
An Empirical Comparison of Metamodeling Strategies in Noisy
Environments

Sunith Bandaru
School of Engineering Science

Skövde, Sweden
sunith.bandaru@his.se

Amos H.C. Ng
School of Engineering Science

Skövde, Sweden
amos.ng@his.se

ABSTRACT
Metamodeling plays an important role in simulation-based opti-
mization by providing computationally inexpensive approximations
for the objective and constraint functions. Additionally, metamodel-
ing can also serve to filter noise, which is inherent in many simula-
tion problems causing optimization algorithms to be mislead. In this
paper, we conduct a thorough statistical comparison of four pop-
ular metamodeling methods with respect to their approximation
accuracy at various levels of noise. We use six scalable benchmark
problems from the optimization literature as our test suite. The
problems have been chosen to represent different types of fitness
landscapes, namely, bowl-shaped, valley-shaped, steep ridges and
multi-modal, all of which can significantly influence the impact
of noise. Each metamodeling technique is used in combination
with four different noise handling techniques that are commonly
employed by practitioners in the field of simulation-based opti-
mization. The goal is to identify the metamodeling strategy, i.e. a
combination of metamodeling and noise handling, that performs
significantly better than others on the fitness landscapes under
consideration. We also demonstrate how these results carry over
to a simulation-based optimization problem concerning a scalable
discrete event model of a simple but realistic production line.

CCS CONCEPTS
•Theory of computation→Evolutionary algorithms; •Com-
puting methodologies→ Discrete-event simulation; •Math-
ematics of computing → Stochastic control and optimization;

KEYWORDS
simulation, optimization, metamodeling, noise

ACM Reference Format:
Sunith Bandaru and Amos H.C. Ng. 2018. An Empirical Comparison of
Metamodeling Strategies in Noisy Environments. In GECCO ’18: Genetic
and Evolutionary Computation Conference, July 15–19, 2018, Kyoto, Japan.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3205455.3205509

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205509

1 INTRODUCTION
Simulation has been defined in the literature [22] as “the process
of designing a model of a real system and conducting experiments
with this model for the purpose either of understanding the behav-
ior of the system or of evaluating various strategies (within the
limits imposed by a criterion or set of criteria) for the operation
of the system”. The said model is often a computational model (e.g.
finite element model, computational fluid dynamics model, discrete
event simulation model, etc.) that is expensive to evaluate. The com-
putational time for a single scenario can vary from a few seconds
to a few days. When a large number of scenarios have to be evalu-
ated, the total computational time can become infeasible. In such
situations, an inexpensive approximation model of the simulation
model is sought. This model of a model is known as a metamodel.

Simulation-Based Optimization (SBO) refers to the use of numer-
ical optimization techniques for finding the best configuration(s)
of the simulation model for minimizing (or maximizing) one or
more outputs. In optimization terminology, each possible configu-
ration is referred to as a solution, x = [x1,x2, . . . ,xn]T , while the
best configuration is called the optimal solution, x∗. The outputs to
be optimized are called the objective/fitness functions, fi (x). Often,
some of the outputs may also be restricted to take certain range
of values, in which case they form the constraint functions, дj (x)
(inequality) and hk (x) (equality).

The absence of an analytical form for the objectives (or con-
straints), combined with the fact that real-world problems are often
nonlinear, means that traditional optimization methodologies, most
of which rely on function gradients, will have a hard time solving
SBO problems. Evolutionary algorithms are popular in this regard
due to their global search capability and ability to work without
gradient information. Moreover, since evolutionary algorithms are
population-based, multi-objective SBO problems can be solved to
generate a set of non-dominated solutions [4] in a single algorith-
mic run. On the downside, evolutionary algorithms are known
to require relatively large number of evaluations when compared
to classical optimization algorithms. This makes metamodeling
especially suitable to be used with evolutionary algorithms.

1.1 Noise in Simulation
Simulation models can be deterministic or stochastic. A determin-
istic simulation model yields the same outputs for replicated runs
of a given configuration. Deterministic simulations are rare in real-
world applications, and mostly appear as simplifications of stochas-
tic simulations (also called random simulations). On the other hand,
stochastic simulation models are closer to the real-world where
uncertainties are prevalent. There are three main sources of noise
that lead to stochasticity in simulations. Firstly, the underlying

817

https://doi.org/10.1145/3205455.3205509
https://doi.org/10.1145/3205455.3205509

GECCO ’18, July 15–19, 2018, Kyoto, Japan Sunith Bandaru and Amos H.C. Ng

problem may itself be stochastic. Ample examples can be found in
manufacturing, transportation systems, health care, supply chain
management, etc. [3]. In this case, the stochasticity is built into
the simulation model using known distributions. For instance, it
is common to model processing time variability in manufacturing
processes using a log-normal distribution [19]. Secondly, noise can
come from complex modeling techniques such as meshing in finite
element analysis [10] or computational fluid dynamics [21]. Mod-
eling noise is a function of the simulation configuration, meaning
that different configurations may lead to different levels of noise.
The third source of noise is the most common and is called nu-
merical noise, arising due to pseudo-random number generation
or rounding [16]. Numerical noise can be classified as white noise
(independent and identically distributed), since it is independent of
the configuration of the simulation.

In stochastic SBO, noise makes it impossible to obtain the true
values of the objective functions, and therefore only an estimation
can be made based on multiple simulation runs of the given configu-
ration. The most common stochastic formulation uses the expected
value of a sample response function as the estimate. Assuming that
the constraints are noiseless, the SBO problem is given by [1],

Minimize f (x) = E [F (x, ξ (ω))]
Subject to дj (x) ≥ 0 ∀ j = 1, 2, . . . , J

hk (x) = 0 ∀ k = 1, 2, . . . ,K
x(L) ≤ x ≤ x(U)

(1)

The sample response function F : Rn ×Rd → R provides a real-
ization of f (x) for a random vector ξ (ω). In practice, the objective
function is approximated by averaging its value over a finite num-
ber of replications [5, 13], f (x) ≈ 1

N
∑N
i=1 F (x, ξi), where F (x, ξi) is

evaluated from a single simulation run for a random realization ξi
of ξ (ω). Estimates other than the expected value, such as minimum,
maximum and quantiles, can also be used [5].

1.2 Metamodeling in Stochastic Simulation
It is common practice in SBO studies to substitute expensive non-
analytical objective functions with approximate metamodels. How-
ever, metamodeling can serve the dual purpose of smoothening out
noisy fitness landscapes as pointed out in [17, 25]. Metamodels are
essentially regression/interpolation techniques and therefore are
capable of achieving this without severely compromising the qual-
ity of the fit. For the same reason, metamodels can sometimes also
smoothen out local optima of the original fitness function without
changing the location of the global optimum [13]. Severe noise can,
however, cause metamodels to develop a false local optimum [12]
even in relatively smooth regions of the fitness function. Hence,
it is necessary to complement metamodeling methods with spe-
cific noise handling techniques. Some previous studies concerning
metamodeling in noisy environments can be found in [9].

In this paper, we explore whether certain metamodeling meth-
ods have an edge over others in approximating different types
of landscapes under the influence of noise over a range of prob-
lem dimensions. We also study if noise handling techniques that
are commonly used in practice can improve the accuracy of these
metamodels. These questions are answered both with respect to

standalone metamodels and with respect to their ability in accu-
rately representing of true optimum. The paper is organized as
follows. Section 2 briefly describes the four popular metamodeling
methods chosen for this paper and four simple noise handling tech-
niques that are commonly used in SBO. Since each metamodel can
be used in combination with any of the noise handling techniques,
the number of metamodeling strategies to be compared is 16. The
experimental setup and the test problem suite for carrying out the
empirical comparison is described in Section 3, followed by a sta-
tistical analysis and discussion of the results in Section 4. We also
illustrate how these results carry over to a scalable discrete event
simulation model of a simple but realistic production line.

2 METAMODELING STRATEGIES
In this paper, we use the term ‘metamodeling strategy’ to refer
to each unique combination of a metamodeling method with a
noise handling technique. The four metamodeling methods used in
this study are described next, followed by the four noise handling
techniques. We assume that a set of ns unique sample points with
N replications at each sample is available for training. Each of
these ns × N samples consists of the n dependent variables x and a
corresponding fitness realization F (x, ξi).

2.1 Metamodeling Methods
The metamodeling strategies studied in this paper use different
numbers of training samples and different estimates of the fitness
function for training. Therefore, for simplicity of notation, we use
T (x) to represent the target function value used for training and na
to represent the actual number of training samples.

2.1.1 Multivariate Adaptive Regression Splines (MARS). MARS
[7] adaptively builds a metamodel of the form,

f̂ (x) = a0 +
M∑

m=1
amB

(q)
m (x), (2)

where B(q)m (x) are multivariate spline basis functions given by,

B
(q)
m (x) = ΠKm

k=1[skm · (xv(k,m) − tkm)]q+, skm = ±1. (3)

Here, Km is the number of splits that form Bm . v(k,m) represents
components of x and tkm is the knot point on the corresponding
variable. The subscript ‘+’ indicates that the function in square
brackets is a truncated power function, defined as xq+ = xq if x >
0, else xq+ = 0. The MARS algorithm is executed in two phases:

(1) Forward stepwise phase: In the forward phase, each step adds
a new knot and a pair of truncated power functions to the
model. The position of the knot (tkm) and the dimension
in which to add it (v(k,m)) are governed by a lack-of-fit
criterion, which is often the squared error loss (f̂ (x)−T (x))2
obtained by performing a linear regression. The process is
repeated until a user-defined maximum number of basis
functions is reached.

(2) Backward stepwise phase: The basis functions are now deleted
one at a time to prevent the model from over-fitting the
training data. The first term to be deleted is the one that least
affects the fit in terms of the generalized cross-validation
(GCV) criterion, which trades off goodness-of-fit against

818

An Empirical Comparison of Metamodeling Strategies in Noisy Environments GECCO ’18, July 15–19, 2018, Kyoto, Japan

model complexity. A sequence of models, each having one
less basis function than the previous one is constructed. The
best model in this sequence becomes the final model.

We use a MATLAB implementation of MARS known as ARES-
Lab [11], short for Adaptive Regression Splines toolbox for MAT-
LAB/Octave. All parameters are set at their recommended values
provided in the instruction manual.

2.1.2 Kriging or Gaussian Process Regression (DACE). Kriging
is an interpolation method that combines a global deterministic
model with a local stochastic model. The former approximates the
target function T (x), similar to regression, while the latter allows
the krigingmodel to interpolate the training samples by introducing
local deviations. Mathematically, the kriging predictor is given by

f̂ (x) = F (a, x) + Z (x), (4)

where F (a, x) can either be a constant (ordinary kriging), or more
generally be a linear combination of functions (universal kriging).
Z (x) represents a Gaussian random process with zero mean, vari-
ance σ 2 and covariance,

Cov[Z (x(i)),Z (x(j))] = σ 2R[R(θ , x(i), x(j))], (5)

where, R is a na × na correlation matrix whose elements are given
by, R(θ , x(i), x(j)), θ being the parameters of the correlation model.

The kriging methodology has been implemented in MATLAB as
the DACE (Design and Analysis of Computer Experiments) toolbox
[20]. We use the toolbox with all its default settings except for a
minor enhancement described later. The parameters to be set by
the user are:

(1) reдr : Three models for F (a, x) are available, (i) regpoly0
representing a constant (ordinary kriging), (ii) regpoly1
representing a linear regressor with p = n + 1 coefficients,
and (iii) regpoly2 representing a quadratic regressor with
p = (n + 2)(n + 1)/2 coefficients.

(2) corr : Correlationmodel. Six correlationmodels have been im-
plemented. The popular Gaussian correlation model is used

in this paper.Rcorrдauss (θ , x(i), x(j)) = Πn
k=1e

−θk (x (i)
k −x (j)

k)2 .
(3) θ0: Initial value for θ . We use θ0 = [2 2 . . . 2]n .
(4) θL ,θU : Lower and upper bounds forθ .We use [0.1 0.1 . . . 0.1]n

and [20 20 . . . 20]n , respectively.

2.1.3 Elastic Nets (EN). An elastic net [26] is essentially regu-
larized regression. The idea behind regularization is to use a regu-
larization or shrinkage parameter λ ≥ 0 to penalize overly complex
models. Two regularization methods are commonly used. The L2
regularization method penalizes the sum of squares of the coef-
ficients and is known as ridge regression. The L1 regularization
method penalizes the sum of absolute values of the coefficients and
is known as LASSO (Least Absolute Shrinkage and Selection Oper-
ator). The advantage of LASSO is that it can completely eliminate
some of the variables by zeroing out the corresponding coefficients,
thus giving a parsimonious model.

Elastic nets combine ridge and LASSO regression through a
parameter α ∈ [0, 1]. The cost function for elastic net regression is,

na∑
i=1

(T (x(i)) − f̂ (x(i)))2 + λ
[
(1 − α)

2
| |a| |22 + α | |a| |1

]
, (6)

where f̂ is the standard quadratic regressionmodel with coefficients
a, | |a| |22 =

∑p
j=1 a

2
j and | |a| |1 =

∑p
j=1 |aj |. With λ = 0, the above

reduces to ordinary least squares estimation. α = 0 corresponds to
ridge regression and α = 1 gives LASSO.

We use the GLMNET MATLAB toolbox [8] with its default set-
tings in this paper.

2.1.4 Random Forests (RF). Random forests are a variation of
the bagging approach proposed in [2]. Bagging or bootstrap ag-
gregation is a method for reducing the variance of predictors by
training multiple low bias models on bootstrap samples (random
samples with replacement). Bootstrap samples have the same size as
the original training set. The prediction (for regression) is obtained
by averaging the output over all the trained models. The bagged
tree ensemble uses a user-defined number of unpruned regression
trees. Random forests provide an improvement over bagged trees
by additionally performing feature bagging. A random sample of
NVarToSample < n variables are considered at each split instead of
considering all n variables. Typically, NVarToSample = ⌊n/3⌋ for
regression. Like the bagged tree ensemble, random forests also use
a user-defined number of unpruned regression trees, ntrees . Feature
bagging and bootstrapping help in de-correlating the trees. We use
MATLAB’s TreeBagger function in this paper with ntrees = 100,
NVarToSample = ⌊n/3⌋,MinLeaf = 5 and prune =false.

2.2 Noise Handling Techniques
There are three broad ways of dealing with noise in general [23], (i)
leave noise in, (ii) filter noise out, (iii) correct for noise. The follow-
ing noise handling techniques use one or more of these approaches.

2.2.1 Mean Over Replications. This is the simplest and most
common way of correcting for noise in simulation. The N replica-
tions of each unique sample are averaged to give an estimate of
f (x) as shown earlier. Thus, T (x) = 1

N
∑N
i=1 F (x, ξi). The number

of training samples here is na = ns .

2.2.2 Median Over Replications. The median (second quantile)
of the N replications can also be used as an estimate of f (x) to
correct for noise at each unique sample location. Thus, T (x) =
median(F (x, ξ1), F (x, ξ2), . . . F (x, ξN)). It is well known that the
median is less sensitive to outliers than the mean, so it may lead
to better metamodels. The number of training samples is again
na = ns .

2.2.3 All Replications. All N replications of each unique sample
can be used for training, leaving the noise untouched. The actual
number of training samples with this technique is na = ns × N ,
and the target is T (x) = F (x, ξi)∀ i .

2.2.4 Mean Over Filtered Replications. Outliers among the N
replications can be identified using a rule-of-thumb such as µ ±k σ .
The average calculated after removing the outliers may provide
a more stable estimate of f (x) for each unique sample. Therefore,
T (x) = 1

|C |
∑
i ∈C F (x, ξi), where

C = {i : µ − k σ ≤ F (x, ξi) ≤ µ + k σ },
µ and σ being the mean of standard deviation of F (x, ξi) over all i .
The number of training samples is na = ns . We use k = 1 in this
paper.

819

GECCO ’18, July 15–19, 2018, Kyoto, Japan Sunith Bandaru and Amos H.C. Ng

3 EXPERIMENTAL SETUP
As mentioned in the previous sections, we empirically compare 16
metamodeling strategies, resulting from the combinations of meta-
modeling methods with noise handling techniques. These strategies
are:

(1) MARS with mean over replications,MARSµ
(2) MARS with median over replications,MARSM
(3) MARS with all replications,MARSA
(4) MARS with mean over filtered replications, MARSF
(5) DACE with mean over replications, DACEµ
(6) DACE with median over replications, DACEM
(7) DACE with all replications, DACEA
(8) DACE with mean over filtered replications, DACEF
(9) EN with mean over replications, ENµ
(10) EN with median over replications, ENM
(11) EN with all replications, ENA
(12) EN with mean over filtered replications, ENF
(13) RF with mean over replications, RFµ
(14) RF with median over replications, RFM
(15) RF with all replications, RFA
(16) RF with mean over filtered replications, RFF

Each metamodeling strategy is tested on,
(1) six benchmark problems with different types of fitness land-

scapes as shown in Table 1. Though none of the problems are
simulation models, we emulate simulation by treating the
test functions as black boxes, i.e., the metamodeling strategies
do not use the function definitions in any way.

(2) five different problem dimensions, n = {10, 20, 30, 40, 50}
(3) five different noise levels, β = {0, 0.001, 0.01, 0.1, 1}

We use Gaussian multiplicative noise as specified in [6] and
given by,

F (x, ξ (ω); β) = f (x) exp(βN(0, 1)). (7)

β controls the strength of noise, with β = 0 being noiseless,
β = 0.01 corresponding to moderate noise and β = 1 corre-
sponding to severe noise. The Gaussian noise model is scale
invariant and results in a log-normally distributed noise.

Thus, there are a total of 6 × 5 × 5 = 150 experiments for each
strategy. Each of these experiments is run 10 times with different
random seeds to account for statistical variation and the median
performance metric is presented.

For every run of each experiment, both training and test samples
are independently generated using Latin hypercube sampling in the
domain [−5, 5]n . The number of unique training samples is scaled
with the number of variables as ns = 15n1. Each training sample is
evaluated (replicated) N = 10 times to account for different levels
of noise, thus giving a total of ns × N samples. As discussed in
Section 2.2, each metamodeling strategy uses these replications dif-
ferently. For a given experiment and a given run, all metamodeling
strategies use the same unique samples and their replications. The
same is true for the test samples.

1Note that the number coefficients to be estimated in a quadratic regression model
is p = (n + 2)(n + 1)/2. Thus, for problem dimensions n = {10, 20}, the quadratic
regression problem is overdetermined (p < ns), whereas it is underdetermined (p > ns)
for n = {30, 40, 50}. This helps us test both scenarios.

3.1 Performance Metrics
The number of test samples is fixed at nt = 100 for all experiments.
It is important to note that the test samples are noiseless, so that
the metamodel accuracy is measured with respect to true function
values. The following performance metrics are used:

(1) Normalized Root Mean Squared Error (NRMS): This is a stan-
dard error measure. Normalization ensures that the values
can be compared across various noise levels and problem
dimensions for a given problem. It is given by,

NRMS =
1

√
nt

√∑nt
i=1(f (x(i)) − f̂ (x(i)))2

(fmax − fmin)
,

where,

fmax = max(f (x(1)), f (x(2)), . . . , f (x(nt)))
fmin = min(f (x(1)), f (x(2)), . . . , f (x(nt)))

(2) Rank Error (RE): Evolutionary algorithms are comparison-
based optimizers which means that they select good solu-
tions through pairwise comparisons. Therefore, when meta-
models are to be used with evolutionary algorithms, they
only have to be accurate enough to select the better of two
solutions. In other words, they need not have low NRMS
values to be useful. We therefore use a metric called the rank
error, defined in [14] and given by,

RE =
SwappedPairs(nt

2
) ,

where, SwappedPairs represents the number of pairs of test
samples for which the order with respect to f̂ (x) (predicted
by the metamodel) does not agree with the true order (i.e.,
with respect to f (x)).

(3) Optimum Location Error (∆x and ∆f): In addition to approx-
imating the fitness landscape well, a metamodel should be
able to represent the true optimum accurately, both in vari-
able and objective space [15]. Let x̂∗ be the optimum found
by an evolutionary algorithm when using metamodel-based
optimization. The optimum location errors are defined as,

∆x = ∥x̂∗ − x∗∥ and ∆f = | f (x̂∗) − f (x∗)|.

4 RESULTS AND DISCUSSION
4.1 Statistical Analysis of NRMS and RE
The first part of the results concerns performance metrics NRMS
and RE for standalone metamodeling strategies. We first illustrate
the statistical analysis of NRMS on the Rosenbrock function (Prob-
lem 3 in Table 1) for n = 20 variables. The median NRMS values
obtained from 10 repeated runs of this problem instance for dif-
ferent metamodeling strategies and at different levels of noise are
shown in Table 2. For each of the five experiments (columns), a
Kruskal-Wallis rank-sum test [18] is performed at α = 0.05 level of
significance to test the null hypothesis that there is no significant
difference between the metamodeling strategies. We get p-values of
1.12×10−13, 1.19×10−13, 1.55×10−14, 5.92×10−15 and 1.47×10−22
for the five columns from left to right. Thus, the null hypothesis
can be rejected in all cases and it can be concluded that at least
two of the metamodeling strategies are significantly different from

820

An Empirical Comparison of Metamodeling Strategies in Noisy Environments GECCO ’18, July 15–19, 2018, Kyoto, Japan

Table 1: Optimization benchmarks used in this study.

ID Name Function Definition Landscape Optimum

1 Sphere f (x) = ∑n
i=1 x

2
i Bowl x∗ = 0, f (x∗) = 0

2 Rotated ellipsoid f (x) = ∑n
i=1

∑i
j=1 x

2
j Bowl x∗ = 0, f (x∗) = 0

3 Rosenbrock f (x) = ∑n−1
i=1 [100(xi+1 − x2i)

2 + (xi − 1)2] Valley x∗ = 1, f (x∗) = 0
4 Michalewicz f (x) = −∑n

i=1 sin(xi) sin2m
(
ix2i /π

)
Steep ridges x∗ = See [24], f (x∗) = −0.99864n + 0.30271 [24]

5 Rastringin f (x) = 10n +
∑n
i=1[x2i − 10 cos(2πxi)] Multi-modal x∗ = 0, f (x∗) = 0

6 Ackley f (x) = −20 exp(−0.2
√∑n

i=1 x
2
i /n) Multi-modal x∗ = 0, f (x∗) = 0

− exp(∑n
i=1 cos(2πxi)/n) + 20 + exp(1)

Table 2: Median NRMS values from 10 runs of all metamod-
eling strategies at different noise levels for 20-dimensional
Rosenbrock function.

Strategy Noise levels
ID Name β = 0 β = 0.001 β = 0.01 β = 0.1 β = 1
1 MARSµ 0.1660 0.1793 0.1801 0.1803 0.4810
2 MARSM 0.1660 0.1793 0.1801 0.1817 0.2295
3 MARSA 0.1660 0.1813 0.1783 0.1740 0.4729
4 MARSF 0.1660 0.1793 0.1750 0.1738 0.2511
5 DACEµ 0.1500 0.1434 0.1373 0.1472 0.9053
6 DACEM 0.1500 0.1434 0.1374 0.1477 0.5243
7 DACEA 0.1500 0.1434 0.1373 0.1472 0.9053
8 DACEF 0.1500 0.1434 0.1377 0.1504 0.5091
9 ENµ 0.0837 0.0897 0.0846 0.0847 0.4288
10 ENM 0.0835 0.0889 0.0853 0.0867 0.1776
11 ENA 0.0829 0.1352 0.1316 0.1380 0.4325
12 ENF 0.0835 0.0881 0.0834 0.0856 0.1852
13 RFµ 0.1537 0.1672 0.1655 0.1754 0.4134
14 RFM 0.1546 0.1675 0.1665 0.1742 0.1595
15 RFA 0.1539 0.1659 0.1631 0.1675 0.4329
16 RFF 0.1533 0.1682 0.1656 0.1752 0.1725

each other in each column. In order to identify the best strategies
for each experiment, post-hoc multiple comparisons tests must be
performed. We use MATLAB’s multcompare function to perform
the Tukey-Kramer test, which reveals all groups of statistically
indistinguishable strategies. The strategies that are found to be
equivalent to the best median strategy are shown in bold for each
column in Table 2.

In order to summarize the results for Rosenbrock function with
n = 20 variables, we can define a significance score over the five
experiments. The number of times a particular metamodeling strat-
egy’s median NRMS appears in bold in Table 2 is a measure of how
successful the strategy is overall. We observe that strategies 10 and
12 (ENM and ENF) are among the best strategies 5 out of 5 times.

We can now extend this analysis over all problems and dimen-
sions. To better visualize the NRMS values in a concise form and
possibly detect patterns, we propose to use what we call Statistical
Error Maps or SEMs. The SEM of median NRMS at β = 0 for all
problems and dimensions is shown in Figure 1. The colorbar on

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

M
e

ta
m

o
d

e
lin

g
 S

tr
a

te
g

ie
s

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 1: Statistical Error Map for NRMS at β = 0.

the right indicates the range of NRMS . The rows of the map are
metamodeling strategies denoted by their IDs, and the columns are
experiments grouped by the problems. Within each ’Problem’ block,
the columns from left to right correspond to problem dimensions
n = 10, 20, 30, 40 and 50, respectively. The black markers indicate
statistical indistinguishability of the strategies to the best median
strategy from corresponding columns. Notice that no markers ap-
pear in Problem 4 (Michalewicz) for n = 30, 40 and 50. This happens
when the Kruskal-Wallis null hypothesis cannot be rejected, and
therefore no post-hoc analysis can be performed.

In about the same amount of space, the SEM conveys much more
information than Table 2. Moreover, interesting patterns can be
detected by visual inspection. For example, notice that the perfor-
mance of DACE based strategies (with IDs 5, 6, 7 and 8) drop signif-
icantly between n = 20 and n = 30 for Problems 1, 2, 3 and 6. The
reason for this is that our DACE variant switches from regpoly2
to regpoly1 to avoid an underdetermined regression problem for
n = 30, 40 and 50. We also note that all strategies perform poorly
on Problem 4 (Michalewicz) which features steep ridges. There is
no trend indicating that the metamodel accuracy deteriorates with
problem dimension. This indicates that the scaling factor used for
unique training samples, i.e. ns = 15n, is adequate.

Similar SEMs generated for β = 0.001, 0.01, 0.1 and 1 are shown
in Figures 2a-2d. The patterns discussed above can still be seen in
these figures, though to a much less extent for β = 1. The corre-
sponding noise level has been classified as ‘severe’ in [6]. It is appar-
ent from the range of NRMS values in Fig. 2d that this level of noise
adversely affects the metamodels. Note that for β = 0, 0.001, 0.01
and 0.1, no significant differences can be observed among the noise

821

GECCO ’18, July 15–19, 2018, Kyoto, Japan Sunith Bandaru and Amos H.C. Ng

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

M
e
ta

m
o
d
e
lin

g
 S

tr
a
te

g
ie

s

0.1

0.2

0.3

0.4

0.5

0.6

(a) SEM for NRMS at β = 0.001.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

M
e
ta

m
o
d
e
lin

g
 S

tr
a
te

g
ie

s

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) SEM for NRMS at β = 0.01.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

M
e
ta

m
o
d
e
lin

g
 S

tr
a
te

g
ie

s

0.1

0.2

0.3

0.4

0.5

0.6

(c) SEM for NRMS at β = 0.1.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

M
e
ta

m
o
d
e
lin

g
 S

tr
a
te

g
ie

s

0.5

1

1.5

2

2.5

3

3.5

4

(d) SEM for NRMS at β = 1.

Figure 2: Statistical Error Map (SEM) for NRMS .

handling techniques for any of the metamodeling methods. How-
ever, they matter when the noise is severe, as seen in Fig. 2d. Noise
handling by ‘mean over replications’ and ‘all replications’ are rarely
among the best performing strategies.

From a cursory look, it can already be seen that elastic net based
strategies outperform other methods. However, to quantitatively
rank all the strategies, we can calculate significance scores as before.
Table 3 shows the break-up of these scores over different noise
levels. All scores are out of 30, the number of experiments at each
noise level. The overall score is out of 150. The scores indicate that
ENM and ENF are the best overall metamodeling strategies with
respect to NRMS . For low to moderate amount of noise, all EN
based strategies are found to be better than others. ENµ comes in

Table 3: Significance scores for NRMS broken-up by noise
level.

Strategy Noise levels Overall
ID Name β = 0 β = 0.001 β = 0.01 β = 0.1 β = 1 Score
1 MARSµ 10 13 14 14 4 55
2 MARSM 10 13 13 13 30 79
3 MARSA 10 15 14 13 4 56
4 MARSF 10 13 13 12 30 78
5 DACEµ 9 15 11 11 3 49
6 DACEM 9 15 11 11 23 69
7 DACEA 9 15 11 11 3 49
8 DACEF 9 15 11 11 23 69
9 ENµ 27 30 30 30 6 123
10 ENM 27 30 30 30 30 147
11 ENA 27 21 20 21 1 90
12 ENF 27 30 30 30 30 147
13 RFµ 16 19 17 20 7 79
14 RFM 16 19 17 20 30 102
15 RFA 16 18 15 20 5 74
16 RFF 16 19 17 20 30 102

second due to its poor performance under severe noise. Surprisingly,
RFM , RFF ,MARSM andMARSF beat all DACE based strategies. We
attribute it to the use of linear regressor in DACE.

A similar analysis can be done for rank error RE. Skipping over
individual SEMs, we directly show the significance scores (out of
30) for RE at different noise levels in Table 4. It is immediately
clear that RE and NRMS are not equivalent or correlated. Due to
lower fidelity requirement when purely used for comparisons, it is
easier for metamodels to be good at RE than at NRMS . For example,
RF based strategies are now at par with EN based strategies. Also,
noise handling techniques seem to be irrelevant when considering
RE. ENA is found to be the best metamodeling strategy. Contrary
to what was observed with NRMS , DACE based strategies have a
slight edge here over MARS based ones. On the other hand, severe
noise has the same effect on RE as it had on NRMS .

4.2 Statistical Analysis of ∆x and ∆f
Having identified the best standalone metamodeling strategies, we
now use them to optimize the functions. Metamodels can be used
in two broad ways to assist optimization, direct fitness replace-
ment and indirect fitness replacement. Direct fitness replacement
methods use the approximations from the metamodel in place of
actual function evaluation. This can be done in three ways: (a) with-
out evolution control, (b) fixed evolution control, and (iii) adaptive
evolution control. Evolution control basically specifies when and
how the metamodel approximations should be used and the meta-
models should be updated. When no evolution control is used, the
metamodel is static and all fitness values are exclusively obtained
from the metamodel. Fixed evolution control uses fixed heuris-
tics/strategies to answer the when and the how. Adaptive evolution
control is data-driven. It monitors the progress of the optimization
and automatically switches back and forth between the metamodel
and the true function.

822

An Empirical Comparison of Metamodeling Strategies in Noisy Environments GECCO ’18, July 15–19, 2018, Kyoto, Japan

Table 4: Significance scores for RE broken-up by noise level.

Strategy Noise levels Overall
ID Name β = 0 β = 0.001 β = 0.01 β = 0.1 β = 1 Score
1 MARSµ 9 11 10 11 13 54
2 MARSM 9 10 12 11 16 58
3 MARSA 9 11 11 11 14 56
4 MARSF 9 11 12 8 20 60
5 DACEµ 13 14 14 13 11 65
6 DACEM 13 14 14 12 10 63
7 DACEA 13 14 14 13 11 65
8 DACEF 13 14 14 12 11 64
9 ENµ 25 26 27 25 8 111
10 ENM 25 25 27 25 13 115
11 ENA 25 28 27 26 16 122
12 ENF 25 25 27 25 14 116
13 RFµ 22 21 19 21 30 113
14 RFM 22 21 20 20 30 113
15 RFA 23 16 16 19 30 104
16 RFF 22 20 19 21 30 112

In this section, we use the metamodel without any evolution
control, which is possibly the worst way to use metamodels in
optimization. Our purpose here is only to study the performance
of the metamodeling strategies in accurately representing the true
optimum. The use of an evolution control, whether fixed or adaptive,
might affect the metamodeling strategies differently. Therefore, it is
best to keep them out of the picture. Moreover, there is no consensus
on the what constitutes an optimal evolution control.

Based on the results from the previous section, we choose strate-
gies that use ’median over replications’ for noise handling. These
areMARSM ,DACEM , ENM and RFM (with IDs 2, 6, 10 and 14). The
experimental procedure is exactly the same as before, except that
after training, we optimize the static metamodel using MATLAB’s
ga function. The parameters for this GA are: (i) population size =
5n, (ii) max generations = 20n. Other parameters take their default
values. The best solution x̂∗ found by the GA is used to calculate
the optimum location errors ∆x and ∆f . The SEMs for ∆x at differ-
ent noise levels are shown in Figures 3. ∆f requires true function
values for all x̂∗. Once evaluated, the overall significance scores for
both ∆x and ∆f are calculated as explained before for NRMS and
RE. These scores (out of 150) are shown in Table 5. Additionally,
the combined score (also out of 150) is also shown. An experiment
counts towards the combined score of a strategy, if and only if both
∆x and ∆f are statistically indistinguishable from their correspond-
ing best median strategies. In other words, the black marker must
appear at corresponding places in the SEMs of both ∆x and ∆f .

4.3 Discrete Event Simulation Model
Next, we consider a discrete event simulation model of a simple
production line (called an unpaced flow line) as shown in Figure 4
consisting of S = 5 workstations with S −1 = 4 inter-station buffers.
This model has the advantage of being scalable in S as well as being
realistic enough to be applicable in many industrial settings. The
throughput of the line is governed by workstation availability (αi

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

2
6

10
14S

tr
a

te
g

ie
s

10

20

30

(a) SEM for ∆x at β = 0.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

2
6

10
14S

tr
a

te
g

ie
s

10

20

30

(b) SEM for ∆x at β = 0.001.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

2
6

10
14S

tr
a

te
g

ie
s

10

20

30

(c) SEM for ∆x at β = 0.01.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

2
6

10
14S

tr
a

te
g

ie
s

10

20

30

(d) SEM for ∆x at β = 0.1.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

2
6

10
14S

tr
a

te
g

ie
s

10

20

30

(e) SEM for ∆x at β = 1.

Figure 3: Statistical Error Map (SEM) for ∆x.

Table 5: Significance scores for ∆x and ∆f .

Strategy Overall Score Combined Score
ID Name ∆x ∆f (Not summation)
2 MARSM 65 53 48
6 DACEM 28 42 25
10 ENM 115 118 113
14 RFM 97 92 90

%), processing time (βi seconds) and repair time (γi seconds) of
the workstations/machines, which can take any of the following
discrete values:

αi = {90, 92, 94, 96, 98} ∀ i = 1, 2, . . . S
βi = {60, 65, 70, 75, 80} ∀ i = 1, 2, . . . S
γi = {180, 210, 240, 270, 300} ∀ i = 1, 2, . . . S

(8)

The capacities of inter-station buffers can take integer values Bi =
{1, 2, . . . 10}. The processing times are assumed to be constant,
which is realistic for automated machining processes. The time-
to-failure of the workstations are modeled with exponential dis-
tributions and the randomness of repair times is modeled using
Erlang distributions. Thus, the throughput of the production line is
a stochastic function of 4S − 1 variables αi , βi , γi and Bi . The cor-
responding SBO problem requires the throughput to be maximized,
which by itself can easily be achieved by setting α ’s and B’s as high
as possible and β ’s and γ ’s as low as possible. However, assum-
ing that currently each machine has αor iд = 90, βor iд = 80 and
γor iд = 300, every step of improvement in any of these variables

823

GECCO ’18, July 15–19, 2018, Kyoto, Japan Sunith Bandaru and Amos H.C. Ng

Figure 4: Discrete event simulation model representing an
unpaced production flow line.

5 10 15 20

1

2

5

6

9

10

13

14
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

5 10 15 20

1

2

5

6

9

10

13

14

0.2

0.25

0.3

0.35

0.4

Figure 5: SEM forNRMS (left) and RE (right) of discrete event
simulation model shown in Figure 4.

requires an investment. Thus, minimization of the total investment
gives a trade-off with respect to throughput maximization.

As in the case of the test problems, we will assess the per-
formance of the metamodeling strategies in approximating the
throughput for increasing number ofmachines, i.e. S = {5, 10, 15, 20}.
The corresponding increase in the number of variables is n =
{19, 39, 59, 79}. The experimental setup remains the same as in
Section 3, except that here we only consider the mean and me-
dian based strategies, i.e. those with IDs 1, 2, 5, 6, 9, 10, 13 and 14.
Note that the noise level β need not be specified as the problem
is inherently stochastic. However, we have estimated the β to be
approximately 0.01, which corresponds to a moderate noise level
according to the Guassian multiplicative noise model.

Figure 5 shows the SEMs for NRMS and RE. Note that DACE
can use the quadratic regressor for only S = 5 (n = 19). For other
problem dimensions, it uses a linear regressor like before. In terms
of the range and variation of error values, the SEMs look similar
to those of the rotated ellipsoid function, which suggests that the
fitness landscape of throughput function may resemble a bowl. The
performance score of EN is superior (4 out of 4 in both NRMS and
RE) to the scores of other methods. However, there is no significant
difference between the noise handling techniques. This conclusion
was also drawn earlier for low and moderate noise levels on the
test problems.

5 CONCLUSIONS
We performed an empirical comparison of 16 metamodeling strate-
gies in noisy environments with different levels of noise using
scalable test functions with characteristic fitness landscapes. The
metamodeling strategies are combinations of four metamodeling
methods with four common noise handling techniques. We devel-
oped a statistical test procedure for identifying the best strategies
for different experiments and a visualization technique called ‘statis-
tical error maps’ for concisely presenting the performance metrics.
Four performance metrics were used to compare the metamodeling
strategies. We defined ‘significance scores’ to summarize the results
over multiple experiments. Among the four metamodeling meth-
ods, elastic net was found to be the best performing with respect

to all metrics. Among the noise handling techniques, ‘median over
replications’ and ’mean over filtered replications’ outperformed
others in severe noise conditions. However, under low and moder-
ate noise ‘median over replications’ and ‘mean over replications’
are statistically indistinguishable. Our recommendation is there-
fore to use elastic nets as the metamodeling method with ‘median
over replications’ for noise handling when solving simulation based
optimization problems.

REFERENCES
[1] Satyajith Amaran, Nikolaos V Sahinidis, Bikram Sharda, and Scott J Bury. 2014.

Simulation optimization: a review of algorithms and applications. 4OR 12, 4
(2014), 301–333.

[2] Leo Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123–140.
[3] Chun-hung Chen and Loo Hay Lee. 2011. Stochastic simulation optimization: an

optimal computing budget allocation. Vol. 1. World scientific.
[4] K Deb. 2001. Multi-objective optimization using evolutionary algorithms. New

York: Wiley.
[5] Geng Deng and Michael C Ferris. 2009. Variable-number sample-path optimiza-

tion. Mathematical Programming 117, 1 (2009), 81–109.
[6] Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. 2010. Real-

parameter black-box optimization benchmarking 2010: Presentation of the noisy
functions. Technical Report. Technical Report 2009/21, Research Center PPE.

[7] J H Friedman. 1991. Multivariate adaptive regression splines. The Annals of
Statistics 19, 1 (1991), 1–67.

[8] Jerome H. Friedman, T Hastie, and Rob Tibshirani. 2010. Regularization Paths for
Generalized Linear Models via Coordinate Descent. Journal of statistical software
33, 1 (2010), 1–22. arXiv:arXiv:1501.0228

[9] Alexander I J. Forrester, Andy J Keane, and Neil W Bressloff. 2006. Design and
analysis of “Noisy” computer experiments. AIAA journal 44, 10 (2006), 2331–2339.

[10] Stefan Jakobsson, Michael Patriksson, Johan Rudholm, and AdamWojciechowski.
2010. A method for simulation based optimization using radial basis functions.
Optimization and Engineering 11, 4 (2010), 501–532.

[11] G Jekabsons. 2009. ARESLab: Adaptive regression splines toolbox for MATLAB.
(2009).

[12] Yaochu Jin. 2005. A comprehensive survey of fitness approximation in evolution-
ary computation. Soft computing 9, 1 (2005), 3–12.

[13] Yaochu Jin and Jürgen Branke. 2005. Evolutionary optimization in uncertain
environments-a survey. IEEE Transactions on evolutionary computation 9, 3 (2005),
303–317.

[14] Thorsten Joachims. 2005. A Support Vector Method for Multivariate Performance
Measures. In Proceedings of the 22nd International Conference on Machine Learning
ICML’05. 377–384. DOI:http://dx.doi.org/10.1145/1102351.1102399

[15] Anthony C Keys, Loren Paul Rees, and Allen G Greenwood. 2002. Performance
measures for selection of metamodels to be used in simulation optimization.
Decision Sciences 33, 1 (2002), 31–58.

[16] Jack PC Kleijnen. 2012. Design and analysis of Monte Carlo experiments. In
Handbook of Computational Statistics. Springer, 529–547.

[17] PN Koch, R-J Yang, and Lei Gu. 2004. Design for six sigma through robust
optimization. Structural and Multidisciplinary Optimization 26, 3-4 (2004), 235–
248.

[18] William H Kruskal and W Allen Wallis. 1952. Use of ranks in one-criterion
variance analysis. Journal of the American statistical Association 47, 260 (1952),
583–621.

[19] Averill M Law, W David Kelton, and W David Kelton. 1991. Simulation modeling
and analysis. Vol. 2. McGraw-Hill New York.

[20] S. N. Lophaven, H. B. Nielsen, and Jacob Søndergaard. 2002. Aspects of the Matlab
toolbox DACE. Technical Report. Technical Univeristy of Denmark, Lyngby,
Denmark. 1–23 pages. http://www.imm.dtu.dk/~hbni/dace/

[21] Jens I Madsen, Wei Shyy, and Raphael T Haftka. 2000. Response surface tech-
niques for diffuser shape optimization. AIAA journal 38, 9 (2000), 1512–1518.

[22] E Shannon Robert. 1975. Systems simulation: The art and science. Prentice-Hall,
Englewood Cliffs, New Jersey.

[23] Choh-Man Teng. 2001. A Comparison of Noise Handling Techniques. In FLAIRS
Conference. 269–273.

[24] Charlie Vanaret, Jean-Baptiste Gotteland, Nicolas Durand, and Jean-Marc Al-
liot. 2014. Certified Global Minima for a Benchmark of Difficult Optimization
Problems. (2014). https://hal-enac.archives-ouvertes.fr/hal-00996713 Preprint.

[25] G Gary Wang and Songqing Shan. 2007. Review of metamodeling techniques in
support of engineering design optimization. Journal of Mechanical design 129, 4
(2007), 370–380.

[26] H Zou and T Hastie. 2005. Regularization and variable selection via the elastic-net.
Journal of the Royal Statistical Society 67 (2005), 301–320.

824

http://arxiv.org/abs/arXiv:1501.0228
http://dx.doi.org/10.1145/1102351.1102399
http://www.imm.dtu.dk/~hbni/dace/
https://hal-enac.archives-ouvertes.fr/hal-00996713

	Abstract
	1 Introduction
	1.1 Noise in Simulation
	1.2 Metamodeling in Stochastic Simulation

	2 Metamodeling Strategies
	2.1 Metamodeling Methods
	2.2 Noise Handling Techniques

	3 Experimental Setup
	3.1 Performance Metrics

	4 Results and Discussion
	4.1 Statistical Analysis of NRMS and RE
	4.2 Statistical Analysis of x and f
	4.3 Discrete Event Simulation Model

	5 Conclusions
	References

