
RESEARCH ARTICLE Open Access

An empirical comparison of population
genetic analyses using microsatellite and
SNP data for a species of conservation
concern
Shawna J. Zimmerman1,2* , Cameron L. Aldridge1,2 and Sara J. Oyler-McCance1

Abstract

Background: Use of genomic tools to characterize wildlife populations has increased in recent years. In the past,
genetic characterization has been accomplished with more traditional genetic tools (e.g., microsatellites). The
explosion of genomic methods and the subsequent creation of large SNP datasets has led to the promise of
increased precision in population genetic parameter estimates and identification of demographically and
evolutionarily independent groups, as well as questions about the future usefulness of the more traditional genetic
tools. At present, few empirical comparisons of population genetic parameters and clustering analyses performed
with microsatellites and SNPs have been conducted.

Results: Here we used microsatellite and SNP data generated from Gunnison sage-grouse (Centrocercus minimus)
samples to evaluate concordance of the results obtained from each dataset for common metrics of genetic
diversity (HO, HE, FIS, AR) and differentiation (FST, GST, DJost). Additionally, we evaluated clustering of individuals using
putatively neutral (SNPs and microsatellites), putatively adaptive, and a combined dataset of putatively neutral and
adaptive loci. We took particular interest in the conservation implications of any differences. Generally, we found
high concordance between microsatellites and SNPs for HE, FIS, AR, and all differentiation estimates. Although there
was strong correlation between metrics from SNPs and microsatellites, the magnitude of the diversity and
differentiation metrics were quite different in some cases. Clustering analyses also showed similar patterns, though
SNP data was able to cluster individuals into more distinct groups. Importantly, clustering analyses with SNP data
suggest strong demographic independence among the six distinct populations of Gunnison sage-grouse with
some indication of evolutionary independence in two or three populations; a finding that was not revealed by
microsatellite data.
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Conclusion: We demonstrate that SNPs have three main advantages over microsatellites: more precise estimates of
population-level diversity, higher power to identify groups in clustering methods, and the ability to consider local
adaptation. This study adds to a growing body of work comparing the use of SNPs and microsatellites to evaluate
genetic diversity and differentiation for a species of conservation concern with relatively high population structure
and using the most common method of obtaining SNP genotypes for non-model organisms.

Keywords: Population structure, Population genetics, Evolutionarily significant units, Conservation, Genomics,
Microsatellites, Single nucleotide polymorphisms

Background
Accurate estimation of population genetic parameters

has become an important part of wildlife conservation

[1]. Genetic characterization can be used to identify pop-

ulations and understand gene flow [2–5]. More recently,

genetic data have been used to begin to understand local

adaptation [6–8] and to identify groups with distinct

evolutionary or demographic characteristics [9–12].

Most past genetic studies of wildlife species have been

accomplished with relatively few (< 20) highly variable

microsatellite loci. Microsatellites, also called simple se-

quence repeats, were discovered in the 1980s and were

quickly adopted as one of the most commonly used gen-

etic markers [13, 14] because they tend to be highly

polymorphic, are evenly distributed throughout the gen-

ome [15, 16], and are located in non-coding regions

allowing the general assumption that neutral processes

were being meausured. Unlike many other types of

markers, microsatellites have a high mutation rate that is

quite variable across different loci. This mutation rate is

the result of slippage during DNA replication, a process

that is not well understood [17]. The high mutation rate

of microsatellites that results in highly informative

markers may also lead to an underestimate of heterozy-

gosity through homoplasy, or when two individuals have

the same allelic state through independent mutation and

not from a common ancestor [17]. Additionally, repeat-

ability of genotyping across laboratories can be challen-

ging [18–21] largely because allele size calls are

somewhat subjective and size determination methods

can impact inferred fragment size [22], even with use of

automated software [23].

A single nucleotide polymorphism (SNP) is a location

in the DNA sequence where individuals vary at a single

nucleotide. Technological advancements have allowed

creation of much larger SNP genotype datasets, greatly

increasing the number of loci sampled with less effort

and lower cost in comparison to microsatellite develop-

ment and genotyping [16]. Because of their high preva-

lence in the genome and the potential to target

functional regions, SNPs are predicted to replace micro-

satellites for genetic characterization [24]. SNPs are

more abundant and uniformly distributed across the

genome than microsatellites, and have a well-understood

mutational mechanism with low levels of homoplasy

[25], but they have lower allelic diversity [26]. Lower

allelic diversity in comparison to microsatellites is

expected, because a nucleotide base at a SNP can only

be one of four possible states: A, T, C, or G. In reality,

the natural pairing of certain bases in DNA structure

and the low likelihood of multiple mutations at one

location results in the majority of SNPs being biallelic.

Because of the relatively low allelic diversity, equal distri-

bution throughout the genome, ascertainment bias of

highly polymorphic microsatellite regions, and relatively

constant mutation rate of SNPs, some have argued that

SNPs provide a more accurate representation of

genome-wide variation [27, 28]. Until recently, SNP

datasets were only available for species with reference

genomes, such as model organisms or important agricul-

tural species. The development of reduced representa-

tion methods to obtain SNP genotypes without a

reference genome has broadened the application of SNP

markers to numerous species [29, 30]. One of the main

appeals of SNP loci is the ease with which high through-

put/automatic analyses can be used in comparison with

development and genotyping of microsatellites [24, 31,

32] resulting in the generation of large numbers of geno-

types in a relatively short period of time and for minimal

cost. Further, increasing the number of loci sampled is

expected to increase precision of population genetic

estimates [33, 34].

In addition to the potential improvement in precision

of population parameter estimates from the increased

number of loci, the explosion of genomic techniques

and their application to non-model organisms has also

led to the ability to ask new questions about conserva-

tion [35, 36]. SNPs are found in coding and non-coding

regions of the genome and they can represent both

demographic (i.e., drift) and functional (i.e., selection)

processes. Many authors have suggested that conserva-

tion units identified below the species level should

incorporate an evaluation of demographic and evolution-

ary distinctness [37–41]. Defining genetically similar
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units for conservation can inform management actions

(e.g., habitat restoration, translocation) or potentially

impact legal protection status under the Endangered

Species Act (ESA), which allows for the separate protec-

tion of geographically and ecologically distinct popula-

tions [42]. The predicted advantages to using SNP data

as opposed to microsatellite data for conservation have

lead us to question if microsatellites will be a useful tool

in the future or will be completely replaced by SNP data.

Technological advancements in genomic approaches

for non-model organisms has resulted in use of reduced

representation sequencing methods to generate large

SNP datasets for many wildlife species; datasets that are

often archived and available for potential future use. Un-

derstanding how SNP data compare to inferences made

from the more traditional microsatellite data is import-

ant for long-term genetic monitoring given the increas-

ing trend of using SNP data for conservation objectives.

Previous studies have compared the relative abilities of

SNP and microsatellite loci to evaluate levels of related-

ness [43–49], probability of identity and parentage [50–

54], create linkage maps [55, 56], evaluate genetic diver-

sity [43, 45, 46, 51, 57–61], and detect low to mid levels

of differentiation [45, 57–62]. Some studies have even

used genome-wide SNP data to identify distinct popula-

tion units [11, 12, 63, 64]. Here we used SNP and micro-

satellite datasets from the same group of genetic samples

from a species of conservation concern to empirically

evaluate agreement across marker types for population

genetic analyses and consider the potential consequences

in conservation decision making. The samples we used

are typical of many conservation studies: opportunistic-

ally collected, variable source, variable quality, and from

multiple populations of variable size that are represented

by variable numbers of samples. Additionally, we used

previously identified candidate adaptive loci [65] to

evaluate identification of distinct units using datasets

composed of genetic markers reflecting different evolu-

tionary processes.

The Gunnison sage-grouse (Centrocercus minimus) is

a sagebrush obligate avian species listed as threatened

under the Endangered Species Act in 2014. The species

exists as a network of seven populations predominantly

occurring in Colorado and a small portion of the range

extending into Utah (Fig. 1) [66, 67]. The majority of in-

dividuals in the species (~ 85–90%) are located in the

Gunnison Basin population, which is largest in land area

and highest in genetic diversity [69]. The six remaining

satellite populations support much smaller numbers of

birds; in descending order San Miguel Basin, Piñon

Mesa, Crawford, Dove Creek-Monticello (Dove Creek

from here on), Cerro Summit-Cimarron-Sims Mesa

(Cimarron from here on), and Poncha Pass (Table 1)

[70]. Genetic differentiation is high between all

populations [69], local environmental conditions are

variable [68], and there is some evidence of adaptive di-

vergence among populations [65]. The Poncha Pass

population is thought to have been extirpated in the

1970s, re-established with individuals translocated from

Gunnison Basin, and currently persists as the result of

on-going translocations [71]. Consequently, the Poncha

Pass population was not included in the analyses

presented here.

The double digestion RAD-Seq approach to reduced

representation sequencing is one of the most commonly

used genomic library preparations to generate SNP

genotypes. With the increasing use of RAD-Seq gener-

ated SNPs instead of microsatellite data for conservation

questions and monitoring, here we aim to compare

population genetic parameters specifically from RAD-

Seq generated SNPs and microsatellites. To date, few

studies have compared the consequences of marker

types in conservation objectives when a typical RAD-Seq

protocol is used (though see [34, 45, 50, 51, 64]). Given

the impact of decisions made during RAD-Seq protocols

on downstream analysis [72], the prevalence of RAD-Seq

generated SNP datasets, and the limited empirical exam-

ples of comparisons to more traditional microsatellite

analyses, more comparisons can provide insight into the

limitations or benefits of RAD-Seq generated SNP data

and the future utility of microsatellite loci. Through pre-

vious studies on this species of conservation concern, we

had access to two range-wide Gunnison sage-grouse

genetic datasets, one of microsatellite [73] and one of

SNP loci [65]. We had three specific objectives in this

study: (1) compare genetic diversity metrics across data-

sets, (2) compare genetic differentiation metrics across

datasets, and (3) compare clustering methods across

datasets and investigate evidence of evolutionary inde-

pendence among populations.

Results
Genetic diversity

For all diversity metrics, 95% confidence intervals calcu-

lated from SNPs were narrower than confidence inter-

vals from microsatellites (Fig. 2; Additional file 1: Table

S1). Microsatellite estimates had large confidence inter-

vals in all cases, which resulted in no significant differ-

ences among population estimates. In contrast, the

narrower confidence intervals with SNPs resulted in

significant differences between populations. Of the four

metrics, HO had the lowest correlation across marker

type (Spearman ρ = 0.257, Pearson r = 0.345) (Fig. 2b).

As theoretically expected, values of HO from microsatel-

lites in all populations were ~ 0.500 (range: 0.464–0.548)

while values from SNPs were lower, ~ 0.200 (range:

0.183–0.197; Fig. 2a). However, both marker types re-

sulted in relatively consistent population ranks based on
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mean HO (p = 0.031, Wilcoxon paired signed-rank).

Values of HE showed high correlation (Spearman ρ =

0.886, Pearson r = 0.925), and relative consistency in

ranking populations across marker types (p = 0.031,

Wilcoxon paired signed-rank). The values for HE were

within similar ranges as HO, microsatellite estimates

at ~ 0.500 (range: 0.413–0.578) and SNP estimates at

~ 0.200 (range: 0.154–0.194; Fig. 2c and d). Similarly,

allelic richness showed high levels of correlation

(Spearman ρ = 0.943, Pearson r = 0.925), and consist-

ent ranking of populations by levels of genetic diver-

sity (p = 0.031, Wilcoxon paired signed-rank) across

marker type (Fig. 2e and f). Estimates of FIS also

showed relatively high correlation (Spearman ρ =

0.600, Pearson r = 0.978), however, ranking of

Table 1 Sample size for each population of Gunnison sage-
grouse and each marker type

Population # Samples 2004 Pop. Est.

MSAT SNP

Cimarron 4 4 74

Crawford 21 12 157

Dove Creek 43 12 98

Gunnison Basin 116 12 3978

Piñon Mesa 19 10 182

Poncha Pass 0 0 10

San Miguel 51 10 206

MSAT microsatellites, SNP single nucleotide polymorphisms. Population

estimates of the 2004 population size = 2004 Pop. Est. [70]

Fig. 1 Gunnison sage-grouse distribution. Historical (gray) and current (yellow) distribution of Gunnison sage-grouse in the southwestern United
States. Populations are labeled with respective names. Black rectangle designates the study area. Spatial data files were originally developed by
Schroeder et al. [66], and the present map created by SJZ in ArcMap 10.1. The historical range map is as described by Braun et al. [67]; the two
northernmost portions of the historical range correspond to an unknown species of sage-grouse and are not verified by Colorado Parks and
Wildlife [68]
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populations was not as consistent (p = 0.563, Wil-

coxon paired signed-rank) across marker types and

the magnitude of the values for each marker type re-

sulted in different inferences in some cases (Fig. 2g

and h); microsatellites indicated outbred (minimum

value: − 0.279) to slightly inbred (maximum value

0.071) populations while SNPs indicated slightly to

moderately outbred populations (− 0.194 – − 0.004).

Genetic differentiation

Generally, genetic differentiation estimates from SNP

datasets had narrower confidence intervals in compari-

son to estimates from microsatellites (Fig. 3; Additional

file 1: Table S2) which were significantly correlated in all

pair-wise comparisons (Mantel r > 0.9, p < 0.001). All dif-

ferentiation metrics had a high correlation across marker

types and datasets (Fig. 4). For FST and GST, confidence

Fig. 2 Comparison of genetic diversity values for Gunnison sage-grouse populations. Confidence intervals (95%) around mean values for
microsatellite (●) and putatively neutral SNP (▲) loci were constructed. Estimates for observed heterozygosity (HO; a), expected heterozygosity
(HE; c), allelic richness (AR; e), and inbreeding coefficient (FIS; g) are shown in the left-hand column. Populations are abbreviated along the x-axis:
CM = Cimarron, CR = Crawford, DC = Dove Creek, GB = Gunnison Basin, PM = Piñon Mesa, SM = San Miguel. Relationships between estimates from
microsatellites and SNPs for HO (b), HE (d), AR (f) and FIS (h) are shown in the right-hand column. Spearman rank and Pearson’s correlation
coefficient are also included in the plots in the right-hand column. Dashed line corresponds to a 1:1 relationship
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intervals for population estimates from microsatellites

and both SNP datasets typically overlapped (Fig. 3a and

b). Estimates of DJost from microsatellites and both SNP

datasets did not overlap and the magnitude of microsat-

ellite estimates were consistently much higher in com-

parison to SNP estimates (Fig. 3c), though the same

general pattern remained (Fig. 4c and i). Similarly, values

of GST estimated with microsatellites were also larger in

magnitude than with SNPs, though to a lesser degree

than observed with DJost (Fig. 3b).

Clustering

The lowest BIC for hypothetical genetic clusters in

DAPC corresponded to 6 groups with microsatellites

(BIC = 484.603), 5 groups with all SNPs (BIC = 454.768),

and putatively adaptive SNPs (BIC = 298.376), and 4 with

putatively neutral SNPs (BIC = 449.803). The optimal

number of PCs to include in the DAPC analysis as deter-

mined by the a-score method was 22 for microsatellites,

6 for all SNPs, 5 for putatively neutral SNPs, and 6 for

putatively adaptive SNPs. Clustering of individuals in

Fig. 3 Comparison of genetic differentiation values for pair-wise comparisons of Gunnison sage-grouse populations. Confidence intervals (95%)
around mean values for microsatellite (●), putatively neutral SNP (▲), and all SNP (■) loci. Pair-wise estimates are for FST (a), GST (b), and DJost (c).
Populations in pair-wise comparisons are abbreviated along the x-axis: CM = Cimarron, CR = Crawford, DC = Dove Creek, GB = Gunnison Basin,
PM = Piñon Mesa, SM = San Miguel; CM.CR = FST between Cimarron and Crawford
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DAPC with microsatellites identified Piñon Mesa as the

only population that clearly separates from the other

populations along discriminant function 1 (Fig. 5a),

while discriminant function 2 pulls populations into

identifiable groups though still with overlap (Fig. 5a).

With all and putatively neutral SNPs, discriminant func-

tion 1 separates Gunnison Basin and Piñon Mesa from

the other populations (Fig. 5b and c), and discriminant

function 2 separates Dove Creek (Fig. 5b and c). The

candidate adaptive loci dataset shows Piñon Mesa and

Dove Creek clearly separated along discriminant

function 1, while San Miguel, Cimarron, Crawford, and

Gunnison Basin cluster together (Fig. 5d).

The dendrogram created from microsatellite data

generally grouped individuals into known populations

where Cimarron, Crawford, and Gunnison Basin

grouped closest together with Piñon Mesa, Dove Creek,

and San Miguel grouping closer together but away from

Fig. 4 Correlation of differentiation metrics for Gunnison sage-grouse populations. Relationships between estimates from different datasets:
microsatellites, putatively neutral SNPs, and all SNPs for FST (a,d,g), GST (b,e,h), and DJost (c,f,i) are shown in respective panels. Axes are labeled by
dataset. Spearman rank and Pearson’s correlation coefficient are included in the upper left-hand corner of each panel. Dashed line corresponds to
a 1:1 relationship
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the Cimarron, Crawford, Gunnison Basin individuals

(Fig. 6a). Cimarron and Crawford individuals were

grouped together on a single branch, along with two

Gunnison Basin individuals. Additionally, two individ-

uals from Gunnison Basin and an individual from San

Miguel cluster with the Dove Creek individuals. Similar

to the clustering pattern observed in DAPC, all SNPs

and putatively neutral SNPs resulted in nearly indistin-

guishable grouping patterns where all populations are

identifiable on individual branches (Fig. 6b and c, re-

spectively). With both the all SNP and putatively neutral

SNP datasets Cimarron, Crawford, and Gunnison Basin

group most closely, Piñon Mesa is the most distant from

the center, and a single individual sampled in Crawford

grouped with the San Miguel individuals. With neutral

SNPs a single San Miguel individual grouped with

Cimarron (Fig. 6c). Though similar to the other SNP

dendrograms in that samples clustered into distinct

Fig. 5 Star-plots of DF1 (x-axis) and DF2 (y-axis) from discriminant analysis of principle components (DAPC) for Gunnison sage-grouse. Panels
correspond to different datasets: a microsatellite, b all SNPs, c putatively neutral SNPs, d and candidate adaptive SNPs. Each point represents an
individual color coded by sampling origin
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populations, branch lengths appear somewhat longer in

the candidate adaptive loci dataset (Fig. 6d). When con-

sidering hierarchical clustering using methods in

addition to “ward. D2”, the patterns are generally similar

though some differences are notable, particularly when

comparing the results of microsatellites to any of the

SNP datasets. The “single” method, which bases branch

length between groups on the closest individual in each

group, does not result in distinct populations using

microsatellite data (Additional file 1: Fig. S1A), but re-

sults in the same clustering pattern as the “ward. D2”

method for all SNPs (Additional file 1: Fig. S1B), puta-

tively neutral SNPs (Additional file 1: Fig; S1C), and can-

didate loci (Additional file 1: Fig. S1D). The “complete”

method, which bases branch length between groups on

the most distant individuals, shows Cimarron, Crawford,

and San Miguel individuals nested between groups of

Gunnison Basin individuals while Dove Creek and Piñon

Mesa are distinct when using microsatellites (Additional

file 1: Fig. S2A), but results in nearly the same clustering

pattern as with “ward. D2” when using all SNPs (Add-

itional file 1: Fig. S2B), putatively neutral SNPs (Add-

itional file 1: Fig. S2C) and candidate adaptive loci

(Additional file 1: Fig. S2D), though a single San Miguel

individual clusters with Cimarron using all SNPs and

putatively neutral SNPs (Additional file 1: Fig. S2B and

S2C).

Discussion
In general, we found that measures of diversity and dif-

ferentiation generated from microsatellite and SNP data

were typically in agreement in ranking of population

Fig. 6 Comparison of dendrograms of individual Gunnison sage-grouse using the hierarchical clustering method “ward. D2”. Panels correspond
to different datasets: microsatellites (a), all SNPs (b), putatively neutral SNPs (c), and candidate adaptive loci (d). Colors indicate sampling origin
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estimates, although magnitudes of estimates were quite

different. Metrics of differentiation, however, had con-

sistently higher correlation than most metrics of diver-

sity. Our results also confirmed that increased numbers

of SNP loci can dramatically reduce the confidence

intervals for mean estimates, increasing precision, al-

though this was not true for all differentiation measures.

We also demonstrated that clustering of individuals for

the purpose of identifying evolutionarily or demograph-

ically distinct units can be variable depending on cluster-

ing method used and marker type.

Genetic diversity

Of the four diversity metrics evaluated here, HE, FIS, and

AR were the metrics with the highest correlation be-

tween microsatellites and SNPs (see Fig. 2). HO, how-

ever, showed relatively low correlation across marker

types. Several previous studies with variable numbers of

markers, sample sizes, and SNP discovery approaches

generally agree with our correlation of diversity metrics

across marker types, though positive relationships were

sometimes moderate [43, 45, 51, 58, 59, 64]. None of

these studies report HO, and so there was no comparison

for our relatively low correlation across marker types for

this metric. Still, some argue higher correlation may be

influenced by the number of SNPs [43], or whether loci

represent a high proportion of the genome-wide poly-

morphism [74, 75]; two aspects of SNP datasets that will

vary by study and may play a role in our observed corre-

lations. Importantly, similar to findings by Fischer et al.

[59], the high variance in microsatellite data for all diver-

sity metrics resulted in almost no significant difference

between populations; differences that were detected with

SNPs. Though we, like others, show high correlation

among marker types, the increased precision in esti-

mates allow distinction of populations when using SNP

data. For general monitoring of changes in diversity for

conservation or management of a species, either marker

type would prove useful. This was not necessarily true

for FIS, where generally high correlation was observed,

though ranking was not as consistent, and SNPs failed to

detect the indication of inbreeding that was apparent

with microsatellites (i.e., FIS > 0; Fig. 1 & Table S1). It is

worth restating that samples were originally selected for

the SNP data based on relatedness values estimated with

the microsatellite data. Logically, selecting minimally re-

lated individuals could result in the SNP data producing

FIS estimates consistent with more outbreeding than the

original full microsatellite dataset. However, when we

compared diversity metrics from a reduced microsatellite

dataset including only the individuals used in the SNP

dataset, we find no significant differences for any diver-

sity metric according to the confidence intervals (Table

S1). However, the mean FIS estimates for the reduced

microsatellite dataset would suggest a change in the sign

of the estimate (i.e., either from inbreeding to outbreed-

ing or outbreeding to inbreeding) for three populations.

SNPs, however, would have an obvious advantage if con-

servation actions required an understanding of the rela-

tive levels or ranking of most measures of genetic

diversity.

Genetic differentiation

In general agreement with multiple studies [21, 45, 58–

60, 64] all metrics of differentiation showed high correl-

ation between microsatellites and SNP datasets, with

correlation coefficients greater than 0.90 in all tests (Fig.

4) and significant Mantel correlations (Mantel r > 0.9,

p ≤ 0.05 for all comparisons). Some argue reliance on a

single measure of differentiation for conservation pur-

poses risks inaccurate characterization of populations

[76–78]. Our findings, however, echo other empirical

examples where different metrics result in the same in-

ference [11, 60], but only when ranking populations

(Wilcoxon paired signed-rank test p ≤ 0.05 in all com-

parisons). Different metrics of population differentiation

showed a consistent pattern of which populations were

most similar, though the magnitude of a metric was

sometimes very different. If the magnitude of the differ-

entiation metric is of conservation relevance, then the

marker types are not equivalent.

The appropriateness of a differentiation metric in con-

servation can be further impacted by additional differ-

ences in marker types. The different metrics measure

different things. DJost is considered a relative degree of

allelic differentiation, while FST and GST are fixation in-

dices [78]. Similar to some previous studies, we found

DJost tended to produce values higher in magnitude with

microsatellites than with SNPs [64]. Each microsatellite

locus will always have higher per locus allelic diversity

than biallelic SNP loci, and therefore result in higher

magnitude estimates of DJost [78, 79]. We also found

higher GST estimates with microsatellites (Fig. 3b &

Table S2), although the magnitude of difference between

the values calculated from different marker types was

not as dramatic as that with DJost (Fig. 3c & Table S2).

GST depends on heterozygosity, so the higher theoretical

maximum heterozygosity for microsatellite loci (HE = 1),

versus the theoretical maximum heterozygosity for SNP

loci (HE = 0.5), will also result in higher magnitudes of

GST when calculated from microsatellite data. Import-

antly, FST has proven to be more robust to per locus

allelic diversity and heterozygosity (though see [59, 60]).

From a conservation perspective, FST may prove most

useful in the transition from microsatellite loci to SNPs

for genetic monitoring because of the observed

consistency across marker types. However, DJost may ac-

tually be the more relevant conservation metric if
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comparing relative degrees of differentiation or identify-

ing isolated groups because the level of differentiation

takes into account allelic identity and not just population

level fixation [78]. Fixation indices will indicate two pop-

ulations fixed for the same allele are distinct because

both populations lack diversity at a locus while allelic

differentiation metrics will not because the identity of

the fixed allele is the same and therefore populations are

not different at that locus.

The three differentiation metrics evaluated here also

have different sensitivities to the underlying mutation

rate generating each type of marker with FST proving

more robust [78, 80]. In addition to impacts from muta-

tion rate on different metrics, migration rate and popu-

lation size are also important to consider. Whitlock [80]

demonstrated that for low mutation rates, approximately

that of SNPs (10E-9), and low migration rates among a

small number of populations, measures of differentiation

as measured by DJost will be much smaller in magnitude,

and to a lesser degree, so will GST. Relatively low levels

of mutation, migration, and small populations typically

correspond to lower allelic diversity. Gunnison sage-

grouse is composed of seven isolated populations, with

very low migration rates among populations, though not

as low as SNP mutation rates. Our comparison of FST
values across marker types demonstrates relatively con-

sistent agreement between both magnitude and ranking

of pair-wise comparisons (Fig. 3a). As predicted, DJost

and GST consistently rank comparisons across marker

type, though the magnitude of metrics were lower for

SNPs than microsatellites; much lower in the case of

DJost (Fig. 3b and c). Overall, our results empirically

demonstrate the predicted impact population configura-

tions can have on measures of differentiation.

Both marker types suffer from additional characteris-

tics that can influence estimates of differentiation. In

addition to the influence of heterozygosity and allelic di-

versity on measures of differentiation, there is a trade-off

between the number of loci and the per locus informa-

tion content. More SNP loci will be required to obtain

the same resolution in differentiation metrics from fewer

microsatellite loci, because the number of alleles per

locus can impact the ability to detect reproductively iso-

lated groups. If a locus only has two alleles, as is typical

with SNP loci, the chances of populations differing in al-

lele frequencies at high enough levels to detect isolation

is lower. Conversely, if a locus has multiple alleles shared

among populations, the differences in allele frequencies

are more likely to be detected, therefore showing the

level of reproductive isolation. Many studies have pro-

vided suggestions on the number of SNPs required to

obtain resolution in differentiation comparable to that

obtained with microsatellites, ranging from two to 11

times more SNP loci [25, 57, 81]. However, more recent

work has indicated fewer SNPs than previously sug-

gested can be sufficient [47, 58, 60, 82]. We did not ex-

plicitly evaluate the number of SNP loci required to

obtain estimates with the precision of microsatellites,

though we do demonstrate that 14,091 biallelic puta-

tively neutral SNPs results in comparable estimates to

22 microsatellites with three to 18 alleles per locus. Our

study likely reflects a typical number of SNPs which

would be obtained with a RAD-Seq protocol, the most

commonly used approach for wildlife species. We there-

fore, demonstrate RAD-Seq generated SNP genotypes

can produce comparable differentiation estimates to

those obtained with microsatellites.

We do not, however, demonstrate a dramatic reduc-

tion in confidence intervals around those measures of

differentiation (Fig. 3), as has been predicted. However,

in pair-wise comparisons of differentiation, the small

sample size of one of the populations is known to im-

pact the confidence intervals [83]. In our data, we see

this trend particularly for FST and with comparisons in-

volving our smallest population represented by the

fewest samples, Cimarron (Fig. 2). In species of conser-

vation concern variable population sizes are often

unavoidable, and by increasing the number of loci sam-

pled (> 1000 SNPs) robust estimates of differentiation

can still be obtained [83].

Clustering

Contrary to our findings for differentiation, the cluster-

ing analyses showed an increase in precision with SNP

data that is consistent with previous studies [45, 61, 64].

We used multiple methods to cluster individuals (den-

drograms and DAPC) all of which showed general agree-

ment of clustering by population of origin (Figs. 5b, c,

and d, 6b, and c). The SNP data, however, resulted in

tighter groups of individuals (Figs. 5c and 6c) relative to

the somewhat loose clusters of individuals with micro-

satellite data (Figs. 5a and 6a). The number of individ-

uals sampled varied by marker type in our study (256 in

the microsatellite dataset versus 60 in the SNP datasets),

which could potentially contribute to the lower reso-

lution in clustering analyses when compared to the SNP

data. However, when we looked at clustering of micro-

satellite data using only the 60 individuals included in

the SNP data, the patterns of clustering remain the same

(Additional file 1: Fig. S3 and S4), similar to what Lemo-

poulos et al. [45] found.

The potential impact of conservation actions on a

species local fitness and how that relates to adaptive

divergence is important to consider [84], especially for a

species with geographically distinct and declining popu-

lations. Identifying candidate adaptive loci can provide

insight into the potential adaptive divergence among

populations and the potential for local adaption. We also
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compared clustering of individuals by previously identi-

fied candidate adaptive loci [65], an objective that cannot

be accomplished with microsatellite loci (i.e., neutral

loci) alone. We found evidence of adaptive divergence in

two or three populations (Figs. 5d, 6d, S1D, and S2D),

depending on the method used for clustering. Though

the small populations and small sample sizes could be

causing fixation of alleles due to strong drift, the ap-

proaches used to identify candidate adaptive loci gener-

ally control for demography (e.g., BayPass and partial

RDA; see Zimmerman et al. [65]).

Comparing the clustering of individuals with all SNP

loci (Figs. 5b and 6b) to clustering including only puta-

tively neutral (Figs. 5c and 6c) or candidate adaptive

(Figs. 5d and 6d) loci, we see that neutral genetic pro-

cesses in Gunnison sage-grouse may be stronger than

adaptive divergence. Evidence of adaptive divergence

corresponded to approximately 6% (942 SNPs) of the

sampled genome. Neutral and adaptive variation are

both important to consider for designation as an ESU or

conservation unit [37, 40]. However, the ratio of neutral

versus adaptive loci undoubtedly influences identifica-

tion of distinct units. In addition to considering the

marker type, it could be important to identify what pro-

portion of the genome must hold the signal for adaptive

divergence for formal designation. The term functionally

significant unit (FSU) was recently suggested to describe

conservation units based on ecologically important genes

[85]. More recently, a single ecologically important gene

was used to propose conservation units for salmon [12].

Most genes underlying phenotypes are quantitative in

nature with only preliminary ecological links, and so sin-

gle gene definitions of conservation units will be rare at

best [86]. Further, the focus on identifying conservation

units based on potential adaptive divergence may result

in unintended consequences such as reduced effort to

conserve or restore habitat [86], overlooking the role vic-

ariance events may play in adaptation [87], or a failure

to acknowledge traits that are adaptive in a given envir-

onment presently may not be locally adapted in future

environments. Importantly, questions of local adaptation

and evolutionary independence cannot be considered

with microsatellite loci, or any neutral loci alone. At-

tempts to identify distinct units with genetic data should

focus on using SNP data, or a combination of neutral

(microsatellite or SNP) in combination with known eco-

logically important functional regions.

Conclusions
We demonstrated that RAD-Seq generated SNPs from a

non-model organism are generally comparable to micro-

satellites for measuring population genetic parameters,

in agreement with some previous studies [45, 51, 64].

The rapid progression away from use of microsatellites

and toward use of SNP data in conservation and man-

agement applications highlights the importance of these

types of comparisons and calls into question the future

usefulness of microsatellite data. As we, and others, have

shown, the same general inference can typically be

drawn about population-level genetic differentiation and

diversity, irrespective of marker type. However, we

showed that SNPs had three main advantages over

microsatellites. First, the much smaller confidence inter-

vals around diversity measures allowed distinctions be-

tween populations to be made with SNP data. From a

conservation perspective, all populations of Gunnison

sage-grouse would have been considered equally diverse

using microsatellite loci, while there were clear differ-

ences in relative diversity with SNP data. Second, clus-

tering methods showed a dramatic increase in the power

to separate individuals into distinct groups. Microsatel-

lite data failed to clearly separate individuals into popu-

lations in nearly all instances; populations that were

clearly differentiated with SNP data. Third, SNP data al-

lows consideration of local adaptation.

We also further demonstrated the impact of marker

choice on differentiation metrics—different marker types

resulted in very different magnitudes. This finding exem-

plifies the dangers of using thresholds for differentiation

and diversity metrics for conservation objectives. If the

magnitude of the value is not of importance, all metrics

except HO and FIS were able to consistently rank popula-

tions or population pairs across marker types in our study.

While we found clear advantages for use of SNPs in popu-

lation genetics, there remain some limitations at present.

Primarily, generation of SNP datasets requires relatively

large quantities of high quality DNA, which is often diffi-

cult to obtain from species of conservation concern. How-

ever, investing in the development of a SNP panel or

using a target capture approach can facilitate use of low

quality samples [88]. On the other hand, microsatellites

are extremely useful with low quality samples, are becom-

ing less costly and time consuming to develop (e.g., Castoe

et al. [89]), and have already been widely used in conserva-

tion and management programs for long-term monitoring

of many species. Although general usefulness of microsa-

tellites in the future is uncertain, microsatellite loci will

likely remain useful for relatedness, parentage analysis,

and genetic mark-recapture due to their highly poly-

morphic nature and mixed performance with SNP data

[46, 47, 49, 53, 54, 88].

Methods
Data

Microsatellite genotypes

Blood samples were collected near breeding grounds

within six of the populations as part of a 2005 study

[69]. The dataset we use here is composed of 254
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individuals from these previously collected samples that

were genotyped at a larger set of microsatellite loci for a

2019 study [73]. Sample size varied by population: Cim-

arron = 4, Crawford = 21, Dove Creek = 43, Gunnison

Basin = 116, Piñon Mesa = 19, San Miguel = 51. Popula-

tions are named after nearby Colorado towns with 2 ex-

ceptions, Piñon Mesa is located west of Grand Junction

and San Miguel is south of Norwood. We amplified 22

grouse-specific microsatellite loci using the Polymerase

Chain Reaction (PCR) and with the components and

concentrations described in Oyler-McCance and Fike

[90] with thermal profiles and annealing temperatures as

originally published. The microsatellite primers used in-

cluded: MSP11, MSP18, reSGCA5, reSGCA11, SG21,

SG23, SG24, SG28, SG29, SG30, SG31, SG33, SG36,

SG38, SG39, SGCTAT1, SGMS06.4, SGMS06.8, TTT3,

TUT3, TUT4, and WYBG6 [91–96]. See Zimmerman

et al. [73] for details on DNA extraction and genotyping.

The final microsatellite dataset was composed of 22

relatively polymorphic sampled loci, for a total of 254

individuals, with variable representation by geographic

population.

Single nucleotide polymorphism (SNP) genotypes

From the same 254 previously collected blood samples

that were genotyped at microsatellite loci, a subset were

previously chosen for RAD-Seq [65] based on two

criteria: population of origin and relatedness. The goal

was to obtain an equal number of minimally related in-

dividuals from each population. The exception to these

requirements was the Cimarron population, which only

had four samples; consequently all Cimarron samples

were included. These criteria for sample selection were

necessary because of limited available funding and high

enough quality samples. See Zimmerman et al. [65] for

details on RAD-Seq library preparation and bioinformat-

ics. The complete SNP dataset was composed of 15,033

loci across 35 “pseudo-chromosomes” (chromosome

scaffolds inferred from synteny with chicken) for 60

individuals (Cimarron = 4, Crawford = 12, Dove Creek =

12, Gunnison Basin = 12, Pinon Mesa = 10, San Miguel =

10). A putatively adaptive SNP dataset composed of all

942 loci that were previously identified as potentially

under selection in outlier locus analyses and genotype-

environment association analyses was also created.

Methods used to identify putatively adaptive loci in-

cluded BayPass [97], pcadapt [98], and a redundancy

analysis as described in [99]. Environmental covariates

used in the genotype-environment association included

average spring precipitation, average fall precipitation,

spring maximum temperature, winter maximum vapor

pressure deficit, compound topographic index (a proxy

for soil moisture), green-up rate (a measure of the pro-

gression of the growing season), big sagebrush cover,

and a dryness index (see Zimmerman et al. [65] for de-

tails on loci under selection). A putatively neutral SNP

dataset was created by excluding all putatively adaptive

loci. The final putatively neutral SNP dataset included

14,091 biallelic loci across 34 pseudo-chromosomes, for

60 individuals with relatively equal representation from

each geographic population.

Analysis of genetic diversity

For each putatively neutral dataset, we estimated ob-

served heterozygosity (HO), expected heterozygosity

(HE), allelic richness per locus (AR), and inbreeding coef-

ficient (FIS) using the ‘diveRsity’ [100] package in R

[101]. Diversity metrics were estimated for each locus

based on 1000 bootstraps and reported as a mean and

95% confidence intervals constructed from the standard

deviation across all loci. Mean allelic richness per locus

was also estimated with rarefaction for comparison (re-

sults included in Additional file 1: Table S1). Diversity

metrics were calculated for both datasets and used to

compare estimates from microsatellite and putatively

neutral SNPs. Pearson and Spearman rank correlation

coefficients were estimated to evaluate congruence for

all paired metrics. Wilcoxon paired signed-rank test in

the R package ‘MASS’ [102] was used to evaluate the

consistency of ranked values among datasets.

Analysis of genetic differentiation

For genetic differentiation we compared analysis results

from microsatellites, all SNPs, and putatively neutral

SNPs. We used the ‘diveRsity’ package in R to calculate

FST [103] with confidence intervals based on 1000 boot-

straps. Because there is concern about comparing pair-

wise FST values when using loci with variable levels of

heterozygosity, we also calculated pair-wise GST [104]

and DJost [79] with confidence intervals based on 1000

bootstraps. DJost differs from both FST and GST in that it

is a measure of the fraction of allelic variation among

populations and is not constrained by the expected level

of heterozygosity within the subpopulation [79]. Signifi-

cance of correlation between pair-wise differentiation

measures for each dataset was evaluated with the Mantel

p-value as calculated with the ‘vegan’ R package [105].

Analysis of clustering

We compared the identification of distinct units using

microsatellites, all SNPs, putatively neutral SNPs, and

putatively adaptive SNPs. First, we performed discrimin-

nant analysis of principal components (DAPC) with

microsatellites, putatively neutral SNPs, all SNPs, and

candidate adaptive loci with the ‘adegenet’ package in R

[106]. DAPC summarizes genotypes in principal compo-

nents (PC) that are then used to construct linear func-

tions that simultaneously maximize among-cluster
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variation and minimize within cluster variation. We used

the K-means clustering algorithm and identified the

number of genetic clusters based on the Bayesian Infor-

mation Criterion (BIC). We retained all of the PCs, ran

the algorithm for 100,000 iterations, and used 10 starting

centroids per run. The number of genetic clusters (K)

with the lowest BIC was selected, as recommended by

Jombart et al. [107]. After we identified optimal K for

each dataset, we used the a-score method to identify the

optimal number of PCs to retain in DAPC while con-

structing linear functions to describe genetic differenti-

ation among K groups. Second, we created dendrograms

from an individual-based genetic distance matrix calcu-

lated as the proportion of differing nucleotide sites

[108], excluding missing data in pair-wise estimations,

with 1000 bootstraps for each dataset. We used the hier-

archical clustering algorithm hclust in R and the “ward.

D2” method [109]. The “ward. D2” method minimizes

the total within cluster variance and minimizes informa-

tion loss associated with each cluster. For comparison of

hierarchical clustering methods we also included den-

drograms created with a more conservative method

tending to form loose groups, sometimes prematurely

(“single” method; Additional file 1: Fig. S1) and a more

relaxed method tending to form tighter and smaller

groups (“complete” method; Additional file 1: Fig. S2).

For comparison, results for clustering analyses with a re-

duced microsatellite dataset using only individuals in the

SNP dataset are included in the supplemental materials

(Additional file 1: Fig. S3 and Fig. S4).
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