the presence of elementary

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



353

symmetric functions (Gustafsson, 1980). There-
fore, the procedure does not have the usual limi-
tation (to 50 or 60 items) of the standard computer
programs for the Rasch model, and outperforms
these considerably in required computing time (Eg-
gen & van der Linden, 1987; van der Linden &

Eggen, 1986).
A model for paired comparisons between test

items without any person parameter, such as the
one in Equation 5, is only possible for item re-
sponse models with a sufficient statistic for the

person parameter. Among the logistic models with
unknown item parameters, this is a unique property
of the Rasch model. Nevertheless, it is debatable
whether the same sequential optimization proce-
dure is possible where, for example, a discrimi-
nating power parameter is a feature of the model.
For instance, an apparent solution could make use
of double data storage-in the paired comparisons
format to decide which items to administer next
and in the usual (incomplete) persons x items for-
mat for item parameter estimation. However, even
if maximization of the information about the dif-

ficulty parameter were possible along these lines,
it is still unknown whether this would imply si-
multaneous maximization of the information about
the discrimination parameter. The point is that with
more than one item parameter in the model, the
optimization problem becomes an example of de-
cision-making with multiple objectives. A possible
solution to the problem of having more than one
item parameter, each imposing a different require-
ment on the sampling design, adopted in van der
Linden (1986) is to introduce a maximin criterion
in the optimization procedure. Then it is possible
to calculate an optimal sampling design for simul-
taneous administration of the test items to the ex-

aminees. The possibility of sequential procedures
along these lines has yet to be investigated.
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