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Abstract

This report is a repository for the results obtained from a large scale empirical comparison of seven itera-

tive and evolution-based optimization heuristics. Twenty-seven static optimization problems, spanning

six sets of problem classes which are commonly explored in genetic algorithm literature, are examined.

The problem sets include job-shop scheduling, traveling salesman, knapsack, binpacking, neural network

weight optimization, and standard numerical optimization. The search spaces in these problems range

from 2368 to 22040. The results indicate that using genetic algorithms for the optimization of static functions

does not yield a benefit, in terms of the final answer obtained, over simpler optimization heuristics.

Descriptions of the algorithms tested and the encodings of the problems are described in detail for repro-

ducibility.
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1.  INTRODUCTION

Genetic algorithms (GAs) and other evolutionary procedures are commonly used for static function opti-

mization. Although there has been growing evidence that methods such as GAs are, in general, not well

suited in this domain [De Jong, 1992], a large amount of research has been devoted to improving their

effectiveness for function optimization. Hybrid mechanisms, ranging from alternate evolutionary meth-

ods to specialized operators and representations which can intelligently use problem specific informa-

tion, have achieved good results in many specific applications. Nonetheless, relatively few of these

techniques work well across a wide range of problems.

The aim of this paper is to compare two standard genetic algorithms with simpler methods of optimiza-

tion: multiple-restart stochastic hillclimbing (MRSH) and population-based incremental learning (PBIL).

Previous comparisons between forms of MRSH and GAs can be found in [Ackley, 1994], [Juels & Watten-

berg, 1994], [Forrest & Mitchell, 1992], [Mitchell & Holland, 1994], and [Davis, 1991], to name a few. A

comparison between GAs and PBIL has been made in [Baluja, 1994][Baluja & Caruana, 1995]. This paper

provides a large scale empirical comparison of these algorithms on problems commonly found in GA lit-

erature. Three variants of MRSH, two variants of PBIL, and two GAs are compared.

1.1 The Aims of this Paper

This study aims at answering only one question: “How effective are standard GAs for optimizing static

functions, given a set number of function evaluations, in comparison to other, simpler, algorithms?” This

paper presents results on many large problems; the size and quantity of the problems makes it hard to

give in-depth analysis of the results beyond the algorithms’ relative performances. A more in-depth anal-

ysis of PBIL in comparison to standard GAs on a problem which was specifically designed to be easy for

the genetic algorithm (and easier to analyze than the problems explored here) is provided in [Baluja &

Caruana, 1995]. This paper does not attempt to address the problem of whether the classes of problems

investigated are suited for evolutionary or iterative function optimization. The focus of this paper is on

comparing seven static function optimization methods on problems which are representative of problems

commonly used as benchmarks in GA literature. No problem specific features have been added to any of

the algorithms; all of the mechanisms used in the algorithms are “standard”, and have been explored and

described in the applicable literature. The inclusion of problem specific mechanisms or more sophisti-

cated features has the potential to improve the performance of all the algorithms.

There are two major concerns with performing a purely empirical comparison of these algorithms. The

first is that each of these algorithms is defined by control parameters, and it is prohibitively expensive, in

practice, to thoroughly explore the space of the parameters while providing breadth in the types and

sizes of problems attempted. The GA parameters used here were chosen to work well on many of the

problems, but are not biased to any particular single problem. The parameters for the other algorithms

were chosen in the same manner. In addition, GAs were selected to perform well on the task of optimiza-

tion; they use mechanisms, such as elitist selection and scaling of fitness values, which are often used for

the optimization of static functions [De Jong, 1992]. One of the goals of this study is to use the algorithms with
as little problem-specific knowledge as possible. The only problem-specific knowledge used in these algo-

rithms is the number of bits in the solution encoding for each of the problems.

The second concern is that there are many criteria by which the effectiveness of each algorithm can be

measured. As mentioned before, there has recently been some controversy in the GA community as to
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whether GAs should be used for static function optimization. One of the reasons for this controversy is

that GAs “attempt to maximize the cumulative payoff of a sequence of trials” [De Jong, 1992] rather than

attempt to find the single best optimum. Therefore, using the “best answer found” criteria may not be the

best way to measure the GA’s abilities. Nonetheless, a considerable amount of effort has been devoted to

making the GAs better in function optimization. “Better” has usually been measured in terms of the best

solution found in a given number of trials. The common forms of measurement for function optimization

are on-line and off-line performance. On-line performance measures the average of all function evalua-

tions up to and including the current evaluations. Off-line performance is a running average of the best

performance values to a particular time. Other measurements include the best solution found in the final

generation and the best solution found in any generation through the search. Although all these mea-

sures reveal different insights into the search algorithm’s ability, the measure we are interested in this

study is the best solution ever found through the search. The issues of cumulative payoff, on-line and off-

line performance are not addressed here. The effectiveness of each algorithm is based solely upon the best

answer it can find in the given number of trials.

It is important to understand the scope of these results. All of the empirical comparisons are based upon

static function optimization problems. The performance of each method is judged solely by the best solu-

tion found during the run, given a pre-specified number of total evaluations. Therefore, the following

classes of problems are not considered here, and should be explored in the future:

• Noise in the evaluation function [Grefenstette & Fitzpatrick, 1988].

• A changing, or time-varying, evaluation function (over the period of a single run) [Cobb, 1993].

• Problems in which queries have an associated cost, which must also be minimized [Cohn,

1994].

• Problems in which multiple “solution vectors” must interact [Langton, 1994].

• Problems in which cumulative payoff is to be optimized [Holland, 1975], [Golberg, 1989].

• Problems which use variable-length encodings, or encodings with change over time [Koza,

1992].

Although the above domains are not addressed here, the domain which is concentrated upon covers a

wide variety of problems. A large portion of GA research has been devoted to the types of problems ana-

lyzed in this paper. The field of Operations Research is another source of many similar problems.

The next section describes the simplest algorithm tested, multiple-restart stochastic hillclimbing. This sec-

tion is followed by descriptions of genetic algorithms, in section 3, and population-based incremental

learning in section 4. In section 5, the problems attempted and the results obtained are described together.

Section 6 summarizes the empirical results. Section 7 concludes the report and suggests some areas for

future studies.
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2. MULTIPLE-RESTART STOCHASTIC HILLCLIMBING

Multiple-restart stochastic hillclimbing (MRSH) is a method of iterative optimization of static functions. It

is the simplest of the optimization procedures explored in this paper. [Wattenberg and Juels, 1994] have

compared one version of stochastic hillclimbing with GAs on several problems commonly used for gaug-

ing genetic algorithms and genetic programming, and have achieved very promising results. The basic

stochastic hillclimbing algorithm is shown in Figure 1.

Three variants of this algorithm are explored in this paper. The first variant, (MRSH-1) maintains a list of

the position of the bit flips which were attempted without improvement. These bit flips are not attempted

again until a better solution is found. When a better solution is found, the list is emptied. If the list

becomes as large as the solution encoding, then no single bit flip can improve the solution. In this case,

MRSH-1 is restarted at a random location with an empty list.

The second and third variants of stochastic hillclimbing, (MRSH-2 & MRSH-3), allow moves to regions of

higher and equal evaluation. This is different than MRSH-1, which only allows moves to regions of higher

evaluation. MRSH-2 & 3 differ from each other in the number of evaluations allowed before restarting

search in a random location. In MRSH-2, the number of evaluations is dependent upon the length of the

encoded solution. MRSH-2 allows 10*(length of solution) evaluations without improvement before search is

restarted. When a solution with a higher evaluation is found, the count is reset. MRSH-3 enforces a much

stricter policy of restart; after the total number of iterations is specified, restart is forced 5 times during

search, at equally spaced intervals.

3. GENETIC ALGORITHMS

Genetic algorithms (GAs) are biologically motivated adaptive systems which are based upon the princi-

ples of natural selection and genetic recombination. A GA combines the principles of survival of the fit-

test with a randomized information exchange. It has the ability to recognize trends toward optimal

solutions, and to exploit such information by guiding the search toward them.

In the standard GA, candidate solutions are encoded as fixed length vectors. The initial group of potential

solutions is chosen randomly. These candidate solutions, called “chromosomes,” are allowed to evolve

over a number of generations. At each generation, the fitness of each chromosome is calculated; this is a

Figure 1: The stochastic hillclimbing algorithm for binary solution vectors. In the full algorithm,

the best vector along with its evaluation would be saved. In practice the algorithm could be

restarted in random locations many times - and the best solution ever found returned.

V ← randomly generate solution vector
Best← evaluate (V)

loop # ITERATIONS
N ← Flip_Random_Bit (V)
if (evaluate (N) > Best)

Best← evaluate(N)
V ← N

Flip_Random_Bit is a function which returns a solution string with only one bit changed from its input solution string.



page 6

measure of how well the chromosome optimizes the objective function. The subsequent generation is cre-

ated through a process of selection, recombination, and mutation. The chromosomes are probabilistically

selected for recombination based upon their fitness. General recombination (crossover) operators merge

the information contained within pairs of selected “parents” by placing random subsets of the informa-

tion from both parents into their respective positions in a member of the subsequent generation.

Although the chromosomes with high fitness values have a higher probability of selection for recombina-

tion than those with low fitness values, they are not guaranteed to appear in the next generation. Due to

the random factors involved in producing “children” chromosomes, the children may, or may not, have

higher fitness values than their parents. Nevertheless, because of the selective pressure applied through a

number of generations, the overall trend is towards higher fitness chromosomes. Mutations are used to

help preserve diversity in the population. Mutations introduce random changes into the chromosomes. A

good overview of GAs can be found in [Goldberg, 1989] [De Jong, 1975].

Two variants of the traditional genetic algorithm are tested in this study. The first, SGA, has the following

parameters: Two-Point crossover, with a Crossover Rate of 100%, Mutation Rate: 0.001, Population Size:

100, Elitist selection (the best chromosome in generation N replaces the worst chromosome in generation

N+1). The second GA used, termed GA-Scale, uses the same parameters, with the following exceptions:

Uniform crossover with a crossover rate of 80%, and the fitness of the worst member in a generation is

subtracted from the fitnesses of each member of the generation before the probabilities of selection are

determined. Both GAs are generational, and both employ the elitist selection mechanism described

above.

4. POPULATION-BASED INCREMENTAL LEARNING

Population-based incremental learning (PBIL) is a combination of evolutionary optimization and hill-

climbing [Baluja, 1994]. The object of the algorithm is to create a real valued probability vector which,

when sampled, reveals high quality solution vectors with high probability. For example, if a good solu-

tion to a problem can be encoded as a string of alternating 0’s and 1’s, a suitable final probability vector

would be 0.01, 0.99, 0.01, 0.99, etc.

Initially, the values of the probability vector are set to 0.5. Sampling from this vector yields random solu-

tion vectors because the probability of generating a 1 or 0 is equal. As search progresses, the values in the

probability vector gradually shift to represent high evaluation solution vectors. This is accomplished as

follows: A number of solution vectors are generated based upon the probabilities specified in the proba-

bility vector. The probability vector is pushed towards the generated solution vector(s) with the highest

evaluation. The distance the probability vector is pushed depends upon the learning rate parameter.

After the probability vector is updated, a new set of solution vectors is produced by sampling from the

updated probability vector, and the cycle is continued. As the search progresses, entries in the probability

vector move away from their initial settings of 0.5 towards either 0.0 or 1.0. The probability vector can be

viewed as a prototype vector for generating solution vectors which have high evaluations with respect to

the available knowledge of the search space.

This algorithm is an extension of the Equilibrium Genetic Algorithm developed in conjunction with

[Juels, 1993, 1994]. Another algorithm related to EGA/PBIL is Bit-Based Simulated Crossover (BSC)

[Syswerda, 1992][Eshelman & Schaffer, 1993]. BSC regenerates the probability vector at each generation;

it also uses selection probabilities (as do standard GAs) to generate the probability vector. In contrast,

PBIL does not regenerate the probability vector at each generation, rather, the probability vector is

updated through the search procedure. Additionally, PBIL does not use selection probabilities. Instead, it

updates the probability vector using a few (in these experiments 1) of the best performing individuals.
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The manner in which the updates to the probability vector occur is similar to the weight update rule in

supervised competitive learning networks, or the update rules used in Learning Vector Quantization

(LVQ) [Hertz, Krogh & Palmer, 1993]. Many of the heuristics used to make learning more effective in

supervised competitive learning networks (or LVQ), or to increase the speed of learning, can be used with

the PBIL algorithm. This relationship is discussed in greater detail in [Baluja, 1994].

4.1 PBIL’s Relation to Genetic Algorithms

One key feature of the early portions of genetic optimization is the parallelism in the search; many diverse

points are represented in the population of early generations. As the search progresses, the population of

the GA tends to converge around a good solution vector in the function space (the respective bit positions

in the majority of the solution strings converge to the same value). PBIL attempts to create a probability

vector that is a prototype for high evaluation vectors for the function space being explored. As search

progresses in PBIL, the values in the probability vector move away from 0.5, towards either 0.0 or 1.0.

Analogously to genetic search, PBIL converges from initial diversity to a single point where the probabil-

ities are close to either 0.0 or 1.0. At this point, there is a high degree of similarity in the vectors generated.

Because PBIL uses a single probability vector, it may seem to have less expressive power than a GA using

a full population that can represent a large number of points simultaneously. For example, in Figure 2, the

vector representations for populations #1 and #2 are the same although the members of the two popula-

tions are quite different. This appears to be a fundamental limitation of PBIL; a GA would not treat these

two populations the same. A traditional single population GA, however, would not be able to maintain
either of these populations. Because of sampling errors, the population will converge to one point; it will

not be able to maintain multiple dissimilar points. This phenomenon is summarized below:

“... the theorem [Fundamental Theorem of Genetic Algorithms [Goldberg, 1989]],

assumes an infinitely large population size. In a finite size population, even when there is

no selective advantage for either of two competing alternatives... the population will

converge to one alternative or the other in finite time (De Jong, 1975; [Goldberg & Seg-

rest, 1987]). This problem of finite populations is so important that geneticists have given

it a special name, genetic drift. Stochastic errors tend to accumulate, ultimately causing

the population to converge to one alternative or another” [Goldberg & Richardson, 1987].

Similarly, PBIL will converge to a probability vector that represents one of the two solutions in each of the

populations in Figure 2; the probability vector can only represent one of the dissimilar points.

In addition to moving the prototype vector towards the highest evaluation vector, the prototype vector

can also be moved away from the lowest evaluation vector generated in each generation. However, as the

prototype vector becomes fixed towards either 0.0 or 1.0 for each bit position, the hamming distance

between the best and worst generated vectors will diminish. If the hamming distance between the best

and worst vector is small, moving away from the worst vector is counter-productive, because it also

moves away from the best vector in many of the bit positions. Instead, the probability vector can be

moved away from the values in the worst vector which differ from those in the respective positions of the

best vector. The full algorithm is shown in Figure 3.

In this study, two variants of the algorithm shown in Figure 3 are used. The first, PBIL, uses the following

parameters: Mutation Probability: 0.02, Mutation Shift: 0.05, Learning Rate: 0.1, and Negative Learning
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Rate: 0.075. The second algorithm, the PBIL/EGA algorithm, uses the same parameters with the Negative

Learning Rate set to 0.0.

5. AN EMPIRICAL COMPARISON

In this section, the algorithms described previously are applied to six classes of problems: Traveling Sales-

man, jobshop scheduling, knapsack, bin packing, neural network weight optimization, and numerical

function optimization. The results obtained in this study should not be considered to be state-of-the-art.

The problem encodings were chosen to be easily reproducible, and to allow easy and fair comparison

with other studies. Alternate encodings may yield superior results. In addition, no problem-specific

information was used for any of the algorithms. In the cases in which problem-specific information is

available, it may be able to help all of the search algorithms presented in this study.

In the problems presented in this paper, all of the variables were encoded either with Gray-code or stan-

dard base-2 representation, as indicated with the problem. The variables were represented in non-over-

lapping, contiguous positions within the chromosome (solution encoding). The results reported are the

best evaluations found through the search of each algorithm, averaged over at least 20 independent runs

per algorithm per problem. In the problems in which random values are assigned to problem attributes

(such as the location of cities in the Traveling Salesman Problems or sizes of elements in the bin packing

and knapsack problems), the values are consistent across all algorithms attempted and across all 20 trials

for each algorithm.

All algorithms were allowed an equal number of evaluations per run (200,000). In each run, the GA and

PBIL algorithms both were allowed 2000 generations, with 100 function evaluations per generation. In

each run, the MRSH algorithms were restarted in random locations as many times as needed until

200,000 evaluations were performed. The best answer ever found in the 200,000 evaluations was returned

as the best answer found in the run. The final results for the problems are given in tables following the

description of the problems. The best results are highlighted.

5.1 Traveling Salesman Problems (TSP)

The TSP problem is probably the most famous of the NP-complete problems. Given N cities, the object is

to find a minimum length tour which visits each city exactly once. The encoding used in this study

requires a bit string of size Nlog2N bits. Each city is assigned a substring of length log2N which is inter-

preted as an integer. The city with the lowest integer value comes first in the tour, the city with the second

Population #1
0 0 1 1

1 1 0 0

1 1 0 0

0 0 1 1

Representation
0.5, 0.5, 0.5, 0.5

Population #2
1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

Representation
0.5 0.5 0.5 0.5

Figure 2: The probability representation of 2 small populations of 4-bit solution

vectors; population size is 4. Notice that the representations for both populations

are the same, although the solution vectors represented are entirely different.



page 9

lowest comes second, etc. In the case of ties, the city whose substring comes first in the bit string comes

first in the tour. This encoding was taken from [Syswerda, 1992]. To minimize the tour length, the evalua-

tion used is 1.0/Tour_Length. Four problems were attempted: the first contained 128 cities, the second

contained 200 cities, and the third and fourth contained 255 cities. The integer encoding of the fourth

problem used Gray-code, while the rest used standard binary code. The results for these four problems

are shown in Table I. The distances between cities were generated randomly for each problem.

****** Initialize Probability Vector *****
for i :=1 to LENGTH do P[i] = 0.5;

while (NOT termination condition)
 ***** Generate Samples *****
for i :=1 to SAMPLES do

sample_vectors[i] := generate_sample_vector_according_to_probabilities (P);
evaluations[i] :=Evaluate_Solution (sample[i]);

best_vector := find_vector_with_best_evaluation (sample_vectors, evaluations);
worst_vector := find_vector_with_worst_evaluation (sample_vectors, evaluations);

***** Update Probability Vector towards best solution *****
for i :=1 to LENGTH do

P[i] := P[i] * (1.0 - LR) + best_vector[i] * (LR);

***** Update Probability Away from Worst Solution *****
for i :=1 to LENGTH do

if (best_vector[i] ≠ worst_vector[i]) then
P[i] := P[i] * (1.0 - NEGATIVE_LR) + best_vector[i] * (NEGATIVE_LR);

***** Mutate Probability Vector *****

for i :=1 to LENGTH do

if (random (0,1) < MUT_PROBABILITY) then

if (random (0,1) > 0.5) then mutate_direction := 1

else mutate_direction := 0;

P[i] := P[i] * (1.0 - MUT_SHIFT) + mutate_direction * (MUT_SHIFT);

USER DEFINED CONSTANTS (Values Used in this Study):

SAMPLES: the number of vectors generated before update of the probability vector (100).

LR: the learning rate, how fast to exploit the search performed (0.1).

NEGATIVE_LR: the negative learning rate, how much to learn from negative examples (PBIL = 0.075, EGA = 0.0).

LENGTH: the number of bits in a generated vector (problem specific).

MUT_PROBABILITY: the probability for a mutation occurring in each position (0.02).

MUT_SHIFT: the amount a mutation alters the value in the bit position (0.05).

Figure 3: The PBIL/EGA algorithm for a binary alphabet.
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Table I:  Traveling Salesman Problem - Average Final Tour Length

5.2 Jobshop Scheduling Problems

Recently, genetic algorithms have been applied to the jobshop scheduling problem because it is difficult

for conventional search based methods to find near-optimal solutions in a reasonable amount of time

[Fang et al., 1993]. A good description of the jobshop problem is given by Fang:

“In the general job shop problem, there are j jobs and m machines; each job comprises a

set of tasks which must each be done on a different machine for different specified pro-

cessing times, in a given job-dependent order. ... A legal schedule is a schedule of job

sequences on each machine such that each job’s task order is preserved, a machine is not

processing two different jobs at once, and different tasks of the same job are not simulta-

neously being processed on different machines. The problem is to minimize the total

elapsed time between the beginning of the first task and the completion of the last task

(the makespan)” [Fang et al., 1993].

The problem is encoded in two ways. The first encoding is derived from [Fang et. al, 1993]. The exact

encoding can be found in [Fang et al., 1993] and [Baluja, 1994]. The difference between this encoding and

that used by Fang is that in this study, bit strings were used to encode the integers (in standard binary

encoding) in the range of 1..J. Fang used chunks which are atomic for the GA. Although the encoding

used here makes the problem difficult for these optimization techniques, it is used to provide results

which are comparable to other algorithms. As the makespan is to be minimized, the evaluation of the

potential solution is (1.0/makespan). Two standard test problems are attempted, a 10 job, 10 machine

problem and a 20-job, 5-machine problem. A description of the problems can be found in [Muth &

Thompson, 1963]. The results are shown in Table II.

Table II:  Jobshop Scheduling - Minimum Makespan - Using First Encoding.

The second encoding is very similar to the encoding used in the Traveling Salesman Problem. The draw-

back of this encoding is that it uses more bits than the previous one. Nonetheless, empirically, it revealed

improved results. Each job is assigned M entries of size log2(J*M) bits. The total length of the encoding is

PROBLEM MRSH1 MRSH2 MRSH2 EGA PBIL SGA
GA-

Scale

TSP 128 (binary) 2516.3 2122.7 2144.1 1980.2 1718.2 3256.4 2275.8

TSP 200 (binary) 7815.5 7707.2 7642.3 6993.0 6097.5 12012.1 7966.8

TSP 255 (binary) 5002.5 4201.6 4381.2 4587.1 4545.4 8756.5 5598.2

TSP 255 (Gray-Code) 5054.3 3558.7 4051.0 4587.1 4484.3 8644.8 5550.5

PROBLEM MRSH1 MRSH2 MRSH3 EGA PBIL SGA
GA-

Scale

Jobshop 10x10 1033.0 1003.4 1003.9 984.3 979.4 1002.0 1001.2

Jobshop 20x5 1295.3 1284.6 1282.9 1204.8 1200.5 1256.3 1213.9
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J*M*log2(J*M). Therefore, each of these problems is encoded in a 700 bit solution vector. The value of each

entry (of length log2(J*M)) determines the order in which the jobs are scheduled. The job which contains

the smallest valued entry is scheduled first, etc. The order in which the machines are selected for each job

depends upon the ordering required by the problem specification. The results are shown in Table III. With

this encoding, six out of the seven algorithms perform better than, or at least as well as, the first jobshop

encoding presented (the performance of MRSH-1 does not improve with this encoding).

Table III:  Jobshop Scheduling - Minimum Makespan - Using Second Encoding

5.3 Knapsack Problem

In the knapsack problem, there is a single bin of limited capacity, and M  elements of varying sizes and

values. The problem is to select the elements which will yield the greatest summed value without exceed-

ing the capacity of the bin. The evaluation of the quality of the solution is judged in two ways: If the solu-

tion selects too many elements, such that the summed size of the elements is too large, the solution is

judged by how much it exceeds the capacity of the bin - the less it exceeds the capacity, the better the solu-

tion. If the sum of the element sizes is within the capacity of the bin, the sum of the values of the selected

elements is used as the evaluation. To ensure that the solutions which overfill the bin are not competitive

with those which do not, their evaluations are multiplied by a small constant. This makes the invalid

solutions competitive only when there are no solutions in the population which are valid. The evalua-

tions are described below.

The weights and values for each problem were randomly generated. In the first two problems, having 512

and 2000 elements respectively, a unique element is represented by each bit. When a bit is set to 1, the cor-

responding element is included. In the third and fourth problems, there are 100 and 120 unique elements,

respectively. However, there are 8 and 32 copies of each element; the number of elements of each type

which are included in the solution is determined by interpreting a bit string, length 3 (log28) bits and 5

(log232) bits, into decimal, respectively. The results are given in Table IV. Note that the SGA algorithm

was unable to find valid solutions in the second and fourth problems.

PROBLEM MRSH1 MRSH2 MRSH3 EGA PBIL SGA
GA-

Scale

Jobshop 10x10 1059.0 968.2 970.2 963.4 960.6 967.1  961.4

Jobshop 20x5 1360.6 1217.1 1215.5 1186.2 1182.0 1230.4  1190.3

Jobshop 20x5

(Randomly generated)

1164.5 1031.2 1025.5 995.0 992.1  1044.2 1005.1

10 10– size size
selectedElements

∑–
allElements

∑ 
 × value

selectedElements
∑

if size is greater than capacity of bin if size is less than or
equal to capacity of bin
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Table IV:  Knapsack Problem - Average of Best Values

5.4 Bin Packing

In the bin packing problem, there are N bins of varying capacities and M  elements of varying sizes. The

problem is to pack the bins with elements as tightly as possible, without exceeding the maximum capac-

ity of any bin. In the problems attempted here, the error is measured by:

The solution is encoded in a bit string of length M  * log2N. Each element to be packed is assigned a

sequential substring of length log2N whose value indicates the bin in which the element is placed. In

order to minimize the ERROR, the evaluation of the potential solution is 1.0/ERROR.

Four bin packing problems of various sizes were tested: 32 bins, 128 elements; 16 bins, 128 elements; 4

bins, 256 elements; and 2 bins, 512 elements. All of the problems generated were guaranteed to have a

solution with 0.0 error. The results are shown below, in Table V.

Table V:  Bin Packing Problems - Minimum Error

5.5 Evolving Weights for an Artificial Neural Network (ANN)

Recently, evolutionary algorithms have been used to evolve the weights of artificial neural networks. In

the experiments reported here, the weights of two small predefined network architectures were evolved.

In the first test, the object of the neural network was to identify the parity of 7 inputs. The inputs were

either 0 (represented by -0.5) or 1 (represented by 0.5). If the parity was 1, the target output is 0.5; if the

parity was 0, the target output is -0.5. The evaluation was the sum of squares error on the 128 training

examples. A bias input (a unit whose input is set to 1.0) was also used; this has connections to the hidden

and the output units [Hertz, Krogh & Palmer, 1993]. The network architecture consisted of 8 input units

PROBLEM MRSH1 MRSH2 MRSH3 EGA PBIL SGA
GA-

Scale

Knap (512 elem., 1 cpy) 27.1 24.1 26.7 79.8  80.1  62.2 72.3

Knap (2000 elem., 1 cpy) 41.3 39.0 38.8 171.5 130.8 0.0 135.2

Knap (100 elem., 8 cpy) 148.4 136.3 101.1 394.9 403.7 49.3 414.2

Knap(120 elem., 32 cpy) 848.7 801.1 669.0 2856.4  2920.4 0.0 2559.1

PROBLEM MRSH1 MRSH2 MRSH3 EGA PBIL SGA GA-Scale

Bin(32 bins,128 elem.) 0.62 0.58 0.62 0.49 0.42 0.54 0.51

Bin(16 bins,128 elem.) 4.4 x 10-2 6.8 x 10-2 3.8 x 10-2 3.0 x 10-2 2.2 x 10-2 2.8 x 10-2 3.1 x 10-2

Bin(4 bins, 256 elem.) 1.2 x10-5 1.9 x10-5 6.0 x 10-6 7.0 x 10-6 6.9 x 10-6 7.8 x 10-6 5.0 x 10-6

Bin (2 bins, 512 elem.) 2.4 x 10-7 2.4 x 10-6 3.5 x 10-8 4.0 x 10-8 1.8 x 10-8 1.2 x 10-7 4.8 x 10-7

ERROR CAPi ASSIGNEDi–

i 1=

N

∑=
CAPi is the capacity of bin i

ASSIGNEDi is the total size of the elements in bin 
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(including bias), 5 hidden units, and 1 output unit. The network was fully connected between sequential

layers. There were a total of 46 connections in the network, the values of the weights were restricted to the

range of -10.0 to +10.0. All hidden and output units used a sigmoid activation function. Weights were rep-

resented as binary and gray code, and were assigned 8 non-overlapping bits in the solution string.

In the second two tests, eight real valued inputs were used. The first two inputs represent the coordinates

of a point within a square with upper left corner (ULC) of (-1.0, 1.0) and lower right corner (LRC) of (1.0,

-1.0). The task was to determine whether the point fell into a square region between ULC(-0.75, 0,75), and

LRC (0.75,-0.75) and outside a smaller square with ULC (-0.35, 0,35), and LRC (0.35,-0.35). A diagram of

this is shown in Figure 5. 5 inputs contained random noise in the region [-1:+1]. This noise was deter-

mined in the beginning of the run, and remained the same, in each training example, throughout the run.

The last input was a bias unit. In total, the network had 8 inputs (including bias), 5 hidden units, and 1

output; this created 46 connections. For training, 100 uniformly distributed examples were used. The

same representation and scaling of weights was used as in the previous problem. In these two problems,

weights were represented as binary and Gray code, respectively. The results are shown in Table VI.

Figure 4: Network

Architecture.

Output Unit

Hidden Units

Input Units

Bias Unit

. . . . . . .

Trainable Weights (46)

(+1)

Figure 5: Training Examples for the

ANN Square Problem.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
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Table VI:  ANN Weight Optimization - Sum of Squares Error.

5.6 Numerical Function Optimization

In this section, the seven algorithms are compared on three numerical optimization problems. In the first

and second problems, the variables in the first portions of the solution string have a large influence on the

quality of the rest of the solution; small changes in their values can cause large changes in the evaluation

of the solution. In the third problem, each variable can be set independently. Each variable, xi, was repre-

sented using 9 bits, and was scaled uniformly into the range ±2.56. To avoid a division by zero error, a

small constant, C (=0.00001), was added to the denominator of each function. Each problem was tested

with the variables represented in standard binary and Gray code. Results are shown in Table VII. The

maximization functions are:

PROBLEM MRSH1 MRSH2 MRSH3 EGA PBIL SGA
GA-

Scale

ANN PARITY 7(binary) 16.1 16.1 23.3 12.8 11.2 15.0 13.3

ANN PARITY 7(Gray) 13.7 15.1 16.4 8.3 8.2 11.6 12.3

ANN SQUARE (binary) 14.1 14.5 17.5 11.6 10.9 12.7 13.0

ANN SQUARE (Gray) 8.4 7.9 9.3 6.7 8.3 8.9 9.3

PROBLEM MRSH1 MRSH2 MRSH3 EGA PBIL SGA
GA-

Scale

F1 (Binary) (x100) 1.04 1.01 0.97 1.93 2.12 1.96 1.72

F1 (Gray Code)(x100) 1.21 1.18 1.17 2.06 2.62 1.92 1.78

F2 (Binary) (x100) 3.08 3.06 2.91 4.00 4.40 3.58 3.68

F2 (Gray Code) (x100) 4.34 4.38 4.28 4.67 5.61 3.64 4.63

F3 (Binary) (x 100) 8.07 8.10 7.56 14.57 16.43 9.171 12.30

F3 (Gray Code) (x100) 416.64 416.64 416.64 331.69 366.77 28.35 210.37

2.56– xi 2.56 i,<≤ 1…100=

y1 x1=

yi xi yi 1–
+= i, 2…100=

f1
1.0

C y1 yi
i 2=

100

∑++

----------------------------------------------=

y1 x1=

yi xi yi 1– 
 sin+= i, 2…100=

f2
1.0

C y1 yi
i 2=

100

∑++

----------------------------------------------=
f3

1.0

C 0.024 i 1+( )×( ) xi– 
 

i 1=

100

∑+

--------------------------------------------------------------------------------------=



page 15

6. SUMMARY OF EMPIRICAL RESULTS

Many results have been presented in the previous section. This paper has concentrated on breadth; a

large number of problems were attempted with seven optimization heuristics. It should be noted that

because all of the algorithms have tunable parameters, it is possible that different settings may yield dif-

ferent results. Additional mechanisms, which take advantage of problem specific information, may also

improve the performance of each of these methods. Nonetheless, by selecting a variety of problems and

problem sizes to compare, all of the algorithms should show their strengths and weaknesses in some por-

tion of the test set.

The relative ranks of the algorithms on all of the problems are shown in Table VII; this table ranks the

algorithms with respect to the average best results produced over all runs. It should be noted that with

only 20 runs per algorithm, not all of the differences are statistically significant. More details on the differ-

entials between each algorithm’s performance were presented in Section 5. In terms of the final solutions

found, the PBIL algorithm worked the best overall, followed by the EGA algorithm. In the majority of

problems attempted here (25 out of 27), learning from negative examples improved the quality of the

final solutions found (PBIL performed better than EGA). Only in two of the problems did the negative

learning hurt the performance of the PBIL algorithm (EGA performed better than PBIL).

In terms of clock speed, the MRSH algorithms worked the fastest. However, if the time for each chromo-

some/solution string’s evaluation is much larger than the time for the algorithm’s procedures, this bene-

fit diminishes. Moves to equal regions (rather than only strictly better regions) had mixed results overall.

Nonetheless, in several problems, such as the jobshop (both encodings) and TSP problems, the moves to

equal regions improved performance. In other problems sets, not explored here, it was also found that

moves to regions of equal evaluations were important for good performance [Juels & Wattenberg, 1994].

MRSH did well on the largest TSP examined; it was able to find a shorter tour than the other algorithms.

(when encoded in binary and Gray Code). Similarly, in F3, MRSH was able to take the largest advantage

of the gray code.

Although the standard genetic algorithm (SGA) performed only as well as the MRSH algorithms, the

GA-scale algorithm performed slightly better. A summary of the results can be found in Table VIII. This

table has the following columns:

1. In the cases in which PBIL did better than GA-Scale, this column gives the generation in which

PBIL was able, on average, to surpass the highest evaluation GA-Scale found, on average, in its

20 runs. For example, in the first problem: TSP-128 (binary), the highest evaluation of the GA

was 2275.8 (Table I), by generation 210, PBIL was able to surpass this evaluation.

2. The same numbers are given for GA-Scale. For example, on the knapsack01 (2000 elem, 1 copy)

problem, the highest evaluation PBIL was able to obtain was 403.7, in generation 1505 GA-

Scale was, on average, able to surpass it.

Columns (3),(4) and (5) of Table VIII compare the three different types of algorithms:

3. Marks the problems on which any form of MRSH was able to do better than GA-Scale.

4. Marks when any form of MRSH did better than PBIL.
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5. Marks the problems in which GA-Scale outperformed PBIL.

Columns 6,7 and 8 of Table VIII compare different variations of each algorithm.

6. Indicates the problems on which moves to equal regions helped the performance of MRSH.

These are the problems in which either MRSH-2 or MRSH-3 did better than MRSH-1.

7. Marks the problems in which learning from negative examples helped the PBIL/EGA algo-

rithm. These are the problems in which PBIL performed better than EGA.

8. Indicates the problems in which GA-Scale did better than SGA. The improvement may be due

to the scaling of fitness values and/or the different crossover operators (GA-Scale: Uniform,

SGA: Two Point).

For the problems which were attempted with gray and binary code, Table IX provides a list of which

algorithms benefited from using gray code.

7. CONCLUSIONS

This paper has presented results on many problems. From the results reported in this paper, it is evident

that algorithms which are simpler than standard GAs can perform comparably to GAs, on both small and

large problems. Other studies have also shown this for various sets of problems [Juels & Wattenberg,

1994][Mitchell & Forrest, 1992], etc. In studies analyzing the performance of GAs on particular problems,

these results suggest that analyses should include comparisons not only to other GAs, but also to other

simpler methods of optimization before a benefit is claimed in favor of GAs. This study did not include

techniques such as Simulated Annealing or Tabu Search, which should be included in the future.

It is interesting to note that the PBIL algorithm, which does not use the crossover operator, and redefines

the role of the population to one which is very different than that of a GA, performs either better than or

comparably to a GA on the majority of the problems. PBIL and GAs both generate new trials based on

statistics from a population of prior trials. The PBIL algorithm explicitly maintains these statistics, while

the GA implicitly maintains them in its population. The GA extracts the statistics by the selection and

crossover operators. More detailed comparisons between these two algorithms can be found in [Baluja &

Caruana, 1995].

It should be noted that the relative performance of GAs in comparison to PBIL will improve as the popu-

lation size of the GA increases [Baluja & Caruana, 1995]. As the population size of the GA increases, the

GA will be able to maintain more dissimilar points in its population, and will therefore be able to use

crossover more effectively. On the other hand, in its current implementation, the PBIL algorithm only use

a few solution vectors for updating the probability vector regardless of the population size. Nonetheless,

the large population size needed by a GA is not always feasible because of the need to balance the num-

ber of generations required and the total number of evaluations possible. However, even when the

resources to use large populations are available, a large amount of empirical work has shown that using

an “parallel island-model” GA may be more effective than a single panmictic population. The island-
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model evolves multiple small population in parallel, with only a small amount of interaction between

subpopulations. The parallel subpopulation model, in many cases, has outperformed the use of a single

large population; see for example: [Davidor et. al, 1993][Gordon & Whitley, 1993][Baluja, 1993][Whitley &

Starkweather, 1990]. If these parallel subpopulations are used instead of a single large population, each

subpopulation can be modeled with individual probability vectors, as in the PBIL algorithm.

A GA with different mechanisms, such as non-stationary mutation rates, local optimization heuristics,

parallel subpopulations, specialized crossover, or larger operating alphabets, may perform better than

the GAs explored here. It should be noted, however, that all of these mechanisms, with the exception of

specialized crossover operators, can be used with PBIL with few, if any, modifications.

Another direction to explore in the future is how these algorithm perform with alternate solution encod-

ings; in this study only binary encodings were used. Although work has already been conducted in this

area with GAs (a good introduction to this can be found in [Eshelman & Schaffer, 1992]), how well will

PBIL or MRSH perform with these alternate encodings? Finally, in this study, optimization was only

explored in static environments. Future research should also include search and optimization in dynamic

environments, or environments which require maximization of cumulative payoff. The adaptive nature

of GAs may reveal a pronounced benefit in these more complex domains.
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Table VII:  Summary of Ranks

Encoding
Length
(bits)

MRSH1 MRSH2 MRSH3 EGA PBIL SGA
GA-
Scale

M
R

S
H

(1
,2

,3
) 

B
E

S
T

P
B

IL
/

E
G

A
 B

E
S

T

S
G

A
/

G
A

-S
C

A
L

E
 B

E
S

T

TSP 128 (binary) 896 6 3 4 2 1 7 5 ●

TSP 200 (binary) 1600 5 4 3 2 1 7 6 ●

TSP 255 (binary) 2040 5 1 2 4 3 7 6 ●

TSP 255 (Gray-Code) 2040 5 1 2 4 3 7 6 ●

Jobshop 10x10 (Encoding 1) 500 7 5 6 2 1 4 3 ●

Jobshop 20x5 (Encoding 1) 500 7 6 5 2 1 4 3 ●

Jobshop 10x10 (Encoding 2) 700 7 5 6 3 1 4 2 ●

Jobshop 20x5 (Encoding 2) 700 7 5 4 2 1 6 3 ●

Jobshop 20x5 (Encoding 2) 700 7 5 4 2 1 6 3 ●

Knap (512 elem., 1 copy) 512 5 7 6 2 1 4 3 ●

Knap (2000 elem., 1 copy) 2000 4 5 6 1 3 7 2 ●

Knap (100 elem., 8 copies) 300 4 5 6 3 2 7 1 ●

Knap (120 elem., 32 copies) 600 4 5 6 2 1 7 3 ●

Bin (32 bins, 128 elem.) 640 6 5 6 2 1 4 3 ●

Bin (16 bins, 128 elem.) 512 6 7 5 3 1 2 4 ●

Bin (4 bins, 256 elem.) 512 6 7 2 4 3 5 1 ●

Bin (2 bins, 512 elem.) 512 5 7 2 3 1 4 6 ●

ANN PARITY 7 (binary) 368 5 5 7 2 1 4 3 ●

ANN PARITY 7 (gray) 368 5 6 7 2 1 3 4 ●

ANN SQUARE (binary) 368 5 6 7 2 1 3 4 ●

ANN SQUARE (gray) 368 4 2 7 1 3 5 6 ●

F1 (Encoded in Binary) 900 5 6 7 3 1 2 4 ●

F1 (Encoded in Gray Code) 900 5 6 7 2 1 3 4 ●

F2 (Encoded in Binary) 900 5 6 7 2 1 4 3 ●

F2 (Encoded in Gray Code) 900 5 4 6 2 1 7 3 ●

F3 (Encoded in Binary) 900 6 5 7 2 1 4 3 ●

F3 (Encoded in Gray Code) 900 1 1 1 5 4 7 6 ●

TOTAL (27 Problems) 3 22 2
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Table VIII:  Comparison of Methods

G
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E
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A
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G
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E
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E
D
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E

S
T
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B
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M
R

S
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T
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A
N

P
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G
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C

A
L

E
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E
T

T
E

R
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H
A

N
P

B
IL

M
O

V
E

S
 T

O
 E

Q
U

A
L

 V
A

L
U

E
R

E
G

IO
N

S
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E
N

E
F

IC
IA

L
 (

M
R

S
H

)

IM
P

R
O

V
E

D
 W

IT
H

 “
N

E
G

A
T

IV
E

”
L

E
A

R
N

N
IG

 R
A

T
E

 (
E

G
A

-P
B

IL
)

G
A

-S
C

A
L

E
 B

E
T

T
E

R
 T

H
A

N
S

G
A

TSP 128 (binary) 210 - ● ● ● ●

TSP 200 (binary) 496 - ● ● ● ●

TSP 255 (binary) 772 - ● ● ● ● ●

TSP 255 (Gray-Code) 741 - ● ● ● ● ●

Jobshop 10x10 (Encoding 1) 215 - ● ● ●

Jobshop 20x5 (Encoding 1) 191 - ● ● ●

Jobshop 10x10 (Encoding 2) 1690 - ● ● ●

Jobshop 20x5 (Encoding 2) 418 - ● ● ●

Jobshop 20x5 (Encoding 2) 366 - ● ● ●

Knap (512 elem., 1 copy) 277 - ● ●

Knap (2000 elem., 1 copy) - 1505 ● ●

Knap (100 elem., 8 copies) - 633 ● ● ●

Knap (120 elem., 32 copies) 700 - ● ●

Bin (32 bins, 128 elem.) 1039 - ● ● ●

Bin (16 bins, 128 elem.) 235 - ● ●

Bin (4 bins, 256 elem.) - 1491 ● ● ● ● ●

Bin 2 bins, 512 elem.) 968 - ● ● ●

ANN PARITY 7 (binary) 500 - ● ●

ANN PARITY 7 (gray) 650 - ●

ANN SQUARE (binary) 250 - ●

ANN SQUARE (gray) 1000 - ● ● ●

F1 (Encoded in Binary) 630 - ●

F1 (Encoded in Gray Code) 512 - ●

F2 (Encoded in Binary) 492 - ● ●

F2 (Encoded in Gray Code) 1272 - ● ● ●

F3 (Encoded in Binary) 429 - ● ● ●

F3 (Encoded in Gray Code) 947 - ● ● ● ●

TOTAL (27 Problems) - - 7 5 3 16 25 20
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Table IX:  Algorithms which benefited by using Gray Code over standard binary code.

MRSH1 MRSH2 MRSH3 EGA PBIL SGA
GA-
Scale

TSP 255 ● ● ● ● ●

ANN PARITY 7 ● ● ● ● ● ● ●

ANN SQUARE ● ● ● ● ● ● ●

F1 ● ● ● ● ● ●

F2 ● ● ● ● ● ● ●

F3 ● ● ● ● ● ● ●
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