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Motivated by high throughput genotyping technology, our
aim in this study was to experimentally compare the power
and accuracy of case-control and family trio based
approaches for haplotype based, large scale, association
gene mapping. We compared trio based and case-control
study designs in different disease models, and partitioned the
performance differences into separate components: those
from the sample ascertainment, the effective sample size, and
the haplotyping approaches. For systematic and controlled
tests, we simulated a rapidly expanding and relatively young
isolated population. The experiments were also replicated
with real asthma data. We used computationally efficient
methods that scale up to large amounts of both markers and
individuals. Mapping is based on a haplotype association
test for haplotypes of 1–10 markers. For population based
haplotype reconstruction, we use HaploRec, and compare it
to both a simple trio based inference and true haplotypes.
Firstly and surprisingly, statistically inferred population based
haplotypes can be equally powerful as true haplotypes.
Secondly, as expected, the effective sample size has a clear
effect on both gene detection power and mapping accuracy.
Thirdly, the sample ascertainment method does not have
much effect on mapping accuracy. Finally, an interesting side
result is that the simple haplotype association test clearly
outperformed exhaustive allelic transmission disequilibrium
tests. The results suggest that the case-control design is a
powerful alternative to the more laborious family based
ascertainment approach, especially for large datasets, and
wherever population stratification can be controlled.

G
ene mapping efforts have been criticised for their
modest success at finding, and replicating findings of,
disease susceptibility genes. While linkage methods

are popular in trying to elucidate the genetic basis of complex
traits, they have inherent limitations in detecting genes of
modest to moderate effect.1 Association analysis using
haplotypes is a good alternative; it has better resolution,
and thus also the capability to better utilise high density
genotype data produced by high throughput genotyping
techniques. Further gene mapping studies that only use triad
or case-control data from epidemiological cohorts greatly reduce
the amount of effort required to obtain the DNA samples,
compared with linkage analyses based on large families.

Haplotype analyses are of increasing interest to a wide
variety of investigators, and thus raise the issue of the most
relevant study settings, including ascertainment scenarios
and computational analysis methods, to be used in practice.
In addition, understanding differences between family based
and population based methods is useful for those planning

new genetic studies. The goal of our study was to shed light
on these issues.

We present the results of a simulation study, in which we
experimentally compared two strategies for study design and
haplotyping in association analysis: (a) a trio based setting,
where trios are ascertained using affected children as
probands, and the non-transmitted haplotypes of the parents
are used as controls or additional cases, depending on the
phenotype of the parent; and (b) a case-control study design,
where cases are ascertained as above but independent
healthy control individuals are sampled from the population,
and the haplotypes are estimated for all individuals with a
population based statistical method. The methods we used
are computationally efficient and are therefore a valid
alternative to the analysis of large datasets. The simulated
population was an exponentially and rapidly growing
founder population, similar to those successfully used in
gene mapping studies.2

According to our results, population based reconstruction
of haplotypes in case-control datasets combined with
association analysis can clearly outperform the trio based
approach, even if the haplotypes from all trios could be solved
unambiguously. We experimentally analysed the effects of
adjusting sample sizes for equal genotyping costs, of
haplotyping, and of the sample ascertainment. An unex-
pected result was obtained for the effect of population based
haplotypes; they were found to be very powerful in
association studies, and in our experiments virtually equally
good as the true (unknown) haplotypes. The results were
confirmed with a real dataset used for localisation of an
asthma gene.3 Based on these results, we claim that case-
control study designs may serve in general as powerful
starting points for genetic association analyses, without a
requirement to genotype the families. Furthermore, we
suggest that the relatively simple but efficient haplotype
association analysis can be sufficiently powerful in high
throughput analysis.

METHODS
We used simulated datasets to carry out the study, as they
allow power analysis using a large number of replicate
datasets with controlled values of parameters. Different
sampling and haplotyping methods and eventually a haplo-
type association mapping algorithm were then applied to
each of these replicates in turn. The power to detect the
disease susceptibility gene and the mapping accuracy were
then analysed. By controlling each of the parameters
separately, we were able to analyse their effects in isolation.
A recent asthma dataset was used to confirm the results with
real data.

Abbreviations: EATDT, exhaustive allelic transmission disequilibrium
tests; SNP, single nucleotide polymorphism
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The compared settings differed in three major aspects
(table 1), as follows.

1. Sample ascertainment: in all our sampling designs, an
affected child is used as a proband. In the trio design, the
non-transmitted (pseudo) haplotypes of parents are used
as controls or additional cases, according to the pheno-
type of the parent. In the case-control design, healthy
individuals are sampled from the population; in the case-
random design, random individuals are sampled regard-
less of their disease status.

2. Haplotyping: haplotypes can be partially deduced when
trios are available. We considered two extreme options:
(a) a simple method, where all ambiguous alleles are
marked unknown; and (b) the true haplotypes (known
from the simulations), as the best possible case where all
ambiguous alleles are successfully estimated. In the case-
control and case-random designs, a statistical or combi-
natorial estimation method must be used. We also
considered randomly phased haplotypes, and maximally
wrongly phased haplotypes for comparison.

3. Sample size: in our study, the default sample size was 500
individuals. In the case-control and case-random designs,
we used 250 cases and 250 control or random individuals,
whose haplotypes were then estimated. In the trio design
we could afford to use 167 trios—that is, 501 individuals,
from which we obtained haplotypes for the 167 probands
plus 167 pseudohaplotype individuals from the non-
transmitted haplotypes, 334 individuals in total.

For association analysis, we used haplotype association
with all haplotypes between 1 and 10 markers in length. This
simplicity was a deliberate choice; the method easily scales
up to very large datasets. While it is simple, it is also quite
powerful, as will be shown by comparisons with exhaustive
allelic transmission disequilibrium tests (EATDT).4 A com-
parison of different association analysis methods is outside
the scope of this paper; we aimed specifically to compare
study designs and the related haplotyping approaches.

Simulation
We used a two phase simulation procedure to mimic a true
founder population. In the first phase, the founder haplotypes
were simulated using a coalescent model with a recombination
and infinite sites mutation model, to produce a realistic
polymorphism structure and realistic allele frequency distribu-
tions for the founder chromosomes. In the second phase, the
final population was simulated using forward in time simula-
tion to obtain a larger population with a realistic recombination
history (see appendix for more details).

The population model we used is an exponentially and
rapidly growing founder population, which starts with 100

founder individuals randomly chosen from the coalescence
simulation. The final size, 100 000 individuals, is reached in
15 generations. This approximately corresponds to a recently
founded subpopulation living in isolation, such as Kainuu
region in northeastern Finland.2

The marker map in our study consists of single nucleotide
polymorphisms (SNPs) separated by approximately 33 kb from
each other, corresponding to the average density of a genome
wide 100 kb microarray SNP chip. We simulated 451 markers—
that is, a stretch of 15 000 kb (15 cM). The SNPs were chosen to
have a minor allele frequency of at least 0.05. As a result of
picking markers based on these two criteria, the average minor
allele frequency was 0.21 and the average distance between
markers was 33 kb (with 2.63 kb SD on average).

Three disease models were designed to resemble interest-
ing and challenging cases (table 2). ‘‘Common’’ is a common
disease variant, with susceptibility allele frequency of 20% in
the population and low penetrance (20%), created to
correspond to a typical common complex disease, such as
asthma or diabetes in human populations. ‘‘Rare’’ is a model
with low susceptibility allele frequency (1%) and low
prevalence (5%) in the population, and with 40% penetrance
(in accordance to the rare variant, rare disease hypothesis).
This corresponds to a typical inherited disease studied since
the late 1990s. Finally, a disease model called ‘‘intermediate’’
with susceptibility allele frequency between those of the rare
and common models was created (10%), with intermediate
penetrance (30%). Other disease model parameters were set
so that the proportions of phenocopies were 28% (common
model), 58% (intermediate), or 78% (rare). All these models
result in relatively difficult mapping problems where differ-
ences between methods and approaches can be more easily
observed than with easier models.

After diagnosing the final simulated generation using the
disease model, we ascertained samples of cases, random
individuals, and healthy controls (corresponding to the
columns of table 1). Siblings were not allowed in samples.

Table 1 Tested alternatives of sample ascertainment, haplotyping methods, and total
sample sizes (for example, 500 means 250 cases + 250 controls)

Sample ascertainment and effective sample sizes

Case-control Case-random Trios

Sample size Sample size Sample size

Haplotyping method 500 334 500 334 500 (750*) 334 (500*)

Population based estimation + – – – NA NA
Trio based inference (simple) – – – – – +
True haplotypes (best case) – – – – – +
Randomly phased haplotypes – – – – – –
Maximally wrong phases – – – – – –

*Number of genotyped individuals. +, Primary alternatives to be compared; –, settings used to analyse effects of
different factors, some of them unrealistic. NA, not available

Table 2 Disease model parameters

Parameter

Disease model

Common Inter Rare

Susceptibility allele frequency Pr(M) 0.20 0.10 0.01
Carrier frequency in population Pr(M+) 0.36 0.19 0.02
Penetrance Pr(D+|M+) 0.20 0.30 0.40
Prevalence Pr(D+) 0.10 0.14 0.05
Phenocopies Pr(M2|D+) 0.28 0.58 0.78
Penetrance for non-carriers Pr(D+|M–) 0.04 0.10 0.04

Inter, intermediate. D+, affected; M, disease susceptibility allele;
M+, susceptibility allele carrier (genotype MM or MW, where W is a wild
type allele); M2, susceptibility allele non-carrier (genotype WW).
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In order to minimise the random effects caused by random
sampling of individuals, the overlap of the samples for
different strategies was maximised for a given replicate: the
set of cases was identical in all the strategies, and the healthy
individuals of the case-random design were a subset of the
controls of the case-control design. This held for both sample
sizes. Furthermore, the smaller sample was a subset of the
larger one. As we report results of over 100 independent
simulations in each setting, we believe the random effects are
well controlled. We did not handle the issue of population
stratification in this study. The trio design is generally robust
to stratification effects; in case-control studies false positives
resulting from population substructure can be reduced by
genomic control (see for example, Devlin et al5).

Haplotyping
Trio based inference of haplotypes was performed simply by
deducing the phase of each marker from the genotypes of the
child and the parents. If all members of the trio were
heterozygous at a marker, the respective alleles of the child
and the pseudohaplotype were denoted as unknown in the
haplotypes. This caused some of the data to be missing. More
complex methods for haplotype inference would estimate the
phases of these markers and eventually improve the quality
of the haplotypes. We also used the best possible case, true
haplotypes, to approximate an upper limit for (family based)
haplotyping.

For population based statistical reconstruction of haplo-
types we used the HaploRec algorithm.6 The method works by
fitting a variable order Markov chain model of haplotypes to
the observed genotype data (see the appendix for more
details). Unlike most other methods for population based
haplotyping, HaploRec allows recombinations in the marker
map and does that without assuming a specific haplotype
block structure. As it is also computationally efficient, we
chose it for our study involving a large number of individuals
and markers.

Association analysis methods
Allelic association was estimated by predicting the disease
susceptibility locus to be at the marker that has the highest
value for the x2 test statistic. For haplotype association, each
haplotype of 1–10 markers in length was evaluated with the
x2 test, then the disease susceptibility gene was predicted to
reside in the middle point of the best haplotype. In case of
two or more equally good results, one of the best markers or
haplotypes was chosen at random.

For each dataset, the p value of the best allele or haplotype
was computed by a permutation test; the disease association
statuses of the original haplotypes were randomly shuffled
9000 times, the x2 values recalculated each time, and the best
x2 value of each permutation used as the test statistic. This
procedure takes into account the multiple testing of
haplotypes and produces a corrected p value.

We estimated the statistical power to detect the disease
susceptibility gene at a significance level of 0.05. Because the
simulated chromosomes were only 15 cM long (approxi-
mately 1/187 of the human genome) we adjusted the p values
for genomewide analysis by Šidák correction, essentially
assuming that the genome consists of 187 independent
15 cM blocks. The genomewide p value (p* ) was estimated as
p* = 12(12p)187, where p is the p value obtained for the
simulated 15 cM region using permutation tests.

In addition to the statistical power to detect the disease
susceptibility gene, the association analysis methods
described above give a point estimate for the locus as a
result, and the results over 100 simulation replicates give a
sample of prediction errors. The accuracy of association

analysis can be then visualised as a cumulative distribution
function of (absolute) prediction error.

Throughout the results, the maximum prediction error
shown is 1000 kb (1 cM in the simulated data) as prediction
errors over 1 cM to either side of the true disease susceptibility
gene location are not particularly interesting for fine mapping.
With the population and disease models used, the methods are
reasonably accurate, so that most of the interesting differences
lie within this range. In addition to the experimental error
curves, the prediction error of uniform random guesses (with-
out any data) is given in all figures for reference. With our
disease models, detecting the presence of a gene is more difficult
than locating it, and correspondingly the powers are much less
than 1. However, this design is intended to bring out differences
between the methods.

RESULTS
A direct comparison of the case-control and trio designs,
under the assumption of equal genotyping costs, showed that
the case-control design is substantially more accurate for
association analysis across the three different disease models
(fig 1A, common and rare models; fig 1B, intermediate
model). Even in the best possible case (with true haplotypes)
the accuracy of the trio design was clearly inferior to the case-
control designs. The differences in the statistical power to
detect the gene are even more striking (table 3): the powers
were 0.72 v 0.07 (rare), 0.48 v 0.08 (intermediate), and 0.76 v
0.30 (common) for the case-control and trio designs,
respectively. Using the true haplotypes did not significantly
improve powers in the trio designs.

To validate the use of the relatively simple haplotype
association mapping method in this study, we compared the
results with those obtained by allelic association and by the
recently introduced EATDT (applicable to trio based data
only).4 The haplotype association method used in this study
actually outperforms both allelic association and EATDT
(fig 1C, intermediate model; table 3, last two lines of each
block), indicating that it is powerful and accurate, and
therefore suitable for measuring the differences between
different study design and haplotyping approaches.

We next perform a detailed experimental analysis of the
differences between the case-control and trio based
approaches. In particular, we isolate the effects caused by
sample size, sample ascertainment, and haplotyping method,
and study each of them separately. For illustration, we only
show prediction accuracy curves for the intermediate disease
model (the most difficult one); the power and prediction
results for all three disease models are summarised in table 3.

Sample size
The most obvious cause for the performance differences
above is the sample size: with equal genotyping costs, the
effective sample size in the trio based approach is only two
thirds of that in the population based approach. However, the
difference in sample size only explains a part of the difference
(fig 1D, intermediate model; table 3).

Sample ascertainment
The two sample ascertainment methods are quite different.
In the trio based approach, the non-transmitted chromo-
somes of the parents are used as additional data: as a pseudo-
control if the parent is healthy, or as a pseudo-case if the
parent is diseased. This procedure often results in somewhat
unbalanced numbers of cases and controls, but this does not
seem to have much effect on the mapping accuracy (results
not shown).

To test the effect of sample ascertainment, we conducted
experiments where the sample size and haplotyping method
were fixed, and only the origin of controls varied. In
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Figure 1 Prediction errors with simulated data. Where not otherwise stated, the disease model is intermediate, the mapping method is haplotype
association, the case-control approach consists of 500 individuals haplotyped with a population based method, and the trio based approach has 167
trios (effective sample size 334) with trio inferred and true (best case) haplotypes. Case-control and trio based approaches for (A) common and rare,
and (B) intermediate disease model. Effect on prediction error of (C) association mapping method, (D) sample size, (E) sample ascertainment method
(known haplotypes, sample size 500), and (F) haplotyping method (case-control data, sample size 500). In all panels, the dotted line close to the
bottom is the expected error for random predictions.
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particular, population based controls were in some experi-
ments haplotyped using their parents to form trios. According
to the results, there is virtually no difference in the prediction
accuracies between the two major sample ascertainment
methods (fig 1E, intermediate model). In terms of the power
to detect a gene, on the other hand, population based controls
tend to be more powerful than trio based data (table 3).

Sampling random instead of healthy individuals has a clear
negative effect. For the most difficult disease model, the
intermediate model, the effect is comparable with the effect
of sample size. For simpler models, the effect is smaller. A trio
based strategy where all non-transmitted haplotypes are
labelled as controls yields similar results to those found by
sampling random individuals (results not shown).

Haplotyping method
The final aspect in which the case-control and trio based
approaches differ is the haplotyping method. Population
based reconstruction is based on estimated phases, which can
contain errors, especially with the long maps used in this
study (451 markers, 15 cM). The simple trio based approach
we used, on the other hand, cannot always resolve the phase
of a marker, in which case we marked the alleles as
unknown. The true haplotypes used in our experiments
represent the best case scenario for haplotyping and can be
viewed as an upper bound for the performance of any trio
haplotyping method.

Controlled experiments, where other factors (in particular,
sample size and sample ascertainment) are constant, show
that the mapping results obtained with population based
haplotyping are virtually identical to those obtained with the
true haplotypes across all tests (fig 1F, table 3). In other
words, the (few) phasing errors did not affect mapping power
or accuracy.

The simple trio based haplotyping, in turn, is clearly
inferior. This is explained by the number of missing data, as

all inferred phases have to be correct. On average, trio based
haplotyping resulted in 5.4% missing alleles in our simulated
datasets. In the best case, a sophisticated trio based
haplotyping method would give mapping accuracy equal to
the true and the population estimated haplotypes (fig 1D).
However, the power of the trio design to detect a gene
remains inferior to the case-control design even in this case
(table 3).

Example: asthma data
We demonstrate the power of the case-control design and
population based haplotyping on real asthma data, consisting
of 194 small families.3 Our goal was to compare different
approaches with this real data, not to reproduce the original
results of Laitinen et al. The subjects were genotyped by
Laitinen et al for 91 microsatellite and 64 SNP markers
spanning a 20 cM region in chromosome 7. The original
genotyping process had been iterative; new markers were
added where the intermediate analyses showed strongest
association. In the final stage, a 133 kb risk conferring
haplotype was identified in the region densely covered by
SNP markers.3

To mimic the case-control study design, we used families
with an affected and a healthy parent, constituting an
effectively independent case-control pair. For the trio based
approaches, we also randomly sampled one child in each of
the families. We sampled at most one such trio per pedigree,
giving 93 trios from the available 194 pedigrees.

All markers with at least 20% of genotypes missing were
rejected. The remaining marker map consisted of 73
microsatellite and 15 SNP markers. We haplotyped the
case-control dataset of affected and healthy parents using
HaploRec. For comparison, we inferred the haplotypes of a
random subsample of 62 trios (two thirds of 93) using the
genotypes of the children. Additionally, we subsampled the
haplotypes of the parents in the 62 trios from the set of 93

Table 3 The power to detect the disease susceptibility gene using different sample ascertainment methods, haplotyping
methods and sample sizes for rare, intermediate and common mutation models

Sample ascertainment and effective sample sizes

Case-control Case-random Trios

Sample size Sample size Sample size

Haplotyping method 500 334 500 334 500 (750*) 334 (500*)

Rare
Population based estimation 0.72 (0.81) 0.22 (0.68) 0.56 (0.78) 0.16 (0.57) NA NA
Trio based inference 0.37 (0.69) 0.05 (0.55) 0.31 (0.64) 0.05 (0.48) 0.33 (0.62) 0.07 (0.53)
True haplotypes 0.74 (0.79) 0.17 (0.68) 0.56 (0.75) 0.11 (0.59) 0.62 (0.74) 0.10 (0.66)
Randomly phased haplotypes 0.07 (0.53) 0.01 (0.44) 0.07 (0.45) 0.02 (0.40) 0.05 (0.52) 0.01 (0.39)
Maximally wrong phases 0.08 (0.45) 0.01 (0.29) 0.05 (0.37) 0.01 (0.27) 0.03 (0.48) 0.00 (0.30)
Allelic association 0.06 (0.47) 0.01 (0.38) 0.05 (0.48) 0.02 (0.39) 0.04 (0.51) 0.01 (0.33)
EATDT NA NA NA NA 0.49 (0.84) 0.13 (0.62)

Intermediate
Population based estimation 0.48 (0.85) 0.21 (0.74) 0.20 (0.68) 0.08 (0.52) NA NA
Trio based inference 0.39 (0.74) 0.13 (0.56) 0.17 (0.61) 0.06 (0.43) 0.25 (0.75) 0.08 (0.62)
True haplotypes 0.46 (0.85) 0.21 (0.70) 0.19 (0.68) 0.07 (0.53) 0.34 (0.85) 0.11 (0.68)
Randomly phased haplotypes 0.22 (0.65) 0.06 (0.52) 0.13 (0.57) 0.04 (0.38) 0.06 (0.48) 0.02 (0.35)
Maximally wrong phases 0.20 (0.60) 0.09 (0.45) 0.08 (0.50) 0.04 (0.29) 0.10 (0.47) 0.02 (0.39)
Allelic association 0.24 (0.69) 0.07 (0.55) 0.08 (0.56) 0.06 (0.38) 0.06 (0.62) 0.04 (0.47)
EATDT NA NA NA NA 0.15 (0.70) 0.07 (0.47)

Common
Population based estimation 0.76 (0.94) 0.47 (0.87) 0.59 (0.95) 0.25 (0.84) NA NA
Trio based inference 0.72 (0.94) 0.46 (0.82) 0.54 (0.91) 0.30 (0.75) 0.61 (0.95) 0.30 (0.80)
True haplotypes 0.77 (0.95) 0.47 (0.88) 0.60 (0.97) 0.27 (0.83) 0.62 (0.94) 0.29 (0.83)
Randomly phased haplotypes 0.61 (0.85) 0.35 (0.73) 0.39 (0.80) 0.20 (0.69) 0.34 (0.83) 0.19 (0.68)
Maximally wrong phases 0.50 (0.79) 0.30 (0.67) 0.35 (0.75) 0.20 (0.67) 0.35 (0.77) 0.08 (0.64)
Allelic association 0.57 (0.90) 0.33 (0.83) 0.42 (0.87) 0.27 (0.73) 0.36 (0.82) 0.19 (0.70)
EATDT NA NA NA NA 0.47 (0.86) 0.23 (0.79)

*Number of genotyped individuals. Numbers in parenthesis are fractions of predictions for which prediction error was less than 1 cM. Results obtained with allelic
association and EATDT4 are included for comparison; their primary alternatives are printed in italics.

Case-control and trio based study designs in high throughput association mapping 621

www.jmedgenet.com



case-control pairs haplotyped using HaploRec. This dataset
represents our best estimate of the haplotypes in the trios.

With the case-control sample, there was a strong association
peak within the correct 133 kb region, but also a false positive
about 500 kb to the right (fig 2). In contrast, the trio based
setting did not show any associations within the correct region,
but two false positives instead. Increasing the sample size to
include all 93 trios did not produce different results (data not
shown). This is a strong indication of the potential of the case-
control approach to association mapping.

DISCUSSION
We reported on simulation experiments where we compared
sample ascertainment strategies and related haplotyping

approaches in association mapping studies. We considered
two main alternatives: ascertainment of family trios with an
affected child, from which it is easy to infer the haplotypes
partially, and ascertainment of a case-control sample of
unrelated individuals, for which the haplotypes were
estimated statistically. We conducted the mapping step using
haplotype association analysis, a simple but powerful and
efficient method. Case-control samples were haplotyped with
HaploRec.6 Both haplotype association and HaploRec scale up
to large amounts of markers and individuals and are suitable
for high throughput association studies. Finally, we isolated
and experimentally analysed the effects of three separate
factors: sample size, sample ascertainment method, and
accuracy of haplotyping.

For an equal number of genotyped individuals, the
effective sample size in the trio based approach is only two
thirds of that of the case-control design. According to our
experiments, this difference has a major effect on the
mapping power and accuracy, as expected.

In order to maximise the genetic effect in the sample, the
controls should be ascertained from unaffected individuals to
minimise the frequency of disease susceptibility allele. In a
population based study, it can be possible to ascertain healthy
controls for this purpose. Alternatively, random population
controls are often used since their ascertainment is easier,
especially if they are stratified to match the cases. For rare
diseases, the difference between healthy and random
controls is marginal.

We ascertained the cases in a standard manner, using an
affected child as a proband. If all affected individuals are
equally likely to be chosen as probands, then families with
several affected children will be over-represented in the
sample (known as classical ascertainment bias; see for
example, Fisher7 or Cannings and Thompson8). For associa-
tion analysis, this bias increases the power as the expected
frequency of the disease susceptibility gene is then further
elevated in the cases.

According to our results, the case-control setting is more
powerful than the trio based design, but they are roughly
equally accurate. The case-random design was clearly
inferior, but this depends on the disease model, in particular
the susceptibility allele frequency. Trios have the benefit that
they produce controls that are well paired with cases for
population substructure and other factors that are not
uniform over the population. Ascertainment of matching
controls from the population is more difficult, but genomic
control can be used to correct for stratification.5 We did not
simulate any population substructure effects.

In our experiments, haplotypes inferred with a population
based statistical method were equally powerful as using the
true haplotypes. This is in contrast to the result of Morris et al,
who concluded that statistically inferred haplotypes are inferior
to the true haplotypes, and genotype based approaches should
be preferred.9 There are several differences between our studies
that can partially explain the results. Firstlt, the results of
Morris et al are based on a shorter map (950 kb interval and 20
SNPs versus 15 000 kb and 451 SNPs in our study). Secondly,
Morris et al used their own COLDMAP software for mapping
(we could not evaluate the effect of this choice because,
according to Morris et al themselves, COLDMAP9 is not feasible
for datasets of the size of our study). Thirdly, they used
SNPHAP (designed by D Clayton) to estimate haplotypes.
SNPHAP is not well suited for long maps with recombinations,
and is likely to be a suboptimal choice here (we could not
evaluate it in our study because it often stopped without
haplotyping all individuals). As a fourth reason, different
simulation techniques were applied.

The effect of haplotyping accuracy on fine mapping is
greatest near the disease susceptibility locus in the haplo-
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Figure 2 Haplotype association in asthma data,3 with the population
based and trio based approaches. (A) Entire 20 cM region; (B) 500 kb
region containing the identified 133 kb haplotype (7733–7865 kb). The
curves show the highest x2 value for each marker from the set of all 1–10
marker haplotypes spanning over the marker. The locations are reported
relative to an arbitrarily chosen origin. The bars at the bottom show the
locations of the markers.

622 Hintsanen, Sevon, Onkamo, et al

www.jmedgenet.com



types carrying the disease susceptibility allele. As this is
exactly where linkage disequilibrium is increased in the
cases, this area is likely to be best haplotyped by methods
that give emphasis on local structure, such as HaploRec. It
was found to have excellent switch accuracy (defined as the
fraction of neighbouring phases, between each pair of
consecutive heterozygous markers, reconstructed correctly):
99.6% and 99.3% on average for sample sizes of 500 and 334,
respectively.

With the trio based haplotype inference, the only source of
uncertainty is similar heterozygotes, for which we marked
the alleles as unknown in our simple method. This resulted in
a poorer association mapping performance compared with
the population based estimates. Based on this result, an
obvious recommendation is to use population based tech-
niques to augment trio based inference when trios are
available, to avoid missing alleles. However, our experi-
ments with the true haplotypes suggest that even the best
possible haplotyping method would give the same mapping
accuracy as the population based haplotyping, and the power
to detect the gene would remain inferior compared with the
case-control design, owing to the smaller effective sample
size.

Despite some contrasts with the conclusions of Morris et
al,9 we do agree with many of their points. In particular,
mapping results based on inferred haplotypes are likely to be
optimistic in terms of confidence or credibility intervals,
owing to exaggeration of linkage disequilibrium.

In further research, it is important to test the utility of the
case-control study design in more real life experiments, to
verify that it does not suffer from unexpected effects from
genotyping errors, missing data, or varying disease models.
The effect of more elaborate association methods (for
example, those proposed by Purcell et al10) on the power
and mapping accuracy should be investigated, although our
comparisons to EATDT suggest that the simple haplotype
association with a population based haplotyping is a powerful
method for association analysis.

CONCLUSIONS
For future high throughput association mapping studies,
case-control design combined with efficient population based
haplotyping method can be more powerful alternative than
the trio design. To enrich the specific disease susceptibility
genes in the cases, the cases should rather be familial than
sporadic. Naturally, the opposite holds for the controls: it is
useful if the presence of the specific disease or trait in
question can be reliably excluded. The downside of using
population controls is that it may prove difficult to find
controls matched for ethnic origin in studies of stratified or
mixed populations; genomic control alleviates some of the
issues.

According to our results, data from existing epidemiologi-
cal research projects, consisting of cases only, or case-control
pairs, can be easily and effectively used in large scale
haplotype based association analysis. This opens great
opportunities for utilising the vast blood sample or biopsy
collections maintained in many university hospitals and
national health institutes.

APPENDIX
Two phase simulation procedure
We used a two phase procedure for the simulation of
relatively young, isolated founder populations. In the first
phase, the founder chromosomes were simulated using a
coalescent model with recombination and the infinite sites
mutation model.11 We used a coalescent simulation procedure
based on the spatial algorithm of Wiuf and Hein.12 The
spatial algorithm produces a graph similar to the ancestral

recombination graph of Griffiths and Marjoram.13 The
algorithm first generates a tree genealogy for one end of
the sequence using the standard coalescent model, and
then iteratively proceeds over the sequence until it is
covered in its entirety. In each iteration, the distance to the
next crossover in any of the lineages in the current graph is
first drawn from an exponential distribution. A new
recombination node is then generated to a randomly chosen
point in the graph, splitting the lineage at the chosen
point. The new lineage is coalesced with a randomly chosen
lineage.

In our implementation, when updating the graph, we
ignore the lineages of the graph that are no longer part of the
local genealogical tree. This way the graph is a tree at all
times, and, consequently, the algorithm simulates long
sequences much more rapidly. Although our model is an
approximation, experiments show excellent agreement with
the true coalescent model with recombination, in terms of
linkage disequilibrium (D9) and allele frequency distributions
(data not shown).

We simulated recombination at a flat rate of 1028

crossovers per bp per meiosis, with no chiasma interference.
Mutations were generated at rate 1028 per bp per generation.
The generated mutations constitute the set of all possible
SNP markers and disease susceptibility loci for the study. The
effective size of the population was 10 000 individuals.

In the second phase, inheritance of chromosomal segments
in the founder population was simulated. We used the
populus simulator of Ollikainen for simulating random
mating in distinct generations.14 Recombinations were
modelled as in the first phase; mutations were not simulated
during the second phase. As a result, segment compositions
of the individuals were obtained; for each individual, the two
homologous chromosomes consisted of separate segments
that have been inherited from the founder chromosomes
intact.

The disease susceptibility mutation and minimum minor
allele frequencies for markers were fixed for each study
setting. For the choice of the disease susceptibility locus and
marker map, we therefore needed to compute the frequencies
of the minor alleles. This was performed for all SNPs in the
final population by using the simulated chromosomal
segment decompositions and the founder haplotypes
acquired from the first phase simulation.

Next, a set of approximately equidistantly spaced markers
with a minor allele frequency exceeding a specified minimum
frequency was chosen from the set of SNPs. At the same time,
the disease susceptibility locus was chosen from the remain-
ing SNPs so that the frequency of the disease susceptibility
mutation was closest to the desired value. If there were more
than one such candidate available, one of those was
randomly chosen.

Individuals were diagnosed based on their genotype at the
disease susceptibility locus and the specified disease model.
After diagnosis, a desired sample was picked. Finally, allelic
data were generated for the sampled individuals and their
parents.

Haplotyping method
For population based statistical reconstruction of haplotypes
we used the HaploRec algorithm, which is targeted especially
for large numbers of relatively sparsely spaced markers.6

HaploRec assumes Hardy-Weinberg equilibrium, which
means that the probability of a haplotype pair is modelled
as a product of the probabilities of the two individual
haplotypes. The probability of a haplotype is broken into a
product of conditional probabilities of individual alleles, with
each allele conditional on a varying number of its immediate
neighbours. When computing the probability of haplotype H
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of length l, the distribution of alleles at marker i is estimated
by conditioning on the longest observed haplotype fragment
that (a) matches haplotype H and ends at marker i–1, and
(b) has an estimated relative frequency of at least 0.2%:

where H(i) is the allele at marker i, H(i, j) is the haplotype
fragment covering markers i–j and si = min{s | Pr(H(s, i–1))
>0.2%}. Use of a frequency threshold is motivated by the fact
that a long haplotype fragment is likely to be shared by
several individuals only if it is inherited from the same
ancestor, and thus is useful in estimating haplotypes. Given
parameter estimates for the variable order Markov model, the
haplotypes are reconstructed by choosing the phases such
that the resulting pair of haplotypes has the maximum
product of probabilities. Because in practice, neither the
model parameters or the haplotypes are known in advance,
the original HaploRec algorithm was adapted to apply an
EM-like algorithm for simultaneously learning the model
and reconstructing the haplotypes. The algorithm starts with
a uniform model, and alternates between steps of recon-
structing the haplotypes and estimating the model para-
meters.
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Gustaf Hällströmin katu 2b, PO Box 68, FI-00014 University of Helsinki,
Finland; hannu.toivonen@cs.helsinki.fi

Received 17 June 2005
Revised version received 3 October 2005
Accepted for publication 18 October 2005
Published Online First 28 October 2005

REFERENCES
1 Risch N, Merikangas K. The future of genetic studies of complex human

diseases. Science 1996;273:1516–17.
2 Laitinen T, Daly MJ, Rioux JD, Kauppi P, Laprise C, Petays T, Green T,

Cargill M, Haahtela T, Lander ES, Laitinen LA, Hudson TJ, Kere J. A
susceptibility locus for asthma-related traits on chromosome 7 revealed by
genome-wide scan in a founder. Nat Genet 2001;28:87–91.

3 Laitinen T, Polvi A, Rydman P, Vendelin J, Pulkkinen V, Salmikangas P,
Makela S, Rehn M, Pirskanen A, Rautanen A, Zucchelli M, Gullsten H, Leino M,
Alenius H, Petays T, Haahtela T, Laitinen A, Laprise C, Hudson TJ, Laitinen LA,
Kere J. Characterization of a common susceptibility locus for asthma-related
traits. Science 2004;304:300–4.

4 Lin S, Chakravarti A, Cutler DJ. Exhaustive allelic transmission disequilibrium
tests as a new approach to genome-wide association studies. Nat Genet
2004;36:1181–8.

5 Devlin B, Roeder K, Wasserman L. Genomic control, a new approach to
genetic-based association studies. Theor Popul Biol 2001;60:155–66.

6 Eronen L, Geerts F, Toivonen H. A Markov chain approach to reconstruction of
long haplotypes. Pac Symp Biocomput 2004:104–15.

7 Fisher R. The effect of methods of ascertainment upon the estimation of
frequencies. Ann Eugen 1934;6:13–25.

8 Cannings C, Thompson E. Ascertainment in the sequential sampling of
pedigrees. Clin Genet 1977;12:208–12.

9 Morris A, Whittaker J, Balding D. Little loss of information due to unknown
phase for fine-scale linkage-disequilibrium mapping with single-nucleotide-
polymorphism genotype data. Am J Hum Genet 2004;74:945–53.

10 Purcell S, Sham P, Daly MJ. Parental phenotypes in family-based association
analysis. Am J Hum Genet 2005;76:249–59.

11 Kimura M. The number of heterozygous nucleotide sites maintained in a finite
population due to a steady flux of mutations. Genetics 1969;61:893–903.

12 Wiuf C, Hein J. Recombination as a point process along sequences. Theor
Popul Biol 1999;55:248–59.

13 Griffiths RC, Marjoram P. An ancestral recombination graph. In: Donnelly P,
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