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Abs t rac t .  One approach to induction is to develop a decision tree from a set of 
examples. When used with noisy rather than deterministic data, the method involves 
three main stages - creating a complete tree able to classify all the examples, pruning 
this tree to give statistical reliability, and processing the pruned tree to improve 
understandability. This paper is concerned with the first stage - tree creation - 
which relies on a measure for "goodness of split," that is, how well the attributes 
discriminate between classes. Some problems encountered at this stage are missing 
data and multi-valued attributes. The paper considers a number of different measures 
and experimentally examines their behavior in four domains. The results show that 
the choice of measure affects the size of a tree but not its accuracy, which remains 
the same even when attributes are selected randomly. 

1. Introduct ion 

There are a number of approaches to inductive learning (Michalski, Car- 

bonell, & Mitchell, 1983, 1986; Bratko & Lavrac, 1987), one of which involves 

the construction of decision trees. This method was developed initially by 

Hunt, Marin, and Stone (1966) and later modified by Quinlan (1979, 1983), 

who applied his ID3 algorithm to deterministic domains such as chess end 

games. Breiman, Friedman, Olshen, and Stone (1984) independently devel- 

oped a similar approach to classification. Recent research has focused on in- 

duction in domains that  are uncertain and noisy rather  than  deterministic 

(Quinlan, 1986a). Broadly speaking, there are three phases to induction with 

non-deterministic data  - the creation of an initial tree from examples; pruning 

this tree to remove branches with little statistical validity; and processing the 

pruned tree to improve its understandability. 

This paper  provides an empirical comparison of a number of methods and 

strategies for the creation phase. A further paper  (Mingers, 1988) addresses the 

pruning phase. Section 2 outlines Quinlan's basic algorithm and the various 

measures and approaches covered in this paper. Section 3 describes the data  

and experimental  procedure, and Section 4 summarizes the results of the study. 
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Table 1. Values of two attributes from the breast cancer domain. 

RADIATION MENOPAUSE CLASS 

NO 

NO 

NO 

NO 

YES 

YES 

YES 

NO 

NO 

NO 

< 60 
> 60 
< 60 
NOT 

> 60 
< 60 
_> 60 
NOT 

< 60 
< 60 

NOT 

NOT 

NOT 

NOT 

NOT 

RECUR 

RECUR 

RECUR 

RECUR 

RECUR 

RECUR 

RECUR 

RECUR 

RECUR 

RECUR 

2. Strategies  for dec is ion-tree  induct ion  

The ID3 algorithm has been extensively detailed elsewhere (Quinlan 1979, 

1983, 1986b) and so only a brief outline will be given here. It begins with a set 
of examples already divided into classes. Each example is described in terms 

of a set of attributes, which can be numeric or symbolic. The overall approach 

is to choose the at tr ibute that  best divides the examples into their classes and 

then partit ion the data  according to the values of that attribute. This process is 

recursively applied to each partit ioned subset, with the procedure terminating 

when all examples in the current subset have the same class. The result of 
this process is represented as a tree in which each node specifies an attribute 

and each branch emanating from a node specifies the possible values of that  

attribute. Terminal nodes (leaves) of the tree correspond to sets of examples 

with the same class or to cases in which no more attributes are available. 

2.1 T h e  use  o f  c o n t i n g e n c y  t a b l e s  

At each node in the development of a decision tree there will be a set of 
instances and a number of attributes available to classify them. One selects 

the best attr ibute by seeing how well each one separates the data into the 

various classes. Breiman et al. (1984) call this a "goodness of split" measure, t 

To calculate an attribute 's  goodness of split at a particular node in the tree, the 
available examples can be set out in a contingency table. This is illustrated in 

the following example, which we use later to demonstrate the various measures. 

Consider a domain in which one must predict the recurrence of breast cancer. 
One attribute in this domain involves whether radiation treatment was given 

(yes or no), and another is the age at which the patient's menopause occurred 
(< 60, > 60, not occurred). Table 1 shows some instances from this domain, 

and Tables 2 and 3 show the resulting contingency tables for the two attributes. 

1Most  work, inc luding t h a t  descr ibed here, a s sumes  t ha t  the  d i s t r ibu t ion  of classes in the  

sample  reflects t h a t  of  the  popula t ion  and  t h a t  t he  costs  of  misclassi fying the  d a t a  are the  
s ame  for all classes. B re i man  et al. (1984) show how bo th  differing prior  probabil i t ies  and  
vary ing  misclassif icat ion costs  c~n be  incorpora ted  into thei r  a lgor i thm.  
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Table 2. Contingency table for the radiation attribute. 

CLASS 

RADIATION 

YES 

NO 

NOT 

RECUR RECUR 

0 3 

5 2 

5 5 10 

Note that the class totals will be the same for all the attributes being com- 

pared at any node, but  the row totals and the number of rows may differ. The 

goodness of split measures calculate the extent to which the attribute values 

split the data  into the separate classes. A perfect attr ibute would have each 

attribute value associated with only one class. Each row would therefore have 

only one non-zero entry. At the opposite extreme, the values for a useless 

attribute would not be associated with the classes at all, and all the entries 

in a row would be the same. Looking at the two examples, it appears that  

radiation is bet ter  than menopause. 

In addition to the choice of basic measure, three other problems have received 

some attention in the literature on decision trees - multi-valued attributes, 

missing data, and small splits. The remainder of this section reviews various 

strategies for dealing with each of these issues. 

2.2 M e a s u r e s  o f  g o o d n e s s  o f  spl i t  

Since Quinlan's original work, there have been a number of alternative sug- 

gestions for measures to be used in selecting attributes. These will be devel- 

oped using the notation for a general contingency table shown in Table 4 and 

calculated for the examples in Tables 2 and 3. 

2.2.1 Quinlan's information measure (IM) 

Quinlan (1979, 1983) proposed an evaluation function based on a classic 

formula from information theory that  measures the theoretical information 

content of a code - ~ Pi log(p~) - where p~ is the probability of the i-th message. 

The value of this measure depends on the likelihood of the various possible 

messages. If they are equally likely (and so the Pi are equal), there is the 

greatest amount of uncertainty and the information gained will be greatest. 

The less equal the probabilities, the less information there is to be gained. The 
value of the function also depends on the number of possible messages. A good 

analogy is with a horse race - the more runners and the more evenly they are 
matched, the greater the value of knowing the winner. 
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Table 3. Contingency table for the menopause attribute. 

CLASS 

< 60 

AGE OF 
MENOPAUSE k 60 

NOT 

NOT 

RECUR RECUR 

3 2 

1 2 

1 1 

5 5 10 

Using Quinlan's (1983) notation, the information needed to classify items, 

given only the class totals as a whole, is 

M(C) x.1 log ( - ~ ) -  x.2 --~ log ( - ~ )  . . . .  
N 

N 

The information content of a row, say A1, is 

M(A1)  = _x1_~1 log/\{xn} _ X12 

Xl. \ Xl. ] Xl. \ x l . /  

and the other rows are treated similarly. 

The information needed to classify items~ given knowledge of the attribute 

value~ is then the average of these expressions, weighted by the frequency of 

occurrence of each value (the row total): 

B(CIA)  xl -~M(A 2 )  + "'" - - ~ M ( A 1 ) +  x2 

_ 1 

N 

The information measure I M  is then defined as the gain in information brought 

about by knowledge of the attribute: 

I M  = M ( C ) -  B(CIA)  

= -~ xii  log xii  - E xi. log xi. - E x j log x. i + N log N . 
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VALUE OF 

ATTRIBUTE 

Table 4. General notation for contingency tables. 

AI 

A2 

° 

A~ 

CLASS 

CI C2 ... Cc 

X l l  X12 Xlc 

X21 X22 X2c 

Xr l  Xr2 Xrc 

X.I X.2 . . -  X.c 

TOTAL 

Xl. 

X2. 

Xr. 

N 

For the radia t ion  example  in Table 2, we have 

1~ 5 log 5 = 0.69315 M(C) = - log - 1--6 1-0 

3 3 = 0 
M(A1) -= - O - ~ l o g 5  

M(A2) - 5 log 5 2 7 ~ - -~log 2~ _ 0.59827 

B(CIA) = 1---0 × O +  × 0.59827 = 0.41879 

I M  = 0 . 6 9 3 1 5 - 0 . 4 1 8 7 9  = 0.27436. 

Similarly, for the  menopause  a t t r i bu te  shown in Table 3, we have 

M(C) = 0.69315 

3 3 2 2 
M(Aj )  = - g l o g g - g l o g g  = 0.67301 

1 log 1 2 2 
M(A2)  = - ~  3 - 5 1 ° g 5  = 0.63651 

1 log 1 1 1 
M(A3)  - 2 ~ - ~ l o g ~  = 0.69315 

5 3 2 
B(CIA) = 1--0 x 0 .67301+  x 0 .63651+  ~-~ x 0.69315 = 0.66575 

I M  = 0 . 6 9 3 1 5 - 0 . 6 6 5 7 5  = 0.02740. 

This  result  agrees wi th  the  intui t ion presented  earlier. The  rad ia t ion  a t t r ibu te  

provides  more  informat ion  t h a n  the menopause  a t t r ibu te  and so should be  

selected for ex tending  the  decision tree. 
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2.2.2 The chi-square contingency table statistic (X 2) 

Hart (1984) and Mingers (1986a, 1987a) have employed another measure to 
select among attributes - the chi-square (X 2) statistic. This is the traditional 

statistic for measuring the association between two variables in a contingency 
table. It compares the observed frequencies with the frequencies that one 

would expect if there were no association between the variables. The resulting 
statistic is distributed approximately as the chi-square distribution, with larger 

values indicating greater association. In these experiments "fates' correction is 
used for 2 x 2 tables (Upton, 1986). The basic equation for this function is 

(x~ j  - E ~ j )  2 ' 

where E i j =  x~.x4/N, i.e., the expected value for each cell in the contingency 
table. Thus for the radiation attribute we get 

X2 = ( 0 - 1 . 5 )  2 + ( 3 - 1 . 5 )  2 + ( 5 - 3 . 5 )  2 + ( 2 - 3 . 5 )  2 = 4.29, 

1.5 1.5 3.5 3.5 

whereas for the menopause attribute we get 

_ ( 3 -  2 . 5 ,  + . - - +  - = 0 . 5 3 3 .  

2.5 1 

Again, the results favor the radiation attribute. 

2.2.3 The G statistic (G) 

Mingers (1987a) has also used the G statistic (Sokal & Rohlf, 1981) in the 
induction of decision trees. This is another statistic designed for use with 

contingency tables that is based on information theory. It is equivalent to 
Kullback's (1967, p. 158) information measure H(A, C) and Wilk's likelihood 
ratio (Upton, 1982). This metric approximates the chi-square distribution and 
is also closely related to Quinlan's measure. In fact, Mingers (1987a) has shown 

that 
G = H(A,C)  = 2N x IM,  

where N is the number of examples. When comparing attributes, N will 
be constant and so G and I M  will always give the same ordering. In the 
experiments described later, G has been used instead of IM,  since it follows 
the chi-square distribution. 

Returning to the breast cancer domain, we have 

G--- 2 x 10 x I M -  2 x 10 x 0.27436 = 5.49 

for the radiation attribute and 

G = 2 x 10 x 0.02740 = 0.548 

for the menopause attribute, again indicating the former should be preferred. 
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Table 5. Chi-square probability of finding a value greater than or equal to the statis- 

tics from Tables 2 and 3. 

ATTRIBUTE X 2 G 

RADIATION 0.04 0.02 

MENOPAUSE 0.47 0.46 

2.2.4 Using probabilities rather than the statistic (PROB) 

Instead of using the value of the X 2 or G statistics as calculated, one can 

compute the probability of such a value occurring from the X 2 distribution 

on the assumption that  there is actually no association between the at tr ibute 
and the classes. The more extreme the calculated value, the less likely it is 

to have occurred given the assumption. Therefore, the smaller the probability 
the greater the likely degree of association between attribute and class. Table 

5 shows these probabilities for the data from Tables 2 and 3. 

The probabilities for the G statistic show there is a 46% chance of a value as 

high as 0.548 (for the menopause attribute) but only a 2% chance of a value as 

high as 5.49 (for the radiation attribute). Therefore, radiation is likely to be 

associated with the class, but  menopause is not. Similar probabilities emerge 

for the X 2 statistic. This approach has two potential advantages. First, it 

provides actuM levels of significance that  can be used in deciding whether to 
include an at tr ibute at all. Second, it makes allowance for the different number 

of attr ibute values via the degrees of freedom. The latter point is discussed 
more fully in the section on multi-valued attributes. 

2.2.5 The GINI index o/ diversity (GINI) 

Breiman et al. (1984) have employed another measure that  is similar to I M  

but based on a different function. Their GINI function measures the qmpurity'  

of an attribute with respect to the classes. Given the probabilities for each 

class (Pi), the general GINI function, or measure of impurity, is 

In our case, we estimate the class probabilities with the actual relative fre- 

quencies - x i /N .  Thus the impurity of the class totals is 

i(t) = 1 . . . . . .  , 

whereas the impurity of row A1 is 

= . . . .  

\ x l . /  \ x l . /  

and similarly for other rows. 
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The increase in impurity is the class impurity minus the weighted average 
of the row impurities: 

= i ( t ) - x l "  x2 -~:*(A1) . . . . .  

1 xij 

N xi. 

For the radiation attribute from Table 2, this comes to 

i = 1-6 + - 2 + - f  + - = 0 .21429,  

whereas for menopause it evaluates to 

) i = 1-0 + --5 + . . . .  1-0 + ]-0 = 0.026667. 

This gives the same ordering as the other measures, preferring radiation to 

menopause. 

2.2.6 Gain-ratio measure (GR) 

Quinlan (1986b) used a variant of his IM measure that incorporates the 
notion that an attribute itself will have some information value. This amount 

will depend upon the distribution of examples among its possible values (i.e., 
the row totals). The less evenly spread its values, the less information in the 

attribute. An efficient splitting measure should convert as much as possible 

of the attribute 's  information value into the classification procedure. This can 

be measured by calculating the ratio of the gain in information from using 
the attribute (i.e., IM) to the information value of the attribute itself. Thus 

Quinlan proposes a gain-ratio measure 

IM(A) 
GR(A) = IV(A) '  

where IV(A) is the information value of attr ibute A, which is defined as 

Xi. 

The function has a high score if the examples are spread evenly between the 
attribute values and a low one if they are not. Thus GR favors those attributes 

with an unequal distribution of examples. IV  is also proportional to the actual 
number of possible attr ibute values, so that  GR favors attributes with a small 
number of values. One problem is that  GR might choose attributes with very 
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low I V  scores, rather  than  those with high I M  scores. To avoid this, Quinlan 

calculates the average I M  for all the at tr ibutes in contention at a node and 

then selects only from among those with above average I M  scores. 

Returning to the domain of breast cancer, for the radiation at t r ibute  we get 

3 ,  3 7 7 _ 0.61086 
IV  = - - ~  log ]-6 - 1-0 log 10 

and 0.27436 
G R  = - 0.44913, 

0.61086 

whereas the results for menopause are 

5 IV  - log - 1--0 1--6 - 1-0 log ~-~ = 1.02965 

and 0.02740 
GR - - 0.02662. 

1.02965 

Note that ,  in comparison with the original I M  measures, radiation appears 

much more at tractive in relation to menopause, although the overall ordering 
is the same. 

2.2. 7 Marshall correction (MARSH) 

This is a correction factor that  can be applied to any of the measures. The 

aim of it is the opposite of the gain ratio, that  is to favor at tr ibutes which split 

the examples evenly and to avoid those which produce small splits. Marshall 

(1986) has suggested multiplying the calculated measure by the product  of the 

row totals, xi., as this will be a maximum when the row totals are equal. 

This simple approach has two problems. First, it makes the measure depend 

on N,  the number  of examples, and this will differ from node to node in the 

tree. This does not affect the choice of at t r ibute at a node, but it does preclude 

between-node comparisons. Second, it depends on the number of values of the 

attr ibute.  To avoid the first problem, one can use the ratios of xi. to N,  giving 

Xl. X2. 
x × . . .  

If  there are k at tr ibute values, this expression has a max imum value of 

N N 1 xi. x2. xk. N 
N--~x ~-~ × . . . .  k-- ~ when N N N k"  

The correction is therefore between zero and 1/k k. To make the factor less 

dependent on k, one can instead use the expression 

371. 322. k, 

which has a range between zero and one. Applying this correction to the I M  

measure on the breast cancer data,  the radiation at t r ibute gives 

3 7 2z 
Marsh = 0.27436 x - -  x - -  × = 0.23046, 

10 10 
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Table 6. Summary of goodness of split calculations for two attributes from the breast 
cancer domain. 

MEASURE I RADIATION MENOPAUSE 

IM 
X 2 

G 
GINI 
GAIN RATIO 

MARSH 

0.27436 

4.29 
5.49 
0.21429 
0.44913 
0.23046 

RATIO 

0.02740 10.01 

0.533 8.05 
0.548 i0.01 
0.02667 8.03 
0.02661 16.88 
0.02219 10.38 

whereas menopause becomes 

5 3 2 33 
Marsh = 0.2740 × ~-~ × ~ × 1-0 x = 0.02219. 

Again, the ordering of at tr ibutes remains the same as for the other measures. 

2.2.8 S u m m a r y  

Table 6 summarizes the results obtained with each of the measures except 

the probabili ty method. This table shows the extent of the differences in terms 

of the ratio between the measures for the two attributes.  The G R  function 

strongly favors radiation, since it has only two values and the examples are un- 

evenly spread between them. The measures that  are not based on information 

theory give radiation less weight. This may be because the zero in the first 

row of radiation has a greater influence in the log calculations. The Marshall 

correction makes little difference on these data,  since the at tr ibutes are split 
roughly equally. 

2.3 S t r a t e g i e s  for  m u l t i - v a l u e d  a t t r i b u t e s  

Attributes differ in terms of the number of possible values they have and the 

nature of those values: 

• Interval attr ibutes take on integer or real values from a measured scale 

such as money, age, weight, counts, etc. 

• Ordinal attr ibutes take on values that  can be ranked or ordered~ but that  

do not have constant intervals; e.g., grade on an examination (A, B, C, or 
FM~). 

• Nominal  attr ibutes take on values with no inherent ordering, such as type 

of car, sex, yes/no, or t ru th  value. The lat ter  are often referred to as 

logical attributes.  

• Structured attr ibutes (Bundy, Silver, & Plummer,  1985) may mix the 
above types; these are difficult to handle. 2 

2For example ,  if t he  a t t r i b u t e  is an  e x a m  grade,  how should  someone  who has  not  taken  
the  e x a m  be classified? Should it be counted  as a fail or as a separa te  value t ha t  canno t  be 
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Hart (1984), Kononenko, Bratko, and Roskar (1984), and Quinlan (1985) have 

all noted a problem with multi-valued attributes (those having more than two 

possible values). Such attributes tend to discriminate better among classes 
simply because they have more possible values. As a result, the basic algorithm 
is unduly biased towards incorporating them in the decision tree. 

To illustrate this with an extreme case, consider age as an attribute, with 
each year being a distinct value. If each person in the sample happened to 

have a different age, then the attribute would discriminate perfectly between 
the classes. However, it would have little use for making predictions on other 

data  sets. Researchers have suggested a number of strategies for dealing with 

multi-valued attributes. These are reviewed below. 

2.3.1 Using degrees of freedom 

When using the chi-square distribution to find the probability of a particular 
)i2 or G value, the degrees of freedom (v) must be considered. For a contingency 

table v = (r - 1) × (c - 1), where r is the number of rows and c is the number 

of columns. Here the columns are the classes and the rows are the attribute 
values. Therefore, this approach, originally proposed by Hart (1984), should 
make allowance for differing numbers of attribute values. Mingers (1987a) has 

examined two different methods. 

The first method involves normalizing the value by calculating its distance 

from the mean in terms of standard deviations. For the chi-square distribution, 

the mean tt = v and the standard deviation a = 2v. Thus the normalized value 
is (G-v)/2v. Ideally, this value should be the same for calculated values having 
identical probabilities but differing degrees of freedom. In practice they differ 
slightly because the shape of the chi-square curve varies. 

The second, and theoretically better, method of using the degrees of freedom 

is to calculate the actual probability of a particular calculated value of G or 
X 2. The attribute with the smallest probability should then be selected since 

it has the greatest degree of discrimination. Although this approach does 
increase run time significantly - by about 20% using an algorithm for the chi- 

square distribution from Cook, Craven, and Clarke (1985) - it does not make 

it prohibitive. It also lets one select a significance level for pruning the decision 
tree. 

2.3.2 Binarization 

Bratko and Kononenko (1986) and Breiman et al. (1984) take a more radical 
approach, adapting the ID3 algorithm so that it treats all attributes as though 
they were binary attributes by grouping the various attribute values together. 
This is done by dividing the possible values into two sets and treating each 

set as though it were a single value. All possible 'binarizations' of values are 
tested for each attribute. If the attribute values are ordinal then only adjoining 
values can be grouped together, but if they are nominal then any combination 
is allowed. Most approaches split numeric attributes into just two ranges 

ordered like t he  o thers?  In  the  la t t e r  case, should  t he  variable be split  into two variables - 
one to record whe t he r  or not  t he  sub jec t  was t aken  and  a second to record the  grade  if it 

has  been? Th i s  a rea  has  received little a t t en t ion ,  bu t  see Michalski  and  Chi lausky  (1980). 
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of values by testing every possible split and choosing the best. Evaluating 

more than two ranges would be prohibitively time-consuming. The effect of 
binarization is that each node of the tree can only have two branches, one for 
each of the two groups. 

2.3.3 The gain-ratio measure 

As mentioned above, Quinlan's (1986b) gain-ratio measure is another re- 

sponse to the problem of multi-valued attributes. This function favors at- 

tributes with fewer values, other aspects of the data being equal. 

2.4 Dealing with missing data 

Data sets with particular items missing are a common problem. However, 

it is important to distinguish between two different reasons for the absence 
of a value. Generally the item is missing by chance, because it has not been 
recorded or is unavailable for some reason. However~ there are also situations 

in which there could not logically have been information because of relation- 
ships between the attributes. An example of the latter is where one attribute 

is "number of statistical samples" and another is "are the variances equal?" 

Clearly, if there is only one sample the second question is meaningless. Such 
cases will be referred to as null values rather than missing values. 

The two situations require different remedies. In the second case the method 

is clear. If a node contains some examples with null values then the relevant at- 

tribute(s) cannot be considered for selection at that node. If such an attribute 
were selected~ then situations could arise where classifying fttrther examples 

would be impossible. Thus, equal variances can only be considered down those 

branches where there is more than one sample. 

The first case is more difficult. Ideally the aim is to determine the missing 

value, but in most cases some form of estimate must be used instead. Quin- 

lan (1986b) has examined a number of methods for estimating the unknown 
value, some of them quite complex. These include using the modal value, 

using Bayesian probabilities, determining the unknown value using a decision 
tree, treating 'unknown' as a new value for the attribute, and distributing the 
unknown examples according to the proportion of occurrences in the known 
examples. His results suggest that, of the more sophisticated methods, only 
the use of a distribution is an improvement on using the modal value. 

The modal method was used for the experiments reported in Section 3. More 

precisely, if a particular example had a missing value, it was assumed to be (at 
that node only) the most common value of the attribute among those examples 
in the same class. Apart from being simple, this method seems the least likely 

to distort the results. 

2.5 Small splits 

When an attribute is selected at a node, the data are split into two or more 
subsets. These may have roughly equal numbers or they may be very unequal, 
depending on the attribute chosen. Often when the split is very unequal, the 
small group (possibly with only two or three examples) is purely of one class. 
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This small split then needs no further division and in general the more small, 

pure splits that  are chosen the smaller will be the tree. 

Breiman et al. (1984) and Quinlan (1986b), whose gain-ratio measure favors 

such splits, argue that this property is desirable because it produces smaller 
trees. However, from a statistical viewpoint this is not necessarily the case. 

These very small groups are quite likely to be chance occurrences and therefore 

unreliable for predicting new sets of data. Statistically, it is generally bet ter  

to have larger groups of examples with a few in different classes, rather than a 

small group all in the same class. Marshall (1986), taking this point of view, 

favors equal splits and uses the correction outlined above to encourage this. 

3. Experiments with decision-tree induction 

The previous section described a number of different measures of goodness 
of split and various approaches to the problems of multi-valued attributes 

and small splits. The main purpose of the current research was to conduct 

a detailed comparison between these alternatives to determine their effect on 

the size, predictive accuracy, and usability of the induced decision tree. This 
section describes the test data  used and the methodology of the experiments. 

In order to give a baseline for the comparisons, the experiments included a 

condition using no goodness of split measure, so that  attributes at each node 
were chosen randomly. 

3.1 Noise  and residual  variat ion 

All the methods were tested on a number of different sets of data, which had 

varied characteristics and degrees of noise. These will be described shortly, but 

first it is necessary to discuss what is meant by noisy data. With deterministic 

data, an example in the data  set can always be correctly classified from the 
known attributes, as can further examples. However, in many real problems 

there is a degree of uncertainty and/or  error present in the data that  leads to 
errors in classification. 

Two different sources of uncertainty can be distinguished. One of these is 
mismeasurement: for a variety of reasons an incorrect value of an at tr ibute or 

class can occur in the data, including the case of a missing value. This may 

happen because of incorrect recording or transcription, or because of incorrect 

measurement or perception at an earlier stage. This source of uncertainty will 

be termed noise. The second situation occurs when extraneous factors that 

are not even recorded affect the results, leading to variability that  cannot be 
wholly explained in terms of the data available. In statistics this is called 

residual variation, and the same term will be used in this paper. In real-world 
problems this is often the greatest source of error. 

It is also worthwhile distinguishing two different situations that  underlie the 
use of this whole approach - classification and prediction. In classification, an 

example is a member of a particular class (e.g., a type of plant), and thus has 
certain attributes (e.g., size, color, shape). The causal relation is from class to 
at tr ibute and ~he purpose of induction is to let one classify further examples 
from their attributes. In prediction, various factors (e.g., disease, patient, 
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treatment) combine to produce some outcome (e.g., recovery or recurrence). 
The causal relation is from attributes to class, and the purpose is to predict 

future outcomes from the factors. Although the data appear the same, the 

effect of residual variation differs in the two cases. In classification the extra 

factors will affect the attributes, whereas in prediction they will affect the 

class. Generally~ it is harder to compensate for uncertainty in the class than 

for uncertainty in an attribute. 

3.2 D a t a  sets  

The experiments drew on four data  sets, three from natural domains and 

one constructed artificially. 

Profiles of B.A. Business Studies degree students (BABS). These data re- 
late various attributes of each student, on entry to the course, to the final 

class of degree achieved. There are 186 observations with seven attributes 
- age (years), type of entry qualification (A-level, 3 BTEC Ordinary National 

Diploma, or some other), sex (male/female), number of O-levels, number of 
points at A-level (0-20), grade of maths O-level (A, B, C, FAIL), and full-time 

employment before the course (yes/no). There are four possible classes of de- 

gree - first, upper second, lower second, or third. Three of the attributes are 

integer and four symbolic. There is no known noise, but many other factors 

affecting the results have not been (and probably could not be) measured, 

giving high residual variation. This is an example of a prediction task. 

The recurrence of breast cancer (Cancer). These data, containing 286 exam- 

ples, are derived from those used in Bratko and Kononenko (1986) and concern 

the recurrence of breast cancer . There are two classes (recur or not recur) 

and nine attributes, of which four are integer. These include age, tumor size, 

number of nodes, malignant (yes/no), age of menopause (< 60, _> 60, not 

occurred), breast (left, right), radiation treatment (yes/no), and quadrant of 

breast (left, right, top, bottom, center). There are both missing data and 

residual variation. It is another example of a prediction task. 

Classifying types of Iris (Iris). Kendall and Stewart (1976, p .  331) use these 
data as a test of discriminant analysis. There are 150 examples of three dif- 

ferent varieties of Iris, with roughly equal numbers of each. The four integer 
attributes are measurements such as petal length and petM width, from which 

the examples can be classified. There is little noise or residual variation. 

Recognizing LCD display digits (Digits). This is an artificial domain suggested 
by Breiman et al. (1984). A digit in a calculator display consists of seven 

lines, each of which may be on or off. Thus, there are ten classes (one for 
each digit) and seven binary-valued attributes (one for each line). Residual 

variation is introduced by assuming that  a malfunction leads to a 10% chance 
of a line being incorrect. Such errors affect the attributes but not the class. 

Note that the chance of an example being completely correct is 0.97 = 0.48. 
Three hundred cases were randomly generated. This is another example of a 

classification task. 

3A-leveI and O-level are British national exams taken at ages 18 and 16 respectively. 
BTEC is the Business and Technology Education Council, which validates national exams. 
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3.3 C r i t e r i a  for  e v a l u a t i o n  

There are three important criteria for evaluating a decision tree - size, ac- 
curacy and understandability. Thus, these are natural dependent measures for 

experiments on decision-tree induction. 

Size. Occam's Razor is a generally accepted principle - the fewer terms in a 

model the better. This particularly holds for statistical models, in which one 
can always improve explanatory power on the training data by adding extra 

variables. However, such spurious additions will usually worsen the predictive 
ability of the model on independent test data. According to this view, one 

should at tempt  to minimize the size of the induced decision tree, as measured 

by the number of nodes or leaves. These two measures are related. Indeed, if 

the tree is strictly binary (i.e., every node has two branches), then the number 

of leaves equals the number of nodes plus one. If multi-valued attributes give 

a tree that is not strictly binary, then the number of leaves will be greater. 
The number of leaves has been selected as the measure of size in the present 

experiments because it corresponds to the number of distinct 'rules' contained 
within the decision tree. 

Accuracy. This measure refers to the predictive ability of a decision tree in 

terms of classifying an independent set of test data. One can measure this 

ability in terms of the error rate, i.e., the proportion of incorrect predictions 

that  a tree makes on the test data. This is a fairly crude measure, as it does 
not reflect the accuracy of predictions for the different classes within the data. 

Classes are not equally likely and those with few examples are usually predicted 

badly. Indeed, with heavy pruning there may be no rules left for a particular 

class, so that  it can never be correctly predicted. Tit terington et al. (1981) 
discuss measures that  take into account the different classes. 

More important is whether one uses the pruned or unpruned tree to classify 
the test data. With non-deterministic data, the basic algorithm can produce 

a very large tree in an effort to correctly classify every instance. Much of 

this structure will reflect chance occurrences, leading to inaccurate predictions 

on other data  sets. Therefore one prunes the tree to remove such spurious 

branches. Ultimately, the accuracy of the pruned tree is most significant, as it 

would be used in practice. However, this paper also examines the performance 
of unpruned trees. This ensures that differences between the measures are not 

swamped by pruning, and also enables the gain from pruning to be estimated. 

Understandability. Part of the rationale for expert systems is that they should 

represent knowledge explicitly so that the expert, and to a certain extent the 

user, can readily understand it. Certainly this is one advantage of decision 
trees over other statistical techniques that  perform the same function, such as 

discriminant analysis. However, in comparison with most other representations 
used in machine learning, decision trees themselves are difficult to understand 
and therefore to validate (Cendrowska, 1987). 

There is general agreement (Quinlan, 1986b; Mingers, 1986a; Shepherd, 

1983; Kononenko et al., 1984) that  deeper trees are less comprehensible. This 
is particularly the case with binarized trees, which can become very deep, often 
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testing the same attribute many times down a branch. In addition, in binariz- 
ing multi-valued attributes, there is no guarantee that the resultant grouping 
of the attribute values will appear meaningful to the expert. Moreover, the 
expert may actually want the different values to be kept separate. 

For example, with the degree student data, one of the most important at- 
tributes from a course manager's viewpoint is the type of qualification (A-level, 

BTEC OND or Other). A rule that  splits students into these three categories 
at the same level would be preferred to one that arbitrarily groups pairs of 
them together. Similarly, in a domain involving expense claims in a company~ 
one attribute (Department) had five values (Finance, Engineering, etc.), with 

different rules applying to the different departments. Maintaining the values 
separately produces a smaller and more easily understood tree than does split- 

ting them up in some arbitrary fashion. The understandability of a tree is 
difficult to quantify or measure, so in these experiments it must be weighed 
against the results for size and accuracy, which can be quantified. Given two 
methods that perform equally well in terms of size and accuracy, one should 

prefer the method that  produces the most easily understood trees. 

3.4 E x p e r i m e n t a l  m e t h o d  

In all, ten different measures and variants were tested on all four of the data 
sets, with random selection of attributes included as a control condition. The 
particular factors of interest, as mentioned above, were size, accuracy, and 
understandability. In order to get a realistic measure of the accuracy of trees 
as they would be used in practice, it was necessary to prune them. Of the 
various pruning methods available, Breiman's error complexity method was 

used for all the data sets, as this has proved very reliable and also generates 
a single, best-pruned tree. Empirical studies show that  there is little or no 
interaction between pruning method and type of measure (Mingers, 1988). 

To obtain independent test data and reliable results, each original data set 

was split randomly (70/30) into a training and a test set. The trees were 
grown and pruned on the training set and then accuracy was measured on the 

test set. In fact, the test set was not wholly independent since it is used in 
Breiman's pruning method. This develops a number of pruned trees entirely 

from the training set, but then selects the best via the test set. 

To guard against random splits that happened to be untypical, the whole 
procedure was carried out nine times, giving nine independent pairs of training 

and test data for each data set. All the methods were run on the same datasets 

and the results averaged across the nine pairs. 

3 .5  R e s u l t s  o n  d e c i s i o n - t r e e  s i z e  

Table 7 shows the sizes of the initial trees for each combination of metric 
and dataset. It records the number of leaves averaged across the nine testing 
sets, the first of the dependent variables examined in the experiment. 

Analysis of variance (ANOVA) shows the very strong (and expected) differ- 
ences between domains (F  = 90.8, F0.01 = 4.5). The BABS and Cancer data, 
with high levels of residual variation, lead to very large, bushy trees with over 



DECISION-TREE INDUCTION 335 

Table 7. Size of original tree (number of leaves) for different measures and domains. 

MEASURE BABS DIGIT CANCER 

G STANDARD 

NORMALIZED 

P ROBABILITY 
BINARIZED 

MARSHALL 

X 2 STANDARD 

PROBABILITY 

BINARIZED 

GAIN RATIO 

GINI 
RANDOM SELECTION 

MEAN (EXCL. RANDOM) 

66.8 
74.7 
76.1 
62.1 
77.7 

78.4 
88.3 
76.9 
55.0 
65.8 

111.1 

72.1 

49.6 
49.6 
49.6 
49.6 
49.6 

52.0 
52.3 
52.0 
32.4 
49.7 
53.8 

48.6 

65.8 
66.0 
66.4 
60.1 
75.7 

97.9 
98.6 
84.0 
63.9 
67.0 

148.2 

74.5 

IRIS 

6.9 

6.9 

11.8 

6.9 

8.0 

16.9 

15.6 

16.9 

6.2 

6.8 

23.0 

10.3 

TOTAL 

189.1 
197.2 
203.9 
178.7 
211.0 
245.2 
254.8 
229.8 
157.5 
189.3 
336.1 

seventy leaves. In contrast, the Iris data, with very little noise, has small trees. 

The Digit data are unusual in that  the potential size of tree is limited. The 

seven attributes are all binary, so that  each can only be used once along a 

path. This limits a tree to a depth of seven (and therefore 27 = 128 possible 

leaves), if all attributes are involved. In fact, as the data  becomes partitioned 

into subsets, several attributes become redundant and so 26 =- 64 is a more 

realistic maximum. 

The analysis also shows that there are significant differences between the 

types of measure (F  = 4.8, Fe.m = 3.0). The most obvious difference is that 

random selection (i.e., no measure) leads to decision trees that  are roughly 

twice as large as in other conditions. The Digit data are an exception for the 

reason explained above. This shows the extent of the benefit to be gained by 

using a reasonable evaluation function. 

Removing the 'random' condition shows that there are still significant (F  = 

5.6, F0.m = 4.0) differences between the more informed selection strategies. 

There are two main effects here - the gain ratio produces the smallest trees, 

whereas the chi-square variants produce especially large ones. The gain-ratio 

result is not surprising, since the measure was designed with this goal in mind, 

and it confirms Quinlan's (1986b) results. However, the larger size of the 

chi-square trees was not expected and is not easily explained. One possible 

reason, mentioned earlier, is that  chi square appears to be less sensitive than 

other measures to rows of the contingency table with zero frequencies. This 
means that it is less likely to select attributes with small, pure splits and thus 

will have larger trees. 

When the chi-square and gain-ratio results are removed, the rest (G-statistic 

measures and GINI) are not significantly different at the .01 level. However, 

note that  within the chi-square and G-statistic families, binarization gives the 

smallest trees and probability the largest. These differences are significant at 
the .05 level. A detailed comparison of trees generated with and without the 
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Table 8. Size of pruned tree (number of leaves) for different measures and domains. 

MEASURE BABS DIGIT CANCER IRIS TOTAL 

G 

X 2 

STANDARD 

NORMALIZED 

PROBABILITY 

BINARIZED 

MARSHALL 

STANDARD 

PROBABILITY 

BINARIZED 

GAIN RATIO 

GINI 
RANDOM SELECTION 

3.1 
3.1 
2.0 
2.0 
2.0 

5.8 
4.2 
2.0 
2.3 
3.1 
2.2 

11.9 
11.9 
21.4 
11.9 
11.3 

11.3 
19.1 
11.3 
10.1 
11.0 
27.3 

2.7 
2.7 
2.9 
2.7 
3.0 
4.3 
2.6 
2.8 
4.2 
4.4 
2.0 

MEAN (EXCL. RANDOM) 3.0 13.1 3.2 

3.0 
3.0 
7.0 
3.0 
3.0 

3.0 
6.8 
3.0 
3.1 
3.0 
7.8 

3.8 

20.7 
20.7 
33.3 
19.6 
19.3 
24.4 
32.7 
19.1 
19.7 
21.5 
39.3 

Marshall correction indicates that  it does reduce the number of small splits 

without increasing the tree size inordinately. 

In summary, the use of any informed selection criteria halves the size of trees 

in comparison with a random selection strategy. Between the informed mea- 

sures, there are significant differences, with gain ratio producing the smallest 

trees, and chi square the largest ones. 

Table 8 shows the corresponding size of trees after pruning. Clearly, there 

is a dramatic  reduction in the size of trees, with the BABS and Cancer trees 

being reduced to only two or three leaves. Decision trees for the Digit domain 

remain quite large because there are ten different classes and the tree generally 

maintains at least one leaf per class. ANOVA shows that  there are no significant 

differences between selection methods (F  = 1.5, F0.m = 3.0), including the 

random selection, although this does generate a particularly large tree for the 

Digit data. 

3.6 R e s u l t s  o n  d e c l s l o n - t r e e  a c c u r a c y  

Tables 9 and 10 show the error rates for unpruned and pruned trees, re- 

spectively. The error rate is the number of incorrect classifications on the test 

data, averaged across the nine sets. 

Looking first at Table 9, the overall average error rates range from 50% to 

7%. This shows both  the marked differences in predictability between domains, 

and the inaccuracy of unpruned trees on independent test data  (of course, they 

are 100% accurate on the training data).  More interesting is that  ANOVA 

shows no significant differences (F  = 1.8, F0.01 = 3.0) between the measures, 

including the random selection method.  In fact, random selection was not 
even the worst s trategy on this dimension. Actually, this is not as surprising 

as it may  appear.  The main effect of a good measure is to reduce the size of 

the tree, rather  than  alter its accuracy. The original tree will be 100% correct 

on the training data  (provided there are no contradictions in the data),  no 
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Table 9. Accuracy of unpruned tree for different measures and domains, using per- 

centage of incorrect classifications on the test data. 

MEASURE BABS DIGIT CANCER 

G 

X ~ 

STANDARD 

NORMALIZED 

P ROBABILITY 

BINARIZED 

MARSHALL 

STANDARD 

P ROBABILITY 

BINARIZED 

~AIN RATIO 

GINI 
RANDOM SELECTION 

MEAN (EXCL. aANDOM) 

49.7 

51.4 

51.2 

46.8 

52.0 

49.9 

50.7 

49.6 

55.0 

48.7 

48.9 

50.5 

33.0 
33.0 
33.9 
33.3 
33.3 

33.5 
34.4 
33.5 
34.5 
34.8 
35.9 

33.8 

IRIS TOTAL 

30.7 6.8 120.5 
33.5 6.8 125.0 
35.0 7.0 127.1 
30.4 6.8 117.3 
35.7 I 7.1 128.1 

30.5 7.1 121.0 
34.6 9.8 129.5 
28.9 7.1 119,1 
31.2 6.6 127.3 

32.3 6.6 122.4 

34.8 7.9 127.5 

32.3 7.2 

matter  how the attributes are chosen. The only difference will be the order of 

the attributes and the number of times attributes are tested down a branch. 

When used on another set of essentially similar data, the tree performs as well, 

whether it is large or small. 

Table 10 shows equivalent results after tree pruning, showing that this pro- 
cess generally makes a significant improvement. The average error is reduced 

by about 25% for the BABS and Cancer data and by about 19% for the Iris 
data. Interestingly, it does not improve accuracy in the Digit domain. One ex- 

planation is that  the artificially-generated residual variation is very consistent 
between training and test sets. In 'real' data, the effects are coincidental and 

are seldom repeated across sets of examples. If they were, then they would be 

a predictable effect that  could be incorporated into the tree. Pruning is done 

precisely to remove these coincidences, With the Digit data, the fairly limited 

range of possible errors (each light can only be on or off) is actually repeated 

in the training and test data  sets, making pruning unnecessary. Other samples 
of data  from the Digit domain, created with differing amounts of noise, show 
the same pat tern of results. 

Moving to the differences between measures, ANOVA again indicates that 

these are not significant (F  = 2.4, Fo.ol = 3.0). This confirms results reported 
elsewhere (Mingers, 1988) that accuracy, in a particular domain, is almost 

entirely determined by method and extent of pruning rather than choice of 

measure. These negative results show that  binarization and the gain-ratio 

measure do not produce more accurate results to counter their possible detri- 
mental effect on the understandability of a tree. 

Other methods of handling multi-valued attributes (normalization and prob- 
ability) are also neither bet ter  nor worse. In fact, there is no evidence that 

multi-valued attributes cause any problems, although the largest number of 
at tr ibute values was five, and larger numbers might have an effect. There is 
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Table 10. Accuracy of pruned tree for different measures and samples, using percent- 
age of incorrect classifications on the test data. 

MEASURE 

G STANDARD 

NORMALIZED 

PROBABILITY 

]~INARIZED 

MARSHALL 

X 2 STANDARD 

PROBABILITY 

BINARIZED 

GAIN RATIO 
GINI 
RANDOM SELECTION 

BABS 

38.2 
38.2 
36.7 
36.9 
36.7 

37.3 
38.1 
38.4 
36.9 
38.2 
36.7 

MEAN (EXCL. RANDOM) 37.6 

DIGIT 

33.0 
33.0 
35.2 
33.0 
33.2 
34.4 
37.6 
34.4 
35.4 
33.4 
37.7 

34.3 

CANCER 
I 

23.5 
23.5 
24.3 
23.5 
21.5 
24.3 
25.4 
23.7 

24.7 
24.0 
27.5 

23.8 

IRIS 

5.7 
5.7 
6.0 
5.7 
5.7 

5.7 
5.7 
5.7 
5.3 
5.7 
6.7 

5.7 

TOTAL 

100.4 
100.4 
102.2 
99.1 
97.1 
101.7 
106.8 
102.2 
102.3 
101.3 
108.6 

also no evidence that measures which favor small splits perform less well, al- 

though the high degree of pruning may remove such nodes from the final tree. 

Taking the results as they stand, the G statistic with the Marshall correction is 

marginally best and the chi-square statistic with probability is worst. It would 

be interesting to see if these results occurred with other data, or if much larger 

samples revealed significant differences. 

4. Conclusions  

The results reported in this paper show that  the predictive accuracy of 

induced decision trees, both pruned and unpruned, is not sensitive to the 

goodness of split measure. This confirms Breiman et al.'s (1984) results. All of 

the methods tried are quite sophisticated and make good use of the information 

available. In fact, the results show that  accuracy is not improved significantly 
by using a measure at all. Selecting attributes entirely randomly produces trees 

that  are as accurate as those produced using a measure. However, the choice 
of measure does significantly influence the size of unpruned trees. Randomly 

selecting attributes produces trees roughly twice as large as those produced 
with an informed measure. Between the measures, the gain ratio generates the 

smallest trees, whereas chi-square produces the largest. After pruning, there 

is little difference in size. 

The overall accuracy depends almost exclusively on the amount of noise and 
residual variation in the data and on the degree of pruning, not on the type 

of measure used. With these domains, it ranges from 7% to 37% error rates. 
Pruning yields increases in accuracy of between 19% and 25%, except for the 

Digit data, for which there was no improvement. Despite these improvements, 
the final accuracy with the Cancer and degree student data  remained very 
low, reflecting the high level of residual variation in the data. Multi-valued 
attributes have not caused problems, and methods that take them into account 
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(binarization, gain ratio, normalization, probability) are no more accurate than 
those that do not. In addition, methods which favor small splits that may 
be statisticMly unsound are no less accurate than those that do not. The 
understandability of decision trees is an important issue, but it cannot be 
easily measured or quantified. Researchers have suggested that deep trees, 
and binarized ones in particular, are less comprehensible. The results show 
that there are no grounds to prefer these on the basis of size or accuracy. 

Further work is needed, both to confirm and extend these results. They 
should be repeated with different domains, including artificial domains with 
more diversity than the LCD digits. A variety of questions remain to be 
answered. Will larger data sets reveal significant differences? Does residual 
variation cause greater inaccuracy than noise? Are residuM effects on the 
classes worse than on the attributes? Are certain forms of tree more easily 
understood than others?. What are the effects of differing misclassification 
costs and unequal prior probabilities? Future experiments should attempt to 
answer these questions. 

The more general limitations of this approach should also be mentioned. 
First, the method is inevitably limited by the quality and quantity of the data 
available. As with all statistical techniques, methods for inducing decision 
trees can only capture patterns that are present in the data. 

Second, the form of knowledge representation is very limited. The basic 
technique can only generate trees of a specific form; i.e., those in which each 
node tests the value of a single attribute. The method excludes trees that test 
the values of multiple attributes at a single node, or that examine relations 
between descriptors. Actually, the decision tree framework can be extended to 
handle such representations, but searching the space of such structures would 
be very difficult. 

Third, decision trees are generally harder to understand than sets of indi- 
vidual rules or frames, although Corlett (1983) and Quinlan (1987) describe 
methods for transforming a decision tree into production rules. Also, they are 
difficult to modify without recreating them entirely, though Schlimmer and 
Fisher (1986) and Utgoff (1988) have examined methods for incremental tree 
construction. 

Finally, the basic approach employs an algorithm that is only one-step opti- 
mal. At each node, it selects the best attribute, but it cannot backtrack once 
that choice has been made. One can create datasets in which a sub-optimal 
early attribute leads to a better (smMler) tree overall. Some form of branch and 
bound or dynamic programming could be used to explore the space of decision 
trees, but the improvement might not be worth the increased computational 
time .4 

In summary, there exists a number of extensions to the standard method 
for inducing decision trees and future work should explore these variations. 
Moreover, systematic experimentation with both real and artificial datasets is 
the natural approach to determining whether such extensions constitute actual 
improvements over existing methods. 

4This problem has been investigated by Michalski (1978). 
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