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Abstract—Given a large overcomplete dictionary of basis vec-
tors, the goal is to simultaneously represent 1 signal vectors
using coefficient expansions marked by a common sparsity pro-
file. This generalizes the standard sparse representation problem
to the case where multiple responses exist that were putatively gen-
erated by the same small subset of features. Ideally, the associated
sparse generating weights should be recovered, which can have
physical significance in many applications (e.g., source localiza-
tion). The generic solution to this problem is intractable and, there-
fore, approximate procedures are sought. Based on the concept of
automatic relevance determination, this paper uses an empirical
Bayesian prior to estimate a convenient posterior distribution over
candidate basis vectors. This particular approximation enforces
a common sparsity profile and consistently places its prominent
posterior mass on the appropriate region of weight-space neces-
sary for simultaneous sparse recovery. The resultant algorithm is
then compared with multiple response extensions of matching pur-
suit, basis pursuit, FOCUSS, and Jeffreys prior-based Bayesian
methods, finding that it often outperforms the others. Additional
motivation for this particular choice of cost function is also pro-
vided, including the analysis of global and local minima and a vari-
ational derivation that highlights the similarities and differences
between the proposed algorithm and previous approaches.

Index Terms—Automatic relevance determination, empirical
Bayes, multiple response models, simultaneous sparse approxima-
tion, sparse Bayesian learning, variable selection.

I. INTRODUCTION

SUPPOSE we are presented with some target signal and a
feature set that are linked by a generative model of the form

(1)

where is the vector of responses or targets,
is a dictionary of features (also referred to as basis vectors)
that have been observed or determined by experimental design,

is a vector of unknown weights, and is noise.1 Moreover,
assume we have some prior belief that has been generated
by a sparse coefficient expansion, i.e., most of the elements in
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1While here we assume all quantities to be real, we will later consider the
complex domain as well.

are equal to zero. The goal is to estimate given and .
Of particular interest is the case where the number of candidate
basis vectors significantly exceeds the signal dimension .
While this scenario is extremely relevant in numerous situations,
the added redundancy significantly compounds the problem of
recovering the sparse, generating weights.

Now suppose that multiple response vectors (e.g., )
have been collected from different locations or under dif-
ferent conditions (e.g., spatial, temporal, etc.) characterized by
different underlying parameter vectors , but with
an equivalent design matrix . Assume also that while the
weight amplitudes may be changing, the indexes of the nonzero
weights, or the sparsity profile, does not. In other words, we are
assuming that a common subset of basis vectors are relevant
in generating each response. Such a situation arises in many
diverse application domains such as neuroelectromagnetic
imaging [18], [24], [36]–[38], communications [7], [14], signal
processing [25], [46], and source localization [31]. Other
examples that directly comply with this formulation include
compressed sensing [13], [52] and landmark point selection for
sparse manifold learning [45]. In all of these applications, it
would be valuable to have a principled approach for merging
the information contained in each response so that we may
uncover the underlying sparsity profile. This, in turn, provides
a useful mechanism for solving what is otherwise an ill-posed
inverse problem.

Given models structurally equivalent to (1), the multiple
response model with which we are concerned becomes

(2)

where , and . Note that,
to facilitate later analysis, we adopt the notation that repre-
sents the th column of while represents the th row of .
Likewise, refers the th element in the th column of . In
the statistics literature, (2) represents a multiple response model
[26] or multiple output model [23]. In accordance with our prior
belief that a basis vector (and its corresponding weight) that is
utilized in creating one response will likely be used by another,
we assume that the weight matrix has a minimal number
of nonzero rows. The inference goal then becomes the simul-
taneous approximation of each weight vector under the as-
sumption of a common sparsity profile.

A. Problem Statement

To simplify matters, it is useful to introduce the notation

(3)
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where denotes the indicator function and is an arbitrary
vector norm. is a row-diversity measure since it counts the
number of rows in that are not equal to zero. This is in con-
trast to row sparsity, which measures the number of rows that
contain all elements strictly equal to zero. Also, for the column
vector , it is immediately apparent that , and
so is a natural extension of the quasi-norm to matrices.
The nonzero rows of any weight matrix are referred to as active
sources.

With regard to the dictionary , we define the spark as the
smallest number of linearly dependent columns [11]. By defi-
nition then, . As a special case, the
condition is equivalent to the unique rep-
resentation property from [19], which states that every subset
of columns is linearly independent. Finally, we say that is
overcomplete if and .

Turning to the simultaneous sparse recovery problem, we
begin with the most straightforward case where . If is
overcomplete, then we are presented with an ill-posed inverse
problem unless further assumptions are made. For example,
by extending [7, Lemma 1], if a matrix of generating weights

satisfies

(4)

then no other solution can exist such that and
. Furthermore, if we assume suitable random-

ness on the nonzero entries of , then this result also holds
under the alternative inequality

(5)

which follows from [54, Lemma 2]. Given that one or both of
these conditions hold, then recovering is tantamount to
solving

(6)

In general, this problem is NP-hard so approximate procedures
are in order. In Section V-A, we will examine the solution of
(6) in further detail. The single response reduction
of (6) has been studied exhaustively [11], [16], [20], [49]. For
the remainder of this paper, whenever , we will assume
that satisfies (4) or (5), and so and can be used
interchangeably.

When , things are decidedly more nebulous. Because
noise is present, we typically do not expect to represent ex-
actly, suggesting the relaxed optimization problem

(7)

where is a tradeoff parameter balancing estimation quality with
row sparsity denotes the Frobenius norm. An essential fea-
ture of using as the regularization term is that whenever a
single element in a given row of is nonzero, there is no fur-
ther penalty in making other elements in the same row nonzero,
promoting a common sparsity profile as desired. Unfortunately,

solving (7) is also NP-hard, nor is it clear how to select . Fur-
thermore, there is no guarantee that the global solution, even if
available for the optimal value of , is necessarily the best esti-
mator of , or, perhaps more importantly, is the most likely to
at least have a matching sparsity profile. This latter condition is
often crucial, since it dictates which columns of are relevant,
a notion that can often have physical significance.2

From a conceptual standpoint, (7) can be recast in Bayesian
terms by applying a transformation. This leads to a
Gaussian likelihood function with -dependent vari-
ance and a prior distribution given by . In
weight space, this improper prior maintains a sharp peak wher-
ever a row norm equals zero and heavy (in fact uniform) “tails”
everywhere else. The optimization problem from (7) can equiv-
alently be written as

(8)

Therefore, (7) can be viewed as a challenging MAP estimation
task, with a posterior characterized by numerous locally optimal
solutions.

B. Summary

In Section II, we discuss current methods for solving the si-
multaneous sparse approximation problem, all of which can be
understood, either implicity or explicitly, as MAP-estimation
procedures using a prior that encourages row sparsity. These
methods are distinguished by the selection of the sparsity-in-
ducing prior and the optimization strategy used to search for the
posterior mode. The difficulty with these procedures is two-fold:
either the prior is not sufficiently sparsity-inducing (supergaus-
sian) and the MAP estimates sometimes fail to be sparse enough,
or we must deal with a combinatorial number of suboptimal
local solutions.

In this paper, we will also explore a Bayesian model based
on a prior that ultimately encourages sparsity. However, rather
than embarking on a problematic mode-finding expedition, we
instead enlist an empirical Bayesian strategy that draws on the
concept of automatic relevance determination (ARD) [30], [34].
Starting in Section III, we posit a prior distribution modulated
by a vector of hyperparameters controlling the prior variance of
each row of , the values of which are learned from the data
using an evidence maximization procedure [29]. This particular
approximation enforces a common sparsity profile and consis-
tently places its prominent posterior mass on the appropriate re-
gion of -space necessary for sparse recovery. The resultant
algorithm is called M-SBL because it can be posed as a multiple
response extension of the standard sparse Bayesian learning
(SBL) paradigm [48], a more descriptive title than ARD for
our purposes. Additionally, it is easily extensible to the com-
plex domain as required in many source localization problems.

2Although not our focus, if the ultimate goal is compression of T , then the
solution of (7) may trump other concerns.
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The per-iteration complexity relative to the other algorithms is
also considered.

In Section IV, we assess M-SBL relative to other methods
using empirical tests. First, we constrain the columns of to be
uniformly distributed on the surface of an -dimensional hyper-
sphere, consistent with the analysis in [10] and the requirements
of compressed sensing applications [52]. In a variety of testing
scenarios, we show that M-SBL outperforms other methods by
a significant margin. These results also hold up when is in-
stead formed by concatenating pairs of orthobases [12]. A brief
treatment of some of these results can be found in [56].

In Section V, we examine some properties of M-SBL and
draw comparisons with the other methods. First, we discuss how
the correlation between the active sources affects the simulta-
neous sparse approximation problem. For example, we show
that if the active sources maintain zero sample correlation, then
all (suboptimal) local minima are removed and we are guaran-
teed to solve (6) using M-SBL. We later show that none of the
other algorithms satisfy this condition. In a more restricted set-
ting (assuming ), we also tackle related issues with the
inclusion of noise, demonstrating that M-SBL can be viewed
as a form of robust, sparse shrinkage operator, with no local
minima, that uses an average across responses to modulate the
shrinkage mechanism.

Next, we present an alternative derivation of M-SBL
using variational methods that elucidates its connection with
MAP-based algorithms and helps to explain its superior perfor-
mance. More importantly, this perspective quantifies the means
by which ARD methods are able to capture significant poste-
rior mass when sparse priors are involved. The methodology
is based on previous work in [53] that applies to the single
response case. Finally, Section VI contains concluding
remarks as well as a brief discussion of recent results applying
M-SBL to large-scale neuroimaging applications.

II. EXISTING MAP APPROACHES

The simultaneous sparse approximation problem has received
a lot of attention recently and several computationally feasible
methods have been presented for estimating the sparse, under-
lying weights [5], [7], [31], [40], [50], [51]. First, there are
forward sequential selection methods based on some flavor of
matching pursuit (MP) [32]. As the name implies, these ap-
proaches involve the sequential (and greedy) construction of
a small collection of dictionary columns, with each new addi-
tion being “matched” to the current residual. In this paper, we
will consider M-OMP, for Multiple response model Orthogonal
Matching Pursuit, a multiple response variant of MP that can be
viewed as finding a local minimum to (7), [7]. A similar algo-
rithm is analyzed in [51].

An alternative strategy is to replace the troublesome diversity
measure with a penalty (or prior) that, while still encour-
aging row sparsity, is somehow more computationally conve-
nient. The first algorithm in this category is a natural extension
of basis pursuit [6] or the LASSO [23]. Essentially, we construct
a convex relaxation of (7) and attempt to solve

(9)

This convex cost function can be globally minimized using a
variety of standard optimization packages. In keeping with a
Bayesian perspective, (9) is equivalent to MAP estimation using
a Laplacian prior on the norm of each row (after applying
a transformation as before). We will refer to proce-
dures that solve (9) as M-BP, consistent with previous notation.
The properties of the M-BP cost function and algorithms for its
minimization have been explored in [7] and [31]. Other variants
involve replacing the row-wise norm with the norm [50]
and the norm [5]. However, when the norm is used across
rows, the problem decouples and we are left with single re-
sponse problems. As such, this method is inconsistent with our
goal of simultaneously using all responses to encourage row
sparsity.

Second, we consider what may be termed the M-Jeffreys al-
gorithm, where the -norm-based penalty from above is substi-
tuted with a regularization term based on the negative logarithm
of a Jeffreys prior on the row norms.3 The optimization problem
then becomes

(10)

The M-Jeffreys cost function suffers from numerous local
minima, but when given a sufficiently good initialization, can
potentially find solutions that are closer to than .
From an implementational standpoint, M-Jeffreys can be solved
using natural, multiple response extensions of the algorithms
derived in [15], [19].

Third, we weigh in the M-FOCUSS algorithm derived in [7],
[40] based on the generalized FOCUSS algorithm of [41]. This
approach employs an -norm-like diversity measure [9], where

is a user-defined parameter, to discourage models
with many nonzero rows. In the context of MAP estimation, this
method can be derived using a generalized Gaussian prior on
the row norms, analogous to the Laplacian and Jeffreys priors
assumed above. The M-FOCUSS update rule is guaranteed to
converge monotonically to a local minimum of

(11)

If , the M-FOCUSS cost function approaches (7). While
this may appear promising, the resultant update rule in this sit-
uation ensures (for any finite ) that the algorithm converges
(almost surely) to a locally minimizing solution such that

and , regardless of . The set of ini-
tial conditions whereby we will actually converge to has
measure zero. When , M-FOCUSS reduces to an interior
point method of implementing M-BP. The M-FOCUSS frame-
work also includes M-Jeffreys as a special case as shown in the
Appendix. In practice, it is sometimes possible to jointly se-
lect values of and such that the algorithm outperforms both

3The Jeffreys prior is an improper prior of the form p(x) = 1=x [3].
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M-BP and M-Jeffreys. In general though, with M-BP, M-Jef-
freys, and M-FOCUSS, must be tuned with regard to a par-
ticular application. Also, in the limit as becomes small, we
can view each multiple response algorithm as minimizing the
respective diversity measure subject to the constraint .
This is in direct analogy to (6).

III. EMPIRICAL BAYESIAN ALGORITHM

All of the methods discussed in the previous section for
estimating involve searching some implicit posterior
distribution for the mode by solving

, where is a fixed, algo-
rithm-dependent prior. At least two significant problems arise
with such an endeavor. First, if only a moderately sparse
prior such as the Laplacian is chosen for the row norms (as
with M-BP), a unimodal posterior results and mode finding
is greatly simplified; however, the resultant posterior mode
may not be sufficiently sparse, and, therefore, may be
unrepresentative of . In contrast, if a highly sparse prior is
chosen, e.g., the Jeffreys prior or a generalized Gaussian with

, we experience a combinatorial increase in local optima.
While one or more of these optima may be sufficiently sparse
and representative of , finding it can be very difficult if
not impossible.

So, mode finding can be a problematic exercise when sparse
priors are involved. In this section, a different route to solving
the simultaneous sparse approximation problem is developed
using the concept of ARD, originally proposed in the neural net-
work literature as a quantitative means of weighing the relative
importance of network inputs, many of which may be irrele-
vant [30], [34]. These ideas have also been applied to Bayesian
kernel machines [48]. A key ingredient of this formulation is
the incorporation of an empirical prior, by which we mean a
flexible prior distribution dependent on a set of unknown hyper-
parameters that must be estimated from the data.

To begin, we postulate to be Gaussian with noise
variance that is assumed to be known (the case where is
not known is discussed briefly in Section III-C). Thus, for each

pair, we have

(12)

which is consistent with the likelihood model implied by (7) and
previous Bayesian methods. Next, application of ARD involves
assigning to the th row of an -dimensional Gaussian prior

(13)

where is an unknown variance parameter. By combining each
of these row priors, we arrive at a full weight prior

(14)

whose form is modulated by the hyperparameter vector
. Combining likelihood and prior, the pos-

terior density of the th column of then becomes

(15)

with mean and covariance given by

(16)

where and .
Since it is typically desirable to have a point estimate for

, we may enlist , the posterior mean, for this purpose.
Row sparsity is naturally achieved whenever a is equal to
zero. This forces the posterior to satisfy

, ensuring that the posterior mean of the th row, ,
will be zero as desired. Thus, estimating the sparsity profile of
some is conveniently shifted to estimating a hyperparam-
eter vector with the correct number and location of nonzero el-
ements. The latter can be effectively accomplished through an
iterative process discussed next. Later, Sections IV and V pro-
vide empirical and analytical support for this claim.

A. Hyperparameter Estimation: The M-SBL Algorithm

Each unique value for the hyperparameter vector corre-
sponds to a different hypothesis for the prior distribution un-
derlying the generation of the data . As such, determining an
appropriate is tantamount to a form of model selection. In this
context, the empirical Bayesian strategy for performing this task
is to treat the unknown weights as nuisance parameters and
integrate them out [29]. The marginal likelihood that results is
then maximized with respect to , leading to the ARD-based
cost function

(17)

where a transformation has been added for sim-
plicity.

The use of marginalization for hyperparameter optimization
in this fashion has been proposed in a variety of contexts. In the
classical statistics literature, it has been motivated as a way of
compensating for the loss of degrees of freedom associated with
estimating covariance components along with unknown weights
analogous to [21], [22]. Bayesian practitioners have also pro-
posed this idea as a natural means of incorporating the principle
of Occam’s razor into model selection, often using the descrip-
tion evidence maximization or type-II maximum likelihood to
describe the optimization process [3], [29], [34].

There are (at least) two ways to minimize with respect to
. First, treating the unknown weights as hidden data, we can

minimize this expression over using a simple EM algorithm as
proposed in [8], [22] for covariance estimation. For the E-step,
this requires computation of the posterior moments using (16),
while the M-step is expressed via the update rule

(18)

While benefitting from the general convergence properties of
the EM algorithm, we have observed this update rule to be very
slow on large practical applications.



3708 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 7, JULY 2007

Second, at the expense of proven convergence, we may in-
stead optimize (17) by taking the derivative with respect to ,
equating to zero, and forming a fixed-point equation that typi-
cally leads to faster convergence [29], [48]. Effectively, this in-
volves replacing the M-step from above with

(19)

We have found this alternative update rule to be extremely useful
in large-scale, highly overcomplete problems, although the re-
sults upon convergence are sometimes inferior to those obtained
using the slower update (18). In the context of kernel regression
using a complete dictionary (meaning ) and , use
of (19), along with a modified form of (16),4 has been empir-
ically shown to drive many hyperparameters to zero, allowing
the associated weights to be pruned. As such, this process has
been referred to as sparse Bayesian learning (SBL) [48]. Sim-
ilar update rules have also been effectively applied to an energy
prediction competition under the guise of ARD [30]. For appli-
cation to the simultaneous sparse approximation problem, we
choose the label M-SBL (which stresses sparsity) to refer to the
process of estimating , using either the EM or fixed-point up-
date rules, as well as the subsequent computation and use of the
resulting posterior.

Finally, in the event that we would like to find exact (noise-
free) sparse representations, the M-SBL iterations can be easily
adapted to handle the limit as using the modified
moments

(20)

where denotes the Moore–Penrose pseudo-inverse. This is
particularly useful if we wish to solve (6).

B. Algorithm Summary

Given observation data and a dictionary , the M-SBL pro-
cedure can be summarized by the following collection of steps.

1) Initialize , e.g., or, perhaps, a non-negative
random initialization.

2) Compute the posterior moments and using (16), or
in the noiseless case, using (20).

3) Update using the EM rule (18) or the faster fixed-point
rule (19).

4) Iterate Steps 2) and 3) until convergence to a fixed point
.

5) Assuming a point estimate is desired for the unknown
weights , choose , where

.
6) Given that is sparse, the resultant estimator will

necessarily be row sparse.
In practice, some arbitrarily small threshold can be set such
that, when any hyperparameter becomes sufficiently small
(e.g., ), it is pruned from the model (along with the
corresponding dictionary column and row of ).

4This requires application of the matrix inversion lemma to � .

C. Noise Variance Estimation

If we already have access to some reliable estimate for ,
then it can naturally be incorporated into the update rules above.
When no such luxury exists, it would be desirable to have some
alternative at our disposal. One possibility is to explicitly incor-
porate estimation into the M-SBL framework as originally
discussed in [29], [48]. This involves replacing the M-step with
a joint maximization over and . Because of decoupling, the

update remains unchanged, while we must include (e.g., for
the fast M-SBL version) the update

(21)

A word of caution is in order with respect to estimation that
has not been addressed in the original SBL literature (this caveat
applies equally to the single response case). For suitably struc-
tured dictionaries and estimates obtained via this
procedure can be extremely inaccurate. In effect, there is an
identifiability issue when any subset of dictionary columns is
sufficiently spread out such that can be minimized with

. For example, if we choose the dictionary ,
then as well as the hyperparameters associated with the
identity matrix columns of are not identifiable in the strict
statistical sense. This occurs because a nonzero and the ap-
propriate nonzero hyperparameters make an identical con-
tribution to the covariance . In general, the signal dictionary
will not contain ; however, the underlying problem of basis
vectors masquerading as noise can lead to seriously biased esti-
mates of . As such, we generally recommend the more modest
strategy of simply experimenting with different values or using
some other heuristic designed with a given application in mind.

D. Extension to the Complex Case

The use of complex-valued dictionaries, responses, and
weights expands the relevance of the multiple response frame-
work to many useful signal processing disciplines. Fortunately,
this extension turns out to be very natural and straightforward.
We start by replacing the likelihood model for each with a
multivariate complex Gaussian distribution [28]

(22)

where all quantities except are now complex and now
implies , with denoting the Hermitian transpose. The
row priors need not change at all except for the asso-
ciated norm. The derivation proceeds as before, leading to iden-
tical update rules with the exception of changing to .

The resultant algorithm turns out to be quite useful in finding
sparse representations of complex-valued signals, such as those
that arise in the context of direction-of-arrival (DOA) estima-
tion. Here, we are given an array of omnidirectional sensors
and a collection of complex signal waves impinging upon
them. The goal is then to estimate the (angular) direction of the
wave sources with respect to the array. This source localization
problem is germane to many sonar and radar applications. While
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we have successfully applied complex M-SBL to DOA estima-
tion problems, space precludes a detailed account of this appli-
cation and comparative results. See [31] for a good description
of the DOA problem and its solution using a second-order cone
(SOC) implementation of M-BP. M-SBL is applied in exactly
the same fashion.

E. Complexity

With regard to computational comparisons, we assume
. Under this constraint, each M-SBL iteration is for

real or complex data. The absence of in this expression can
be obtained using the following implementation. Because the
M-SBL update rules and cost function are ultimately only de-
pendent on through the outer product , we can always re-
place with a matrix such that .
Substituting into the M-SBL update rules, while avoiding the
computation of off-diagonal elements of , leads to the stated
complexity result. In a similar fashion, each M-BP, M-FOCUSS,
and M-Jeffreys iteration can also be computed in .
This is significant because little price is paid for adding ad-
ditional responses and only a linear penalty is incurred when
adding basis vectors.

In contrast, the second-order cone (SOC) implementation of
M-BP [31] is per iteration. While the effective value
of can be reduced significantly (beyond what we described
above) using a variety of useful heuristic strategies, unlike
M-SBL and other approaches, it will still enter as a multiplica-
tive cubic factor. This could be prohibitively expensive if
is large, although fewer total iterations are usually possible.
Nonetheless, in neuroimaging applications, we can easily have

, and . In this situation, the
M-SBL (or M-FOCUSS, etc.) iterations are very attractive.
Of course M-OMP is decidedly less costly than all of these
methods.

IV. EMPIRICAL STUDIES

This section presents comparative Monte Carlo experiments
involving randomized dictionaries and pairs of orthobases.

A. Random Dictionaries

We would like to quantify the performance of M-SBL rel-
ative to other methods in recovering sparse sets of generating
weights, which in many applications have physical significance
(e.g., source localization). To accommodate this objective, we
performed a series of simulation trials where by design we have
access to the sparse, underlying model coefficients. For sim-
plicity, noiseless tests were performed first [i.e., solving (6)];
this facilitates direct comparisons because discrepancies in re-
sults cannot be attributed to poor selection of tradeoff param-
eters (which balance sparsity and quality of fit) in the case of
most algorithms.

Each trial consisted of the following: First, an overcomplete
dictionary is created with columns draw uniformly

from the surface of a unit hypersphere. This particular mecha-
nism for generating dictionaries is advocated in [10] as a useful
benchmark. Additionally, it is exactly what is required in com-
pressed sensing applications [52]. sparse weight vectors are

randomly generated with nonzero entries and a common spar-
sity profile. Nonzero amplitudes are drawn from a uniform dis-
tribution. Response values are then computed as .
Each algorithm is presented with and and attempts to es-
timate . For all methods, we can compare with
after each trial to see if the sparse generating weights have been
recovered.

Under the conditions set forth for the generation of and
and (5) is in force. Therefore, we can be

sure that with probability one. Additionally, we
can be certain that when an algorithm fails to find , it has
not been lured astray by an even sparser representation. Results
are shown in Fig. 1 as and are varied. To create each
data point, we ran 1000 independent trials and compared the
number of times each algorithm failed to recover . Based
on the Fig. 1, M-SBL (a) performs better for different values of

, (b) resolves a higher number of nonzero rows, and (c) is more
capable of handling added dictionary redundancy.

We also performed analogous tests with the inclusion of
noise. Specifically, uncorrelated Gaussian noise was added to
produce an SNR of 10dB. When noise is present, we do not
expect to reproduce exactly, so we now classify a trial as
successful if the largest estimated row-norms align with the
sparsity profile of . Fig. 1(d) displays sparse recovery
results as the tradeoff parameter for each algorithm is varied.
The performance gap between M-SBL and the others is reduced
when noise is included. This is because now the issue is not so
much local minima avoidance, etc., since is relatively low
relative to and , but rather proximity to the fundamental
limits of how many nonzero rows can reliably be detected in
the presence of noise.5 For example, even an exhaustive search
for the optimal solution to (7) over all would likely exhibit
similar performance to M-SBL in this situation.

In fact, for sufficiently small values of and , we can test
this hypothesis directly. Using , and , we
reproduced Fig. 1(d) with the inclusion of the the global solu-
tion to (7) for different values of . The exhaustive search failed
to locate the correct sparsity profile with an empirical proba-
bility similar to M-SBL (about 0.10 using ), underscoring
the overall difficulty of finding sparse generating weights in
noisy environments.6 Moreover, it demonstrates that, unlike in
the noise-free case, the NP-hard optimization problem of (7) is
not necessarily guaranteed to be the most desirable solution even
if computational resources are abundant.

B. Pairs of Orthobases

Even if M-SBL seems to perform best on “most” dictionaries
relative to a uniform measure, it is well known that many
signal processing applications are based on sets of highly

5Most of the theoretical study of approximate sparse representations in noise
has focused on when a simpler method, e.g., BP- or OMP-based, is guaranteed
to provide a good solution to (7), or at least exhibit a similar sparsity profile.
Currently, we know of no work that examines rigorous conditions whereby the
minimum of (7) or any of the other proposed cost functions is guaranteed to
match the sparsity profile ofW . When there is no noise, this distinction ef-
fectively disappears.

6With no noise andD increased to 7, exhaustive subset selection yields zero
error (with any � � 1) as expected while M-SBL fails with probability 0.24.
So, a high noise level is a significant performance equalizer.
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Fig. 1. Results comparing the empirical probability (over 1000 trials) that each algorithm fails to find the sparse generating weights under various testing con-
ditions. Plots (a)–(c) display results as L;D; and M are varied under noiseless conditions. Plot (d) shows results with 10-dB AGWN for different values of the
tradeoff parameter (i.e., either � or � ).

structured dictionaries that may have zero measure on the
unit hypersphere. Although it is not feasible to examine all
such scenarios, we have performed an analysis similar to the
preceding section using dictionaries formed by concatenating
two orthobases, i.e., , where and represent

orthonormal bases. Candidates for and include
Hadamard-Walsh functions, DCT bases, identity matrices, and
Karhunen-Loéve expansions among many others. The idea is
that, while a signal may not be compactly represented using a
single orthobasis as in standard Fourier analysis, it may become
feasible after we concatenate two such dictionaries. For ex-
ample, a sinusoid with a few random spikes would be amenable
to such a representation. Additionally, much attention is placed
on such dictionaries in the signal processing and information
theory communities [11], [12].

For comparison purposes, and were generated in an
identical fashion as before. was set to the identity matrix and

was selected to be either a DCT or a Hadamard basis (other
examples have been explored as well). Results are displayed
in Fig. 2, strengthening our premise that M-SBL represents a
viable alternative regardless of the dictionary type. Also, while
in this situation we cannot a priori guarantee absolutely that

, in all cases where an algorithm failed, it converged
to a solution with .

V. ANALYSIS

This section analyzes some of the properties of M-SBL and
where possible, discusses relationships with other multiple re-
sponse algorithms.

A. Multiple Responses and Maximally Sparse Representations:
Noiseless Case

Increasing the number of responses has two primary bene-
fits when using M-SBL. First, and not surprisingly, it mitigates
the effects of noise as will be discussed more in Section V-B.
However, there is also a less transparent benefit, which is equally
important and applies even in the absence of noise: Increasing

can facilitate the avoidance of suboptimal, locally minimizing
solutions, or, stated differently, increasing the number of re-
sponses increases the likelihood that M-SBL will converge to
the global minimum of . This is important because, under
very reasonable conditions, this global minimum is character-
ized by when and . This result follows
from ([55], Theorem 1), which applies to the case but
is easily generalized. So, the globally minimizing M-SBL hy-
perparameters are guaranteed to produce the maximally sparse
representation, and increasing improves the chances that these
hyperparameters are found.
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Fig. 2. Results using pairs of orthobases with L = 3 andN = 24, whileD is
varied from 10 to 20. Top: � is an identity matrix and 	 is an N -dimensional
DCT. Bottom: � is again identity and 	 is a Hadamard matrix.

Of course the merits of increasing , in the absence of noise,
are highly dependent on how the active sources (the nonzero
rows of ) are distributed. For example, suppose these sources
are perfectly correlated, meaning that can be written as the
outer-product for some vectors and . In this situation,
the problem can be reduced to an equivalent, single response
problem with , indicating that there is no benefit to
including additional responses (i.e., the local minima profile of
the cost function does not change with increasing ).

In contrast, as the (sample) correlation between active sources
is reduced, the probability that M-SBL becomes locally trapped
falls off dramatically as evidenced by empirical studies. This
begs the question, is there any situation where we are guaran-
teed to reach the global minimum, without ever getting stuck at
suboptimal solutions? This is tantamount to finding conditions
under which M-SBL will always produce the maximally sparse
solution , the solution to (6).

To address this issue, we consider the fixed points of the
M-SBL iterations using the modified moments from (20). Of
particular interest is the set of stable fixed points because they
must necessarily be local minima to the M-SBL cost function by
virtue of the convergence properties of the EM algorithm.7 We
now establish conditions whereby a unique stable fixed point
exists that is also guaranteed to solve (6).

Theorem 1: Given a dictionary and a set of responses ,
assume that . Then if the nonzero
rows of are orthogonal (no sample-wise correlation), there
exists a unique, stable fixed point . Additionally, at this stable
fixed point, we have

(23)

the maximally sparse solution. All other fixed points are
unstable.

Proof: See [57] for the proof.
Because only highly nuanced initializations will lead to an

unstable fixed point (and small perturbations lead to escape),
this result dictates conditions whereby M-SBL is guaranteed to
solve (6) and, therefore, find , assuming condition (4) or
(5) holds. Moreover, even if a non-EM-based optimization pro-
cedure is used, the M-SBL cost function itself must be unimodal
(although not necessarily convex) to satisfy Theorem 1.

Admittedly, the required conditions for Theorem 1 to apply
are highly idealized. Nonetheless, this result is interesting to
the extent that it elucidates the behavior of M-SBL and distin-
guishes its performance from the other methods. Specifically,
it encapsulates the intuitive notion that if each active source is
sufficiently diverse (or uncorrelated), then we will find . Per-
haps more importantly, no equivalent theorem exists for any of
the other multiple response methods mentioned in Section II.
Consequently, they will break down even with perfectly uncor-
related sources, a fact that we have verified experimentally using
Monte Carlo simulations analogous to those in Section IV-A.
Table I displays these results. As expected, M-SBL has zero er-
rors while the others are often subject to failure (convergence to
suboptimal yet stable fixed points).

In any event, the noiseless theoretical analysis of sparse
learning algorithms has become a very prolific field of late,
where the goal is to establish sufficient conditions whereby a
particular algorithm will always recover the maximally sparse
solution [10], [11], [16], [20], [49]. Previous results of this
sort have all benefitted from the substantial simplicity afforded
by either straightforward, greedy update rules (MP-based
methods) or a manageable, convex cost function (BP-based
methods). In contrast, the highly complex update rules and as-
sociated nonconvex cost function under consideration here are
decidedly more difficult to analyze. As such, evidence showing
that good, fully sparse solutions can be achieved using ARD
has typically relied on empirical results or heuristic arguments
[30], [34], [48]. Here, we have tried to make some progress in
this regard.

7The EM algorithm ensures monotonic convergence (or cost function de-
crease) to some fixed point. Therefore, a stable fixed point must also be a local
minimum, otherwise initializing at an appropriately perturbed solution will lead
to a different fixed point.
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TABLE I
VERIFICATION OF THEOREM 1 WITH N = 5;M = 50;D = L = 4. � IS GENERATED AS IN SECTION IV-A, WHILE W IS

GENERATED WITH ORTHOGONAL ACTIVE SOURCES. ALL ERROR RATES ARE BASED ON 1000 INDEPENDENT TRIALS

While Theorem 1 provides a limited sufficient condition for
establishing equivalence between a unique, stable fixed point
and , it is by no means necessary. For example, because the
sparse Bayesian learning framework is still quite robust in the

regime [57], we typically experience a smooth degra-
dation in performance as the inter-source correlation increases.
Likewise, when or when noise is present, M-SBL
remains highly effective as was shown in Section IV.

B. Extensions to the Noisy Case

We now briefly address the more realistic scenario where
noise is present. Because of the substantially greater difficulty
this entails, we restrict ourselves to complete or undercomplete
orthonormal dictionaries. Nonetheless, these results illuminate
more general application conditions and extend the analysis
in [47], which compares the single response LASSO algo-
rithm with traditional shrinkage methods using orthonormal
dictionaries.

Empirical and analytical results suggest that M-Jeffreys and
M-FOCUSS have more local minima than M-SBL in the noise-
less case, and it is likely that this problem persists for . As
an example, assume that and . Under these
constraints, the M-SBL problem conveniently decouples giving
us independent cost functions, one for each hyperparameter
of the form

(24)

where , i.e., is the minimum
-norm solution to . Conveniently, this function is

unimodal in . By differentiating, equating to zero, and noting
that all must be greater than zero, we find that the unique min-
imizing solution occurs at

(25)

where the operator equals if and zero otherwise.
Additionally, by computing the associated , we obtain the
representation

(26)

Interestingly, these weights represent a direct, multiple-re-
sponse extension of those obtained using the nonnegative

garrote estimator [4], [17], [47]. Consequently, in this setting,
M-SBL can be interpreted as a sort of generalized shrinkage
method, truncating rows with small norm to zero and shrinking
others by a factor that decreases as the norm grows. Also, with
the inclusion of multiple responses, the truncation operator is
much more robust to noise because the threshold is moderated
by an average across responses, i.e., . So,
for a given noise variance, there is considerably less chance that
a spurious value will exceed the threshold. While, obviously,
(26) can be computed directly without resorting to the iterative
M-SBL procedure, it is nonetheless important to note that this
is the actual solution M-SBL will always converge to since the
cost function has no (nonglobal) local minima.

Turning to the M-Jeffreys approach, we again obtain a decou-
pled cost function resulting in row-wise minimization prob-
lems of the form

(27)

For any fixed , the direction of the optimal is always
given by , effectively reducing (27) to

(28)

If , then for each row , there is a single
minimum with . In contrast, for ,
there are two minima, one at zero and the other with

. Unlike
M-SBL, this ensures that the M-Jeffreys cost function will
have local minimum, although we can
obtain a useful alternative shrinkage operator (that closely
resembles a hard threshold) with an appropriate initialization
and selection of . However, while it may be transparent how
to avoid unattractive local minima in the orthonormal case, in a
more general setting, this poses a significant problem.

M-FOCUSS is more difficult to analyze for arbitrary values
of , since we cannot provide an analytic solution for locally
minimizing values of . However, the optimal solution
does entail a threshold and asymptotic results are obtained (for
the single response case) as in [33]. Also, as

, we converge to a generalized hard-threshold operator,
which truncates small rows to zero and leaves others unchanged.
Unfortunately, however, the actual algorithm will always pro-
duce the nontruncated solution (one of the possible
local minima) because the basins of attraction of all other local
minima have zero measure in space. As is steadily in-
creased from zero to one, the number of local minima gradually
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drops from to one.8 When , we obtain an analogous
soft-threshold operator, as discussed in [47] for the single re-
sponse case. Since each row-wise cost function is convex, we
also observe no local minimum as with M-SBL.

In summary, we need not actually run the M-SBL algorithm
(or M-Jeffreys, etc.), in practice, when using an orthonormal
dictionary ; we could just compute our weights analytically
using the appropriate shrinkage mechanism. Nonetheless, it is
encouraging to see a well motivated cost function devoid of local
minima in the case of M-SBL (and M-BP). This provides fur-
ther evidence that alternatives to standard mode finding may be
a successful route to handling the simultaneous sparse approx-
imation problem. It also verifies that ARD methods will push
unnecessary coefficients to exactly zero, as opposed to merely
making them small.

C. Relating M-SBL and M-Jeffreys

Thus far, we have divided Bayesian approaches into two
seemingly very different categories: an empirical Bayesian
approach based on ARD and a class of MAP estimators in-
cluding M-BP, M-FOCUSS, and M-Jeffreys. In fact, M-SBL
is closely related to M-Jeffreys (and, therefore, M-FOCUSS
with small per the discussion in the Appendix) albeit with
several significant advantages. Both methods can be viewed as
starting with an identical likelihood and prior model, but then
deviate sharply with respect to how estimation and inference
are performed. In this section, we re-derive M-SBL using a
variational procedure that highlights the similarities and differ-
ences between the MAP-based M-Jeffreys and the ARD-based
M-SBL. The methodology draws on previous work in [53].

To begin, we assume the standard likelihood model from (12)
and hypothesize a generalized sparse prior that includes the
M-Jeffreys prior as a special case. Specifically, for the th row
of we adopt the distribution

(29)

where and are constants. Such a prior favors rows with
zero norm (and, therefore, all zero elements) owing to the sharp
peak at zero (assuming is small) and heavy tails, the trade-
marks of a sparsity-inducing prior. The row priors are then mul-
tiplied together to form the complete prior . While cer-
tainly other norms could be substituted in place of the , this
selection (as well as the inclusion of the factor ) was made to
facilitate the analysis below.

As occurs with the many of the MAP methods described
in Section II, the resulting joint density

is saddled with numerous local peaks, and,
therefore, mode finding should be avoided. However, perhaps
there is a better way to utilize a posterior distribution than
simply searching for the mode. From a modern Bayesian
perspective, it has been argued that modes are misleading in
general, and that only areas of significant posterior mass are
meaningful [29]. In the case of highly sparse priors, mode
finding is easily lead astray by spurious posterior peaks, but
many of these peaks either reflect comparatively little mass

8The actual number, for any given p, is dependent on W and �.

or very misleading mass such as the heavy peak at
that occurs with M-Jeffreys. Consequently, here we advocate
an alternative strategy that is sensitive only to regions with
posterior mass that likely reflects . The goal is to model
the problematic with an approximating distribution

that does the following:
1) captures the significant mass of the full posterior, which we

assume reflects the region where the weights reside;
2) ignores spurious local peaks as well as degenerate solu-

tions, such as , where possible;
3) maintains easily computable moments, e.g.,

can be analytically computed to obtain point estimates of
the unknown weights.

To satisfy Property 1, it is natural to select by minimizing the
sum of the misaligned mass, i.e.,

(30)

The ultimate goal here is to choose a family of distributions rich
enough to accurately model the true posterior, at least in the re-
gions of interest (Property 1), but coarse enough such that most
spurious peaks will naturally be ignored (Property 2). Further-
more, this family must facilitate both the difficult optimization
(30), as well as subsequent inference, i.e., computation of the
posterior mean (Property 3). In doing so, we hope to avoid some
of the troubles that befall the MAP-based methods.

Given a cumbersome distribution, sparse or otherwise, varia-
tional methods and convex analysis can be used to construct sets
of simplified approximating distributions with several desirable
properties [27]. In the present situation, this methodology can
be used to produce a convenient family of unimodal approxi-
mations, each member of which acts as a strict lower bound on

and provides of useful means of dealing with the
absolute value in (30). The quality of the approximation in a
given region of depends on which member of this
set is selected.

We note that variational approaches take on a variety of forms
in the context of Bayesian learning. Here, we will draw on the
well-established practice of lower bounding intractable distri-
butions using convex duality theory [27]. We do not address the
alternative variational technique of forming a factorial approx-
imation that minimizes a free-energy-based cost function [1],
[2]. While these two strategies can be related in certain settings
[35], this topic is beyond the scope of the current work.

The process begins by expressing the prior in a dual
form that hinges on a set of variational hyperparameters. By
extending convexity results from [53], we arrive at

(31)

Details are contained in [57]. When the maximization is
dropped, we obtain the rigorous lower bound

(32)
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which holds for all . By multiplying each of these lower
bounding row priors, we arrive at the full approximating prior

with attendant hyperparameters
. Armed with this expression, we are positioned to minimize

(30) using selected from the specified set of variational ap-
proximations. Since as a result of
(32), this process conveniently allows us to remove the absolute
value, leading to the simplification

(33)

where each candidate hypothesis is characterized by a dif-
ferent vector. Using (32) and (12), the constituent integral of
(33) can be analytically evaluated as before, leading to the cost
function

(34)

For arbitrary , (34) represents a multiple response exten-
sion of the generalized SBL cost function from [48] that, while
appropriate for other circumstances, does not produce strictly
sparse representations [53]. However, when , this ex-
pression reduces to ; the approximate distribution and sub-
sequent weight estimate that emerge are, therefore, equivalent
to M-SBL, only now we have the added interpretation afforded
by the variational perspective.

For example, the specific nature of the relationship between
M-SBL and M-Jeffreys can now be readily clarified. With

equals the M-Jeffreys prior up to an ex-
ponential factor of . From a practical standpoint, this extra
factor is inconsequential since it can be merged into the tradeoff
parameter after the requisite transformation has
been applied. Consequently, M-Jeffreys and M-SBL are effec-
tively based on an identical prior distribution and, therefore,
an identical posterior as well. The two are only distinguished
by the manner in which this posterior is handled. One searches
directly for the mode. The other selects the mean of a tractable
approximate distribution that has been manipulated to align
with the significant mass of the full posterior. Additionally,
while ARD methods have been touted for their sensitivity to
posterior mass, the exact relationship between this mass and
the ARD estimation process has typically not been quantified.
Here that connection is made explicit.

Empirical and theoretical results from previous sections lend
unequivocal support that the ARD route is much preferred. A
intuitive explanation is as follows: M-Jeffreys displays a com-
binatorial number of locally minimizing solutions that can sub-
stantially degrade performance. For example, there is the huge
degenerate (and globally optimal) peak at as discussed
in the Appendix. Likewise, many other undesirable peaks exist
with . For example, such peaks exist with

peaks with , and so on. In general, when any subset of
weights go to zero, we are necessarily in the basin of a minimum
with respect to these weights from which we cannot escape.
Therefore, if too many weights (or the wrong weights) converge
to zero, there is no way to retreat to a more appropriate solution.

Returning to M-SBL, we know that the full posterior distri-
bution with which we begin is identical. The crucial difference
is that, instead of traversing this improper probability density
in search of a sufficiently “nonglobal” extremum (or mode), we
instead explore a restricted space of posterior mass. A substan-
tial benefit of this approach is that there is no issue of getting
stuck at a point such as ; at any stable fixed point ,
we can never have . This occurs because, although the
full distribution may place mass in the neighborhood of zero,
the class of approximate distributions as defined by
in general will not (unless the likelihood is maximized at zero,
in which case the solution is probably correct). Like-
wise, a solution with small is essentially impossible un-
less is also small, assuming has been set to a reason-
able value. In general, there is much less tendency of indiscrim-
inately shrinking important weights to zero and getting stuck,
because these solutions display little overlap between prior and
likelihood and, therefore, little probability mass. This helps to
explain, for example, the results in Fig. 1(d), where M-SBL per-
formance is uniformly superior to M-Jeffreys for all values of
and .

VI. CONCLUSION

While recent years have witnessed a tremendous amount of
theoretical progress in the understanding of sparse approxi-
mation algorithms, most notably basis pursuit and orthogonal
matching pursuit, there has been comparably less progress
with regard to the development of new sparse approximation
cost functions and algorithms. Using an empirical Bayesian
perspective, we have extended the ARD/SBL framework to
allow for learning maximally sparse subsets of design variables
in real or complex-valued multiple response models, leading
to the M-SBL algorithm. While many current methods focus
on finding modes of distributions and frequently converge to
unrepresentative (possibly local) extrema, M-SBL traverses a
well-motivated space of probability mass.

Both theoretical and empirical results suggest that this is a
useful route to solving simultaneous sparse approximation prob-
lems, often outperforming current state-of-the-art approaches.
Moreover, these results provide further support for the notion
that ARD, upon which SBL is based, does in fact lead to an
exact sparsification (or pruning) of highly overparameterized
models. While previous claims to this effect have relied mostly
on heuristic arguments or empirical evidence, we have quanti-
fied the relationship between M-SBL and a specific sparsity-in-
ducing prior and derived conditions, albeit limited, whereby
maximally sparse representations will necessarily be achieved.

From a signal and image processing standpoint, we envi-
sion that M-SBL could become an integral component of many
practical systems where multiple responses are available. For
example, M-SBL has already been successfully employed in
the realm of neuroelectromagnetic source imaging [38], [39].
These experiments are important since they demonstrate the
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utility of M-SBL on a very large-scale problem, with a dictio-
nary of size 275 120 000 and 1000 response vectors. Be-
cause of the severe redundancy involved and the
complexity of the required, neurophysiologically-based (and se-
verely ill-conditioned) dictionary, it seems likely that the ability
of M-SBL to avoid local minima in the pursuit of highly sparse
representations is significant. In any event, neuroelectromag-
netic imaging appears to be an extremely worthwhile bench-
mark for further development and evaluation of simultaneous
sparse approximation algorithms.

APPENDIX

RELATING M-JEFFREYS AND M-FOCUSS

There exists an interesting relationship between the implicit
priors of M-Jeffreys and M-FOCUSS. To see this, consider the
slightly modified cost function

(35)

where we have set equal to some and subtracted a con-
stant term, which does not change the topography. M-FOCUSS
is capable of minimizing this cost function for arbitrary , in-
cluding the limit as . This limiting case is elucidated by
the relationship

(36)

By applying this result for all , we arrive at the limiting cost
function

(37)

which is identical to the M-Jeffreys cost function. This demon-
strates why M-Jeffreys should be considered a special case of
M-FOCUSS and clarifies why the update rules are related even
though they were originally derived with different considera-
tions in mind.

In arriving at this association, we have effectively assumed
that the regularizing component of the cost function (35) has
grown arbitrarily large. This discounts the quality-of-fit com-
ponent, leading to the globally optimal, yet degenerate solu-
tion . However, curiously, M-Jeffreys and equivalently
M-FOCUSS (with ) still do consistently pro-
duce sparse representations that nonetheless retain the desirable
property .

In fact, any success achieved by these algorithms can be at-
tributed to their ability to find appropriate, explicitly nonglobal,
local minima. This is not unlike the situation that occurs when
using the EM algorithm to fit the parameters of a Gaussian mix-
ture model for density estimation. In this case, the cost function
may always be driven to infinity by collapsing a single mix-
ture component around a single data point. This is accomplished
by making the component mean equal to the value of the data
point and allowing the component variance to converge to zero.
Clearly, the desired solution is not the globally optimal one and
heuristics must be adopted to avoid getting stuck [43].
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