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Abstract 
Classification methods from statistical pattern 
recognition, neural nets, and machine learning were 
applied to four real-world data sets. Each of these data 
sets has been previously analyzed and reported in the 
statistical, medical, or machine learning literature. The 
data sets are characterized by statisucal uncertainty; 
there is no completely accurate solution to these 
problems. Training and testing or resampling 
techniques are used to estimate the true error rates of 
the classification methods. Detailed attention is given 
to the analysis of performance of the neural nets using 
back propagation. For these problems, which have 
relatively few hypotheses and features, the machine 
learning procedures for rule induction or tree induction 
clearly performed best.1 

1 Introduction 
Many decision-making problems fall into the general 
category of classification [Clancey, 1985, Weiss and 
Kulikowski, 1984, James, 1985]. Diagnostic decision 
making is a typical example. Empirical learning techniques 
for classification span roughly two categories: statistical 
pattern recognition [Duda and Hart, 1973, Fukunaga, 19721 
(including neural nets [McClelland and Rumelhart, 1988]) 
and machine learning techniques for induction of decision 
trees or production rules. While a method from either 
category is usually applicable to the same problem, the two 
categories of procedures can differ radically in their 
underlying models and the final format of their solution. 
Both approaches to (supervised) learning can be used to 
classify a sample pattern (example) into a specific class. 
However, a rule-based or decision tree approach offers a 
modularized, clearly explained format for a decision, and is 
compatible with a human's reasoning procedures and expert 
system knowledge bases. 

Statistical pattern recognition is a relatively mature field. 
Pattern recognition methods have been studied for many 
years, and the theory is highly developed [Duda and Hart, 
1973,Fukunaga, 19/2]. In recent years, there has been a 
surge in interest in newer models of classification, 
specifically methods from machine learning and neural nets. 

Methods of induction of decision trees from empirical 
data have been studied by researchers in both artificial 
intelligence and statistics. Quinlan's 1D3 [Quinlan, 
1986] and C4 [Quinlan, 1987a] procedures for induction of 
decision trees are well known in the machine learning 
community. The Classification and Regression Trees 
CART) [Breiman, Friedman, Olshen, and Stone, 
984] procedure is a major nonparametric classification 

technique that was developed by statisticians during the 
same period as ID3. Production rules are related to decision 
trees; each path in a decision tree can be considered a 
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distinct production rule. Unlike decision trees, a disjunctive 
set of production rules need not be mutually exclusive. 
Among the principal techniques of induction of production 
rules from empirical data are Michalski s AQ15 
system [Michalski, Mozetic, Hong, and Lavrac, 1986] and 
recent work by Quinlan in deriving production rules from a 
collection of decision trees [Quinlan, 1987b]. 

Neural net research activity has increased dramatically 
following many reports of successful classification using 
hidden units and the back propagation learning technique. 
This is an area where researchers are still exploring learning 
methods, and the theory is evolving. 

Researchers from all these fields have all explored similar 
problems using different classification models. 
Occasionally, some classical discriminant methods arecited 
in comparison with results for a newer technique such as a 
comparison of neural nets with nearest neighbor techniques. 
In this paper, we report on results of an extensive 
comparison of classification methods on the same data sets. 
Because of the recent heightened interest in neural nets, and 
in particular the back propagation method, we present a 
more detailed analysis of the performance of this method. 
We selected problems that are typical of many applications 
that deal with uncertainty, for example medical applications. 
In such problems, such as determining who will survive 
cancer, there is no completely accurate answer. In addition, 
we may have a relatively small data set. An analysis of each 
of the data sets that we examined has been previously 
published in the literature. 

2 Methods 
We are given a data set consisting of patterns of features and 
correct classifications. This data set is assumed to be a 
random sample from some larger population, and the task is 
to classify new patterns correctly. Tne performance of each 
method is measured by its error rate, if unlimited cases for 
training and testing are available, the error rate can readily 
be obtained as the error rate on the test cases. Because we 
have far fewer cases, we must use resampling techniques for 
estimating error rates. These are described in the next 
section.2 

2.1. Estimating Error Rates 
It is well known that the apparent error rate of a classifier 
on all the training cases3 can lead to highly misleading and 

2While there has been much recent interest in the "probably 
approximately correct" (PAC) theoretical analysis for both rule 
induction [Valiant, 1985, Haussler, 1988] and neural nets [Baum, 1989], 
the PAC analysis is a worst case analysis to guarantee for all possible 
distributions that results on a training set are correct to within a small 
margin of error. For a real problem, one is given a sample from a single 
distribution, and the task is to estimate the true error rate. This type of 
analysis requires far fewer cases, because only a single albeit unknown 
distribution is considered and independent cases are used for testing. 

3 'This is sometimes referred to as the resubstitution or reclassification 
error rate. 
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usually over-optimistic estimates of performance [Duda and 
Hart, 1973]. This is due to overspecialization of the 
classifier to the data.4 

Techniques for estimating error rates have been widely 
studied in the statistics [Efron, 1982] and pattern 
recognition [Duda and Hart, 1973,Fukunaga, 1972] 
literature. The simplest technique for "honestly' estimating 
error rates, the holdout or H method, is a single train and 
test experiment. The sample cases are broken into two 
groups of cases: a training group and a test group. The 
classifier is independently derived from the training cases, 
and the error estimate is the performance of the classifier on 
the test cases. A single random partition of train and test 
cases can be somewhat misleading. The estimated size of 
the test sample needed for a 95%> confidence interval is 
described in [Highleyman, 1962]. With 1000 independent 
test cases, one can be virtually certain that the error rate on 
the test cases is very close to the true error rate. 

Instead of relying on a single train and test experiment, 
multiple random test and train experiments can be 
performed. For each random train and test partition, a new 
classifier is derived. The estimated error rate is the average 
of the error rates for classifiers derived for the independently 
and randomly generated partitions. Random resampling can 
produce better error estimates than a single train and test 
partition. 

A special case of resampling is known as 
leaving-one-out [Fukunaga, 1972, Efron, 1982]. Leaving-
One-Out is an elegant and straightforward technique for 
estimating classifier error rates. Because it is 
computationally expensive, it is often reserved for relatively 
small samples. For a given method and sample size n, a 
classifier is generated using n-1 cases and tested on the 
remaining case. This is repeated n times, each time 
designing a classifier by leaving-one-out. Each case is used 
as a test case and, each time nearly all the cases are used to 
design a classifier. The error rate is the number of errors on 
the single test cases divided by n. 

Evidence for the superiority of the leaving-one-out 
approach is well-documented [Lachenbruch and Mickey, 
1968, Efron, 1982]. While leaving-one-out is a preferred 
technique, with large samples it may be computationally 
expensive. However as the sample size grows, traditional 
train and test methods improve tneir accuracy in estimating 
error [Kanal and Chandrasekaran, 1971]. 

The leaving-one-out error technique is a special case of 
the general class of cross validation error estimation 
methods [Stone, 1974]. In k-fold cross validation, the cases 
are randomly divided into k mutually exclusive test 
partitions of approximately equal size. The cases not found 
in each test partition are independently used for training, 
and the resulting classifier is tested on the corresponding 
test partition. The average error rates over all k partitions is 
the cross-validated error rate. The CART procedure was 
extensively tested with varying numbers of partitions and 
10-fold cross validation seemed to be adequate and accurate, 
particularly for large samples where leaving-one-out is 
computationally expensive IBreiman, Friedman, Olshen, 
and Stone, 1984]5 For small samples, bootstrapping, a 
method for resampling with replacement, has shown much 
promise as a low variance estimator for classifiers [Efron, 
1983, Jain, Dubes, and Chen, 1987, Crawford, 1989]. This 
is an area of active research in applied statistics. 

Figure 1 compares the techniques of error estimation for a 

4In the extreme, a classifier can be constructed that simply consists of al l 
patterns in the given sample. Assuming identical patterns do not belong to 
different classes, this yields perfect classification on the sample cases. 

5Empirical results also support the stratification of cases in the train and 
test sets to approximate the percentage (prevalence) of each class in the 
overall sample. 

sample of n cases. The estimated error rate is the average of 
the error rates over the number of iterations. While these 
error estimation techniques were known and published in 
the 1960s and early 1970s, the increase in computational 
speeds of computers, makes them much more viable today 
for larger samples and more complex classification 
techniques [Steen, 1988]. 

Figure 1: Comparison of Techniques for Estimating Error Rates 

Besides improved error estimates, there are a number of 
significant advantages to resampling. The goal of separating 
a sample of cases into a training set and testing set is to help 
design a classifier with a minimum error rate. With a single 
train and test partition, too few cases in the training group 
can lead to the design of a poor classifier, while too few test 
cases can lead to erroneous error estimates. Leaving-One-
Out, and to a lesser extent random resampling, allow for 
accurate estimates of error rates while training on most 
cases. For purposes of comparison of classifiers and 
methods, resampling provides an added advantage. Using 
the same data, researchers can readily duplicate analysis 
conditions and compare published error estimates with new 
results. Using only a single random train and test partition 
introduces the possibility of variability of partitions to 
explain the divergence from a published result. 
2.2. Classification Methods 
In this section, the specific classification methods used in 
the comparison will be described. We do not review the 
methods or their mathematics, but rather state the conditions 
under which thev were applied. References to all methods 
are readily available. Our goal is to apply each of these 
methods to the same data sets and report the results. 
2.2.1. Statistical Pattern Recognition 
Several classical pattern recognition methods were used. 
Figure 2 lists these methods. These methods are well-
known and will not be discussed in detail. The reader is 
referred to [Duda and Hart, 1973] for further details. 
Instead, we give the specific variation of the method that we 
used. 
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simplifies the normality assumption to equal covariance 
matrices. This is probably the most commonly used form of 
discriminant analysis; we used the canned SAS and IMSL 
programs. A recent report has demonstrated improved 
results in game playing evaluation functions using the 
quadratic classifier [Lee, 1988]. 

We used the nearest neighbor method (k=l) with the 
Euclidean distance metric. This is one of the simplest 
methods conceptually, and is commonly cited as a basis of 
comparison with other methods. It is often used in case-
based reasoning [Waltz, 1986]. 

Bayes rule is the optimal presentation of minimum error 
classification. All classification methods can be viewed as 
approximations to Bayes optimal classifiers. Because the 
Bayes optimal classifier requires complete probability data 
for all dependencies in its invocation, tor real problems this 
would be impossible. As with other methods, simplifying 
assumptions are made. The usual simplification is to assume 
conditional independence of observations. While one can 
point to dozens of classifiers that have been built 
(particularly in medical applications [Szolovits and Pauker, 
1978]) using Bayes rule with independence, such 
approaches have also been recently reported in the AI 
literature (although in the context of unsupervised 
learning) [Cheeseman, 1988]. Although independence is 
commonly assumed, there are mathematical expansions to 
incorporate higher order correlations among the 
observations. In our experiments, we tried both Bayes with 
independence and Bayes with the second order Bahadur 
expansion.6 

2.2.2. Neural Nets 
A fully connected neural net with a single hidden layer was 
considered. The back propagation procedure [McClelland 
and Rumelhart, 1988] was employed and the general outline 
of the data analysis described in [Gorman, 1988] was 
followed. The specific implementation used was 
[McClelland and Rumelhart, 1988].7 In most experiments 

a learning rate of 1 and a momentum of 0 was used.8 

Patterns were presented randomly to the learning system.9. 
The analysis model of [Gorman, 1988] corresponds to a 

10-fold cross validation. Unlike the other methods 
examined in this study, back propagation usually 
commences with the network weights in a random state. 
Thus, even with sequential presentation of cases, the 
weights for one learned network are unlikely to match the 
same network that starts in a different random state. There 
is also the possibility of the procedure reaching a local 
maximum. In this analysis model, for each train and test 
experiment, the weights are learned 10 times, and test 
results averaged over all 10 experiments. Therefore, 10 
times the usual number of training trials must be considered. 
For a 10-fold cross-validation, 100 learning experiments are 
made. 

For each data set, these experiments were repeated for 
networks having 0,2,3,6,9,12, or 24 hidden units (in a single 
layer). This is equivalent to using resampling to estimate the 
appropriate numoer of hidden units. Because the data sets 
may not be separable with these numbers of hidden units, 
we took the following measures to determine a sufficient 

amount of computation time. Before doing the train and test 
experiments, the nets were trained several times on all 
samples for all size hidden units. We determined a number 
of epochs, i.e. complete presentations of the data set, that 
was sufficient to result in each increment of additional 
hidden units fitting the cases better than the lesser number 
of hidden units. In addition, for one problem where the data 
set was extremely large, we sampled the results every 500 
epochs, and computed whether the average total squared 
error continued to be reduced. This indicated whether 
progress was being made. 

One output unit was used for each class. The hypothesis 
with the highest weight was selected as the conclusion of 
the classifier, and the error rate was computed. 

This is the general outline of the procedures followed. In 
Section 3, we describe the variations on this theme that were 
necessary for the specific data set analyses. 

For computational reasons, in some instances it was 
necessary to reduce the number of repeated trials to be 
averaged. For back propagation, we described a 
computational procedure that performed 10 train and test 
experiments for each one that would be necessary for other 
methods. However, the data sets described in Section 3 are 
not readily separable. Thus, the computation demands are 
quite large. We estimate that 6 months of Sun 4/280 cpu 
time were expended to compute the neural nets results in 
Section 3. 
2.2.3. Machine Learning Methods 
In this category, we place methods that produce logistic 
solutions. As indicated earlier these methods have been 
explored by both the machine learning and statistics 
community. These are methods that produce solutions 
posed as production rules or decision trees. Conjunction or 
disjunction may be used as well as logical comparison 
operators on continuous variables such as greater than or 
less than. 

Predictive Value Maximization [Weiss, Galen, and 
Tadepalli, 1987] was tried on all data sets. This is a 
heuristic search procedure that attempts to find the best 
single rule in disjunctive normal form. It can be viewed as a 
heuristic approximation to exhaustive search. It is applicable 
to problems where a relatively short rule provides a good 
solution. For such problems, it should have an advantage in 
that many combinations are considered, in contrast to 
current decision tree procedures that split nodes without 
considering combinations. For more complex problems, a 
decision tree procedure is preferable. The appropriate rule 
length or tree size is determined by resampling. 

In addition, for two of the smaller data sets, an exhaustive 
search was performed for the optimal rule of length 2 in 
disjunctive normal form. For the other 2 data sets, the 
published decision tree results are available for methods 
using variations of ID3 and its successor C4. 
3 Results 
In this section, we review the results of the various 
classification methods on four data sets. All of the data sets 
have been published, and in most instances we attempted to 
perform the analyses in a manner consistent with previously 
known results. 
3.1. I r is Data 
The iris data was used by Fisher in his derivation of the 
linear discriminant function [Fisher, 1936], and it still is the 
standard discriminant analysis example used in most current 
statistical routines such as SAS or IMSL. Linear or 
quadratic discriminants under assumptions of normality 
perform extremely well on this data set. Three classes of 
iris are discriminated using 4 continuous features. The data 
set consists of 150 cases, 50 for each class. Figure 3 
summarizes the results. The first error rate is the apparent 
error rate on all cases; the second error rate is the leaving-
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3.3. Cancer Data 
A data set for evaluating the prognosis of breast cancer 
recurrence was analyzed by Michalski's AQ15 rule 
induction program and reported in [Michalski, Mozetic, 
Hong, and Lavrac, 1986]. They reported a 64% accuracy 
rate Tor expert physicians, and a 68% rate for AQ15, and a 
72% rate tor the pruned tree procedure of 
ASSISTANT [Kononenko, Bratko, and Roskar, 1986], a 
descendant of ID3.13 The authors derived the error rates by 
randomly resampling 4 times using a 70% train and a 30% 
test partition. 

Tne samples consist of 286 samples, 9 tests, and 2 
classes. We created 4 randomly sampled data sets with 70% 
train and a 30% test partitions; each method was tried on 
each of the four data sets and the results averaged. Thus, the 
experimental results are consistent with the original study. 
Figure 7 summarizes the results. The first error rate is the 
apparent error rate on the training cases; the second error 
rate is the error rate on the test cases. 

Figure 7: Comparative Performance on Cancer Data 

The rule-based solution has 1 rule with a total of 2 
variables.14 For the neural nets, the apparent error rate is 
the average of ten training trials. Each testing result is the 
corresponding average testing result of tne same 10 
complete trials.15 The nets were trained for 2000 epochs. 
The best neural net in terms of cross-validated error occurs 
at 0 hidden units, and is the one listed in Figure 7. The 
relationship between the number of hidden units and the 
error rates is listed in Figure 8. 
3.4. Thyroid Data 
Quinlan reported on results of his analysis of hypothyroid 
data in [Quinlan, 1987b], and in greater detail in [Quinlan, 
1987a]. The problem is to determine whether a patient 
referred to the clinic is hypothyroid, the most common 
thyroid problem. In contrast to the previous applications, 
relatively large numbers of samples are available. 

The samples consist of 3772 cases from the year 1985. 
These are the same cases used in the original report and 
were used for training. The 3428 cases from 1986 were used 
as test cases. There are 22 (principal) tests, and 3 classes. 
Over 10% of the values are missing because some lab tests 
were deemed unnecessary. For purposes of comparison of 

Figure 8: Neural Net Error Rates for Cancer Data 

the methods, these values were filled in with the mean value 
for the corresponding class. 

Figure 9 summarizes the results.16 The first error rate is 
the error rate on the 3772 training cases; the second error 
rate is the error rate on the 3428 test cases. From a medical 
perspective, it is known that (based on lab tests) excellent 
classification can be achieved for diagnosing thyroid 
dysfunction. For these data, the correct answer stored with 
each sample is derived from a large rule-based system in use 
in Australia. While most error rates in Figure 9 are low, it is 
important to note that 1% of the total sample represents over 
70 people. Over 92% of the samples are not hypothyroid. 
Therefore, any acceptable classifier must do significantly 
better than 92%. 

Figure 9: Comparative Performance on Thyroid Data 
The rule-based solution has 2 rules with a total of 8 

variables. For the neural nets, the apparent error rate is the 
best of 2 trials. The nets were trained for 2000 epochs. The 
best neural net in terms of testing error occurs at 3 hidden 
units. The relationship between tne number of hidden units 
and the error rates is listed in Figure 10. 
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Figure 10: Neural Net Error Rates for Thyroid Data 

The cpu times for training a neural net with back 
propagation on this size data set were great: for 3 hidden 
units 500 epochs required 1.5 hours of Sun 4/280 cpu time, 
while 24 units required 11.5 hours. In Figure 10, the 
apparent error rates for the larger numbers of hidden units 
support the hypothesis that additional training was 
necessary. We initiated a new set of experiments with fewer 
numbers of hidden units.17 We let these trials run for an 
unlimited period of time as long as slight progress was 
being made, as indicated by sampling every 500 epochs. 
Therefore, for this experiment not every size neural net was 
run an equal number of epochs. Figure 11 summarizes the 
results of this effort The best result encountered during the 
sampling of results occurred for 3 hidden units, and this 
result is listed in Figure 9. 

Figure I I : Extended Neural Network Training on Thyroid Data 

4 Discussion 
The applications presented here represent a reasonable cross 
section of prototypical problems widely encountered in the 
many research communities. Each problem has few classes 
and is characterized by uncertainty of classification. In some 
applications such as the cancer data, the features were 
relatively weak and good predictive capabilities are 
unlikely. In others, such as the thyroid data, the features are 
quite strong, and almost error-free prediction is possible. 

For the smaller data sets, resampling was used. With over 
100 cases, resampling techniques such as cross-validation 
should give excellent estimates for the true error rate. In 

The momentum was changed to .9, and the learning rate to .5. to help 
prevent local maximums. 

fact, the data from the iris study has been reviewed over 
many years, and comparisons have been made on the basis 
of the leaving-onc-out error. It is interesting to note (for 
those who wish to avoid concepts such multivariate 
distributions and covariance matrices), that a trivial set of 2 
rules with a total of 3 variables can produce equal results. 

For many application fields, this in fact is a major 
advantage of the logistic approaches, i.e. the rule based or 
decision tree based approaches. The solution is compatible 
with elementary human reasoning and explanations. It is 
also compatible with rule-based systems. Thus, if 
everything were equal, many would choose the logistic 
solution. 

In our experiments, everything was not equal. In every 
case a logistic solution was found that exceeded the 
performance of solutions posed using different underlying 
models. PVM has an advantage when a short rule works, 
but for more complex problems the decision tree would be 
indicated. We note that the largest problem studied, the 
thyroid application, is somewhat biased towards logistic 
solutions. The endpoints were derived from a rule-based 
system that apparently uses the same lab test thresholds to 
specify high or low readings for all hypotheses. 

These results cannot necessarily be extrapolated to more 
complex problems. However, our experience is not unique. 
Numerous experiments by the developers of 
CART [Breiman, Friedman, Olshen, and Stone, 1984] 
demonstrated that in most instances, they found a tree 
superior to alternative statistical classification techniques. 

In our experiments, the statistical classifiers performed 
consistently with expectations. The linear classifiers (with 
the assumption of a normal distribution) gave good 
performance in all cases except the thyroid experiment. 
These classifiers are widely used, because they are simple 
and the training error rate usually holds up well on lest 
cases. The natural extension, the quadratic classifier, fits 
better to normally distributed data, but degrades rapidly 
with nonnormal data. It did poorly in most of our 
experiments. Similarly Bayes with independence does 
moderately well, but the 2nd order fits were not good on the 
test data. Nearest neighbor does well with good features, 
but tends to degrade with many poor features. There are 
many alternative statistical classifiers that might be tried, 
such nonparametric piecewise linear classifiers [Foroutan 
and Sklansky, 1985]. In addition, one could try to reduce 
the number of features for training (i.e. feature selection), 
since many of these methods can actually improve 
performance on test cases by feature reduction.18 

The neural nets did perform well, and they were the only 
statistical classifiers to do well on the thyroid problem. 
However, overall they were not the best classifiers; they 
consumed enormous amounts of cpu time; and they were 
sometimes equaled by simple classifiers. Research on 
improving performance for neural nets training and 
representation is quite active, so it may be possible that 
performance can be improved. 

The relationship between the number of hidden units and 
the two error rates followed the classical pattern for 
classifiers. As the number of hidden units increased, the 
apparent error decreased.19 However, at some point, as the 
classifier overfits the data, the true error rate curve flattens 
and even begins to increase. Much the same behavior can 
be observed for decision trees as the number of nodes 
increases, or production rules, as the rule length increases. 

18Because the linear classifier performed poorly on the thyroid cases, we 
tried to train a classifier on just the lab tests, which are the most significant 
tests. The results did not improve. 

19Occasionally there is some slight variability in the decrease of the 
apparent error rate because back propagation minimizes distance as 
opposed to errors. 
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The question remains open as to how well any classifier 
can do on more complex problems with many more features 
and many more classes, possibly non-mutually exclusive 
classes. There are also questions of how many cases are 
actually needed to learn significant concepts. Our study 
does not answer many of these questions, but helps show in 
a limited fashion where we are currently with many 
commonly used classification techniques. 

Appendix: Induced Rules 
• iris. Petal length < 3 -> Iris Setosa; Petal 

length > 4.9 OR Petal Width > 1.6-> Iris 
Virginica 

• appendicitis. MNEA>6600 OR MBAP>11 
• cancer. Involved Nodes>0 & Degree=3 
• thyroid. TSH>6.1 & FTI <65 -> primary 

hypothyroid; TSH>6 & TT4<149 & On 
Thyroxin=false & FTI>64 & Surgery=false 
-> compensated hypothyroid 
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