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An Empirical Comparison of Forward-Rate 
and Spot-Rate Models for Valuing 

Interest-Rate Options 

WOLFGANG BÜHLER, MARLIESE UHRIG-HOMBURG, 
ULRICH WALTER, and THOMAS WEBER* 

ABSTRACT 

Our main goal is to investigate the question of which interest-rate options valua­
tion models are better suited to support the management of interest-rate risk. We 
use the German market to test seven spot-rate and forward-rate models with one 
and two factors for interest-rate warrants for the period from 1990 to 1993. We 
identify a one-factor forward-rate model and two spot-rate models with two faetors 
that are not significant1y outperformed by any of the other four models. Further 
rankings are possible if additional cri teria are applied. 

A VALUATION MODEL FOR INTEREST-RATE derivatives represents the core ofany sys­
tem designed to measure, control, and supervise interest-rate risk. This is true 
regardless ofwhether a value-at-risk methodology, sensitivity analysis, stress 
test, or scenario technique is applied. Unfortunately, there is no empirical ev­
idence that evaluates the performance ofthe most popular competing pricing 
models using the some data from a risk management perspective. This paper 
provides such empirical evidence using data from the German market for 
interest-rate warrants for the period from 1990 to 1993, 

The more recent valuation models are dominated by two groups of models, 
forward-rate and spot-rate models, The approach of the first group, pio­
neered by Ho and Lee (1986) and Heath, Jarrow, and Morton (HJM) (1992), 
directly uses the arbitrage-free dynamics of the entire zero bond price curve 
or, equivalently, the term structure of forward rates to price interest-rate 
derivatives. We refer to this approach as the forward-rate (or HJM) model. 
The approach of the second group (e.g., see HulI and White (1990, 1993), 
B1ack, Derman, and Toy (1990), B1ack and Karasinski (1991), Jamshidian 
(1991), and Sandmann and Sondermann (1993» is based on the dynamics of 

• Bühler and Uhrig-Homburg are from the University of Mannheim, Germany. Walter is at 
Deutsche Genossenschaftsbank, Germany. Weber is at Infinity FinanciaI Technology, London. 
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and Stuart 'fumbull. The paper has also great1y benefited from comments made at the War­
wick Option Conference 1995, the European FinanciaI Management Association Conference 
1997, and the Finance seminars at Ecole Supérieure des Sciences Economiques et Commer­
ciales, Paris; Eidgen6ssische Hochschule, ZUrich; and Erasmus University, Rotterdam. Addi­
tional thanks go to an anonymous referee and René Stulz for helping us to sharpen our focus. 
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the instantaneous spot interest rate. The second group's papers follow a 
suggestion by Cox, Ingersoll, and Ross (1985) and fit the endogenous term 
structure (and volatility structure) of interest rates to the observed term 
structure. This fitting is achieved through time-dependent parameters of the 
stochastic factor processes. Both approaches that model the stochastic be­
havior of the term structure of interest rates, as well as the subsequent 
valuation of derivatives, are closely related to each other. In fact, for some of 
the models, a mathematical equivalence is easily established. 

In this comprehensive empirical study we test one-factor and two-factor spot­
rate and forward-rate models. The paper's main goal is to clarify the question 
ofwhether spot- or forward-rate models are better suited to support the mea­
surement, control, and supervision of interest-rate risk. Existing work pro­
vides no answer to this important questiono Though the two classes ofmodels 
are close to each other from a theoretical point of view, they can exhibit very 
different behaviors in application. Furthermore, it is not at alI obvious whether 
two-factor models outperform one-factor models in each class. 

The models we test have the folIowing basic structures. The one-factor 
spot-rate model is characterized by a mean-reverting drift and a diffusion 
coefficient with constant elasticity. Within the class of two-factor spot-rate 
models we consider two variants: In the first model, the factors are identi­
fied with a long rate and the difference between this long rate and a short 
rate. In the second model, the factors we consider are the short rate and its 
volatility. These two-factor models represent generalizations of models de­
veloped by Schaefer and Schwartz (1984) and Longstaff and Schwartz (1992). 

We test two forward-rate models with one factor. The first model repre­
sents the continuous-time version ofHo and Lee's (1986) model with Gauss­
ian forward rates and constant (absolute) volatility. The second model has a 
linear proportional volatility-that is, the proportional volatility depends 
solely on time-to-maturity of forward rates. We ais o test two forward-rate 
models with two factors. We determine the volatility functions of both mod­
eIs by principal component analyses. The volatilities, therefore, depend on 
empiricalIy specified factor loadings and these factors' volatilities. In one 
model, forward-rate volatilities are independent offorward rates. In the other, 
they are proportionally dependent on these rates. 

Assessing the applicability of the different mo deis within a risk manage­
ment system requires two important decisions about the test methodology. 
First, valuation models within risk management systems must be capable of 
predicting future option prices if they are to correctIy measure risk expo­
sure. This capability is best evaluated by the ex ante predictability of a 
model. Therefore, we use the valuation quality of a model, not its ability to 
identify mispriced options, as the most important assessment criterion. This 
implies that this study is not a test of an option market's efficiency. 

Second, we estimate alI parameters, including the volatility, from time 
series. There are two reasons to estimate parameters historically rather than 
implicitIy. We cannot prematurely rule out that model-dependent param­
eters, such as implied volatilities, favor one model versus the other. More 
important, testing valuation models with implied parameters only repre-
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sents a "local test," in the sense that the current option price is used to value 
the same option one period later. Therefore, "local tests" consider only smalI 
deviations from observed prices of derivatives. Tests on the basis of histor­
icalIy estimated parameters are "global," in the sense that they do not use 
information from derivatives markets. 

In addition to the valuation quality, there are other important cri teria for 
assessing a valuation model for interest-rate options. These refer to the dif­
ficulties in estimating the mo dei parameters, in fitting the model to the cur­
rent term and volatility structures, in computing the option values numericalIy, 
and to the stability of the moders performance over different time periods. 

We test the seven valuation models for interest-rate warrants from the 
German market for the period from 1990 to 1993. In contrast to standard­
ized options traded on the German Futures and Options Exchange (DTB) in 
Frankfurt, interest-rate warrants are options issued by banks. Underlying 
these warrants are German government bonds, which represent the most 
Iiquid market segment in the German bond market. The market for interest­
rate warrants started in 1989 and is now more Iiquid than the market of 
standardized options on the BUND-Future that are traded on the DTB. We 
ais o selected this market segment of German interest-rate options beca use 
warrants show a much wider variety of terms than do standardized options. 
There are warrants of both the European and American types whose matu­
rities range up to 2.9 years, compared with nine months' for the standard­
ized futures options on the BUND-Future. 

Very few papers study the empirical performance of models for the valua­
tion of interest-rate options. Dietrich-Campbell and Schwartz (1986) value 
interest-rate options on U.S. government bonds and treasury bills, using the 
two-factor Brennan and Schwartz (1982) mode!. Bühler and Schulze (1995), 
Flesaker (1993), andAmin and Morton (1994) present empirical studies ofthe 
HJM model. The study by Bühler and Schulze analyzes the optimal call policy 
of callable bonds that are issued by German public authorities. Flesaker, as 
well as Amin and Morton, presents results for Eurodollar futures options. How­
ever, none of these studies compares spot-rate and forward-rate models. 

The paper is organized as follows. In Section I we describe our selection of 
the empiricalIy tested models on the basis of an extensive data analysis and 
the decisions made in the different implementation steps. Section II presents 
relevant information on the German bond and interest-rate options market. 
In Section III we describe the design of the empirical study and provide 
estimation results for the input data of the different models. The valuation 
results, including a multivariate error analysis and a paired comparison of 
the seven models, appear in Section IV. We summarize our final assessment 
qf the models and present conclusions in Section V. 

I. Selected Valuation Models and Their Implementation 

In this section, we describe our selection of the empirically tested spot­
rate and forward-rate models. We also specify the formal structure of the 
models and describe the decisions made in the different implementation steps. 
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A. Data Analysis and Selection of Models 

The first step in testing interest-rate options valuation models is to pre­
select the basic features of the models. Preselection refers to the number of 
faetors driving the term structure of interest rates and the functional form 
of the stochastic processes for these faetors. Th do this, we perform an ex­
tensive data analysis of the faetor structure of zero bond yields and the 
behavior of individual yields in the German bond market. We then summa­
rize our findings, which are the basis of the models discussed in Section LB. 
The details are presented in Bühler et aI. (1996). 

We first apply principal component analyses to determine the number of 
factors. Because of the high degree of correlation among yields with differ­
ent maturities, two faetors explain more than 95 percent of the variation in 
the term structure of interest rates. These findings are stable over different 
time periods with varying lengths during 1970 to 1993. Litterman and Scheink­
man (1991) report similar results for the U.S. market. On the basis of these 
results, we only consider one- and two-factor models. One-faetor models should 
be understood as a reference case against which we measure the improve­
ment of introducing a second faetor. Of course, to understand whether two 
faetors are sufficient, the whole study should be carried out for three faetors. 

A.l. One-Factor Models 

The distinguishing feature of a one-faetor forward-rate model is the func­
tional form of the forward-rate volatility. Amin and Morton (1994) test dif­
ferent parsimonious (one and two para meter) parameterizations and find 
that the number of parameters has a stronger effect on the behavior of the 
model than does the form ofthe models used. 'I\vo-parameter models tend to 
fit prices better. Indeed, the model with the best fit in-sample and out-of­
sample is the two-parameter model with a linear proportional volatility func­
tion. However, the one-parameter models result in implied para meter estimates 
that are more stable, and the models earn larger and more consistent profits 
from their perceived mispricings. Amin and Morton conclude that the model 
with constant volatility (the absolute model) seems to be preferable among 
the one~parameter models.1 

In light of these findings, we test two one-factor HJM models, a one­
parameter and a two-parameter model. The one-parameter model we choose 
for our investigation is the one with constant volatility, which is in fact the 
continuous-time version of the Ho and Lee model. The two-parameter model 
is the one with linear proportional volatility. 

One-faetor spot-rate models start with a specification of the process of the 
short rate, r. In line with studies for other markets, we find that an increase 
(decrease) in short rates is more likely than a decrease (increase) if the 
values of the rates are historically low (high). Additionally, large interest­
rate movements take place in periods of high interest rates, and moderate 

1 Arnin and Morton (1994) test the HJM models using Eurodollar futures and options. Some 
of their resulta might stem from the short maturity of the options considered. 
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movements are observed in low-rate periods.2 Therefore, we use the standard 
model for the short rate, a mean-reverting process with an instantaneous vol­
atility shown as ur'. Contrary to the results ofChan et aI. (1992), who report 
a value of 1.5 for the exponent E, we find values between 0.5 and 1.3 These es­
timates result in a unique solution of the stochastic differential equation of r. 

A.2. 1loo·Factor Models 

For a two-faetor forward-rate model, two volatility functions-one for each 
factor-must be specified. We consider two different structural specifica­
tions. In the first case, we assume that both volatility functions are inde­
pendent of the forward rate's leveI. In the second case, the two volatility 
functions are proportional to the forward rates. We empirically determine 
the precise functional form ofthe volatility funetions in both two-factor mod­
eIs from principal component analyses. 

Our choice of the state variables for the two two-faetor spot-rate models 
we investigate is motivated by two empirical findings. First, principal com­
ponent analyses in combination with regression analyses reveal that the 
first component can be identified with the leveI of the yield curvei the sec­
ond is closely related to the spread between the long and the short rate.4 We 
take these findings as a guideline for the construction of our first two-factor 
model, which uses both a long rate and the spread between the aRme long 
rate and the short rate as faetors. The basic idea for this line of approach 
goes back to Brennan and Schwartz (1979) and Schaefer and Schwartz (1984). 

The second two-factor model is based on the observation that the short­
rate volatility exhibits typical volatility clusterings. Therefore, a model with 
stochastic volatility of the short rate could be an appropriate description of 
the data. This model representa a generalization ofthe Longstaffand Schwartz 
(1992) approach. 

Both two-faetor spot-rate models are special cases ofthe affine class ofterm 
strueture models. (See Duffie and Kan (1996), pp. 383-391.) Although they are 
mathematically equivalent, empirically, they can behave very differently. 

B. Review of the Models and Basic Implementation Steps 

B.l. The Forward-Rate Models 

Here, we briefly review the HJM approach and the concrete implementa­
tion realized in this study. Rather than discussing the approach in general 
terms, we concentra te on the simplest derivation for the forward-rate mod­
eIs that we use in our empirical investigation. 

2 See Chan et a!. (1992) for the U.S. market, Barone at a!. (1991) for the Italian market, and 
Walter (1996) for the German market .. 

3 See Uhrig and Walter (1996). The details of this estimation procedure are discussed later. 
• These results are also found for other markets. For example, see Litterman and Scheink· 

man (1991) for the U.S. market. Rebonato (1996) for the British market, and Bühler and Zim­
mermann (1996) for a recent study of the Swiss market. 
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Table I 

Forward-Rate Models under Consideration 
This table summarizes the parametric specification ofthe volatility functions. ,,(I,T,f) denotes 
the volatiJity function for the one-factor models. ",(I,T,f) and ".(I,T,f) represent the two vol­
atiJity functions for the two-faclor models. f denotes the instantaneous forward rate at date I for 
instantaneous borrowing or lending at date T (T '" I). (T, "o, and u, are positive parameters. 
",(I,T) and ".(I,T) are functions of I and T, which are to be empirically determined. In order 
to avoid an explosion of the forward-rate processes in finite time, the proportional volatiJity is 
capped by a large positive number M. 

Panel A. One-Factor Models 

u(I,T,f) = 'T 

,T(I,T,f) ; (uo + 'T,(T - l))min(f,M) 

",(I,T,f) = ",(I,T) 

".(I,T,f) ; ".(I,T) 

Panel B. 'l\yo-Faclor Models 

",(I,T,f) = ",(I,T)min«(,M) 
".(I,T,f) ; u.(I,T)min(f,M) 

Absolute I 

Linear proportional 

Absolute 11 

Proportional 11 

The fundamental building block of this approach is the whole instanta­
neous forward-rate curve. HJM start with a fixed number of unspecified 
factors that drive the dynamics of these forward rates: 5 

2 

df(t,T) = a(t,T,·) dt + L ui(t,T,f)dzi(t), (1) 
;=1 

where f(t, T) denotes the instantaneous forward interest rate at date t for 
borrowirig or lending at date T (T;;:: t), Zl(t) and Z2(t) denote independent 
one-dimensional Brownian motions, and a(t,T,') and ui(t,T,f) are the drift 
and the volatility coefficients of the forward rate of maturity T. As HJM 
show, when a number' of regularity conditions and a standard no-arbitrage 
condition are satisfied, then the drift of the forward rates under the risk­
neutral measure is uniquely determined by the volatility functions ui(t, T, f): 

2 fT 
a(t,T,') = i~ Ui(t,T,f) I ui(t,s,f)ds. (2) 

As we noted earlier, we focus on four specifications of this approach: two 
one-factor mo deIs and two two-factor models. The parametric specification 
of the volatility functions is shown in Table I. 

• In the following, we concentrate on two factors. In general, drift and volatilities can depend 
on the path of the forward-rate curve. See Heath et aI. (1992), p. 80. 

Comparison of Models for Vallling lnterest-Rate Options 275 

The first step in implementing any particular valuation model for interest­
rate derivatives is to estimate the current yield curve, which is used in the 
forward-rate models in the form of the current forward-rate curve f(O,T). 
We discuss the term structure estimation procedure in detail in Section IH. 

In the second step, we estimate the volatility parameters. As discussed ear­
lier, we estimate these parameters from time-series observations of forward 
rates. We obtain the volatility parameters of the two one-factor models di­
rectly from forward-rate changes and relative forward-rate changes, respectively. 

By means of principal component analyses, we determine the volatilities 
of the forward rates f(t,T) in the two-factor models by the faetor loadings 
and the volatilities of the two independent faetors. 

In the third step, we compute the option prices. In this step, we discretize 
equation (1) under the risk-neutral measure by building a binomial tree model. 
This tree is nonrecombining for the Linear Proportional and the Proportional 
H forward-rate models. Supporting the findings of Amin and Morton (1994), 
we find that seven time steps are sufficient to achieve accurate option prices. 
A seven-step binomial nonrecombining tree contains 254 (128 final) nodes for 
the one-faetor models and 3,279 (2,187 final) nodes for the two-faetor models. 
As usual, in the backward induction procedure we consider the premature ex­
ercise feature of American options, taking at each node the maximum of the 
intrinsic value and the value of the option if not exercised. 

B.2. The Spot-Rate Models 

Unlike the forward-rate models that define the stochastic behavior of the 
term strueture relative to the observable current term structure, spot-rate 
models must be adapted to the current interest rates and volatilities. Fol­
lowing a suggestion made by Cox et aI. (1985), we achieve this adaptation 
through time-dependent parameters of the stochastic faetor processes. These 
time-dependent parameters are determined in such a way that both the en­
dogenous term and volatility struetures fit with the observable one. In prin­
cipIe, this requires an inversion of the valuation formula. 

In our approach, we base the inversion of the spot-rate models on the 
fundamental valuation equation for derivatives as derived in the general 
equilibrium setting by Cox et aI. (1985).6 If the value of a derivative with 
payofT at time Tis a sufficiently smooth funetion F(Xlox2' t,T) of time and 
two independent difTusion processes Xl' X2 with drift and difTusion functions 
lLi(Xi,t), Ui(Xi,t), i = 1,2, then F satisfies the following partial difTerential 
equation in the no-exerci se region: 

F, + Fx,[ILI - 0 l ud + Fx.[1L2 - 02U2] + Fx,xJuf + FX2X2~ui = rF, (3) 

6 See Cox et aI. (1985), p. 388. For an exposition of the Hull and White approach, refer to 
Hull and White (1990). A discrete variant is described in Hull and White (1993). For a presen­
tation ofthe inversion problem in the framework of equivalent martingales, see Schmidt (1994), 
p. 15. 
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where r represents the instantaneous risk-free rate, and 0 1(xI>x2,t) and 
O2(Xl,X2' t) are the market prices of risk for the two factors, It foIlows 
from no-arbitrage arguments that 0 1 and O2 are real-valued functions of 
only the state variables and time. The subscripts of F denote partial de­
rivatives. We obtain the values for contingent claims by solving this para­
bolic partial differential equation subject to appropriate initial and boundary 
conditions. 

In this study, we derive the three spot-rate models tested from equa­
tion (3) by specifying the nature of the stochastic processes driving the fac­
tors, the functional form ofthe market prices ofrisk, and the relation between 
the factors and the instantaneous spot rate, r. Table 11 summarizes the as­
sumptions underlying the one-factor model and the models with two factors. 

8.2.1. One-Factor Spot-Rate Model. The first model is a one-factor interest­
rate model, in which we assume that the dynamics ofthe short-term interest 
rate r(t) exhibit mean-reversion and that the diffusion coefficient depends 
on the leveI of the short rate. K, 'Y, u, and € are positive constants. 

The basic idea behind HuIl and White's (1990) procedure is to allow for 
time-dependent parameters in the risk-neutralized process of r, in order to 
match the solution of equation (3), in the case of zero bonds, to an exog­
enously given term structure of zero bond prices. If the elasticity para meter 
€ is positive, this calibration must be carried out numerically. Generally, any 
of the parameters can be selected as a time-dependent function. However, 
for several economic and technical reasons, we select the market price of 
risk as a time-dependent function.7 In principIe, if a second parameter is 
assumed to depend on time, the model can aIs o be fitted to an exogenously 
given current volatility structure. However, this procedure has an important 
drawback: this second time-dependent parameter results in unstable and 
partially unrealistic future endogenous volatility structures. (HuIl and White 
(1993, 1996) report similar results.) 

In light of these findings, we do not calibrate the model to the whole cur­
rent volatility structure with a second time-dependent para meter. Instead, 
we fit only two points of the endogenous volatility structure to the observ­
able one, the volatilities of the short and the long rates. Volatilities of in­
termediate rates are interpolated by the model. 

The advantage of this parsimonious fitting procedure is that the model 
results in stable future volatility structures. Technically, we achieve the two­
point calibration of the model to the current volatility structure by the (con­
stant) mean-reversion parameter K, which determines the transmission of 
the instantaneous interest rate's volatility to the volatilities of long rates (cf. 
Uhrig and Walter (1996), pp. 87-88). 

7 The argumenta refer to the economic interpretation ofthe calibration process, the exiatence 
of a aolution for the fitting function, the conaequences for the endogenous volatility atructure, 
and the relation between riak-adjusted and original measure, Cf. "eath et aI. (1992), pp.96-97, 
and Uhrig and Walter (1996), pp. 84-85. 
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The model's implementation requires four steps. First, we determine the 
current yield curve of zero bonds from prices of coupon bonds. Second, we 
use an Euler-discretization to estima te the drift and volatility parameters of 
the short-rate processo We obtain the maximum Iikelihood estimates from 
time-series observations of the one-month money market rate. Third, we 
achieve the fitting to the current yield curve and to the volatility of the long 
rate with maturity T = 9 years by using a numerical algorithm that simul­
taneously determines the time-dependent function A(t) and the parameter K. 

This requires the solution of the partial differential equation (3) with one 
state variable XI = r under the foUowing conditions: 

i. maturity condition for zero bonds: F(r,T,T) '" 1 

iL fitting condition for endogenous zero bond prices to observed prices 
i'(T) conditional on the current instantaneous rate, r(O): 

F(r(O),O,T) = i'(T) (O<TsT) (4) 

iii. fitting condition for the volatility of the long rate: 

1 Fr(r(O),O,T) A 

-- = V. 
T F(r(O),O, T) 

(5) 

The left-hand side of equation (5) represents the ratio ofthe endogenous yield 
volatility of a zero bond with maturity T and the short-rate volatility ur(O)<. 

The right-hand side denotes the ratio ofthe historical observed volatility ofthe 
zero bond yield with maturity T and the short-rate volatility. We use the in­
verted implicit finite difference method introduced by Uhrig and Walter (1996) 
to solve equations (3)-(5).8 In the fourth and final step, we determine the val­
ues ofthe interest-rate warrants by solving equation (3) together with the ap­
propriate boundary conditions for caUs and puts by a fully implicit Crank­
Nicholson method. We use a time step t:.t of one day for the time variable and 
a grid size of 1/30 for the transformed state variable z = 1/(1 + r/r(O». This 
change.ofthe state variable, proposed by Brennan and Schwartz (1979), has 
the advantage that the original state space [0,00) is transformed into the bounded 
interval [0,1], and that the boundary conditions are easier to handle. For z = O 
(r = 00) we use the fact that the values ofbonds and European options are zero, 
and for z = 1 (r = O) we exploit numericaUy the special structure of the trans­
formed partial differential equation (3). We take into account the early exer­
cise possibilities for American options in the recursive backward procedure. 

B.2.2. 1Wo-Factor Model with Long Rate and Spread. The choice of the 
state variables in the second model is motivated by the findings in our data 
analysis process, and by the fact that the correlation among the changes of 

8 Hull and White (1993) solve equations (3)-(5) on the basis of a trinomial tree, This method 
can be considered as an explicit scheme. Cf. Brennan and Schwartz (1978), p. 464. 
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these two faetors is less than 0.23. These empirical observations suggest 
that a two-factor model that uses a long-term rate l and the spread s be­
tween the long-term rate I and the short-term rate r as independent sto­
chastic factors can plausibly describe the yield curve dynamics. 

An examination of the time-series behavior of long rates in the German 
bond market reveals that there is only a slight mean-reversion tendency in 
long rates. The maximum Iikelihood estimate of the discrete version of the 
process di = K/(n - l)dt + u/I<'dz l for the mean-reversion parameter K/ is 
not significantIy different from zero on the 1 percent levei. As a proxy for the 
long rate, we use the yield to maturity of a nine-year zero bond. 

To exdude, additionally, negative long rates I and to keep the model ana­
lyticaUy tractable, we mo dei the long rate as a martingale with a square root 
representation ul.Jl of the diffusion coetricient.9 The spread process is as­
sumed to foUow an Ornstein-Uhlenbeck process, in line with the observation 
that this process can take on both positive and negative values. The param­
eters UI, 1'., and u. are positive and constant. 

We calibra te the model to the current term structure of interest rates by 
means of a time-dependent market price of spread risk. Because of the sep­
arability of variables and the choice of an Ornstein-Uhlenbeck process for 
the spread, we can solve this problem analyticaUy. Moreover, this spread 
process ensures that the endogenous term structure of interest rates can be 
adapted to every observed one. This is not generaUy true for two-faetor mod­
eis, which use nonnegative state variables. 

We use the market price of long-term interest-rate risk to overcome a 
problem that is typical for two-faetor models in which both faetors are in­
terest rates (see also Dutrie and Kan (1996), p. 383). The state variable I is 
labeled "Iong rate," but it does not have this property, since the price of a 
zero bond depends on both state variables s and I. Therefore, a zero bond 
with a maturity corresponding to I has a yield to maturity that does not rely 
only on I. This internai inconsistency can be considerably reduced by an 
appropriate choice of the market price of risk 81 of the long rate. 1O 

Again, the implementation of the model consists of four steps. The first 
step coincides with the first step of the one-factor mode!. The second step is 
reduced to an estimation of the two volatilities of the long rate and the 
spread. These two parameters also reflect the information about the vola­
tility strueture. In the third step, the endogenous zero bond prices are an­
alytically fitted to the observed prices by exploiting the separability of the 
solution F(l,s, t,T) = G(l, t,T)H(s, t, T). FinalIy, we compute the option val­
ues by means of the alternating direction implicit method.11 

9 However, this modeling has the drawback that for this process, I = O is an absorbing 
barrier. 

10 91 is chosen such that -(1/T)ln(F(I,8,t,t + T) = I holds for the specific time-to-maturity 
of T = 10 years. 

11 In contrast to the valuation of zero coupon bonds within the two-factor models, the valu­
ation of options on coupon bonds makes it necessary to solve a partial difTerential equation in 
two state variables, beca use the terminal condition cannot be separated. 

I' 
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The grid sizes for the time and state variables are fixed identically to that 
of the one-factor mode!. Because the state variable s can take on both pos­
itive and nega tive values, we choose a special treatment. In the numerical 
procedure, we restrict this state variable on the interval (-00,1 (O)]. We choose 
the upper boundary 1(0) to ensure nonnegative short rates for the current 
leveI of I. By an appropriate change of the state variable, we transform the 
originalstate space (- 00,/(0)] into the state space [0,1]. For s = -00, we use 
the fact that the values of bonds and European options are zero. For s = [(O) 
we impose a boundary condition, setting the second derivative F •• equal to 
zero. 

B.2.3. 1lvo-Factor Model with the Short Rate and Its Volatility. From our 
data analysis step, we know that the short rates exhibit volatility c1usters. 
This behavior can be modeled approximately by stochastic volatility. Since 
interest-rate volatility is a key variable in option pricing, a promising ap­
proach might be to add to the one-factor model the leveI of interest-rate 
volatility as a second state variable. 

The resulting model represents a generalized version of the general equi­
Iibrium model proposed by Longstaff and Schwartz (1992). Longstaff and 
Schwartz base their model on assumptions about the stochastic evolution 
of two abstract independent factors x and y, described in Table li, in which 
Kx, Yx' u x' Ky, yy' and uy are (positive) parameters. The short-term rate r 
and its instantaneous variance Vare determined endogenously as part of 
the equilibrium: 

r=x+y 

V=u;x+u;y. 

(6) 

(7) 

Using this system of linear equations, we can represent the fundamental 
valuation equation (3) for interest-rate derivatives in terms of the observ­
able state variables r and V. 

1b achieve consistency with the current term structure, we generalize the 
model by allowing for a time-dependent risk parameter. Because of the sep­
arability of the partial differential equation in the state variables x and y, 
we can reduce the adaptation ofthe endogenous to the exogenous term struc­
ture of interest rates to the adaptation problem within the one-factor Cox 
et aI. (1985) model. 

Again, the implementation procedure requires four steps. As in the other 
models, the first step involves the estimation of the current term structure 
of interest rates. Compared with the other two spot-rate models, the esti­
mation of the parameters in the second step is more complex, beca use the 
volatility of the short-term rate is not directly observable. Following Long­
staff and Schwartz (1993), we use a two-phase approach. In the first phase, 
we estimate the volatility of the short-term rate by using a generalized auto­
regressive conditional heteroskedastic (GARCH) model. In the second phase, 
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we estima te the parameters describing the movement of the short-term in­
terest rate and its volatility. 1b estimate these parameters, we equate the 
first two moments of the long-run stationary unconditional distribution of r 
and V with their historical counterparts. 

In addition to these four equations, we obtain two further conditions by 
choosing the volatility parameters u; and u; as the minimum and the max­
imum of the ratio V(t)/r(t), respectively. By using these six conditions, we 
calculate the six parameters of the model by solving a nonlinear system of 
six equations. 

The calibration of the model to the current term structure in the third step 
follows the same procedure as the one-factor mode!. Again, we apply ~he 
inverted implicit difference method. The computation of the option prices in 
the fourth step is comparable to the procedure in the other two-factor spot­
rate model. 

11. The German Fixed·Income Market 

The German bond market is the third largest in the world. At year-end 
1995, the nominal value of outstanding publicly issued bonds totaled more 
than three trillion deutsch marks (DM). 

Traditionally, the bank bond sector is the largest component. However, 
bonds issued by the federal government are the most Iiquid. Typically, so­
called Bundesanleihen (BUNDs) are issued with an initial maturity of ten 
years and Bundesobligationen (BOBLs) with an initial maturity offive years. 
BUNDs are termed as long term, and BOBLs as medium termo Various 
interest-rate derivatives have been launched in the last seven years, ofwhich 
the BUND-Future (futures on ten-year government bonds) at the Deutsche 
TerminbOrse is the most popular. 

Three types ofinterest-rate options trade in Germany: options on the BUND­
Future and on the BOBL-Future (futures on five-year government bonds), 
interest-rate warrants, and over-the-counter (OTC) interest-rate options of 
ali types. 

Because the market for options on futures is not particularly Iiquid and 
sufficient1y long-term time-series data are not available for OTC-options, 
our empirical study is based on the valuation of interest-rate warrants. Un­
derlying these warrants are German government bonds. Most of them are 
the American type, with maturities of up to three years. Therefore, they 
represent a more diverse sample than would standardized options traded at 
options exchanges. 

A. Government Bonds 

Most German government bond issues are straight bonds with a fixed 
coupon size and one coupon payment per year. These bonds build a homo­
geneous market segment in bankruptcy risk, Iiquidity, and taxes. A subsam­
pIe of these bonds represents the underlyings of the interest-rate warrants 
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considered in our study. In the period from 1990 to 1993, the coupons of 
these bonds varied between 5 percent and 10.75 percent. The initial matu­
rity of these bonds was between five and ten years. This maturity structure 
implies that the longest maturity of actively traded BUNDs lies between 
nine and ten years. Th avoid an extrapolation of the term structure of inter­
est rates beyond the maturity of traded bonds, the long rate is defined as the 
nine-year rate. 

BUNDs and BOBLs are listed at each of the eight exchanges in Germany. 
At every exchange, trading is organized as a call-auction market with a sin­
gle market-clearing price at noon each day. This auction price is set so that 
the turnover is maximized. A small subsample of the government bonds also 
trades in continuous auctions at the Frankfurt Stock Exchange, and on 
XETRA, the computerized trading system. The bond prices used in our study 
come from the daily noon auction process carried out at the Frankfurt Stock 
Exchange, which is the largest in Germany. The data are available from the 
German FinanciaI Data Base Mannheim/Karlsruhe.12 

B. Interest-Rate Warrants 

German interest-rate warrants began trading at the end of 1989_ These 
instruments are issued by banks and, as in the bond market, exchange trad­
ing takes place in daily noon auctions, with one single market-clearing price 
each day. In this study, we use all call and put options listed in the two 
market segments, Amtlicher Handel and Geregelter Markt, of the Frankfurt 
Stock Exchange. The sample period covers the period from January 1990 
through November 1993_ During this period, nineteen different calls and 
fourteen different puts traded on thirteen different German government bonds. 
Ten of the thirteen underlying bonds were BUNDs, the remaining three 
were BOBLs. 

During the sample period, the time-to-maturity of the bonds ranged from 
6.9 to 9.1 years for the long-term bonds, and from 3.4 to 3.8 years for the 
medium-term bonds. The average time-to-maturity for the options was 0.85 
years, with a maximum of 2.91 years. With the exception of three European 
interest-rate warrants, the options under consideration were American-type 
options. We use weekly observations. The total number of option prices we 
collected amounts to 1,751. A detailed description of the interest-rate war­
rants' terms, including the average number of daily trades and the average 
daily turnover, appears in Table AI in the Appendix. 

C. Money Market Rates 

Bid and offer rates in the German money market are available for one day, 
as well as one month, and two, three, six, twelve, and twenty-four months. 
Because the daily rate fluctuates strongly and the leveI and changes of this 

I' This database was established under the Empirical Capital Market Research Program, 
which ia supported by the German National Science Foundation. 
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rate are only loosely related to other short-, medium-, and long-term rates, the 
daily rate cannot reasonably be used to explain the evolution ofthe whole term 
structure ofinterest rates. However, these restrictions do not hold to the same 
extent for the second shortest rate, the monthly rate. This rate is therefore se­
lected as "the short rate" for the empirical part ofour study.ia In addition, we 
use German money market rates with a time-to-maturity ofup to six months 
to support the yield curve estimation for short maturities. 

UI. Design of the Study and Estimation Results 

A. Methodology 

The quality of different valuation mo deis can be assessed by at least two 
well-known methodologies. The first compares out-of-sample differences be­
tween model and market prices; the second checks whether observed differ­
ences can be exploited by a dynamic replication strategy. 

In this study, we apply the first strategy. The reason for this is that our 
test is not directed toward the efficiellcy of the German market for interest­
rate warrants or toward the applicability of the models considered in a trad­
ing environment. Instead, we address the problem ofwhich ofthe models are 
best suited to measure the exposure to interest-rate risk. This goal of the 
study, together with additional arguments elaborated earlier, results in our 
decision to estimate the parameters of the stochastic factors from time se­
ries. As the valuation quality of the different mo deis is unavoidably assessed 
together with the estimation procedure of the input data, we use the same 
raw data and the same statistical methodology throughout: 

L For alI models, we base the estimation of the term structures of inter­
est rates on an identical set of German government bonds. The for­
ward rates for the HJM models are determined from these term 
structures. 

iL We estimate alI time-independent parameters of the models by the 
maximum likelihood method. 

iii. Concerning the length of the historical time series, we distinguish be­
tween structural and volatility parameters. We estimate the structural 
parameters (those parameters that are relevant for the basic structure 
of the model) by using an estimation period of at least 20 years. The vol­
atility parameters must reflect the current market information. There­
fore, we estimate them by using only observations of the previous nine 
to twelve months. Figure 1 illustrates this procedure. 

13 Pearson and Sun (1994), p. 1285, point out that the identification of the instantaneous 
rate r with the one-month money market rate introduces measurement errora because the 
instantaneous interost rate does not depend on the market prices of risk, but the one-month 
rate does. Thia cITeet eould be avoided by using state variables that ean be observed. Since, 
contrary to the study of Pearson and Sun, we fit the model to the current term structure, we 
avoid this error, The choice of the one-month rate does, however, afTect the volatility estimates, 

l b ~, . 
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Figure 1. Deaign of the atudy. This figure shows the basic design of our study. The valuation 
period from January 5, 1990, through November 16, 1993, consists of 204 weeks. One day 
(Friday) is taken from each of these weeks as a valuation day. For each of these valuation days, 
we carry out the following steps for each of the seven models: (i) estimation of the current term 
structure of interest rates, (ii) estimation of the structural and volatility parameters, (iii) cal· 
ibration of the spot·rate models to the current term and volatility structures of interest rates, 
and (iv) valuation of a\l interest·rate warrants traded on the current day. Concerning the length 
of the historical time series, we distinguish between structural and volatility parameters. We 
estimate the structural parameters (those parameters that are relevant for the basic structure 
of the model) by using an estimation period of at least twenty years. The volatility parameters 
must reflect the current market inforDÍation. Therefore, we estimate them by using observa· 
tions of the previous nine to twelve months. 

The valuation period from January 5, 1990, through November 16, 1993, 
consists of204 weeks. One day (Friday) is taken from each ofthese weeks as 
a valuation day. For each of these valuation days, we carry out the folIowing 
steps for each of the seven models: 

1. estimation of the current term structure of interest rates 
2. estimation of the structural and volatility parameters 
3. calibration of the spot-rate models to the current term and volatility 

structures of interest rates 
4. valuation of alI interest-rate warrants traded on the current day. 

B. Estimation of the Current Thrm Structure af Interest Rates 

We estimate the term structure of interest rates from the homogeneous 
market segment of government bonds. Since the German government does 
not issue zero coupon bonds, and a stripping possibility comparable to the 
U.S. STRIPS program did not exist in Germany until July 1997, the term 
structure of interest rates can only be determined from traded coupon bonds. 
1b estimate the current term structure ofinterest rates, we use alI the straight 
bonds issued by the German government that have a time-to-maturity from 
six months to ten years. We exclude bonds with a maturity less than six 
months, beca use this market segment has a lower Iiquidity and its transac­
tion costs influence short-term yields more than long-term yields. Instead, 
we construct synthetic short-term bonds to reflect the prevailing money mar­
ket rates. 
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Table 111 

Summary Statistics of the Estimation Quality 
of Term Structures of Interest Rates 

This table shows summary statistics ofthe deviations between the theoretical and market bond 
prices. The sample period is January 1990 to November 1993. The observations are weekly. The 
deviations are measured in DM per DM 100 nominal value . 

Time Period 1990-1993 1990 1991 1992 1993 

Valuation days 204 52 52 52 48 
Total number of observations 20308 5392 5310 5052 4554 
Average number of bonds per 

valuation day 99.55 103.69 102.12 97.15 94.88 
Mean absolute deviation 0.1477 0.1330 0.1556 0.1854 0.1138 
Standard deviation of absolute 

deviations 0.1658 0.1409 0.1862 0.1900 0.1252 

The estimation procedure for the term structure of interest rates affects 
the valuation of interest-rate options in two important ways: First, we value 
the bond underlying the option using the term structure of interest rates. 
Second, in models of the HJM type, we estimate the volatility of the forward 
rates from a time series of the term structures of interest rates. In the spot­
rate models, the estimated term structure directly affects the time-dependent 
market price ofrisk A(t). 

These two effects result in different requirements on the term strueture es­
ti mates that are not in line with each other: The first effect leads to the rec­
ommendation to implement an estimation procedure that minimizes the 
deviations between observed and theoretical prices ofthe underlyings. The rea­
son behind this is that deviations are directly transferred to differences be­
tween the observed and theoretical option values. Consequently, these differences 
should not be attributed to the valuation modeI. However, such an estimation 
fulIy transfers noise of coupon bond data to the term strueture ofinterest rates, 
the noise in which results in irregular time-dependent market prices ofrisk in 
the spot-rate models and leads to unreasonably high volatility estimates offor­
ward rates. In both cases, the ex ante predictability of the valuation models 
turns out to be very low. Therefore, a balance between accuracy and smooth­
ness of the term structure of interest rates must be determined. 

We achieve this compromise in two steps. In the first step, for every cash 
flow date of one of the bonds in the sample, we determine a discount faetor 
by using a quadra ti c linear programming approach. This results in discrete 
term structure estimates with the highest possible accuracy in explaining 
Qbserved bond prices. In the second step, we smooth out this discrete term 
structure by using cubic splines with ten nodes. This smoothing procedure 
increases the mean absolute deviation in the sample period from DM 0.071 
to DM 0.148 per DM 100 nominal value. Table 111 shows some summary 
statistics of the deviations between the theoretical and the market prices of 
the bonds. 

!.. • 4 _ ... -.. ---- _.--
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C. Para meter Estimates 

Due to four complications, parameter estimates across models are not di­
rectly comparable. First, we use different faetors (forward rates, spot rates, 
volatility) as basic variables. Second, even if we concentrate on models with 
the aRme factors, drift and volatility funetions differ in formo Third, the 
number of different parameters that we need to estimate varies substan­
tially across models. The one-factor forward-rate model with absolute vola­
tility requires the estimation of one single parameter. In contrast, six 
parameters must be estimated for the spot-rate model with stochastic vola­
tility. The fourth complication is that ali forward-rate modeIs and the two­
faetor spot-rate modeI with Iong rate and spread as factors have only volatility 
parameters, but the two remaing spot-rate models depend on both strueturaI 
and volatility parameters.14 

C.I. Estimation of Structural Parameters 

In the one-factor spot-rate modeI, we interpret two parameters, the Iong­
term mean 'Y and the elasticity para meter €, as struetural parameters. We 
estima te these parameters by using the discrete process obtained by apply­
ing the Euler scheme. We calculate both parameters for each valuation day 
from the time series of the one-month money market rates, starting in Jan­
uary 1970 and running up to (but excluding) the current valuation day.'5 
The maximum likelihood estimates of'Y vary between 0.062 and 0.067 and 
those of € between 0.77 and 0.90. 

The stationary mean 'Y. of the spread process is the only candidate for 
classification as a structuraI parameter in the two-factor spot-rate model 
with long rate and spread. However, there is no need to estimate this pa­
rameter separately in the risk-neutral process, beca use it appears only in 
combination with the market price of spread risk. Since we use the latter 
parameter to calibrate the model to the initial term strueture of interest 
rates, we can use an arbitrary value for 'Y •• 

The first requirement for a historical parameter estimation for the two­
faetor spot-rate model with stochastic volatility is a time series ofvolatilities 
of the short rate. The relation between the short-term interest rate and its 
volatility is interpreted as a structuraI link and is described as in Longstaff 
and Schwartz (1992) by the following GARCH modeI: 

rI - rI-I = bo + b1rl_1 + b2V, + €I' 

€I - N(O, V,), and 

v, = ao + alrl_1 + a2V,-1 + a3€1-1' 

(8) 

(9) 

(lO) 

" The reason some modela do not comprise structural parameters is that they are not for­
mulated in the most general formo So, in developing these models, we have used the available 
degrees of freedom to give these models more structure. 

I. Contrary to the U.S. time series of interest rates, we have no evidence of structural shirts 
in the time series of interest rates aI the end of lhe 1970s in Germany. 
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where biJi = 0, ___ ,2 and ai'} = 0, ... ,3 denote the parameters ofthe GARCH 
model. The maximum likelihood estimates of this GARCH model for weekly 
observations of one-month money market rates from January 1970 to De­
cember 1989 appear in Table AlI in the Appendix. We use the estimated 
GARCH model (8)-(10) to determine the volatility of the short rate for each 
valuation day from January 1990 to November 1993.16 The second set of 
structural parameters in the two-factor model are the first two moments, 
E(r 00) and Var(r 00)' of the long-run stationary unconditional distribution of 
the short rate. As with the structural parameters in the one-factor model, we 
obtain the two moments from weekly observations of one-month money mar­
ket rates from January 1970 up to (but not including) the current valuation 
day. The estimates for the first moment E(r 00) vary between 0.064 and 0.068. 
The estimates for the variance Var(r 00) are close to 0.0007 for the entire 
valuation period. 

C.2. Estimation of Volatility Parameters 

The second type of parameters are related to interest-rate volatilities. Em­
pirical results for a wide variety of markets show that volatilities vary sig­
nificantly over time. Thus, we estima te the volatility parameters from short 
time series with a lengths of nine to twelve months. 

As we have noted for the HJM models, only volatility parameters need to 
be estimated. We base ali estimates on time series of weekly changes in 
instantaneous forward rates f(t,T) with a fixed maturity date T. The time 
series covers a period of nine months. For the one-factor models, we use 
these forward-rate changes f(t,T) - f(t - tlt, T) directly to estimate the 
volatility parameters u and Uo, UI' respectively. For the two-factor models, 
on every valuation date t, we conduct a principal component analysis to 
extract the first two principal components (factors) that explain the co­
movement of the forward-rate changes. The volatilities of these two faetors 
and the corresponding faetor loadings determine the two required volatility 
funetions (TI(t,T) and u2(t,T) of Table I. We summarize the results of the 
parameter estimation for the HJM modeIs in Table AIII in the Appendix. 

The spot-rate modeIs require the estimation of widely differing volatility 
parameters. Therefore, we give a brief description of the estimation proce­
dure and the obtained results for each of the modeIs. For the one-factor 
modeI, we need the volatility U ofthe short-rate process and the volatility of 
a long-rate processo As described earlier, we use the Iatter estimate to de­
termine implicitly the mean-reversion para meter K so that the endogenous 
volatility of the Iong rate equals the estimated volatility. As a by-product, 
this implicit estimation of K allows us to cope with the problem that the 
maximum likelihood estimates of K prove to be considerably upward biased. 
We estimate the two volatility parameters from changes of the one-month 
money market rates and the nine-year zero bond yields derived from the 

I. For a detailed description of the estimation procedure and the parameter estimates, their 
standard errors, and the log likelihood function value for the GARCH model, see Uhrig (1996). 
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term structures of interest rates, respectively. Again, for each valuation day, 
we base our estimates on the weekly observations ofthe previous nine months. 
Panel A of Table AIV in the Appendix presents summary statistics for the 
two parameters. 

The two-factor mo deI with the long-term rate and spread requires the vol­
atilities of these two factors. Once again, we determine the parameters from 
the weekly changes of the nine-year yield as welI as the changes of the 
spread, using observations of the nine months preceding the valuation day. 
We summarize the estimates in Panel B, Table AIV, in the Appendix. 

For the two-factor model with stochastic volatility, we need to estimate the 
first two moments of the volatility's long-run stationary unconditional dis­
tribution, E(Voo) and Var(Voo )' and the maximum and minimum values for 
the ratio V(t)/r(t). We determine these four parameters from the weekly 
changes of estimated volatilities and the weekly changes of the one-month 
money market rate, based on our observations of the preceding twelve months. 
The summary statistics of these results appear in Panel C, Table AIV, in the 
Appendix. We use these results and the estimates of the struetural param­
eters E(roo ), Var(roo) to obtain the six parameters, Kx, 'rx' Ux ' Ky, 'ry ' and uy ' 

that describe the dynamics of the two unspecified factors, x and y. As in 
Longstaff and Schwartz (1993), we compute the parameters from the non­
linear system of equations represented in Table AIV in the Appendix. 
Panel C, Table AIV, in the Appendix also displays the estimated values for 
these six parameters. 

The volatility estimates we obtain for the seven models are not directIy com­
parable. To facilitate the comparison ofthe results across models, we compute 
the volatilities for two selected rates from these estimates. More precisely, for 
the forward-rate models, we determine the implied instantaneous standard de­
viation of changes in instantaneous spot rates f(t, t), and also in instanta­
neous forward rates f(t, t + 9) that mature nine years from the current day. 
Accordingly, for the spot-rate models, we compute the instantaneous standard 
deviation of changes in instantaneous spot rates r{t) as welI as in the instan­
taneous nine-year zero yields r(9) implied by the models. 

To compute these' volatilities for the forward-rate one-faetor models, we 
only need the estimated volatility parameters and, for the linear propor­
tional model, the forward rates f(t, t) and f(t, t + 9) for each day. For the 
two-factor forward-rate models, we also require the corresponding faetor 
loadings. 

The computation of the long rate's volatilities is much more cumbersome 
for those two spot-rate models in which I is not a faetor of the model. The 
models' endogenous volatility depends, in general, not only on the constant 
parameters of the models and the current value of the nine-year yield, but 
also on the time-dependent market price of risk, which itself is influenced 
through the calibration process by the entire term structure of interest rates 
on the day under consideration. 

In Tables IV and V we report the estimation results for the spot-rate and 
forward-rate models, respectively. Before discussing the results, we point 
out that the estimates for the nine-year forward-rate volatilities reported in 
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TableIV 

Estimated (Absolute) Volatilities of the Spot 
and Nine-Year Forward Rate for the Forward-Rate Models 

This table presents the estimated (absolute) volatiJities of the spot and nine·year forward rate 
for the forward-rate models. Absolute I is the one-factor model with constant volatility. Linear 
proportional denotes the one-factor model with linear proportional volatility. Absolute 11 is the 
two-factor model in which both volatility functions are independent of the levei of the forward 
rate. In the two-factor model Proportional lI, both volatility functions are proportional to the 
leveI of the forward rate. The parameters ",po, and ". are the (absolute) volatilities of the 
instantaneous spot rate r(t) = ((t,t) and the instantaneous nine-year forward rate ((t,t + 9) 
implied by the different models. Ir multiplied by 100, they represent volatilities in percent p.a. 
The parameters are estimated for 204 Fridays within the valuation period from January 5, 
1990, through November 16, 1993. 

Model Volatilities Mean Minimum Maximum Standard Deviation 

Absolute I u.pot 0.0128 0.0097 0.0159 0.0017 

". 0.0128 0.0097 0.0159 0.0017 
Ug/utlPot 1 O 

Linear proportional aspa' 0.0093 0.0047 0.0160 0.0026 

". 0.0174 0.0110 0.0278 0.0032 
Ug/utlPuI 2.0341 0.9110 4.1094 0.7133 

Absolute 11 u spot 0.0055 0.0010 0.0156 0.0033 

". 0.0116 0.0059 0.0232 0.0051 
"glu.pal 2.9870 0.4181 9.9396 2.1322 

Proportional 11 u spot 0.0061 0.0013 0.0176 0.0037 

". 0.0105 0.0052 0.0247 0.0050 
Ug/utJpot 2.5168 0.3081 8.9511 1.8922 

Table IV are not comparable to the estimates for the nine-year zero-rate 
volatilities of Table V. The nine-year forward-rate volatility refers to an in­
stantaneous forward rate maturing nine years from the current day. The 
latter refers to a rate for a period that is nine years long. Only the instan­
taneous volatility of the spot rate r(t) = f(t, t) is comparable across alI models. 

If u spot and Ug are multiplied by 100, we obtain the (absolute) volatilities 
in percentage per annum (p.a.). A division of uspot , as estimated for the 
absolute model by an average short rate of 0.088 in the valuation period, 
results in an approximation for the mean relative volatility of about 15 per­
cent p.a. 

On average, the volatilities of the forward rates increase with maturity. 
The only exception is the absolute one-faetor model in which constant vola­
tilities are assumed. The (constant) volatility of this model is approximately 
equal to the arithmetic mean of u spot and Ug in the linear proportional mode!. 

AdditionalIy, we find that volatilities are very similar across the two­
faetor HJM models. In comparison to the one-factor models, both the mean 
volatility of the spot and the nine-year forward rate are lower. However, the 
standard deviations are higher for the two-factor models. This bias of the 
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Table V 

Estimated (Absolute) Volatilities of the Spot 
and Nine-Year Zero Bond Yield for the Spot-Rate Models 

This table presents the estimated (absolute) volatilities of the spot and nine-year zero bond 
yield for the spot-rate models. Short rate is the one-faetor model. Long rate and spread denotes 
the two-faetor model with the long rate and the spread as stoehastie faetors. The stoehastie 
volatility model is denoted as Short rate and volatility. The parameters ".pu' and ". are the 
absolute volatilities of the spot rate r(t) and the nine-year zero bond yield I implied by the 
different models. Ir multiplied by 100, they represent volatilities in pereent p.a. The parameters 
are estimated for 204 Fridays within the valuation period from January 5, 1990, through No­
vember 16, 1993. 

Standard 
Model Volatilities Mean Minimum Maximum Deviation 

Short rate tTapo' 0.0149 0.0090 0.0212 0.0031 

". 0.0103 0.0060 0.0190 0.0038 
CTg/Uspu1 0.6840 0.4236 1.0580 0.1450 

Long rate and spread fIapo1 0.0146 0.0094 0.0214 0.0032 

". 0.0075 0.0044 0.0130 0.0025 
ITO/t'Il/1ot 0.5028 0.3739 0.6354 0.0682 

Short rate and volatility uspor 0.0185 0.0127 0.0351 0.0038 

". 0.0090 0.0047 0.01l2 0.0013 
IT9/UsjJut 0.5112 0.1352 0.7288 0.1316 

estimates relative to the one-faetor models and the high variability of those 
estimates might be one reason for the surprising valuation results that we 
present in Section IV. 

Implied volatility funetions obtained from eap data often exhibit a humped 
volatility strueture (see, e.g., Amin and Morton (1994), p. 160, and Hull and 
White' (1996), p. 33). However, this strueture is not refleeted in historieal 
forward-rate ehanges. 1'0 the eontrary, we find that for the majority of vai­
uation days in our .researeh period, historieal volatilities of forward-rate 
ehanges inerease with maturity. One reason for this result could be that 
term struetures estimated by eubie spline teehniques result in highly vola­
tile long-term forward rates. Furthermore, we note that implied forward­
rate volatilities are typieally ealeulated using Blaek's (1976) mo deI. They 
therefore represent volatilities of relative forward-rate ehanges. 

The volatilities of the spot rates deerease with time-to-maturity for alI 
spot-rate models. On average, the volatility of the instantaneous spot rate is 
twice as high as the volatility of the nine-year rate. The volatilities for the 
short rate are very similar for the one-factor model and the two-faetor model 
with long rate and spread, even though they are determined very differently. 

The short-rate volatility is highest for the two-faetor model with stochastic 
volatility. This differenee ean be explained by the faet that for this model, 
the short-rate volatility is not a model parameter, but a state variable. The 
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realizations of this state variable are determined by a GARCH proeedure; 
the volatility estimates for the other two models are smoothed by taking an 
average of squared differenees in the time series of short rates. 

The endogenous volatility of the nine-year zero bond yield differs eonsid­
erably aeross the three models. The mean volatility of the nine-year rate in 
the generalized version of the Longstaff and Sehwartz (1992) model lies be­
tween the estimates of the other two models. This represents a positive re­
sult insofar as only the short-rate volatility is given exogenously and the 
modeI is not ealibrated to the eurrent volatility strueture. 

The differenees between the nine-year volatilities for the one-faetor model 
and the two-faetor model with the Iong rate and spread as faetors happen 
beca use we ehoose the mean-reversion parameter K in the one-faetor modeI 
so that the modeI-endogenous volatility strueture Ug/uspot fits the empiri­
eaUy determined volatility structure. Because the historieaI and modeI en­
dogenous volatilities ur< for the short-rate are different,17 historieal and 
endogenous nine-year volatilities must also differ. 

A comparison of the short-rate volatilities in Tables IV and V shows that, 
on average, the forward-rate models result in lower short-rate volatilities 
than do the spot-rate models. The reason for this differenee is that the HJM 
volatility funetions are not only estimated using short-rate ehanges, but also 
must refleet the behavior of alI other forward rates. 

A cautious comparison of the para meter estimates of the one-faetor HJM 
models in Table AIlI with the results by Amin and Morton (1994) shows that 
for the absolute model, the mean estimates do not differ great1y. On the 
other hand, the standard deviation of our historieal estimate is lower than 
their implied values. For the linear proportional model, Amin and Morton 
report a negative effeet (UI < O) of an increasing maturity T. As they esti­
mate volatilities for the upward-sloping part of the humped volatility s~rue­
ture, they expeet a positive uI,1s Our result is that the volatility strueture 
inereases with T (UI> O) for the reasons we have diseussed above. 

rv. Valuation Results 

Here we examine the empirical quality of the models by directly com par­
ing model priees to market priees. Table VI presents a first impression on 
the performance of the seven models. This table gives some summary sta­
tistics for the deviations between theoretical values and market prices of the 
warrants. 

The mean option priee of the sample is DM 3.13. The average absolute 
pricing errors range from DM 0.30 for the best modeIs to DM 0.37 for the 
worst modeI. The third eolumn indieates that with the exception of the one-

17 The endogenous short-rate volatility depends strongly on the eurrent short-rate r, but the 
historie aI volatility does noto 

18 The short-term Eurodollar data used by Amin and Morton only show the upward sloping 
part of the hump. See Amin and Morton (1994), p. 160. 
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TableVI 

Deviation between Model and Market Values 
This table presents summary statistics for the deviations between theoretical values and mar­
ket prices of the warrants. Columns 1 to 6 report the average absolute pricing errors, the 
average pricing errors (defined as model value minus market value), and the average percent­
age absolute pricing errors. Column 6 shows the standard deviation of the absolute pricing 
error. The sample period is January 1990, to November 1993. There are 1,037 call prices and 
744 put prices in the sample. To calculate the rei ative percentage errors, we remove ali obser­
vations in which the market price of the option is less than DM 0.10. The total number of 
observations eliminated is 228, of which 81 are calls and 147 are puts. Absolute I is the one­
factor forward-rate model with constant volatility. Linear proportional denotes the one-factor 
forward-rate model with linear proportional volatility. Absolute II is the two-faclor forward-rate 
model in which both volatility functions are independent of the leveI of the forward rate. In the 
two-factor forward-rate model Proportional lI, both volatility functions are proportional to the 
leveI of the forward rate. Short rate is the one-factor spot-rate model. Long rate and spread 
denotes the two-factor spot-rate model with the long rate and the spread as stochastic factors. 
The stochastic volatility model is denoted as Short rate and volatility. 

Mean Absolute Mean 
Mean Percentage 

Standard 
Oeviation Oeviation 

Absolute Oeviation 
Oeviation 

Model (OM) (OM) Ali Calls Puts (OM) 

Absolute I 0.31 -0.15 0.24 0.21 0.28 0.49 
Linear proportional 0.30 -0.17 0.24 0.22 0.27 0.46 
Absolute II 0.36 -0.27 0.31 0.26 0.40 0.54 
Proportional II 0.37 -0.28 0.32 0.27 0.41 0.64 
Short rate 0.35 0.13 0.37 0.31 0.48 0.47 
Long rate and spread 0.30 -0.17 0.21 0.17 0.26 0.44 
Short rate and volatility 0.30 -0.09 0.23 0.17 0.31 0041 

faetor spot-rate model, on average, ali models underprice the options. The 
one-factor spot-rate model results in an average overpricing ofDM 0.13. The 
underpricing ofthe other models ranges from the best value ofDM -0.09 to 
the worst value of DM -0.28. 

The average absolute percentage pricing errors vary between 21 percent 
and 37 percent. A comparison of calls and puts shows that the absolute per­
centage pricing error is uniformly lower for calls than for puts. A reason for 
this might be that the calls' average price of DM 3.51 is higher than our 
sample's puts' average price of DM 2.56. Amin and Morton (1994) report 
average fractional absolute deviations of 15.2 percent for the linear propor­
tional model and 21.1 percent for the absolute model, and therefore lower 
errors. 

To put these figures into perspective, we note two important difTerences 
between Arnin and Morton's (1994) study and ours. First, because they use 
implied volatilities, Amin and Morton carry out a "local" test of the HJM 
model. Second, they are able to value the option on Eurodollar futures 
without any error in the prices of the underlyings. In our study, we must 
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accept an absolute valuation error in the underlying bond averaging 0.15 
percent. Since interest-rate warrants have a high elasticity compared with 
stock options, a correction for this error in the underlying reduces the 
mispricing. 

The two one-factor forward-rate models show similar patterns of mispric­
ing. The observation also holds true for the two-factor forward-rate models 
but, surprisingly, the two-factor models perform uniformly worse than the 
one-factor models. This unexpected bad performance can be attributed to 
two reasons. The first is the low volatility estimates compared with the 
one-factor forward-rate models (see Table IV). These result in systemati­
cally lower option values compared with the other models (column three of 
Table VI) and in higher absolute deviations (column two). This interpreta­
tion of the aggregated deviations proves very accurate if we analyze the 
deviations for each interest-rate warrant individually. Second, the higher 
variability of the volatility estimates in the two-factor models presented in 
Table IV could indicate an overfitting problem related to our use of the 
principal component analyses to estimate the input data for the HJM two­
factor models. 

For the spot-rate models, the relation between the one- and two-factor 
models is as expeeted. If measured by the mean absolute deviation, the two­
faetor models uniformly outperform the one-faetor model. Furthermore, the. 
one-faetor spot-rate model is the only model that on average overvalues the 
warrants. 

The fundamental reason for this comparatively bad performance comes 
from fitting the volatility curve by using the mean-reversion parameter K. 
First, Panel A of Table AIV in the Appendix shows 0.06 as average value for 
K. This value is very low if compared with an unbiased estimate for K of 0.25 
from a time-series of one-month rates for the period from 1970 to 1993. 
Since the endogenous volatilities of medium- and long-term yields increase if 
K decreases, the low K-values explain the relatively high option values for 
the one-faetor spot-rate model. Second, for some out-of-the-money options, 
the model prices are close to zero even though the market prices are greater 
than one DM. This breakdown of the model occurs in periods with a sharp 
decline in the ratio of the long- and short-term volatility. To capture a sharp 
decline of the relative volatility, K must take on relatively high values that 
result in low time values for the options. 

Table VII reports correlations between pricing errors across models. We 
find the highest correlation, 0.99, between the two-factor HJM models, the 
second highest, 0.97, between the one-factor HJM models. In contrast, the 
one-factor spot-rate model has a very low correlation with ali other models. 
AIso, the spot-rate model with stochastic volatility shows a comparably low 
correlation to other models. Surprisingly, the HJM one-factor absolute mo deI 
has a relatively high correlation with ali other models, apart from the one­
faetor spot-rate modelo Compared with the correlations reported by Arnin 
and Morton (1994) for one-factor HJM models, we find considerably higher 
correlations because we estimate volatilities historically. 
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TableVII 

Correlation between Pricing Errors across Models 
This table reports the Bravais-Pearson correlation coefTicients between pricing errors across 
models for the period from January 1990 to November 1993. Pricing errors are defined as 
model value minus market value. There are 1,751 observations for each model. Absolute I is the 
one·factor forward-rate model with constant volatility. Linear proportional denotes the one· 
factor forward-rate model with linear proportional volatility. Absolute 11 is the two-factor forward­
rate model in which both volatility functions are independent of the levei of the forward rate. 
In the two-factor forward-rate model Proportional lI, both volatility funetions are proportional 
to the levei of the forward rate. Short rate is the one-factor spot-rate model. Long rate and 
spread denotes the two-factor spot-rate model with the long rate and the spread as stochastic 
faetors. The stochastic volatility model is denoted as Short rate and volatility. 

Long Rate Short Rate 
Abs. Linear Abs. Prop. Short and and 

Model I Prop. 11 11 Rate Sprcad Volatility 

Absolute I 1 
Linear proportional 0.97 1 
Absolute 11 0.86 0.93 1 
Proportional 11 0.84 0.92 0.99 1 
Short rate 0.24 0.32 0.28 0.30 1 
Long rate and spread 0.87 0.90 0.91 0.90 0.34 1 
Short rate and volatility 0.86 0.79 0.66 0.63 0.27 0.70 

To study the model performance in more detail, we analyze pricing errors 
for the difTerent models. We first regress absolute pricing errors on money­
ness (measured in DM) and on the maturity of an option. In addition to 
these two fundamental option characteristics, we include dummy variables 
for the years 1990, 1991, and 1992, and a dummy variable for a call. We 
introduce the calendar dummy variables to test whether the market for Ger­
man interest-rate warrants, which started in 1989, shows maturity efTects 
similar to those that have been reported for other markets. The dummy 
variable for calIs alIows us to test whether pricing errors are systematicalIy 
difTerent for calIs and puts. 

The results of the regressions are summarized in Table VIII. These show 
that the calendar dummy variables at, a2' and aa are significant at a 1 per­
cent leveI for almost alI models. In addition, the dummy variable for 1990, 
aI> is always higher than the dummy variables for the years 1991 and 1992, 
a2 and aa; often, it is twice as high as the dummy variable for the year 
1992, a2' This illustrates that absolute pricing errors are obviously very 
high in 1990 and that the errors reduce significantly over time for all the 
models. Since these results are very similar across models, there does not 
seem to be a model-specific efTect, but rather a common component in pric­
ing errors due to the presence of market imperfections. 

The sign of the moneyness variable, a4' difTers across models. In addition, 
it is insignificant at the five percent leveI for alI but one ofthe models. From 
this result we conclude that absolute pricing errors are not significantly 
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TableVIII 

Regression Results for Absolute Pricing Errors 
This table summarizes the regression resulta for 

~ 
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Abs. Deviation ~ ao + a l D90 + a2D91 + aaD92 + a.Moneyness + a6Maturity + aeDea/l +', 

where D90, D91, and D92 are dummy variables for the calendar years 1990, 1991, and 1992, re­
spectively. Dea/l is a dummy variable for calls. Moneyness i8 defined as bond priee - exercise priee 
for calls and as exereise priee - bond priee for puts. Bond and exercise prices are expre88ed in per­
centage terms. The Maturity ofthe option is in years .• is an error termo The 8ample period i8 from 
January 1990 to November 1993. There are 1,751 observations for each model. The t-statistics on 
the regression coefficients, adjusted for heteroskedasticity and 5th degree autocorrelaUon in re­
siduais based on Newey and West (1987), are given below the coefficient values in parentheses. 
Absolute I is the one-factor forward-rate model with constant volatility. Linear proportional de­
notes the one-factor forward-rate model with linear proportional volatility. Absolute 11 is the two­
factor forward-rate model in which both volatility functions are independent of the levei of the 
forward rate. In the two-factor forward-rate model Proportional lI, both volatility functions are 
proportional to the levei of the forward rate. Short rate is the one-factor spot-rate model. Long 
rate and spread denotes the two-faclor spot-rate model with the long rate and the spread as sto­
chastic factors. The stochastic volatility model is denoted as Short rate and volatility. 

Model ao aI a. aa a. a. a6 R2 

Absolute I 0.062 0.456 0.208 0.107 0.003 0.152 -0.070 0.25 
(2.42) (7.46) (5.56) (3.55) (0.89) (5.35) (-1.85) 

Linear proportional 0.047 0.405 0.216 0.126 0.002 0.123 -0.015 0.22' 
(1.97) (7.47) (5.62) (3.97) (0.67) (4.74) (-0.43) 

Absolute 11 0.050 0.398 0.182 0.230 -0.002 0.207 -0.041 0.23 
(1.69) (6.66) (4.58) (5.08) (-0.56) (6.61) (-1.03) 

Proportional 11 0.053 0.369 0.183 0.235 -0.003 0.219 -0.Q39 0.23 
(1.75) (6.40) (4.39) (4.98) (-0.80) (6.95) (-0.97) 

Short rate 0.116 0.253 0.297 0.074 0.001 0.151 -0.027 0.17 
(3.88) (5.22) (6.45) (2.27) (0.50) (6.69) (-0.80) 

Long ratc and spread 0.063 0.336 0.180 0.164 0.008 0.140 -0.044 0.19 
(2.40) (6.16) (4.64) (4.02) (2.60) (4.81) (-1.19) 

Short rate and volatility 0.016 0.485 0.174 0.089 0.004 0.239 -0.128 0.30 
(0.69) (6.60) (4.80) (3.23) (1.24) (7.61) . (-2.94) 

influenced by the moneyness of the options. Contrary to the moneyness, the 
influence of the time-to-maturity of an option on the absolute pricing error 
is significant and positive for alI models. 

The estimate of the dummy variable for calls, a6' is negative for alI mod­
eis. This means that on average, calIs resuIt in lower absolute errors than 
puts. However, the results are only significant for the two-factor model with 
stochastic volatility. 

To study possible systematic biases of each model, we regress the pricing 
error, defined as the difTerence between market and model prices, on the 
same exogenous variables as in Table VIII. The results appear in Table IX. 
The estima te of the calendar dummy variable, f310 indicates that in 1990, ali 
but the one-factor spot-rate model significantly underprice the options. How­
ever, the dummy variables for the years 1991 and 1992, f32 and f3a, show that 

---= __ .4. ____ . __ .. _. ____ • ______ • __ "_ 0' __ • • 
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Table IX 

Regression Results for Pricing Errors 
This table summarizes the regression results for 

Deviation = fJo + fJ 1D90 + fJ2D91 + fJ.D92 + fJ.Moneyness + fJ5Maturity + fJ.DeaU +', 

where Deviation is dcfined as market priee of the option - model priee. D90, D91, and D92 
are dummy variablcs for the calendar years 1990, 1991, and 1992, respectively. DeaU is a 
dummy variable for calls. Moneynes8 is defined as bond priee - exercise priee for calls and as 
exercise priee - bond price for puts. Bond and exerci se prices are expressed in percentage 
terms. The Matllrity of the option is in years .• is an error termo The samplc period is from 
January 1990 to November 1993. There are 1,751 observations for each model. The t-statistics 
on the regression coefficients, adjusted for heteroskedasticity and 5th degree autocorrelation 
in residuais based on Newey and West (1987), are given below the coefficient values in 
parentheses. Absolute I is the one-factor forward-rate model with constant volatility. Linear 
proportional denotes the one-factor forward-rate model with linear proportional volatility. 
Absolute 11 is the two-factor forward-rate model in which both volatility functions are inde­
pendent of the leveI of the forward rate. In the two-factor forward-rate model Proportional li, 
both volatility functions are proportional to the leveI of the forward rate. Short rate is the 
one-factor spot-rate model. Long rate and spread denotes the two-factor spot-rate model with 
the long rate and the spread as stochastic factors. The stochastic volatility model is denoted 
as Short rate and volatility. 

Model Po P. P. p" fJ. Pú fJ .. R'l 
-------~-----------.-._._~.----

Absolute 1 -0.074 0.463 0.156 -0.136 -0.014 0.195 -0.060 0.26 
(-2.11) (6.91) (2.79) (-2.95) (-3.35) (5.51) (--1.27) 

Linear proportional -0.040 0.364 0.118 -0.072 -0.016 0.197 -0.059 0.22 
(-1.24) (6.18) (2.09) (-1.58) (-4.35) (6.04) ( -1.37) 

Absolute 11 -0.038 0.335 0.109 0.061 -0.019 0.319 -0.092 0.25 
(-1.07) (5.29) (2.01) (1.05) (-5.09) (8.72) (-1.96) 

Proportional 11 -0.033 0.304 0.110 0.070 -0.020 0.330 -0.089 0.24 
(-0.91) (4.92) (1.95) (1.17) (-5.34) (8.93) (-1.91) 

Short rate 0.210 -0.299 -0.443 -0.168 -0.007 -0.031 -0.219 0.18 
(5.31) (-4.13) (-7.40) (-3.34) (-1.88) (1.00l ( -4.41) 

Long rate and spread -0.083 0.312 0.110 0.073 -0.007 0.230 -0.071 0.16 
(-2.48) (4.95) (1.94) (1.39) (-1.80) (6.41) (-1.55) 

Short rate and volatility 0.072 0.442 0.021 -0.262 -0.008 0.096 -0.169 0.25 
(1.73) (4.94) (0.42) (-6.07) (-1.64) (2.05) (-3.13) 

underpricing felI over time. In addition, we find that in 1993, on average the 
pricing error was cIose to zero for ali models. Thus, we can conjecture that 
at the beginning of the new market segment, which is covered by our sample 
period, German interest-rate warrants were considerably overpriced and some 
(presumably inexperienced) market participants were willing to accept these 
prices. This conjecture is reinforced by discussions with traders in the Frank­
furt market who were able to hedge their short positions in London at better 
prices. 

The estimate of the moneyness variable, /34' is significantly nega tive for 
alI forward-rate models. For the spot-rate models, the /34 estimate is ais o 
negative, but much lower in absolute terms and insignificant. Consequently, 
alI models seem to underprice out-of-the-money options and to overprice in-

'. 
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the-money options. A more detailed analysis of the moneyness effect reveals 
that it is stronger for puts than for calls. These results are similar to those 
of Amin and Morton (1994). 

The reason for the differences between the /34-estimates in Table IX are 
related to the different volatilities implicitly used in the models. Lower vol­
atilities result in lower values for out-of-the-money options. For in-the­
money options, which are cIose to the exercise boundary, a reduction of 
volatility has only a small effect on the option price. Therefore, those models 
that implicitly use the lowest volatilities undervalue out-of-the-money op­
tions most and should show the (absolute) maximum moneyness effeet. 
Table IX demonstrates exaetly this effeet. 

The regression eoefficient /36 , whieh measures the influenee ofmaturity on 
misprieing, has a positive sign whenever it is significant. AlI models except 
the one-faetor spot-rate model underprice options more ifmaturity inereases. 
This effeet eould be attributed to the lower Iiquidity ofwarrants with long ma­
turities. We find partieularly high estimates for the HJM two-factor models, 
again a eonsequence of the low volatility estimates deseribed in Table IV. 

Finally, the eoefficient /36 for the eall dummy variable indieates that un­
dervaluation is stronger for puts in general. However, this effeet is signifi­
cant for only two of the seven models. 

The regression results show that the mispricing ofthe different models ean 
be explained to some extent by eommon faetors, but it is also evident that some 
models are more suseeptible than others to eertain influencing faetors. Be­
cause our main objeetive is to compare the ex ante predietabilities of different 
models, we try to separate model effeets from common faetors in pricing er­
rors. Therefore, our foeus now is on a paired eomparison of absolute pricing 
errors. For this purpose, we compute the differenees of absolute mispricings 
for eaeh paired model and test whether the mean ofthese paired differences is 
equal to zero. Panel A, Table X, summarizes the results of this eomparison. 

The model with the lowest absolute deviation is the linear proportional 
one-faetor HJM model. For this model, we ean reject the hypothesis with a 
probability of at least 99 pereent that the paired differences between each of 
the two-faetor HJM models and with the one-faetor spot-rate model are zero. 
In addition, the differenee with the absolute one-faetor HJM model is differ­
ent from zero at the 5 pereent leveI. However, no signifieant difference is 
found if we compare it with the two-faetor spot-rate models. 

For the two-factor spot-rate models, which are the models with the seeond 
and third lowest absolute deviations, we can also reject the hypothesis, with 
a probability of at least 99 pereent, that the paired differences between each 
ofthe two-factor forward-rate models and with the one-factor spot-rate model 
are zero. 

The model with the largest absolute deviation is the two-factor HJM mo dei 
with proportional volatility. As we have noted, this model performs signifi­
eantly worse than the linear proportional one-factor HJM model and the two 
two-factor spot-rate models. We aIs o find a significant difference compared 
with the one- and two-factor HJM models with absolute volatility. 
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TabJeX 

Comparison or Absolute Pricing Errors in Pairs 
This table summarizes the results of the comparison of absolute pricing errors in paire. The 
ijth entry shows the estimate of Abs. Deviationmod." - Abs. Deviationmodelj, i > j. Abs. Devi. 
ation"'odeu denotes the absolute deviation between the value of model i and the market value. 
The t·statistics, adjusted for heteroskedasticity and 5th degree autocorrelation in residuaIs 
based on Newey and West (1987), are given below the coelTicient values in parentheses. Panel 
A provides the results for the whole period from January 1990 to November 1993. The results 
of Panel B refer to only the last year. The two bold figures in Panel B indicate the two main 
difTerences to the four·year period results of Panel A. Absolute I is the one·factor forward.rate 
model with constant volatility. Linear proportional denotes the one·factor forward·rate model 
with linear proportional volatility. Absolute 11 is the two·factor forward·rate model in which 
both volatility functions are independent of the leveI of the forward rate. In the two.factor 
forward·rate model Proportional lI, both volatility functions are proportional to the levei of 
the forward rate. Short rate is the one·factor spot·rate model. Long rate and spread denotes 
the two·factor "pot·rate model with the long rate and the spread as stochastic factors. The 
stochastic volatility model is denoted as Short rate and volati1ity. 

Model 
j 

Abs. 
I 

Linear 
Prop. 

Abs. Prop. 
II I 

Short 
Rate 

Long Rate 
and Spread 

Panel A: Sample Period of January 1990 to November 1993 (1751 obscrvations) 

Linear proportional -0.013 
(-2.22) 

Absolute II 0.056 0.069 
(5.34) (8.46) 

Proportional 11 0.065 0.078 0.009 
(5.64) (8.71) (4.38) 

Short rate 0.044 0.057 -0.012 -0.021 
(2.33) (2.94) (-0.56) (-0.99) 

Long rate and spread -0.011 0.001 -0.067 -0.077 -0.055 
(-1.14) (0.16) (--7.41) (-8.34) (-2.66) 

Short rate and -0.009 0.003 -0.065 -0.075 -0.054 0.002 
volatility (-0.89) (0.24) (-4.40) (-4.80) (-2.59) (0.13) 

Panel B: Sampl~ Period of January 1993 to November 1993 (685 obscrvations) 
----------

Linear proportional -0.009 
(-1.49) 

Absolute 11 0.046 0.055 
(3.90) (6.15) 

Proportional II 0.060 0.069 0.014 
(4.64) (6.69) (5.10) 

Short rate 0.076 0.085 0.013 0.016 
(4.37) (5.34) (1.15) (1.25) 

Long rate and spread -0.013 0.022 -0.032 -0.046 -0.063 
(-1.70) (3.74) (-3.11) (-4.06) (-3.84) 

Short rate and -0.000 0.009 -0.046 -0.060 -0.076 -0.013 
volatility (-0.00) (1.33) (-4.12) (-4.85) (-5.23) (-1.45) 
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1b analyze the stability of these results, we perform the some comparisons 
for varying time periods. We successively leave out the beginning of the 
original four-year time span and consider the periods 1991-1993, 1992-
1993, and 1993. A comparison of the results for these three periods shows a 
remarkable stability ofthe relative performance ofthe seven models. In each 
period, the two-factor forward-rate models, the one-faetor spot-rate model, 
and the two-faetor spot-rate model with long rate and spread are signifi­
cantly dominated by at least one other modeI. The two one-factor forward­
rate models and the second two-factor spot-rate model are never dominated. 
Since the results are qualitatively identical for the time periods beginning 
after 1990, Panel B of Table X only shows the model's reI ative performance 
for the last year. 

Compared with the results ofthe whole period, which we present in Panel 
A of Table X, the time period for the more mature market exhibits two main 
differences: First, the one-factor forward-rate model with absolute volatility 
is still dominated by its linear proportional counterpart, but it is no longer 
significantly dominated. Second, the two-faetor spot-rate model with long 
rate and spread is now significantly outperformed. 

In summary, based on the total four-year period, the seven models tested 
can be grouped into two sets: 

Set One: One-factor forward-rate model with linear proportional volatil­
ity, two-faetor spot-rate model with long rate and spread, two­
faetor spot-rate model with stochastic volatility . 

Set nuo: One-factor forward-rate model with absolute volatility, one­
faetor spot-rate model, two-factor forward-rate model with abso­
lute volatility, two-factor forward-rate model with proportional 
volatility. 

The first set contains those mo deIs that are never significantly outper­
formed by any of the other models. In contrast, the second set consists of 
those models that are significantly outperformed by at least one other modeI. 

Using the results of the stability analysis, we can further assess our mod­
eis. From the original three models of the first set, two models remain that 
are not significantly outperformed by any of the other models in any of the 
four different periods considered. These are the one-factor forward-rate model 
with linear proportional volatility and the two-factor spot-rate model with 
stochastic volatility. The other five models have been significantly outper­
formed at least once. Taking into consideration the fact that more mature 
market periods result in smaller pricing errors, these latter results are par­
ticularly important. 

V. Summary and Conclusions 

This study presents an extensive empirical test of those valuation models 
for interest-rate options that dominate the current theoretical discussion. 
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We perform empirical tests on four forward-rate models and three spot­
rate models. These models are potential candidates for measuring, control­
ling, and supervising interest-rate risk within a risk management system, 
and should be able to value very different interest-rate derivatives consis­
tently across different markets. This intended application of a valuation model 
should be strictly separated from its usage as a fine-tuned trading oriented 
model. 

With this applieation in mind, we make two important deeisions eoneern­
ing the test methodology. First, we estimate input data from time-series, not 
implicitly. Seeond, we seleet as the dominant assessment eriterion the ex 
ante predictability of a model and not its ability to identify misprieed options. 

Using this evaluation eriterion, the one-faetor forward rate model with 
linear proportional volatility and the two spot-rate models with two factors 
significantly outperform the other four models for the four-year period from 
1990 to 1993. 

Ifwe take into aeeount the results for the later time periods, we can make 
an even stronger assessment of the models. Applying the eriterion, "A mo deI 
is not signifieantly dominated by any of the other models in any of the four 
time periods," two of the three models remain, the one-faetor forward-rate 
model with linear proportional volatility and the two-factor spot-rate model 
with stochastie volatility. 

Valuation models for interest-rate derivatives, which could be used in a 
risk management system, must satisfy additional criteria. Besides the ex 
ante predictability, differences in estimating the input data, in fitting the 
model to the current market information, and in numerically valuing the 
warrants, should be reflected in the overall assessment. When we eonsider 
the robustness of the estimation procedure for the input data, the one-faetor 
forward-rate model outperforms the two-factor spot-rate model. In fitting a 
model to the current term strueture of interest rates and volatilities, the 
forward~rate model is also superior to the other model. In terms of comput­
ing the option values numerically, none of the models are espeeially cum­
bersome. If we take into aceount these additional assessment criteria, we 
can eonclude that the one-faetor forward-rate model with linear proportional 
volatility outperforms ali other models. 

-, 
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Appendix 

TableAI 

Bond and Interest-Rate Warrant Data 
This table gives a summary of interest-rate warrant terms, including the average number of 
daily trades and the average daily turnover in thousands ofOM from 1990 to 1993, Am, denotes 
American-style options; Eu. denotes European-style options. The securities underlying these 
warrants are either long- (BUNO) or medium-term (BOBL) German government bonds. The 
bond's coupon size and maturity are also provided. 

Strike Average 
Price Oaily Average Oaily 

Type (%) Maturity Underlying Bond Trades Turnover 

Am. Call 100 25/10/89-25/1 0/90 BUNO 7% 89/99 30,1 154.82 
Am. Put 100 25/10/89-25/10/90 BUNO 7% 89/99 3.3 54.22 
Am, Call 100 23/01/90-14/01/91 BUNO 7,25% 90/00 5,3 16.65 
Am. Put 100 23/01/90-14/01/91 BUNO 7,25% 90/00 4.2 40,39 
Am. CaU 100 21/05/90-05/12/91 BUNO 8,75% 90/00 9.9 64.51 
Am. Put 100 21/05/90-05/12/91 BUNO 8,75% 90/00 11.6 60.90 
Am. CaU 101 01/08/90-30/07/91 BOBL 8,75% 90/95 3.4 10,09 
Am. Put 99 01/08/90-30/07/91 BOBL 8,75% 90/95 7.1 19.61 
Am. CaU 99 29/01/90-05/03/91 BUNO 7,25% 90/00 10.6 66.59 
Am. CaU 99 13/07/92-01/10/93 BOBL 8% 92/97 5.1 62,38 
Am. Put 98 13/07/92-01/10/93 BOBL 8% 92/97 0.4 0.42 
Am. CaU 100 07/11/91-06/11/92 BUNO 8,25% 91/01 3.7 50.04 
Am, Put 100 07/11/91-06/11/92 BUNO 8,25% 91/01 2.7 7.96 
Am. CaU 101 24/04/92-24/06/93 BUNO 8% 92/02 3.7 26.01 
Am. Put 101 24/04/92-24/06/93 BUNO 8% 92/02 3.0 6.57 
Am. CaU 102 24/04/92-07/04/94 BUNO 8% 92/02 16.1 177.32 
Am. Put 102 24/04/92-07/04/94 BUN08% 92/02 5.0 13.55 
Am. Call 100 27/08/92-17/08/95 BUNO 8% 92/02 4.1 48.47 
Am. CaU 101 27/08/92-17/08/95 BUNO 8% 92/02 8.4 97.33 
Am, Call 102 27/08/92-17/08/95 BUN08% 92/02 14.9 186.90 
Am. CaU 102 23/12/92-27/01/94 BOBL 7,5% 92/97 4.2 40.46 
Am. Put 102 23/12/92-27/01/94 BOBL 7,5% 92/97 1.0 1,94 
Am. Call 103 23/12/92-27/01/94 BOBL 7,5% 92/97 3.8 44.39 
Am. Put 103 23/12/92-27/01/94 BOBL 7,5% 92/07 1.7 5.44 
Am. Call 103 05/04/93-02/03/94 BUNO 7,125% 92/02 2,4 43.42 
Am. Put 103 05/04/93-02/03/94 BUNO 7,125% 92/02 1.9 8.13 
Am. Call 104 05/04/93-02/03/94 BUNO 7,125% 92/02 2.7 39,34 
Am. Put 104 05/04/93-02/03/94 BUNO 7,125% 92/02 3,1 17.65 
Am. Call 103 30/09/93-19/09/94 BUNO 6,5% 93/03 2,5 38.44 
Am. Put 103 30/09/93-19/09/94 BUNO 6,5% 93/03 2.2 9.06 

Eu.Call 100 29/06/90-10/02/92 BUNO 7,75% 90/00 5,2 31.52 
Eu, Put 100 29/06/90-10/02/92 BUNO 7,75% 90/00 3.9 20.76 
Eu, CaU 100 03/01/91-15/07/92 BUNO 9% 90/00 13,5 1295.08 
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TableAII 

Parameter Estimates of the GARCH Model 
Maximum Iikelihood estimates of the generalized autoregressive conditional heteroskedastic 
(GARCH) model 

r, - r,_, = bo + b,r,_, + b2V, +'1 

'1 -N(O,V, ) 

Vi = ao + atr'-l + a2Vt-l + Q3 El-1 

ror weekly observations of one-month money market rates from January 1970 to December 
1989. b" i = O, 1, 2 and aj' j = O, 1, 2, 3 denote the parameters of the GARCH model. r, i8 the 
short rate at time I. The error term " i8 (eonditional) normally distributed with zero mean and 
variance v,. The observations of the first three months are used to estima te an initial volatility 
Vo. The remaining 1,031 rates are used as input for the GARCH estimation. 

Variable Estimate Standard Error 

bo 0.00037395 0.00016744 
b, -0.00816464 0.00324843 
b2 10.84576386 2.83996069 
ao -0.00000031 0.00000060 
ai 0.00001391 0.00001133 
a 2 0.72163780 0.18557610 
aa 0.27047252 0.03351277 

Tob1e AIII 

Parameter Estimates for the Volatility Parameters 
within the Forward-Rate Models 

This table summarizes the parameter estimates for the volatility paramelers of the forward­
rale models. The positive parameter U is the volatility parameter for the one-factor model with 
constant volatility (Absolute I). 'TO and U, are two positive parameters for the one-factor forward­
rate model with linear proportional volatility (Linear proportiona\). "f.c1,," and U"",",2 are the 
volatilities of the two driving factors for each of the two two-factor models. These are the 
Absolute 11 model, in which bolh volatility fundions are independent of the levei of the forward 
rate, and the Proportion!\1 11 model, in which both volatility functions are proportional to the 
leveI of the forward rate. The volatility functions are obtained by multiplying !Tfa<'u" and ,T""""2 
with the factor loadings obtained from the principal component analyses. The parameters are 
estimated for 204 Fridays within the valuation period from January 5, 1990, through November 
16, 1993. 

Standard 
Model Parameler Mean Minimum Maximum Deviation 

Absolute I u 0.0128 0.0097 0.0159 0.0017 

Linear proportional (To 0.1081 0.0476 0.1994 0.0363 
u. 0.0168 0.0055 0.0270 0.0056 

Absolute II u(ncturl 1.029 0.9810 1.0408 0.0129 

Ufartor2 1.017 0.9258 1.0408 0.0273 

Proportional 11 U(oclorl 1.0271 0.9686 1.0408 0.0154 
u(octor2 1.0183 0.9308 1.0408 0.0259 

". 
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TableAIV 

Parameter Estimates for the Volatility Parameters 
of the Spot-Rate Models 

This table summarizes the parameler estimates ror the volatility parameters of lhe spot-rate 
models. Panel A represents the estimation results for lhe mean-reversion parameter K and the 
volatility parameter U of the one-faetor spot-rate model dr = K(Y - r) di + urO dz. From this 
equation, the long-term mean Y and the elasticity parameter , have already been estimated as 
structural parameters in a previous step. u is estimated by means of the maximum Iikelihood 
method. K is determined (implicitly) such that the endogenous volatility of the long rate equals 
the historically estimated volatility. Panel B summarizes the results for the two-factor spot-rate 
model, using the long rate I and the spread 8 as stochastic factors. The volatility parameters 
U, and u, are estimated for the long-rate process di = u,.fi dz, and the spread process 
ds = (Y. - s) di + U. dZ 2 by means oflhe maximum Iikelihood method. Panel C summarizes the 
parameter estimates for the volatility parameters of the two-factor spot-rate model wilh sto­
chastic volatility. E(V~), Var(V~) are lhe sample mean and variance ofthe volatilily ofthe short 
rate. minrali• and maxralia are the minimum and maximum of the volatility-spot rate ratio 
J V(I)/r(t) within the historieal time series. We also provide the parameter estimates for the 
stochastic processes dx = K.(Y. - x)dt + u.vxdz. and dy = Ky(Yy - y)dl + uy .fYdz2 of the 
abstraet ractors x and y. These six parameters K .. Y .. u .. Ky. Yy ' and u y are obtained aS a solution 
to the following system of equations, initially derived by LongstalT and Schwartz (1993): 

E(r~) = Y. + Yy , 

u2 2 
Var(r~) =.2..1! + uy Yy 

2Kx 2Ky , 

2 2 E(VCO'.J == tr.'f Y.I: + CTy 1.,., Var( V crJ = (r%6 .1!.. + CTy
6 ..!!.., 

2K., 2Ky . 

rnin,.alio = (TVI maXratio = Uz · 

Ali parameters are estimated ror 204 Fridays within the valuation period from January 5, 1990, 
through November 16, 1993. 

Parameler Mean Minimum Maximum Standard Deviation 

Panel A: One-Factor Spot-Rate Model 

'T 0.1167 0.0592 0.1954 0.0382 
K 0.0586 0.0002 0.2107 0.0399 

Panel B: 'lWo-Factor Spot-Rate Model with Long Rate and Spread 

U, 0.0270 0.0450 0.0169 0.0081 
u, 0.0124 0.0175 0.0081 0.0024 
-------_.-

Panel C: 'lWo-Factor Spot-Rate Model with Stochastic Volatility 

E(V~) 0.00035 0.00028 0.00048 0.00014 
Var(V~) 2 x 10-8 5 X 10--9 5 X 10-8 1 X 10-9 

min'utio 0.048 0.045 0.052 0.002 
maxmtio 0.106 0.082 0.125 0.015 

K. 1.032 0.539 1.540 0.272 
Y. 0.026 0.017 0.034 0.006 
'T. 0.106 0.082 0.125 0.015 
Ky 0.082 0.054 0.113 0.015 
Yy 0.040 0.027 0.043 0.006 
u y 0.048 0.045 0.052 0.002 
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