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ABSTRACT: For analysis of the main effects of SNPs, meta-analysis of summary results from individual studies has been
shown to provide comparable results as “mega-analysis” that jointly analyzes the pooled participant data from the available
studies. This fact revolutionized the genetic analysis of complex traits through large GWAS consortia. Investigations of
gene-environment (G×E) interactions are on the rise since they can potentially explain a part of the missing heritability and
identify individuals at high risk for disease. However, for analysis of gene-environment interactions, it is not known whether
these methods yield comparable results. In this empirical study, we report that the results from both methods were largely
consistent for all four tests; the standard 1 degree of freedom (df) test of main effect only, the 1 df test of the main effect
(in the presence of interaction effect), the 1 df test of the interaction effect, and the joint 2 df test of main and interaction
effects. They provided similar effect size and standard error estimates, leading to comparable P-values. The genomic inflation
factors and the number of SNPs with various thresholds were also comparable between the two approaches. Mega-analysis is
not always feasible especially in very large and diverse consortia since pooling of raw data may be limited by the terms of the
informed consent. Our study illustrates that meta-analysis can be an effective approach also for identifying interactions. To
our knowledge, this is the first report investigating meta-versus mega-analyses for interactions.
Genet Epidemiol 38:369–378, 2014. © 2014 Wiley Periodicals, Inc.
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Introduction

Over the past several years, genome wide association studies
(GWAS) have identified hundreds of common genetic vari-
ants associated with many common complex disease traits
(http://www.genome.gov), thereby accelerating the progress
in the genetic dissection of complex human disease traits.
The confidence and funding invested in GWAS approaches
have led to unprecedented levels of collaboration, spawning a
number of highly productive consortia such as the CHARGE
(Cohorts for Heart and Aging Research in Genetic Epidemi-
ology) [Psaty et al., 2009], GIANT (Genetic Investigation of
Anthropometric Traits) [Willer et al., 2009], and ICBP (Inter-
national Consortium of Blood Pressure) [International Con-
sortium for Blood Pressure Genome-Wide Association et al.,
2011]. It is standard practice in these consortia to perform
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meta-analysis that combines the summary results from mul-
tiple studies for the same phenotype of interest [de Bakker
et al., 2008]. As recently reviewed [Evangelou and Ioanni-
dis, 2013], meta-analysis provides an efficient and practical
strategy for overcoming the limitations of power that can
compromise any individual study.

However, these hundreds of successfully identified genetic
variants typically have very subtle effects, thus explaining only
a fraction of the heritability of most complex traits [Mano-
lio et al., 2009]. It is increasingly recognized that the near-
exclusive focus on main effects has become a barrier to the
identification of additional genes underlying these disease
traits. Increasingly greater emphasis is being placed in recent
years on gene-environment (G×E) interaction analyses, also
relying on meta-analysis in large consortia. The identifica-
tion of G×E interactions is important for many reasons [Le
Marchand and Wilkens, 2008; Thomas, 2010a]. G×E inter-
actions or more complex pathways involving multiple genes
and environments can potentially explain at least part of
the missing heritability [Eichler et al., 2010; Manolio et al.,
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2009; McCarthy and Hirschhorn, 2008; Visscher et al., 2012].
They can further elucidate the biological networks underly-
ing complex disease risk and enable “profiling” of individ-
uals at highest risk for disease. Although identifying G×E
interactions is important, it requires larger sample sizes than
those needed to identify genetic main effects alone [Thomas,
2010b]. Therefore, it is important to have very large sample
sizes. Meta-analysis that has been useful for identifying ge-
netic main effects will be even more useful for identifying
G×E interactions.

To increase sample sizes, collaborative groups are increas-
ingly collating the raw individual participant data from stud-
ies that are able to participate and jointly analyze the pooled
individual-level data (such analysis is referred to here as
mega-analysis). This approach, also known as meta-analysis
of individual patient data (IPD) in statistical literature [Stew-
art and Clarke, 1995], is regarded as the gold standard in
randomized clinical trials (e.g., see [Chalmers, 1993]). For
example, a general framework for this IPD meta-analysis
for clinical trials has been described by Higgins et al. [Hig-
gins et al., 2001]. However, meta-analysis that combines re-
sults from the participating studies has several advantages
as compared to mega-analysis. First, obtaining individual
level data is challenging and limited by the terms of the in-
formed consent within each study. Second, integration of very
large genotype and phenotypic data sets from different stud-
ies is time-consuming and poses additional challenges with
data management, storage, and harmonization issues. Third,
meta-analysis allows for analyses of individual studies to ac-
count for local population substructure, relationships among
subjects, study-specific covariates, and other ascertainment-
related issues that may be optimally dealt with within each
study. Reviews on advantages and disadvantages of each ap-
proach can be also found elsewhere [Steinberg et al., 1997;
Stewart and Tierney, 2002].

Although mega-analysis is arguably more powerful than
meta-analysis of separate results, in so far as analysis of main
effects is concerned, it has been shown that meta-analysis also
yields highly comparable results. Olkin and Sampson [Olkin
and Sampson, 1998] showed that, for comparing treatments
with respect to a continuous outcome in clinical trials, meta-
analysis is equivalent to mega-analysis if the treatment effects
and error variances are constant across trials. The equivalence
has been extended even if the error variances are different
across trials [Mathew and Nordström, 1999]. Lin and Zeng
theoretically proved asymptotic equivalence between meta-
and mega-analyses when the effect sizes are the same for all
studies [Lin and Zeng, 2010b]. This was further illustrated
empirically by combining results from two phases of data
[Lin and Zeng, 2010a].

However, for analysis of G×E interaction effects, it is un-
known whether meta- and mega-analyses yield comparable
results. In this paper, we addressed this issue using empiri-
cal data. Using data from the four studies, we analyzed each
study separately and meta-analyzed the results using METAL
[Willer et al., 2010]. We also combined the raw phenotypic
and GWAS data from all four studies and analyzed the pooled

Table 1. Summary statistics for the four studies

FHS GENOA HERITAGE HyperGEN

# Subjects 6,686 1,420 469 1,216
% Male 46.6% 44.9% 48.6% 49.7%
Age (mean ± SD) 49.1 ± 13.6 54.7 ± 10.7 36.9 ± 14.2 49.5 ± 13.8
BMI (mean ± SD) 27.4 ± 5.4 30.4 ± 6.2 26.0 ± 5.0 29.3 ± 5.9
% on Anti-HT Meds 19.0% 55.7% 0.0% 46.0%
SBP (mean ± SD) 120.4 ± 16.4 133.5 ± 19.6 116.5 ± 11.2 123.2 ± 19.2
Pack Years (mean ± SD) 9.9 ± 17.6 13.6 ± 21.6 5.0 ± 10.9 7.2 ± 16.3

Values shown represent mean value ± the standard deviation or percentage. FHS,
Framingham Heart Study; GENOA, genetic epidemiology network of arteriopathy;
HERITAGE, health, risk factors, exercise training, and genetics; HyperGEN,
hypertension genetic epidemiology network.

data (i.e., mega-analysis). In addition to the standard 1 de-
gree of freedom (df) test of interaction effect, we used the
joint 2 df test of main and interaction effects by Kraft et al.
[Kraft et al., 2007] and the joint meta-analysis by Manning
et al. [Manning et al., 2011].

Study Samples

We used data for European American participants from
four studies presented in Table 1: the Framingham Heart
Study (FHS), GENOA, HERITAGE, and HyperGEN. All four
studies obtained informed consent from participants and
approval from the appropriate institutional review boards.
All four studies have participated in several GWAS consortia
publications (based on main effects), and therefore much is
already known about them. Our analysis was restricted to
a total of 131,880 imputed SNPs on chromosomes 16 and
18, for which preliminary analysis of G×E interactions in
the FHS data yielded significant results. Imputation for these
SNPs was performed using MACH [Li et al., 2010] using the
reference panels of the HapMap Phase II data with European
ancestry subjects.

The Framingham Heart Study (FHS) is a longitudinal
family-based study for identifying the factors that contribute
to cardiovascular disease, sponsored by the National Heart,
Lung, and Blood Institute (NHLBI). FHS began in 1948
with the recruitment of an original cohort of 5,209 men
and women who were 28–62 years of age at entry [Dawber
et al., 1951]. Clinic examinations took place approximately
every 2 years. In 1971, a second generation of study partici-
pants, 5,124 children and spouses of children of the original
cohort were enrolled [Feinleib et al., 1975]. Clinic examina-
tions took place approximately every 4 years. Enrollment of
the third-generation cohort of 4,095 children of offspring co-
hort participants began in 2002 [Splansky et al., 2007]. In this
analysis, we used the FHS SNP Health Association Resource
(SHARe) data, as obtained through the database of Geno-
types and Phenotypes (dbGaP). Our analysis was restricted
to cross-sectional data on 6,686 European American subjects
involving all three generations with GWAS data.

The Genetic Epidemiology Network of Arteriopathy
(GENOA) is a family-based study of hypertension and
diabetes (e.g., see [Daniels et al., 2004]). GENOA recruited
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sibships with at least two hypertensive siblings and any addi-
tional available siblings, regardless of hypertension status. In
total, it has collected data on over 5,000 European-American,
African-American, and Hispanic-American subjects, from
Minnesota, Mississippi, and Texas, respectively. GENOA sub-
jects were brought in for a complete physical examination
and questionnaire. We used the 1,420 European American
subjects with GWAS data in this analysis.

The health, risk factors, exercise training, and genetics
(HERITAGE) family study was designed to evaluate the
role of genetic and nongenetic factors in cardiovascular,
metabolic, and hormonal responses to aerobic exercise train-
ing [Bouchard et al., 1995]. Extensive data, including body
composition, cardiovascular risk factors, and lifestyle habits,
were gathered on approximately 800 subjects in over 200 fam-
ilies, both before and after 20 weeks of supervised training.
We used 469 European American subjects with GWAS data
in this analysis.

The Hypertension Genetic Epidemiology Network (Hy-
perGEN) is a multicenter family-based study for investigat-
ing the genetic causes of hypertension and related conditions
[Williams et al., 2000]. HyperGEN recruited African Ameri-
can and European American participants at five field centers.
It recruited sibships with at least two hypertensive siblings,
nonmedicated offspring of these hypertensive siblings, and
an age-matched random sample. Subjects were brought into
the clinic for an exam, and data were collected from ques-
tionnaires, a physical exam, and blood and urine samples. In
total, HyperGEN collected data from 2,471 European Amer-
ican subjects and 2,300 African-American subjects. We used
the 1,216 European American subjects with GWAS data in
this analysis.

Statistical Analyses

To compare meta-analysis and mega-analysis, we consid-
ered four analysis options. First, as most GWAS use a main-
effect-only analysis, we also performed a main-effect-only
analysis. The expected response trait (Y) has the regression
model

E [Y] = δ0 + δe E + δg G , (1)

where δe is the environmental main effect and δg is the genetic
main effect. We used the Wald test statistic that follows a chi-
squared distribution with 1 degrees of freedom (df) under the
hypothesis H0: δg = 0 (i.e., testing for the genetic main effect).
Second, we followed the standard approach to identify G×E
interactions. The regression model is generalized to

E [Y] = α + βe E + βg G + βge G E , (2)

where βe and βg, respectively, are the environmental and
genetic main effects and βge is their multiplicative interaction
effect. We used the Wald test statistic that also follows a chi-
squared distribution with 1 df under the H0: βge = 0 (i.e.,
testing for the G×E interaction effect in the presence of the
genetic main effect). Third, we also tested the genetic main
effect in the presence of G×E interaction effect by using Wald

test statistic that follows a chi-squared distribution with 1 df
under the H0: βg = 0. Finally, we performed the test proposed
by Kraft et al. [Kraft et al., 2007] that jointly tests the genetic
main and G×E interaction effects using the same regression
model as in the second analysis. We used a Wald test statistic
that follows a chi-squared distribution with 2 df under the
H0: βg = βge = 0. This Wald test statistic is based on estimates of
βg and βge and their corresponding 2 × 2 covariance matrix.
The regression models for mega-analysis of pooled individual
data were analogous except that they included study-specific
intercepts (i.e., α1 – α4).

To combine the results from the four studies, we per-
formed fixed effects meta-analysis. We used the inverse-
variance weighting method in METAL [Willer et al., 2010]
by computing inverse-variance-weighted coefficients. It is
straightforward to combine the 1 df results from three analy-
sis options: main-effect-only analysis, interaction effect, and
main effect in the presence of interaction effect. Manning
et al. [Manning et al., 2011] developed the joint meta-analysis
and modified METAL [Willer et al., 2010] to combine the
joint 2 df tests across multiple studies. The joint meta-analysis
provides inference on the genetic main effect and interac-
tion effect pooled across all studies. To combine the joint
2 df results (estimates of βg, βge and their corresponding
2 × 2 covariance matrix) from these four studies, we used a
modified version of METAL that implements this joint 2 df
meta-analysis by Manning et al. [Manning et al., 2011].

Fixed effects meta-analysis that we used is the most pop-
ular approach in GWAS consortia and is shown to be the
most powerful for prioritizing and discovering SNPs [Pfeif-
fer et al., 2009]. In particular, fixed effects models have an
advantage over random effects models in terms of increased
power for discovery [Pereira et al., 2009]. However, because
fixed effects meta-analysis assumes that true effect size is
constant across the studies, we examined whether there was
evidence of heterogeneity among studies using P-value based
on Cochran’s Q-test [Cochran, 1954] for each SNP for all four
analysis options. We also examined the I2 index that quantifies
the proportion of total variation due to heterogeneity (i.e.,
between-study variance) [Higgins and Thompson, 2002].

Increased Type I error due to inflation of test statistics in
G×E interactions can be a concern as recently shown [Voor-
man et al., 2011]. We plotted quantile-quantile (QQ) plots
and computed the genomic inflation factor λGC, the degree of
inflation of the median test statistic, for all four analysis op-
tions. We also computed the genomic controlled P-values by
dividing test statistics by λGC, as they are widely used to cor-
rect for minor substructure problems [Ganesh et al., 2009].
In addition, we performed genomic controlled meta-analysis
(also using METAL), where genomic control correction was
applied before combining study-specific results.

To compare meta-analysis and mega-analysis in the con-
text of G×E interactions, we analyzed systolic blood pressure
(SBP) and used pack-years of smoking as an interacting co-
variate. In addition, we included age, sex, body mass index
(BMI), and use of anti-hypertensive medications as com-
mon covariates. Because all four studies are family studies
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Table 2. The number of SNPs (out of 131,880 SNPs) and I2 index across multiple ranges of heterogeneity P-values (HetP) based on
Cochran’s Q-test for heterogeneity in our meta-analysis

Range of HetP 1DF main only 1DF main 1DF interaction 2DF joint main and int.

SNPs count (%)
I2 index mean

(min, max) SNPs count (%)
I2 index mean

(min, max) SNPs count (%)
I2 index mean

(min, max) SNPs count (%)

HetP � 0.1 119,421 (90.6) 0.8 (0, 20) 119,776 (90.8) 0.8 (0, 20) 103,726 (78.7) 1.3 (0, 20) 109,302 (82.9)
0.05 � HetP < 0.1 6,047 (4.6) 27.6 (20, 36) 6,084 (4.6) 27.6 (20, 36) 11,264 (8.5) 28.0 (20, 36) 9,566 (7.3)
HetP < 0.05 6,412 (4.9) 48.2 (36, 77.5) 6,020 (4.6) 48.0 (36, 76.5) 16,890 (12.8) 50.8 (36, 81.9) 13,012 (9.9)
All 4.3 (0, 77.5) 4.2 (0, 76.5) 9.9 (0, 81.9)

I2 index for the 2df joint main and interaction test is unavailable.

in which relatedness must be taken into account, we used
ProbABEL [Aulchenko et al., 2010] and GenABEL/MixABEL
[Aulchenko et al., 2007] for each cohort study and mega-
analysis of pooled individual participant data.

Results

Table 1 presents select characteristics of the four studies.
Roughly half of the subjects are female within each study. The
subjects in the HERITAGE tended to be younger, relatively
leaner and low pack years with no anti-hypertensive medica-
tions (e.g., hypertension was an exclusion criterion). In con-
trast, the subjects in GENOA were older and had high pack
years and higher SBP with over 55% on anti-hypertensive
medications. The HyperGEN study has characteristics sim-
ilar to GENOA. The FHS has intermediate values for SBP,
medication use and pack years. We found that meta-analysis
of interaction results had more SNPs with evidence of het-
erogeneity across studies.

Table 2 presents the number of SNPs and I2 index across
multiple ranges of heterogeneity P-values based on Cochran’s
Q-test for heterogeneity. For main effect only analysis, het-
erogeneity P-values roughly followed a uniform distribution;
about 5% of SNPs had heterogeneity P-values below 0.05. In
contrast, meta-analysis for the interaction effect encountered
the greatest heterogeneity among studies (13% of the SNPs
had heterogeneity P-values < 0.05). The 2df test of joint main
and interaction effects provided 10% heterogeneous results.
Values of I2 index also provided evidence of higher hetero-
geneity in the interaction analysis (I2 values of 25, 50, 75 are
considered low, moderate, high heterogeneity, respectively).
I2 index ranged from 0 to 77.5 with a mean value of 4.3 for
the main effect only analysis, whereas it ranged from 0 to 81.9
with a mean value of 9.9 for the interaction analysis.

We found that the results between meta- and mega-
analyses were largely consistent. In particular, as shown in
Figure 1, the two analysis approaches provided similar effect
sizes and standard error (SE) estimates. Effect sizes between
the two approaches had a correlation of 0.95, 0.94, and 0.96
for main effect only [δg in equation (1)], main effect [βg in
equation (2)], and interaction effect [βge in equation (2)] es-
timates, respectively. When the results were restricted to SNPs
with heterogeneous effect sizes across studies (i.e., P-values
of Cochran’s Q-test < 0.05), there was larger variation in the
meta- and mega-analysis results, leading to smaller correla-

tions (as expected). Finally, SE estimates for all three effect
sizes were almost identical (with correlations of 0.999).

Figure 2 presents –log(p) values between meta- and mega-
analyses for all four analysis options: main-effect-only anal-
ysis, main effect in the presence of the interaction effect,
interaction effect in the presence of the main effect, and 2
df joint tests of main and interaction effects. Supplementary
Table 1 presents summary statistics of –log(p) differences be-
tween mega- and meta-analyses. Surprisingly, the joint 2 df
test provided the highest overall correlation (0.91); the corre-
lations between the two methods across all SNPs were iden-
tical to the correlations across homogeneous SNPs only (up
to two decimal places). Overall, although mega-analysis pro-
vided slightly better results as expected, both methods yielded
very similar results for the most promising SNPs (with the
smallest P values). For these promising SNPs, heterogeneity
P-values were greater than 0.05, indicating their effects are
homogenous across studies. High concordance of the small-
est P values between mega- and meta-analysis methods is
particularly noteworthy since they are the most important
discoveries for further follow up.

When the effect sizes are constant across studies, the meta-
analysis method using inverse-variance weighting is shown
to be optimal [Zhou et al., 2011]. In particular, weights pro-
portional to the square root of study sample sizes can be
suboptimal when the trait variance differs across studies. In
addition to the weighting method, we also performed an-
other commonly used approach that converts the direction
of effect and P-value observed in each study into a signed
Z-score; these Z-scores are then combined across studies in a
weighted sum, with weights proportional to the square-root
of the sample size for each study. Although trait variance
of SBP differs somewhat, as shown in Table 1, the results be-
tween the inverse-variance weighting method and the sample
size weighted signed Z score method were remarkably similar,
providing a correlation of 0.98.

Table 3 presents genomic inflation factor λGC for all four
analysis options. QQ plots for meta- and mega-analyses are
shown in Figure 3 (study-specific QQ plots are shown in
Supplementary Fig. 1). We found that both meta- and mega-
analyses behaved similarly. Main effect analysis had no infla-
tion of Type I error. However, 1 df test of interaction effect
had high inflation of type I error (λGC = 1.45 for both meta-
and mega-analyses). The genomic controlled meta-analysis
(GC-Meta), where genomic control correction was applied
before combining study-specific results, removed most of the
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Figure 1. Scatterplots showing effect sizes (1st row) and standard errors (2nd row) from mega-analysis versus meta-analysis. The main effect
only BETA (1st column) corresponds to δg in equation (1). The main effect BETA (2nd column) and interaction effect BETA (3rd column) correspond
to βg and βge in equation (2), respectively. Red crosses are SNPs with heterogeneous effect sizes across studies (i.e., P-value of Cochran’s Q-test <
0.05), and blue circles are SNPs with P-value of Cochran’s Q-test � 0.05. The correlations between the two methods across all SNPs were identical
to the correlations across blue circles (up to two decimal places). The black diagonal line indicates where the values on the two axes are equal.

inflation (λGC = 1.02). The 2 df joint test of main and in-
teraction effects had lower levels of inflation of type I error
(λGC = 1.15 and 1.20 for meta- and mega-analysis, respec-
tively), which was also removed by GC-Meta (λGC = 0.99). As
shown in Table 4, the proportion of SNPs with P-value < 0.05
stayed at 5% with genomic control correction. We note that,
as the primary purpose of this investigation is to evaluate
the comparability of meta- versus mega-analysis, inflation of
type I error rate in G×E analyses is in itself not as relevant
as whether such inflation, when it exists, is also comparable
between the two approaches.

For mega-analysis, we also used the robust option in the
ProABEL suite (results shown in Supplementary Fig. 2) fol-
lowing a recent recommendation [Voorman et al., 2011]. This
robust option is based on the “sandwich” estimate for vari-
ance, which is known to provide robust and asymptotically
consistent estimator under miss-specified models [Huber,
1967; Liang and Zeger, 1986; White, 1980]. Because the robust
option in ProbABEL is currently applicable to population-
based data, this ignores familial correlation. As shown in
Supplementary Figure 2, the P-values from this robust op-
tion were similar to the genomic controlled P-values from
the mega-analysis (Mega-GC).

We compared the performance of the four analyses in terms
of the evidence for association, using the genomic controlled
mega-analysis (Mega-GC) results. Figure 4 presents the scat-
terplots of the results [–log (p) values] across these four anal-
ysis options. As shown in Table 5, the number of SNPs with
P-value < 1 × 10–4 was 24, 2, 18, and 35 from main effect
only, main effect (in the presence of interaction), interaction
effect (in the presence of main effect), and the 2 df joint
test, respectively. They are plotted as red, green, blue, and
cyan points in Figure 4. The 18 blue SNPs (with P-value <

1 × 10–4 from the interaction effect) also had P-value < 1 ×
10–4 from the 2 df joint test; 17 additional SNPs with P-value
< 1 × 10–5 from the 2 df joint test are plotted as cyan points.
Table 5 presents the effect sizes and standard errors (SE) for
a subset of these SNPs, one SNP selected from each link-
age disequilibrium (LD) block, as our results were based on
131,880 imputed SNPs. We found that the genetic main and
interaction effects were in the opposite direction for every
SNP in group 2. For these SNPs, the main effect only analysis
(without interaction) provided a much smaller main effect
estimate, leading to no evidence of association. This phe-
nomenon is well known as Simpson’s paradox in the statis-
tics literature [Simpson, 1951; Wagner, 1982]. We found that
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Figure 2. Scatterplots showing –log(p) values from mega-analysis versus meta-analysis for the four analysis options: 1 df test of the main effect
only (without interaction effect) (top left), 1 df test of main effect in the presence of interaction effect (bottom left), 1 df test of interaction effect
in the presence of the main effect (top right), and 2 df joint test of the main and interaction effects (bottom right). Red crosses are SNPs with
heterogeneity effect sizes across studies (i.e., P-value of Cochran’s Q-test < 0.05), and blue circles are SNPs with P-value of Cochran’s Q-test �
0.05. The correlations between the two methods across all SNPs were identical to the correlations across blue circles (up to two decimal places).
The black diagonal line indicates where –log (p) values from meta- and mega-analyses are equal.

Table 3. Genomic control λGC values for study-specific analysis,
mega-anlysis, and meta-analysis

1DF
main
only

1DF
main

1DF
interaction

2DF joint
main and

int.

Study-specific analysis:
FHS 0.905 0.927 1.466 1.161
GENOA 0.998 1.108 1.228 1.117
HERITAGE 1.047 0.954 1.518 1.238
HyperGEN 1.015 0.933 1.549 1.234
Mega-analysis: 1.036 0.988 1.451 1.204

Meta-analysis:
No genomic control correction 0.976 0.927 1.447 1.154
Genomic control correction 0.971 0.914 1.015 0.994

QQ-plots for study-specific analysis are shown in Supplementary Figure 1. QQ-plots
for meta- and mega-analyses are shown in Figure 3.

the main and interaction effects were in the same direction
for every SNPs in groups 1 and 3. Although this evaluation

was based on results from the mega-analysis, as they are con-
sidered a gold standard, results based on meta-analysis were
almost identical (which is not surprising given the high con-
cordance between mega- and meta-analysis).

Discussion

Meta-analysis has become the most effective approach in
GWAS for utilizing large sample sizes available from multi-
ple studies and a standard practice in most consortia, since
each study can analyze its own data optimally by customiz-
ing data adjustments as needed [Evangelou and Ioannidis,
2013]. Increasingly greater emphasis is being placed on G×E
interaction analyses, also relying on meta-analysis in large
consortia [Aschard et al., 2012]. Mega-analysis is not read-
ily feasible owing to several challenges including limitations
of the informed consent for sharing raw data, data manage-
ment, and data harmonization for combining multiple huge
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Figure 3. Quantile-quantile (QQ) plots for the four analysis options: main effect only analysis (1st column), main effect in the presence of
interaction (2nd column), interaction in the presence of main effect (3rd column), and 2 df joint test of main and interaction effects (4th column).
The red circle points are P-values and the blue cross points are genomic controlled P-values. The genomic control value for the blue cross points
is 1. Study-specific QQ plots are shown in Supplementary Figure 1.

Table 4. The number of SNPs with P-values below thresholds (0.05 and 1 × 10−4) out of 131,880 SNPs. Gonomic control (GC) correction
preserved type I error

Analysis 1DF main only 1DF main 1DF interaction 2DF joint main and int.

P < 0.05 Mega-analysis 6,617 (6%) 5,935 (5%) 13,584 (11%) 11,691 (9%)
Meta-analysis 6,617 (6%) 5,935 (5%) 13,584 (11%) 11,691 (9%)
Mega-GC analysis 6,896 (5%) 7,167 (5%) 6,469 (5%) 7,529 (6%)
Meta-GC analysis 6,970 (5%) 7,024 (5%) 6,604 (5%) 7,945 (6%)
GC-Meta-analysis 6,527 (5%) 5,710 (4%) 6,752 (5%) 7,790 (6%)

P < 1 × 10–4 Mega-analysis 37 2 215 108
Meta-analysis 20 3 188 118
Mega-GC analysis 20 2 8 35
Meta-GC analysis 32 4 9 36
GC-Meta-analysis 20 2 8 35

For Mega-GC and Meta-GC, GC correction was applied after mega-analysis and meta-analysis, respectively. For GC-Meta, GC correction was applied for each study-specific
analysis before meta-analysis.

datasets. All these challenges render meta-analysis as the con-
venient and expedient method of choice especially because
meta-analysis yields results comparable to mega-analysis.

In this paper, we empirically evaluated whether meta-
analysis also provides results comparable to mega-analysis

for identifying G×E interactions. We found that results from
meta- and mega-analyses were largely consistent even for
identifying G×E interaction effects. In particular, they pro-
vided similar effect size and standard error estimates, leading
to similar P-values. The number of SNPs significant at various
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Figure 4. Scatterplots of –log(p) values across the four analysis options using genomic controlled mega-analysis. Red points are 24 SNPs with
P-value < 1 × 10−4 from the main effect only test. Green points are two SNPs with P-value < 1 × 10−4 from the main effect test. Blue points are
18 SNPs with P-value < 1 × 10−4 from the 1 df test of interaction effect (in the presence of main effect). Cyan points are additional 17 SNPs with
P-value < 1 × 10−4 from the 2 df test of joint main and interaction effects.

Table 5. Independent SNPs with P-values < 1 × 10−4, one SNP selected from each linkage disequilibrium (LD) block from the genomic
controlled mega-analysis

Main only Main Interaction Genomic controlled P-values

SNP Beta SE Beta SE Beta SE Main only Main Int 2DF

Group 1 (selected from 22 red SNPs in Fig. 4)
rs8050871 1.10 0.24 0.80 0.28 0.03 0.01 9.4 × 10–6 0.004 0.05 2.5 × 10–5

rs4788828 –1.23 0.30 –1.18 0.34 –0.01 0.02 6.5 × 10–5 0.0005 0.79 0.001
rs948638 1.30 0.31 1.13 0.35 0.02 0.02 4.2 × 10–5 0.001 0.38 0.0005
rs6499538 1.21 0.30 1.18 0.34 0.00 0.02 8.7 × 10–5 0.0005 0.84 0.001
rs2247603 1.26 0.32 1.18 0.36 0.01 0.02 8.8 × 10–5 0.0009 0.69 0.001
rs9930015 1.24 0.31 1.16 0.35 0.01 0.02 9.7 × 10–5 0.0009 0.68 0.001

Group 2 (selected from 18 blue SNPs in Fig. 4)
rs733123 0.18 0.32 1.03 0.36 –0.09 0.02 0.57 0.004 1.5 × 10–5 1.1 × 10–5

rs9954614 0.08 0.32 0.94 0.36 –0.09 0.02 0.80 0.008 1.4 × 10–5 1.1 × 10–5

rs6420435 –0.21 0.27 –0.92 0.31 0.07 0.01 0.45 0.003 5.3 × 10–5 4.1 × 10–5

rs1558949 0.06 0.31 0.85 0.36 –0.08 0.02 0.84 0.015 5.4 × 10–5 5.4 × 10–5

rs11859599 –0.24 0.27 –0.90 0.30 0.07 0.01 0.38 0.003 7.5 × 10–5 5.6 × 10–5

rs2405214 0.05 0.23 –0.54 0.26 0.06 0.01 0.85 0.039 7.6 × 10–5 7.8 × 10–5

Group 3 (selected from 2 green SNPs and 17 cyan SNPs in Fig. 4)
rs963267 0.91 0.23 0.55 0.26 0.04 0.01 8.4 × 10–5 0.03 0.01 2.7 × 10–5

rs949184 –1.24 0.33 –0.72 0.37 –0.05 0.02 0.0002 0.05 0.01 5.7 × 10–5

rs9960318 –1.39 0.42 –1.89 0.48 0.05 0.02 0.001 6.5 × 10–5 0.05 0.001
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thresholds was also comparable between the two approaches.
We observed increased type I error due to inflation of test
statistics for identifying interactions. To address this issue, we
adjusted for genomic control before and after meta-analysis
in addition to correction after mega-analysis. Although infla-
tion of type I error rate has been observed for the analysis of
G×E interactions, the levels of inflation were fairly compara-
ble between meta- and mega-analyses. Our study illustrates
that meta-analysis can be an effective approach for investi-
gating interaction effects also.

To our knowledge, this is the first report investigating meta-
versus mega-analyses for interactions. The validity of our
findings is somewhat limited as it is based on an empirical
investigation using a relatively small number of studies (four)
that are readily available to us. Therefore, they may not be
generalized to all situations. A more comprehensive simula-
tion study covering the various scenarios regarding the num-
ber of studies, variation of study sizes, and types of genetic
variation, among others, would strengthen our findings.
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