
An Empirical Comparison of Text

Categorization Methods

Ana Cardoso-Cachopo1,2 and Arlindo Limede Oliveira1,2

1 Instituto Superior Técnico
Departamento de Engenharia Informática

Av. Rovisco Pais, 1
1049-001 Lisboa — Portugal

2 INESC-ID
Rua Alves Redol, 9

1000-029 Lisboa— Portugal
acardoso@gia.ist.utl.pt, aml@inesc.pt

Abstract. In this paper we present a comprehensive comparison of the
performance of a number of text categorization methods in two different
data sets. In particular, we evaluate the Vector and Latent Semantic
Analysis (LSA) methods, a classifier based on Support Vector Machines
(SVM) and the k-Nearest Neighbor variations of the Vector and LSA
models.
We report the results obtained using the Mean Reciprocal Rank as a
measure of overall performance, a commonly used evaluation measure
for question answering tasks. We argue that this evaluation measure is
also very well suited for text categorization tasks.
Our results show that overall, SVMs and k-NN LSA perform better than
the other methods, in a statistically significant way.

1 Introduction

As the amount of information in written form increases, text categorization tech-
niques become more necessary to find relevant information in a variety of tasks
such as finding answers to similar questions, classifying news by subject or news-
group, sorting e-mail messages, etc.

A number of approaches to text categorization has been proposed. The goal
of text categorization methods is to associate one (or more) of a given set of cat-
egories to a particular document. They differ on how they represent documents
and on how they decide which category to assign to a particular document. As
such, a particular approach can be more suitable for a particular task, with a
specific dataset, while another one is better adapted to a different setting. The
measure used to quantify the performance of each approach can also influence
the results.

In this paper we compare how the Vector Model, Latent Semantic Analysis
(LSA), a classifier based on Support Vector Machines (SVM) and the k-Nearest
Neighbors variations of the Vector and LSA models perform on two different
data sets, using the Mean Reciprocal Rank as a measure of overall performance.



2 Data Description

As each model can behave differently in different settings, we have to test them
in the same setting if we want to be able to compare the results. To allow for
the generalization of results, we should use more than one test problem. For our
study we used two different sets of data, in two different languages.

Financial Institution’s Dataset The first dataset consists of messages sent by the
clients of a financial institution to their help-desk and the answers they got from
the help desk assistants. All these documents are in Portuguese. We had access
to the collection of answered messages under a non-disclosure agreement.

We classified the data according to the type of request that was made. This
dataset contains one class for each type of message that can be answered auto-
matically and one class that comprises all the messages that need human inter-
vention. Our complete dataset has 1391 classified messages and the respective
answers. There are 37 different classes, containing from 5 to 346 messages each.

For the purpose of model comparison 10 classes were selected, containing 34
to 58 messages each, in a total of 461 messages. We will call this dataset C10.
Table 1 lists the message types and the number of messages per type3.

Type of message # msgs

Incomplete data for a request of credit allowance 34
Question about the available amount of credit 36
General information about “points promotion” 42
More information on “low value payment” operation 45
Request for the receipt of an operation 46
Impossible to request checks through the internet 46
Points in the “points promotion” have disappeared 46
Impossible to buy or sell stock funds through the internet 52
How to buy or sell stocks through the internet 56
What is the price of a particular financial operation? 58

Total 461
Table 1. Number of messages of each type in C10

In this study, we will describe results that use only the client’s message for
training.

20 Newsgroups Dataset The second dataset is a subset of the 20 Newsgroups
dataset, that can be downloaded from UCI’s Knowledge Discovery in Databases
Archive. Here, one thousand Usenet articles were taken from each of the 20
newsgroups in Table 2. Approximately 4% of the articles are cross-posted. The
articles are typical postings and thus have headers including subject lines, sig-
nature files, and quoted portions of other articles.

3 Some of these operations make sense only in Portugal’s banking systems.



Group Group

alt.atheism rec.sport.hockey

comp.graphics sci.crypt

comp.os.ms-windows.misc sci.electronics

comp.sys.ibm.pc.hardware sci.med

comp.sys.mac.hardware sci.space

comp.windows.x soc.religion.christian

misc.forsale talk.politics.guns

rec.autos talk.politics.mideast

rec.motorcycles talk.politics.misc

rec.sport.baseball talk.religion.misc

Table 2. Usenet groups for the 20 Newsgroups dataset

We used a subset of the 20 Newsgroups Dataset, containing a total of 100
messages from each newsgroup. Here, 18 messages were cross-posted. We will
call this dataset mini20.

2.1 Pre-processing the Data

It is widely accepted that the way that documents and queries are represented
influences the quality of the results that can be achieved. With this fact in mind,
there are several proposals that aim at improving retrieval results. However, it
is seldom guaranteed that they achieve their goal.

The main aim of preprocessing the data is to reduce the problem’s dimension-
ality by controlling the size of the system’s vocabulary (different index terms).
In some situations, aside from reducing the complexity of the problem, this pre-
processing will also unify the data in a way that improves performance.

In this work, we applied some of the filters used routinely in Information
Retrieval:

– Discard words shorter than 3 or longer than 20 characters.
– Remove numbers and non-letter characters.
– Case and special character unification. Special character unification is needed

in Portuguese, because there are accentuated characters and some people use
them and some don’t.

3 Applied Methods

In this work we are concerned with models for the categorization of natural
language text. That is, models that, given a set of training documents with
known categories and a new document, which is usually called the query, will
predict the query’s category.

In these models, usually based on statistical analysis, a text document is
represented as a set of index terms or keywords. Each index term corresponds to
a word in the initial text and has a weight associated to it, which should reflect



how important this index term is, for that document and/or for the collection
of documents.

For efficiency reasons, some of these models make simplifications that may
not be totally justified but that have been experimentally validated. Some of
these simplifications are:

1. They ignore the natural language structure of text. They do not try to fully
“understand” a document, but they can use the structure that is easy to
find (like HTML tags, for instance), even when they are processing large
amounts of information. Besides being more efficient, this approach also has
the advantage of not using domain-dependent techniques.

2. They assume that weights for the index terms are mutually independent.
Although this simplification allows for a much easier treatment of the docu-
ments, weights for the index terms usually are not independent, because the
fact that one of the index terms appears in the text may increase the prob-
ability of finding another term that is usually related to it, as in “computer
network”, for instance.

3. They ignore the order of words. This way, all the texts that are permutations
of the same words are considered equal. This simplification is not always
justified, but it is necessary for efficiency reasons.

In the next sections we briefly describe the methods that we compare in this
paper.

Baeza-Yates and Ribeiro-Neto [1] includes a description of most Information
Retrieval models and Sebastiani [19] contributed a more up-to-date survey of
machine learning methods used for automated Text Categorization.

3.1 Vector Model

In the Vector Model [18, 16], documents are represented as a set of index terms
which are weighted according to their importance for a particular document and
for the general collection.

The index terms usually correspond to the words or tokens in the docu-
ment (or query) and index term weights can be computed in several ways. The
most usual is tf-idf (term frequency – inverse document frequency) [17], which
increases with the number of times that the term occurs in the document and
decreases with the number of times the term occurs in the collection. The weight
of term ti for document dj is

wi,j =
freqi,j

maxl(freql,j)
× log

N

ni

where freqi,j is the raw frequency of term ti on document dj , N the total number
of documents and ni the number of documents where term ti appears.

For the weights of the index terms in the query, Salton and Buckley [17]
suggest

wi,j =

(

0.5 +
0.5freqi,j

maxl(freql,j)

)

× log
N

ni



Documents and queries are then represented as vectors in an M -dimensional
space, where M is the total number of index terms.

Based on the weights of its terms, documents can be ranked by a decreasing
order of similarity to the query. The similarity of each document dj to the query
q is computed as the cosine of the angle formed by the vectors that represent
each of them

sim(dj , q) =

−→
dj · −→q

||
−→
dj || × ||−→q ||

The category of the query can be determined as the category of the most
similar document found.

3.2 Latent Semantic Analysis/Indexing Model

Matching documents and queries solely based on index terms can be misleading,
because a document can be relevant for a query without having any terms in
common with it.

The idea behind the Latent Semantic Analysis (or Latent Semantic Indexing)
model (LSA/I) [11, 10] is to map each document and query vector into a lower
dimensional space which is associated with concepts and retrieve the documents
in this space. Arguably, retrieval effectiveness in this space will be better and it
will also be computationally less costly, because it is a lower dimensional space.

LSA starts with a term-by-document rectangular matrix X which is decom-
posed by singular value decomposition (SVD) into the product of three other
matrices: X = T0S0D0, such that T0 and D0 have orthonormal columns and S0

is diagonal. T0 and D0 are the matrices of left and right singular vectors and S0

is the diagonal matrix of singular values. If the singular values in S0 are ordered
by size (and the corresponding row and column permutations applied to T0 and
D0), the first largest k may be kept and the remaining ones set to zero. The
product of the resulting matrices is a matrix X̂ which is only approximately
equal to X and is of rank k. It can be shown that the new matrix X̂ is the
matrix of rank k which is closest in the least squares sense to X . Ideally, we
want a value of k that is large enough to fit all the real structure in the data,
but small enough so that we do not overfit the data.

After these transformations the result can still be represented geometrically
by a spatial configuration in which the cosine between vectors representing a
document and a query corresponds to their similarity.

As in the Vector Model, documents can now be ranked according to their
similarity to the query, and the category of the query is the category of the most
similar document.

3.3 Support Vector Machines

The Support Vector Machines model or large margin classifier was introduced
by Vapnik [20, 7] and was first applied for text categorization by Joachims [12,
13]. A thorough description can also be found in other sources [9, 3].



Support Vector Machines (SVMs) is a method for efficiently training linear
classifiers. This technique is based on recent advances in statistical learning
theory. They map the documents into a high dimensional feature space, and
try to learn a separating hyperplane, that provides the widest margins between
two different types of documents. SVMs use Lagrange multipliers to translate
the problem of finding this hyperplane into an equivalent quadratic optimization
problem for which efficient algorithms exist, and which are guaranteed to find
the global optimum. The set of coefficients α∗

i resulting from the optimization
process can then be used to construct the hyperplane that correctly classifies all
the training examples with the maximum margin:

−→w ·
−→
d =

n
∑

i=1

α∗

i yi(
−→
di ·

−→
d ) and b =

1

2
(−→w ·

−→
d◦ + −→w ·

−→
d•)

This equation shows that the resulting weight vector of the hyperplane is con-
structed as a linear combination of the training examples. Only examples for
which the coefficient α∗

i is grater than zero contribute. These are called the sup-

port vectors, because they have minimum distance to the hyperplane. Figure 1
illustrates these ideas.

Fig. 1. Example of a two class, linearly separable problem and two possible separation
hyperplanes with corresponding margins. The decision hyperplane chosen by SVMs is
the bold solid line, which corresponds to the largest possible separation margins. The
squares indicate the corresponding support vectors.

For sets of documents that are not linearly separable, SVMs use convolution

functions (or kernels), that transform the initial feature space into another one,
where they are able to find the hyperplane that separates the data with the
widest margin.



By including several classifiers, these ideas can easily be generalized for
datasets with more than two classes of documents.

3.4 k-Nearest Neighbors

The initial application of k-NN to text categorization was reported by Masand
and colleagues [8, 15]. The idea is to determine the category of a given query
based on the categories of the k documents that are nearest to it in the document
space.

For this study, we first calculated each document’s similarity to the query.
Then, we used a voting strategy to find the query’s class: each retrieved document
contributes a vote for its class, weighted by its similarity to the query. The
query’s possible classifications will be ranked according to the votes they got in
the previous step.

In this paper, we used a vector-based, distance-weighted matching function,
as did Yang [22, 23], by calculating the distance using the Vector Model. We
refer to it by “k-NN Vector”. We also calculated the distance using the similarity
obtained with LSA and called it “k-NN LSA”. Because the number of examples
of each class in C10 and mini20 is approximately the same, we used all the
examples in each dataset as k.

4 Evaluation Measure

Evaluating the performance of computational systems is often done in terms of
the resources (time and space) they need to operate, assuming that they perform
the task that they are supposed to.

However, in Information Retrieval, it is not enough to retrieve a set of doc-
uments in a reasonable amount of time. The retrieved documents should also
be the “right” ones, that is, the ones that are relevant for the query. Precision
and recall are two measures that have been widely used to compare the per-
formance of Information Retrieval models. Precision is defined as the fraction
of the retrieved documents that are relevant, that is RRD

RetD
(it can be viewed as

a measure of the system’s soundness). Recall is defined as the fraction of the
relevant documents that is actually retrieved, that is RRD

RelD
(it can be viewed

as a measure of the system’s completeness). Here, RRD means the number of
retrieved documents that are actually relevant, RetD means the total number of
retrieved documents and RelD means the total number of relevant documents.

However, to evaluate question answering or answer finding systems, the mea-
sures used to evaluate general IR systems are not very adequate [2]. We want
to get the right answer, we want it only once (recall is not very important), and
we want it as close to the first answer as possible. So we will be interested in a
measure that takes the rank of the first correct answer into account.

The Mean Reciprocal Rank (MRR), is a measure used to evaluate submis-
sions to the “Question Answering Track” of the TREC conferences, defined by
Voorhees [21]. The idea is that its value is higher if the rank of the first correct



answer is lower. We think that this measure is more adequate than the ones
based on the values of precision and recall, which are more adequate for general
Information Retrieval tasks. The MRR also has several advantages:

1. It is closely related to the average precision measure used extensively in
document retrieval.

2. It is bounded between 0 (worst) and 1 (best), inclusive, and averages well.
3. A run is penalized for not retrieving any correct answer for a question, but

not unduly so.
4. It is intuitive and easy to calculate.

The MRR can be calculated for each individual question as the reciprocal of
the rank at which the first correct response was returned, or 0 if none of the first
N responses contained a correct answer. The score for a sequence of questions
is the mean of the individual question’s reciprocal ranks.

However, the MRR also has some drawbacks:

1. The score for an individual question can take only N + 1 values.
2. Question answering systems are given no credit for retrieving multiple (dif-

ferent) correct answers.
3. Since the track required at least one response for each question, a system

could receive no credit for realizing it did not know the answer.

In text categorization, we are also interested in getting the right category
for a document (assuming each document has only one category), we need it
only once, and the closer to the top position the better, because it gives us
a measure of the system’s confidence in the answer. Therefore, we decided to
report the results obtained using the Mean Reciprocal Rank as a measure of
overall performance. The Expected Search Lenght [6] was a good alternative,
but we decided to use MRR because it is a common evaluation measure used for
question answering tasks.

In our work, we considered the top ten categories returned by each model to
calculate the MRR.

5 Experimental Setup

In our experiments we used existing implementations for each model. These
implementations are freely available, and can be obtained from the authors.

For the Vector Model we used a Sourceforge project called IGLU http://sourceforge.net/projects/iglu-
java. IGLU aims at being a software platform suitable for testing Information
Retrieval models. At the time of this writing, only the Vector Model is imple-
mented.

For LSA we used FAQO — Frequently Asked Questions Organizer [4]. FAQO
is an application that was designed to help the technical support team at Unidata
(University Corporation for Atmospheric Research) in the task of answering
questions posed by the users of their software. It uses LSA/I to find similarities
between the user’s questions and questions that were previously answered by



Unidata’s personnel. As a result, FAQO shows a ranked list of previous questions
and answers that are most similar to the present one. FAQO is an open source
project released under the GPL license.

For SVMs we used a library called LIBSVM [5]. LIBSVM is an integrated
software for Support Vector classification (among others) that supports multi-
class classification. Their goal is to help users from other fields to easily use SVM
as a tool. LIBSVM provides a simple interface that users can use to easily link
it with their own programs.

LIBSVM already supports multi-class classification, returning, for each doc-
ument, the (one) class it belongs to. However, to calculate the MRR, we need
a ranked list of possible classes for each document, as is returned by the other
models we are using. So, to determine the class of a given document, we im-
plemented a “voting strategy”, where a document’s possible classes are ranked
according to the number of votes that they had in a one-against-one approach,
as Chang and Lin did [5].

We also used this “voting strategy”, now weighted according to the simi-
larity measure returned by the Vector or LSA models, to implement the k-NN
variations of these models.

6 Results

To see if the number of terms used in the experiments influences the models’ per-
formance, the terms are ordered according to the information gain criterion [24,
12] and only the first most informative ones are selected. We performed exten-
sive testing to determine the ideal number of terms that should be considered
by each model.

For the datasets C10 and mini20, respectively, the lines in Figures 2 and 3
represent the mean of the MRR for a five-fold cross-validation test for each of
the five models under evaluation, depending on the number of terms that is used.

For C10, which has a total of 2179 terms, we can see the whole range for
the number of terms used in the tests. However, for mini20, which has a total
of 33444 terms, we shortened the range for the number of terms, because we
observed that the variation of the MRR was not interesting beyond this value.
The “dots” to the right of the graphs show the value of the MRR using all the
existing terms.

As we can observe by comparing both figures, the lines have approximately
the same shape, which suggests that these results are not data-dependent. They
should not depend on the language either, because each dataset is in a different
language.

If we compare the performance of the Vector model with the performance
of k-NN Vector, we observe that they do not show very significant differences.
While the Vector Model is worse than the k-NN Vector for a smaller number of
terms for C10, and improves over k-NN Vector as the number of terms increases,
the opposite is true for mini20.



 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  500  1000  1500  2000  2500 All terms

M
ea

n 
R

ec
ip

ro
ca

l R
an

k

Number of terms

LSA
k-NN LSA

Vector
k-NN Vector

SVM

Fig. 2. MRR values for C10

However, if we compare the performance of LSA with its k-NN variation, we
see that k-NN LSA behaves significantly better, and that this happens indepen-
dently of the number of terms that we choose for both datasets.

While LSA is the worst performing method for C10, it performs significantly
better than the Vector model and its k-NN variation for mini20. This shows that
LSA performs better when it has many training examples.

The only model that has a performance comparable with k-NN LSA for C10
is the SVM-based, which even outperforms k-NN LSA for some values of numbers
of features used. For mini20, SVMs are consistently above LSA.

We can also observe that, for all models, the results obtained using only
a limited number of the most informative terms are not much worse than the
results using all the terms in the dataset. On the contrary, in the case of the
C10 dataset, the best results are obtained when we use between 400 and 800
terms. Reducing the number of terms used results in a considerable reduction in
computational effort. If this is not of utmost importance for C10, it can lead to
a considerable computational gain for mini20.

7 Statistical Significance Tests

To confirm if the differences observed between each pair of models are statisti-
cally significant, we performed paired t-tests for each pair of models. For each
model, we chose the number of terms that provided the higher average MRR.

The values obtained for the MRR for each model, in each of the 5-folds used
for cross-validation and their respective mean, are presented in Table 3 for the
C10 dataset and in Table 4 for the mini20 dataset. The results of the paired
t-tests between each possible pair of models are depicted in Tables 5 and 6,
respectively.



 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0  500  1000  1500  2000  2500 All terms

M
ea

n 
R

ec
ip

ro
ca

l R
an

k

Number of terms

LSA
k-NN LSA

Vector
k-NN Vector

SVM

Fig. 3. MRR values for mini20 using at most 2500 terms

C10

Vector k-NN Vector LSA k-NN LSA SVM, γ = 0.4

# terms 400 600 500 800 800

fold 1 0.9355 0.8922 0.8545 0.9764 0.9810
fold 2 0.8905 0.9101 0.8288 0.9602 0.9764
fold 3 0.9067 0.9184 0.8641 0.9656 0.9683
fold 4 0.9592 0.9402 0.8250 0.9837 0.9946
fold 5 0.8820 0.8907 0.8155 0.9525 0.9453

mean 0.9148 0.9103 0.8376 0.9677 0.9731

Table 3. MRR for 5-fold cross-validation for C10.

In these tables, A ∼ B means that the results obtained with model A are not
statistically different from those obtained with model B, and A � B means that
the results obtained with model A are statistically better than those obtained
with model B. In each case we present the p value, which is the significance of
each paired t-test.

From the results in Table 5, we can extract a partial order among the various
models, for dataset C10, when we consider only the number of terms that provide
the higher MRR:

{k-NN LSA, SVM} � {Vector, k-NN Vector} � LSA

From the results in Table 6, we can extract a total order among the various
models, for dataset mini20, when we consider only the number of terms that
provide the higher MRR:

SVM � k-NN LSA � LSA � Vector � k-NN Vector



mini20

Vector k-NN Vector LSA k-NN LSA SVM, γ = 0.4

# terms 18000 2500 all 12000 all

fold 1 0.6240 0.5672 0.7366 0.8040 0.8203
fold 2 0.6269 0.5341 0.7357 0.8096 0.8254
fold 3 0.6346 0.6246 0.7276 0.8198 0.8318
fold 4 0.6147 0.5571 0.7098 0.7950 0.8196
fold 5 0.6670 0.5708 0.7651 0.8274 0.8399

mean 0.6334 0.5707 0.7350 0.8112 0.8274

Table 4. MRR for 5-fold cross-validation for mini20.

c10

Model 1 t-test Model 2 p value

Vector ∼ k-NN Vector 0.7221
Vector � LSA 0.0038
k-NN LSA � Vector 0.0020
SVM � Vector 0.0012
k-NN Vector � LSA 0.0026
k-NN LSA � k-NN Vector 0.0007
SVM � k-NN Vector 0.0004
k-NN LSA � LSA 0.0001
SVM � LSA 0.0001
k-NN LSA ∼ SVM 0.1581

Table 5. Results of the t-test for dataset C10.

8 Conclusions

In this paper we presented experiments using k-NN LSA, a new combination of
the standard k-NN method on top of LSA that performed almost as well as the
best performing methods for text categorization reported so far. To the best of
our knowledge, there are no published results using the k-NN LSA.

We used the MRR, an evaluation measure that is very adequate for one-class
text categorization tasks.

We showed that overall, SVMs and k-NN LSA perform better than the other
methods, in a statistically significant way. As future work, we plan to investi-
gate if the results obtained in this set of two text classification problems can be
replicated in other benchmarks. We also plan to investigate if further improve-
ments can be applied to the SVMs and k-NN LSA models. If possible, this would
further enhance the superiority of these methods observed in this experiments.



mini20

Model 1 t-test Model 2 p value

Vector � k-NN Vector 0.0079
LSA � Vector 0.0000
k-NN LSA � Vector 0.0000
SVM � Vector 0.0000
LSA � k-NN Vector 0.0004
k-NN LSA � k-NN Vector 0.0000
SVM � k-NN Vector 0.0000
k-NN LSA � LSA 0.0001
SVM � LSA 0.0001
SVM � k-NN LSA 0.0010

Table 6. Results of the t-test for dataset mini20.

References

1. Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley, Reading, Massachusetts, USA, 1999.

2. Adam Berger, Rich Caruana, David Cohn, Dayne Freitag, and Vibhu O. Mittal.
Bridging the lexical chasm: statistical approaches to answer-finding. In Proceed-

ings of the 23rd Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 192–199, Athens, Greece, July 2000.
3. Christopher J. C. Burges. A tutorial on support vector machines for pattern

recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.
4. John Caron. Experiments with LSA scoring: Optimal rank and basis. In Proceed-

ings of SIAM Computational Information Retrieval Workshop, Raleigh, NC, USA,
October 2000.

5. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector ma-

chines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
6. William S. Cooper. Expected search length: a single measure of retrieval effective-

ness based on weak ordering action of retrieval systems. Journal of the American

Society for Information Science, 19(1):30–41, 1968.
7. Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,

20(3):273–297, November 1995.
8. Robert M. Creecy, Brij M. Masand, Stephen J. Smith, and David L. Waltz. Trading

MIPS and memory for knowledge engineering: classifying census returns on the
Connection Machine. Communications of the ACM, 39(1):48–63, January 1996.

9. Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Ma-

chines. Cambridge University Press, Cambridge, MA, USA, 2000.
10. Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,

and Richard A. Harshman. Indexing by latent semantic analysis. Journal of the

American Society for Information Science, 41(6):391–407, 1990.
11. George W. Furnas, Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,

Richard A. Harshman, L.A. Streeter, and K.E. Lochbaum. Information retrieval
using a singular value decomposition model of latent semantic structure. In Pro-

ceedings of the 11th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 465–480, Grassau, France, June
1988.



12. Thorsten Joachims. Text categorization with support vector machines: learning
with many relevant features. In Claire Nédellec and Céline Rouveirol, editors,
Proceedings of the 10th European Conference on Machine Learning, pages 137–
142, Chemnitz, Germany, 1998. Springer-Verlag. Published in the “Lecture Notes
in Computer Science” series, number 1398.

13. Thorsten Joachims. Transductive inference for text classification using support
vector machines. In Ivan Bratko and Saso Dzeroski, editors, Proceedings of the

16th International Conference on Machine Learning, pages 200–209, Bled, Slovenia,
1999. Morgan Kaufmann Publishers, Inc.

14. Karen Spark Jones and Peter Willett, editors. Readings in Information Retrieval.
Morgan Kaufmann Publishers, Inc., Los Altos, USA, 1997.

15. Briji Masand, Gordon Linoff, and David Waltz. Classifying news stories us-
ing memory-based reasoning. In Nicholas J. Belkin, Peter Ingwersen, and An-
nelise Mark Pejtersen, editors, Proceedings of the 15th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages
59–65, Copenhagen, Denmark, June 1992. ACM Press.

16. Gerard Salton. The SMART Retrieval System. Prentice-Hall, Inc., New Jersey,
USA, 1971.

17. Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic
text retrieval. Information Processing and Management, 24(5):513–523, 1988. Also
reprinted in [14, pages 323–328].

18. Gerard Salton and Michael Lesk. Computer evaluation of indexing and text pro-
cessing. Journal of the ACM, 15(1):8–36, January 1968. Also reprinted in [14,
pages 60–84].

19. Fabrizio Sebastiani. Machine learning in automated text categorization. ACM

Computing Surveys, 34(1):1–47, 2002.
20. Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,

Heidelberg, Germany, 1995.
21. Ellen M. Voorhees. The TREC-8 question answering track report. In Ellen M.

Voorhees and Donna K. Harman, editors, Proceedings of the 8th Text REtrieval

Conference, pages 77–82, Gaithersburg, Maryland, USA, November 1999.
22. Yiming Yang. Expert network: effective and efficient learning from human de-

cisions in text categorisation and retrieval. In W. Bruce Croft and Cornelis J.
van Rijsbergen, editors, Proceedings of the 17th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 13–22,
Dublin, Ireland, July 1994. Springer-Verlag.

23. Yiming Yang and Xin Liu. A re-examination of text categorization methods. In
Marti A. Hearst, Fredric Gey, and Richard Tong, editors, Proceedings of the 22nd

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 42–49, Berkeley, CA, USA, August 1999.
24. Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in

text categorization. In Douglas H. Fisher, editor, Proceedings of the 14th Interna-

tional Conference on Machine Learning, pages 412–420, Nashville, TN, USA, 1997.
Morgan Kaufmann Publishers, Inc.


