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Abstract: The problem of missing data is frequently met in time series analysis. If not appropriately
addressed, it usually leads to failed modeling and distorted forecasting. To deal with high market
uncertainty, companies need a reliable and sustainable forecasting mechanism. In this article, two
propositions are presented: (1) a dedicated time series forecasting scheme, which is both accurate and
sustainable, and (2) a practical observation of the data background to deal with the problem of missing
data and to effectively formulate correction strategies after predictions. In the empirical study, actual
tray sales data and a comparison of different models that combine missing data processing methods
and forecasters are employed. The results show that a specific product needs to be represented
by a dedicated model. For example, regardless of whether the last fiscal year was a growth or
recession year, the results suggest that the missing data for products with a high market share should
be handled by the zero-filling method, whereas the mean imputation method should be for the
average market share products. Finally, the gap between forecast and actual demand is bridged by
employing a validation set, and it is further used for formulating correction strategies regarding
production volumes.

Keywords: mean imputation; zero-filling; forecaster; sustainable manufacturing; case study

1. Introduction

To deal with increasingly fierce market competition, manufacturers have transformed
their policies by providing customers with customized products and services, quickly re-
sponding to diversified needs, reducing competition uncertainty, and obtaining satisfactory
services. Manufacturers expect to maintain or even increase their sales through such a
transformation under a potentially increasing inventory pressure. As the green production
and the circular economy have gradually formed a consensus between production and
sales, manufacturers have tried to address the above challenges and turn them into a posi-
tive force to solve market uncertainty and effectively manage their inventory of existing
production models.

During the last two decades, significant research work has been reported in the lit-
erature. This work has demonstrated that demand forecasting is one of the main tools
for evaluating and maintaining the market and has become the cornerstone of companies’
decision-making strategies [1–12]. In practice, demand forecasting includes at least two
parts, namely, production forecasting and inventory control. Production forecasting relates
to actual sales, and the time series analysis has become one of the best solutions for sales
forecasting. The use of time series models to assist business decision-making has proven
its success in many sectors and industries, such as energy consumption forecasting in the
petrochemical industry [13,14], station expansion and capacity growth forecasting in the
bus system [15], and economic and financial growth forecasting [16]. The current literature
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on inventory control is often associated with supply chain management research [3,7,8,11].
Different production modes, such as make-to-stock (MTS), make-to-order (MTO), assembly-
to-order (ATO), and build-to-forecast (BTF), apart from providing downstream customers
with different levels of customized services, enable manufacturers to verify their manage-
ment ability to balance revenue generation and inventory control.

From a practical viewpoint, companies require both accuracy and sustainability from
the predictive models. Usually, there is a difference between observed and forecast results.
Thus, the prediction results may not necessarily be acceptable (model accuracy) or reason-
able (model sustainability). Conducting a verification process (accepted and certificated by
companies) before selecting the predictive models is very important to effectively respond
to this difference. For example, the sales record of commercial activities will inevitably
encounter the no-order situation (for a day or consecutive days), not only during holidays
but also during normal working days. However, in sales forecasting, the subjective com-
ments (considering that the no-order situation is occasional and rare) often dominate the
objective sale results and are unacceptable for predicting zero sales. They may also affect
the preprocessing data methods before modeling. For example, in terms of data storage,
records of no orders are usually indicated as blanks. In the following analysis, these blank
records are classified as missing data, and the original series is defined as incomplete.

In the currently available literature on time series analysis with missing data, it has
generally been assumed that the missing data are randomly missed, i.e., missing at random
(MAR) or missing completely at random (MCAR). Moreover, different data imputation
methods have been discussed and compared, and predictive modeling for the imputed
data series has been performed [17–26]. The zero-forecasting method, which is used to
predict a rare event or an intermittent demand [27], has also been reported. Since a rare
event is treated as a particular case as part of a business activity and the result is always
predicted as zero, this method is not as popular as other methods, which are based on
statistical learning (such as the autoregressive integrated moving average (ARIMA)) or
machine learning (such as the long short-term memory (LSTM)). In the research conducted
on intermittent demand forecasts, the missing data are preprocessed either by combining
adjacent time periods [8] or by defining the missing value as noise and then smoothing it
out [7,21] or using min-max normalization to revise the data [9]. Then, the transformed data
series is processed using a typical time series analysis. Generally, in the studies reported
in the literature, the best solution is sought to obtain a better model accuracy. Compared
with model accuracy, in model sustainability, the long-term data background is observed
and understood both before and after modeling. In actual business activities, companies
may accept the additional costs predicted by inaccurate forecasting results. For example,
overproduction will increase the inventory cost (high forecast, but low actual demand),
and underproduction will increase the labor cost because of the overtime work required
(low forecast, but high actual demand). Therefore, companies are concerned about taking
appropriate actions in the shortest possible time to correct the discrepancies caused by
forecasting. Moreover, the nature of the data is a key issue.

This article aims to determine appropriate methods that are capable of dealing with
missing data by establishing an accurate and sustainable forecasting model on the basis
of a specific sales data background and to provide a business reference. To this end, a
set of real sales data regarding plastic injection tray products is empirically investigated.
The products are the outer trays of consumer electronics chips; MTS and MTO are the
company’s existing production modes. Many blank records in the dataset exist. In this
article, zero-filling values in place of the blank records are proposed. Then, time series
forecasting is performed on the recovered series. The results are compared with those
obtained from the mean imputation method applied to different forecasters, including the
Naive forecasting, the ARIMA, and the LSTM. As a conclusion, managerial insights are
also proposed.
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The rest of this article is organized as follows. The literature review is presented in
Section 2. The materials and methods used are described in Section 3, and the numerical
results are presented in Section 4. Section 5 provides the discussion and conclusion.

2. Literature Review
2.1. Analysis of Time Series with Missing Data

Nowadays, the time series analysis is widely applied in various sectors, including con-
sumption and businesses [5,9,10,22,28,29], demand forecasting and supply chains [1–3,6,7,11,12],
economics [30], industrial applications [4], traffic and automatic system controls [8,21,31], me-
teorology and the environment [17], epidemiology [19,20,23–25], and others [26,32,33]. In
the above studies, the authors have proposed assumptions regarding time series data, the
corresponding modeling methods, and evaluation indicators for various contexts.

The problem of missing data is frequently met in time series analysis. This issue, if
not appropriately addressed, usually leads to failed modeling and distorted forecasting.
The Kalman filter is a tool used to calculate the likelihood of a stationary autoregressive
moving average (ARMA) process which describes how the missing data are handled
during modeling in both the stationary ARMA and nonstationary ARIMA processes.
These studies [14,15] are based on the assumption of normal distribution and estimate the
marginal likelihoods.

Furthermore, Kohn and Ansley [16] demonstrated the prediction and interpolation of
missing data and used the mean squared error (MSE) metric for performance evaluation.
Their work is considered to be a milestone in the research of forecasting time series with
missing data. Assisted by the innovation and development of machine learning and deep
learning algorithms along with the computing performance of modern computers, further
developments in time series forecasting with missing data have been achieved.

2.2. Missing Data Processing

The improper processing of missing data definitely affects the analysis results and
the subsequent decision-making process. A general mechanism of missing data based
on randomness includes MAR, MCAR, and missing-not-at-random (NMAR) [34–36] data.
Here, it is assumed that data are missed because of human involvement during the data
collection process. In reality, determining whether the data are entirely missed randomly is
a challenging task because of various reasons. For example, in recent years, missing data
due to machine maintenance, failed devices, delayed transfer, and other factors have been
reported [20,37]. The general approaches used to handle missing data include deletion,
mean substitution by valid observations, mean substitution by adjacent observations [38],
and maximum likelihood estimation [39,40]. The machine learning approach [41] has also
recently been presented. These approaches have become the principal mode of processing
missing data in recent decades. The min–max normalization for smoothing noisy data,
eliminating outliers, and fixing gaps due to missing data [9,10] has also been reported.

In recent years, the articles related to the keyword of missing value have mainly
discussed the imputation and estimation methods. For example, multivariate imputation is
recommended for food composition data [42]. Deep learning methods are recommended
to deal with the missing value for water quality monitoring due to differences in sensor
systems. In articles related to the keywords of both sale forecasting and missing value, the
recommended methods are based on whether the data are traceable or not. For example,
the missed E-commerce data can be filled by front-end operations [43]. If data are randomly
missing and this is not easy to investigate, for example, in the retail business, mean and
median imputation methods are mostly recommended [44–48]. For the food and beverage
service in restaurants, the missing value would be due to the fact that no customers ordered
them (zero order) or the stores were closed (no service). To avoid causing the inferior model
fits, such circumstances are suggested to remove missing records before modeling [49].

The original data can be revised by employing any of the above approaches. In
practice, it is most important to first recognize the background data. Suppose that the
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reason for the missing data is known (no orders collected; company out of power due to
snow), and the source of missing data is traceable (customers do not work on holidays or
they choose other products; the company cannot serve customers before power recovery)
and retrievable (missing data should be recorded as zeros in both cases). In this case, it is
not necessary to impute any values instead. In this article, the methods of deletion, mean
imputation, and filling with zero are used with different time series forecasters for handling
missing data.

2.3. Classic and Modern Time Series Forecaster

The classic time series forecasters are based on statistical learning and include the
Naive forecasting [4,7,50], the moving average [2–4,7,22,32,33], the exponential smooth-
ing, the ARMA [14,28,51], and the ARIMA [6,14–18,24,26,28–30,50–52] processes. The
modern time series forecasters include machine learning and deep learning algorithms
such as the support vector regression [6,10,11], k-nearest neighbor [10,31], artificial neural
network [1,7,33], recurrent neural network (RNN) [6,9,10,12], and LSTM [6,9,10,29,30,53]
algorithms. Recently, a comparison between the statistical learning and modern approaches
in either simulated or real datasets with or without missing data has been reported in the
literature [1,10,12,28–30].

2.4. Indicators for Evaluating Time Series Forecasters

In the literature, there are many indicators available for evaluating and comparing
the model performance. The most frequently used indicators are the mean squared er-
ror MSE [1,4,16,29,33], root mean squared error (RMSE) [4,5,9,16,19,21,22,25,26,28–30,51],
mean absolute error (MAE) [5,7,11,12,19,24,25,33], and mean absolute percentage error
(MAPE) [1,36,54,55], which are used for calculating accuracy. The MSE and RMSE are
calculated using the mean as the center. They are susceptible to missing data and outliers
(the variance is increased) and stable while employing the mean imputation (the variance is
reduced). The MAE and MAPE only calculate absolute values; the forecasts are supposed
to be positive, and the negative predictions are ignored. In specific applications, such as air
pollutants [25] and the sale forecasting of consumer products [10], these two indicators are
more accepted and more persuasive than the MSE and RMSE. The MAPE is more sensitive
than the MAE since it is formatted as a percentage, but its drawback is that it is not compat-
ible with symmetry, and the results cannot be calculated when the original observations
have zero values. Additional indicators, such as the symmetric MAPE [9,10,31,56] and the
mean absolute scaled error (MASE) [5,6], are specifically used for enhancing and correcting
the limitations of MAPE.

3. Materials and Methods

In this article, the data used for the empirical study were obtained from a plastic
injection product manufacturing company. Its main business line is to provide downstream
firms, which produce electronic chips (such as Sim Cards, ICs, Smart Cards, and Flashes),
with packaging boxes (also called trays) of various specifications. In recent years, the theme
of green production and the circular economy has been widely discussed and advocated.
The recycled used trays are cleaned and reused, or remelted and reinjected to make products
with different specifications. These are the practices proposed by manufacturers to deal
with market competition. These practices are also environmentally friendly.

Conversely, the above practices have changed the previous supply and demand model.
For example, the cycle of customers placing the orders is no longer fixed, the selection of
new product specifications continues to increase, but the frequency and amount of a single
product demand and a single order form may decrease. These revised business activities
also increase the records of zero sale events during a typical working day. To deal with
these new cases in their operations, companies must renew their service model and they
require more comprehensive scientific management.
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In this article, the flowchart presented in Figure 1 was designed to include data
acquisition, data preprocessing, modeling, evaluation, and till deployment. Two tasks
were arranged in the preprocessing data phase: data transformation and missing data
processing. The original data were initially transformed from a daily to a weekly format.
Then, both the zero-filling and mean imputation methods were used to fill with values in
the transformed series. Subsequently, the models designed by combining the missing data
processing methods (zero-filling and mean imputation) and the forecasters in the modeling
phase were applied to the filled series. The MAPE and MASE were used as indicators
for model evaluation. A set of unused data (extracted from the transformed series) was
explicitly used for model deployment to validate that the selected model was sustainable.
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3.1. Data Preprocessing

Because of commercial confidentiality, customer information and product prices were
removed from the data used in this article in advance. The raw data used were the order
records of plastic injection products collected from 1 January 2017 to 30 September 2019. To
validate the analysis results, the data were filtered, and the top 10 products in 2018 (fiscal
year) were selected. The following two assumptions were considered in the analysis: the
first one considered the exact unit price, regardless of differences in the specifications; the
second one considered that there was no substitution effect between products.

3.1.1. Definitions of and Equations for RMS and MGR

The relative market share (RMS) and the market growth rate (MGR) are significant
indicators for creating a Boston Consulting Group (BCG) Matrix (first introduced by Dr.
Bruce D. Henderson, the Boston Consulting Group, 1970) [57,58]. The BCG Matrix is also
called the Product Portfolio Matrix. A typical 2 × 2 matrix is used to position a firm’s
competitiveness or a brand product in the local or global market. From a practical point of
view, the term RMS relates to cash generation and cash usage performance.

Relative market share (RMS). The RMS is used to evaluate how far an owned product
is from its leading competitor in the market. This indicator represents the competitiveness
and completeness of a company’s products or brands. A high competitiveness leads to
obvious and immediate high profits (the cash) for a company. However, if the company’s
profit highly depends on a single or a few products, different business problems may arise,
once the demand changes. A company with a high market share can gradually expand and
boost the growth of other products and establish a complete commercial strategic value
and market position. The RMS equation is given as follows:

RMS =
Firm or Brand′ s Sales this year

Leading competitor′ s Sales this year
× 100% (1)
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The RMS is always a positive value, and its maximum value is 100% (or 1.00). Fur-
thermore, by adopting the midpoint value (0.50), the market share status (of the product
or brand) is indicated. For example, an RMS greater than or equal to 0.50 indicates a high
(market) share, whereas an RMS less than 0.50 indicates an average (market) share.

Market growth rate (MGR). The MGR is used to measure the degree to which a firm’s
or brand’s capital gain grows or declines year on year. This indicator represents the degree
of change (increase or decrease) in the sales performance or the market share in a specific
time (typically a year). The MGR equation is given as follows:

MGR =
Firm or Brand′ s Sales this year− Firm or Brand′ s Sales last year

Firm or Brand′ s Sales this year
× 100% (2)

The MGR can reach a very high positive or negative value. If there is no sales record
in the previous fiscal year, it cannot be calculated. A 10% annual rate is usually used to
assess whether the growth is significant or not. A growth rate of more than 10% indicates a
high growth, whereas a growth rate of less than 10% indicates a slow and moderate growth.
Accordingly, an annual (negative) growth rate lower than −10% indicates a high decline,
whereas a (negative) growth rate higher than −10% indicates a moderate decline.

3.1.2. Missing Data Processing Methods

In this article, the mean imputation and the zero-filling methods were proposed for
processing missing data.

Mean imputation. According to its name, in this method, the missing data are replaced
by their mean value, which is calculated from other valid data of a variable where the
missing data are located. The advantage of this method is that the calculation is simple.
Its disadvantage is that both the mean and standard deviation indicators increase after
imputation.

Zero-filling. This method is also an imputation-type method, but the missing data
are replaced by zeros. From the time series perspective, this method can explain why the
data of a specific event (for example, the sale orders) have not been effectively collected at
a specific timestamp (for example, during weekends or national holidays). In addition to
retaining the nature of the data, the imputed series is also characterized by completeness.

Compared with the mean imputation, the zero-filling method can overcome the
disadvantage of the mean value becoming large. Its disadvantages are a more significant
variance and not being able to calculate the MAPE.

3.1.3. Data Split into Training, Test, and Validation Sets

The filled series (weekly format) are split into training, test, and validation sets. Table 1
summarizes the definition of each set. The ratio between these sets is 8:2:1.

Table 1. Definition of Training, Test, and Validation sets.

Set Period # Of Weeks The Use

Training 3 January 2017–31
December 2018 104 (72.72%) Train the models

Test 1 January
2019–30 June 2019 26 (18.18%) Test if the trained models are

appropriate

Validation 1 July 2019–
30 September 2019 13 (9.09%)

Validate the performance of
trained models deployed on
unused data

3.2. Forecaster

In this section, the Naive forecasting, the ARIMA, and the LSTM methods are intro-
duced. These three forecasters were selected on the basis of their specific characteristics.
The Naive forecasting method is one of the most frequently used tools by companies. It is a



Sustainability 2022, 14, 2382 7 of 21

quick and easy method to use, but its latter forecasts are significantly affected by its former
ones, especially when some impacts and uncertainties are not immediately observed (for
example, in the case when a former forecast has failed and many latter forecasts become
worse). The ARIMA method provides complex but delicate parameter settings. In this
model, autoregression and moving average models are integrated, even if the series is
stationary or not. The ARIMA is also a data-driven model; it can switch to the ARMA, AR,
MA, or even seasonal SARIMA (SARIMA) models, depending on the data characteristics
(trend, cycle, seasonality, and more). An effective ARIMA model requires the series data to
be complete, but missing data will be frequently encountered in time series analysis. The
LSTM is based on RNNs and can address the issue of missing data existence, either by
doing nothing (directly ignoring the missing data) or accepting any specific imputation
(single or multiple). Overfitting may also occur after executing a large number of iterations.

3.2.1. Naive Forecasting

The Naive forecasting model [50] is the most straightforward time series approach and
one of the most frequently used tools by companies. By definition, the last observation of the
series is the forecast of the following data point. This is described by the following equation:

yt = ŷt+1 (3)

where yt is the observation at time t and ŷt+1 is the forecast at time t + 1. This approach
works remarkably well for many economic and financial time series [50].

3.2.2. ARIMA

The ARIMA [50,52] model is one of the most widely used approaches in time series
forecasting. In this approach, the autoregression and moving average models are integrated.
The approach also considers series stationarity and the selection of series transformation.
The augmented Dickey–Fuller (ADF) test and the Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) test [59] are valuable tools for detecting series stationarity. Initially, the ADF test is
used to check if the series is trend stationary. Then, the KPSS test is used to check if the
series is simply difference stationary, even if the series is stationary. Sometimes, modeling
may still be complicated because of the presence of white noise and cycle behavior (no
trends, no seasonality). To deal with this problem, data transformation, such as differencing
and other methods (for example, smoothing and shift), can be used.

Three main parameters are required to configure the ARIMA model; p refers to the
AR model, d denotes the integration steps, and q refers to the MA model. For a stationary
series, autoregression is modeled using a linear combination of a variable’s past value. In
other words, the term autoregression means a regression of the variable against itself. An
autoregression model of order p is expressed as AR(p), which is formed as follows:

yt = c + δ1yt−1 + δ2yt−2 + · · ·+ δpyt−p + εt (4)

where εt is the white noise and yt is the forecast value using its lagged value as the predictor.
A moving average model of order q is expressed as MA(q), which is a regression-like

model and is formed as follows:

yt = c + εt + θ1εt−1 + θ2εt−2 + · · ·+ θpεt−q (5)

where εt is the white noise and yt is the weighted moving average of the past few forecast
errors (lagged errors). Generally, by combining differencing with an autoregression and
a moving average model, a nonseasonal ARIMA model is obtained. This is expressed as
ARIMA (p, d, q), which is formed as follows:

y′t = c + δ1y′t−1 + δ2y′t−2 + · · ·+ δpy′t−p + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q + εt (6)
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where y′t is a forecast of the transformed series after differencing and the predictors include
the lagged values of yt and the relative lagged errors. The parameters p and q represent the
order of the autoregression and the moving average model, respectively, and d denotes the
steps of differencing conducted (if necessary) to integrate these two models.

The basic steps to build the ARIMA model involve first conducting the ADF and KPSS
tests and then checking if the transformed series (after differencing) is stationary. The next
step is to determine the best combination of p and q. The final step is to confirm whether
the white noise follows the normal distribution.

3.2.3. LSTM

The LSTM is one of the most popular predictive models used in recent years. It was
first introduced by S. Hochreiter and J. Schmidhuber in 1997 [53]. The LSTM prototype
comes from an RNN, which is a class of neural network models. By configuring memory
feedback during the learning process, an RNN can improve the feedforward learning
constraint, which exists in convolutional neural networks (CNNs). It then reduces the
bias caused by overlearning. Based on an RNN, the LSTM can solve other complicated
problems, which are derived from adding different background factors during the learning
process, for example, how to set the feedback position when the occurrence of events is no
longer in a fixed order; alternatively, whether the learning memory should be retained or
dropped if the time interval is inconsistent, etc. The usual case is the following: in a fixed
order of events (for example, first is event A and then followed B, C, D, and E), either C or
D could be in a feedback loop, but what if B or E is missing?

The LSTM includes an input gate, an output gate, a forget gate, and a cell. The
information enters the cell through the gates and exits as numbers (between 0 and 1). A
zero means that all the information has been completely dropped out, whereas a one means
that all the information has been completely retained. Figure 2 shows a diagram of an
LSTM with a single cell.
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From the input xt to the output ht, four functions are executed in a single cell. These
functions are divided into three steps and then are integrated (by applying the addition
and multiplication operations) step by step, until the output ht is ready to be produced.

In Step 1, a function, ft, is used to determine the information to be dropped out of
the cell state. This function is a typical sigmoid function involving the input xt, the output
ht−1 of the previous cell, the weighted decay Wt, and the bias b f . The output is a number
between 0 and 1, which is then multiplied with Ct−1 of a previous cell and moves forward.
ft is described as follows:

ft = σ
(

W f ·[ht−1, xt] + b f

)
, 0 ≤ ft ≤ 1 (7)
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Step 2 includes two functions (it and Ct), which represent the retained information
and a new candidate vector, respectively. This vector is created by the hyperbolic tangent
function (tanh). This step is used to decide the new information to be stored in the cell state.
This information is then added to the output generated in Step 1 and moves forward. it, Ct,
and Ct are given as follows:

C̃t = tanh(Wc·[ht−1, xt] + bC)
it = σ(Wi·[ht−1, xt] + bi)

Ct = ft × Ct−1 + it × C̃t

(8)

Step 3 is used to decide the information to be exited from the cell. The output function
ot is executed by a sigmoid function involving the input xt, the output of the previous cell
ht−1, the weighted decay Wo, and the bias bo. ot is described as follows:

ot = σ(Wo[ht−1, xt] + bo) (9)

The last update of the cell state Ct (obtained from Step 2) is first created by applying
tanh (i.e., values between −1 and 1 are produced). It is then multiplied with the output
function Ot to generate the final output ht of the cell as follows:

ht = ot × tanh(Ct) (10)

3.3. Model Performance Indicator

By combining the missing data processing methods (Section 3.1.2) and the proposed
forecasters (Sections 3.2.1–3.2.3), a total of six combined models are obtained. These include
Naive forecasting + zero-filling, Naive forecasting + mean imputation, ARIMA + zero-
filling, ARIMA + mean imputation, LSTM + zero-filling, and LSTM + mean imputation.
Each of the selected products implements the six combined models and evaluates the model
performance based on the produced indicators. Based on the original series, which includes
missing data, and the zero-filling method proposed in this article, the MAPE is defined as
the first indicator that evaluates and filters which combined model is the most appropriate.
The second indicator used for further filtering is the MASE, an indicator that can handle
zero counts. These two indicators are used to filter the models and help evaluate if the
selected models are reliable.

3.3.1. MAPE

The MAPE is defined as a loss function type by its definition [60]. Similar to other
indicators (including the MSE and RMSE), the MAPE is widely used for model accuracy
evaluation. This indicator transforms the initial deviation into an absolute value form.
In other words, it imposes a heavier penalty on the positive errors usually caused by
overestimation. The MAPE equation is given below:

MAPE =
1
n

n

∑
i=1

∣∣∣∣Ai − Fi
Ai

∣∣∣∣× 100% (11)

where Ai and Fi are the actual value and the forecast value, respectively, of the i-th data
point and n is the length (or the number of forecasts) in a given period. A small MAPE
value means that, on average, the selected model provides relatively accurate results. The
two drawbacks of MAPE are as follows: (1) its inability to handle zero values [61] and
(2) the asymmetry problem due to large numbers [55]. The MAPE is unable to calculate
if an actual value corresponds to the missing data. Even so, it is relatively effective in
using zero values to replace the missing data since the calculated MAPE indicator is always
positive. Moreover, it imposes a relatively heavy penalty for positive errors caused, for
example, by overestimation [62].
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3.3.2. MASE

The MASE was first proposed by Hyndman and Koehler in 2005 [61]. It is a scale-
independent indicator for measuring the forecasting accuracy. Because of its scale-independent
characteristic, the MASE handles the zero values directly and imposes an equal-weight
penalty on both the positive errors (caused, for example, by overestimation) and the neg-
ative errors (caused, for example, by underestimation). Generally, the MASE overcomes
the significant drawbacks of the MAPE. For time series data, if they are nonseasonal, the
MASE is calculated using the following equation:

MASE =
Validation MAE

Training MAE of naive forecasts
=

1
v ∑n+v

t=n+1|et|
1

n−1 ∑n
t=1|Yt−1 − Yt|

× 100% (12)

The denominator is the mean absolute error of the one-step Naive forecasting on a
training set with n data points. If the series contains seasonal factors, the period t of the
training set is redefined. A MASE value of less than one means that the proposed model
produces more minor errors than a one-step Naive forecasting [37]. In other words, a MASE
value greater than one means that the performance of the proposed model is worse than
that of the Naive forecasting.

3.3.3. Within-Mean Difference

To effectively illustrate the achieved performance of the selected models on the vali-
dation set, a specific indicator named within-mean difference (WD) is introduced in this
article. The WD is the percentage difference (%) between the forecast and the actual values,
when it is applied to the validation set. The WD formula is given as follows:

WDValidation =
ForecastValidation −ActualValidation

Forecast Validation
× 100% (13)

A WD value close to zero indicates that the difference between the forecast and the
actual values is small, which means that the selected models perform well. A positive
WD value indicates that the selected models lead to overestimation, whereas a negative
WD value indicates that the trained model lacks fitting (i.e., insufficient estimation). When
a WD exceeds 100% or drops below −100%, it is recommended not to further use these
models because of their poor performance.

3.4. Research Questions

Through the empirical analysis, this article aims to answer the following two classic
research questions:

RQ1: Which combination of the missing data processing methods (deletion, mean
imputation, and zero-filling) and the forecasters (ARIMA, LSTM, and Naive forecasting)
achieves the best performance (MAPE, MASE) for specific products?

RQ2: Which missing data processing method is mostly recommended for individual
forecasters?

4. Numerical Results
4.1. Used Data Background

In this empirical study, a real dataset of daily sale records of plastic tray products
was used. The data were collected from 1 January 2017 to 30 September 2019. Table 2
presents the change in cumulative sales from the best 10 to the best 50 sold products. As
shown in Figure 3, a decreasing trend was observed from 2017 to 2018 and continued until
September 2019. By combining Table 2 and Figure 3, even if the company provides more
than 390 product options each year (the options will not be the same each year), the top
50 sold products will account for more than 70% of the sales in the entire year. Furthermore,
the sales of the top 10 sold products will account for a half or more of those of the top
50 sold products.
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Table 2. Annual cumulative sales (%), top 50 products sold.

Year Top 10 Top 20 Top 30 Top 40 Top 50

2017 44.516% 60.753% 69.223% 75.406% 80.593%
2018 35.928% 52.434% 62.699% 70.093% 76.215%

2019 (January–September) 35.480% 50.919% 61.434% 68.694% 74.266%
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Among the 60090 orders collected, sales records existed for 576, of which six products
repeatedly (in 2017, 2018, until September 2019) became the top 10 sold products of the year.
Table 3 describes the change of the cumulative sales percentage (%) of the top 10 sold and
the six recurring products. Two critical observations can be extracted. First, the six recurring
products accounted for more than 20% of the annual sales, indicating that downstream
customers have a certain degree of dependence on purchasing specific products. Second,
the other four products (also in the top 10 sold, but not the same) were combined and
accounted for approximately 13–18% (see the Difference row) of the annual sales, indicating
the diversity of demands and the complexity of multiproduct management.

Table 3. Accumulated sales proportion (%), Top 10 sold.

2017 2018 2019 January–September

(1) Top 10 sold 44.516% 35.928% 35.480%
(2) The Recurring 6 26.619% 20.658% 22.011%

Difference = (1)–(2) 17.897% 15.2780% 13.469%

As it was the best-sold product in 2018, the BGA 8 × 13 mm was selected as the
benchmark learning object, and its RMS-18 was defined as 1.00. According to Section 3.1.1,
the calculated MGR-18 of product BGA 8 × 13 mm was 0.33. The other nine products
of the top 10 sold in 2018 were compared with the product BGA 8 × 13 mm. Then, the
corresponding RMS-18 indicators were calculated.

Table 4 summarizes the RMS-18 and MGR–18 of the top 10 sold products in 2018.
Although six of them were repeated in the top 10, even if some were ranked high, the
growth rate exhibited a decline year by year. According to the criteria defined for the RMS
and MGR (Section 3.1.1), the top 10 sold products can be categorized into four groups:
high share and high growth, high share and high decline, average share and high growth,
and average share and high decline. From each group, a specific product was selected for
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further time series analysis (BGA 8 × 13 mm, TSOP II 54/86P, TQFP 14 × 14 × 1.4, TSOP II
54/86 135′C, respectively).

Table 4. RMS–18 and MGR–18, top 10 sold of 2018.

Product
Sales Rank

RMS-18 MGR-18 Group
2017 2018

BGA 8 × 13 mm 4 1 1.00 0.33 high share and high growth
TSOP I 12 × 20 mm JEDEC TRAY 2 2 0.84 −0.12 high share and high decline
BGA 8 × 12.5 3 3 0.79 −0.14 high share and high decline
TSOP II 54/86P 1 4 0.66 −0.41 high share and high decline
BGA 7.5 × 13mm 60 5 0.64 11.76 high share and high growth
TQFP 7 × 7 × 1.4MM 7 6 0.57 0.08 high share and average growth
QFN 9 × 9 8 7 0.54 0.49 high share and high growth
BGA 11.5 × 13 6 8 0.47 −0.14 average share and high decline
TQFP 14 × 14 × 1.4 9 9 0.45 0.29 average share and high growth
TSOP II 54/86 135′C 400 × 875 mil 5 10 0.41 −0.38 average share and high decline

4.2. Review of the Missing Data Behavior

Table 5 summarizes the amount of missing data presented in daily and weekly formats
for training, test, and validation. In the daily format, the amount of missing data was
high, but it significantly reduced after transformation into the weekly format. Either using
zero-filling or mean imputation, the commonly used statistics, such as the mean and sum
were not significantly different when calculated on the basis of the weekly data format.
However, using the daily data format, they were quite different.

Table 5. Amount of missing data.

Product

Daily Weekly

Training
(728)

Test
(181)

Validation
(92)

Training
(104)

Test
(26)

Validation
(13)

BGA 8 × 13 mm 312 75 31 1 0 0
TSOP I 12 × 20 mm JEDEC TRAY 280 119 60 2 4 0
BGA 8 × 12.5 267 83 49 0 1 1
TSOP II 54/86P 278 105 50 1 1 0
BGA 7.5 × 13mm 400 62 33 9 1 0
TQFP 7 × 7 × 1.4MM 333 111 55 2 1 0
QFN 9 × 9 299 84 35 0 1 0
BGA 11.5 × 13 361 82 32 1 1 0
TQFP 14 × 14 × 1.4 354 114 43 2 1 0
TSOP II 54/86 135′C 400 × 875 mil 342 89 38 1 1 0

4.3. Model Comparison

For each group identified in Table 4, the representative samples selected for the analysis
were the BGA 8 × 13 mm, TSOP II 54/86P, TQFP 14 × 14 × 1.4, and TSOP II 54/86 135′C
products. Tables 6–9 present general comparisons. The following rules were adopted for
model selection:

• Rule 1: In the test, both the MAPE and MASE are the smallest among all the models.
Considering that the zero values affect the MAPE calculation, the smallest MASE is
satisfied first;

• Rule 2: If Rule 1 is not satisfied, the minimum MASE model in the validation is selected.
If this MASE is more significant than 100%, go to Rule 3;

• Rule 3: If both Rules 1 and 2 are not satisfied, the minimum WD model in the validation
is selected.
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4.3.1. BGA 8 × 13 mm

For the product BGA 8 × 13 mm, Table 6 summarizes the model evaluation (Test)
and model deployment (Validation) performance. The ARIMA + zero-filling model was
selected according to the adopted rules (Rules 1 and 2). Furthermore, a negative WD
(−16.817%) indicated that the forecast values were underestimated by approximately 17%
compared with the actual values. If this model is adopted in decision making, then the
forecast production volume may be insufficient to meet the actual demand. In this case,
the company should further evaluate and incorporate this expected gap in the decision-
making process of the production and inventory management. For example, considering
the stipulated safety stock and the first-in-first-out principle, the planned output must be
increased by 17%.

A careful observation of Table 6 reveals that regardless of the forecaster it is combined
with, the zero-filling method almost achieved the best performance in the model evaluation
and deployment. Among the individual forecasters, and the ARIMA achieved the best
performance, followed by the LSTM and the Naive forecasting models. Figure 4 presents
a trend chart of the BGA 8 × 13 mm deployment, including the actual value, the forecast
value, and the forecast value plus the proposed 17% expected gap. After adding the
expected gap, the difference between the actual and the forecast values appeared more
randomly. The MASE of the Validation was reduced to 64.447%, and the WD was best at
−2.975%.
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Table 6. Model evaluation and deployment, BGA 8 × 13 mm.

Model
Test (Model Evaluation) Validation (Deployment)

MAPE MASE MAPE MASE WD

Naïve forecast + zero-filling 61.497% 100.215% 33.202% 95.433% 1.341%
Naïve forecast + mean imputation 61.497% 102.409% 33.202% 97.522% 1.341%
ARIMA + zero-filling 42.955% 82.548% 23.790% 72.481% −16.817%
ARIMA + mean imputation 42.968% 84.080% 23.793% 74.119% −16.915%
LSTM + zero-filling 50.246% 82.317% 32.096% 92.897% −19.655%
LSTM + mean imputation 49.580% 85.797% 31.996% 96.361% −23.133%

4.3.2. TSOP II 54/86P

Table 7 summarizes both the model evaluation (Test) and the deployment (Validation)
for the product TSOP II 54/86P. The selected model was the Naive forecasting + zero-filling,
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which exhibited the smallest MAPE and MASE in the Test and the smallest MASE in the
Validation. The WD of the Validation was 12.534%, indicating that the forecast values were
overestimated by approximately 13% compared with the actual values. In other words,
by officially adopting this model, volume overproduction can be expected with a 13%
reduction in the planned output.

Table 7 shows that the zero-filling method performed better (smaller MAPE and
smaller MASE) than the mean imputation method, regardless of the forecaster used (i.e.,
the Naive forecasting, the ARIMA, or the LSTM). Among the individual forecasters, Naïve
forecasting achieved the best performance, followed by the ARIMA and the LSTM models.

Figure 5 presents a trend chart of the TSOP II 54/86P deployment. Because of the
Naive forecasting characteristics, the patterns before and after adding the expected gap
were almost identical. The MASE of the Validation was reduced from 56.681% to 53.409%,
and the WD was best at −0.536%.
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Table 7. Model evaluation and deployment, TSOP II 54/86P.

Model
Test (Model Evaluation) Validation (Deployment)

MAPE MASE MAPE MASE WD

Naïve forecast + zero-filling 50.738% 38.653% 699.579% 56.681% 12.534%
Naïve forecast + mean imputation 882.065% 46.659% 699.579% 56.826% 12.534%
ARIMA + zero-filling 174.608% 56.240% 304.924% 86.779% 340.624%
ARIMA + mean imputation 302.329% 49.508% 173.959% 68.970% 918.302%
LSTM + zero-filling 575.984% 76.111% 1023.013% 81.146% 54.783%
LSTM + mean imputation 1050.151% 78.380% 1051.086% 86.291% 56.368%

4.3.3. TQFP 14 × 14 × 1.4

Table 8 summarizes the model evaluation and deployment of the product TQFP
14 × 14 × 1.4. The results show that only Rule 3 applied. The Naive forecasting + mean
imputation model was used because of its relatively low MASE. The WD of the Validation
was −3.049%, a relatively low figure; thus, there was no need to immediately add the
production volume. Furthermore, regardless of the missing data processing method, the
ARIMA performed relatively better than the LSTM and the Naive forecasting model. On
the other hand, regardless of the forecaster used, it was not easy to decide whether the
zero-filling or the mean imputation performed better.
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Figure 6 presents a trend chart of the TQFP 14 × 14 × 1.4 deployment. Because of the
characteristics of Naive forecasting, the patterns before and after adding the expected gap
were almost identical. Both the MASE and WD of Validation did not change significantly.
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Model
Test (Model Evaluation) Validation (Deployment)

MAPE MASE MAPE MASE WD

Naïve forecast + zero-filling 882.528% 99.793% 114.510% 184.759% −3.049%
Naïve forecast + mean imputation 891.622% 95.987% 114.510% 183.079% −3.049%
ARIMA + zero-filling 545.710% 99.839% 47.549% 123.946% −85.734%
ARIMA + mean imputation 541.693% 96.296% 47.800% 123.896% −88.193%
LSTM + zero-filling 809.245% 91.828% 71.340% 138.473% −31.468%
LSTM + mean imputation 853.561% 89.138% 68.755% 131.915% −29.215%

4.3.4. TSOP II 54/86 135′C

Table 9 summarizes the model evaluation and deployment results of the TSOP II
54/86 135′C product. The LSTM + mean imputation model was used because it exhibited
the smallest MASE in both the Test and Validation and the smallest WD in the Validation.
A negative WD of −13.230% indicates that the forecast values were underestimated by
approximately 14% compared with the actual values. Considering the Validation perfor-
mance, the LSTM was better than the Naive forecasting and ARIMA models because of its
smaller MASE and its relatively low WD.

Table 9. Model evaluation and deployment, TSOP II 54/86 135′C.

Model
Test (Model Evaluation) Validation (Deployment)

MAPE MASE MAPE MASE WD

Naïve forecast + zero-filling 151.265% 96.453% 93.899% 88.584% −9.858%
Naïve forecast + mean imputation 150.298% 92.708% 93.899% 89.717% −9.858%
ARIMA + zero-filling 61.544% 59.725% 78.834% 112.287% −313.185%
ARIMA + mean imputation 63.320% 60.291% 78.759% 113.512% −310.384%
LSTM + zero-filling 108.089% 62.501% 90.122% 63.586% −12.818%
LSTM + mean imputation 106.119% 56.574% 92.424% 62.717% −13.230%
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Figure 7 presents a trend chart of the TSOP II 54/86 135′C deployment. It can be
observed that the actual demand fluctuated randomly along the forecast line. The revised
WD was also reduced (from −13.230% to 0.675%) as expected. However, some questions,
such as whether there was a noticeable difference between forecast and actual demands
among single weeks, were not answered. For example, the demand for the week starting at
3 August 2019 exhibited a sharp drop, but the demand for the week starting at 10 August
2019 exhibited a dramatic increase.

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 22 
 

 
Figure 7. Trend chart, the deployed TSOP II 54/86 135′C. 

5. Discussion 
The results presented in Section 4.3 have answered the two research questions set in 

Section 3.4. Table 6 presents the high share and high growth products. It also reveals that 
regardless of the forecaster it was combined with, the zero-filling method almost achieved 
the best performance in the model evaluation and deployment. Among the individual 
forecasters, the ARIMA model achieved the best performance, followed by the LSTM, and 
the Naive forecasting models. Table 7 presents the high share, but high decline (in the last 
fiscal year) products. Again, the zero-filling method performed better than the mean im-
putation method regardless of the forecaster used (i.e., Naïve forecasting, ARIMA, or 
LSTM models). Among the individual forecasters, the Naive forecasting model achieved 
the best performance, followed by the ARIMA and the LSTM models. 

Based on the above results, it is evident that the zero-filling method is the most suit-
able for high market share products. The ARIMA and Naive forecasting models can also 
be used, depending on whether the product grew significantly or seriously declined in 
the previous year. A high market share represents a relatively stable cash flow for compa-
nies that provide many diversified and customized products. Regardless of the growth or 
recession in sales, this is a great challenge and has an impact on cash management. In a 
BCG matrix, the possible roles are the Star and Cash-cows. For a long-term development, 
companies must prioritize the changes in demand for products with a high market share. 

Table 8 presents the average share and high growth products. The ARIMA model 
performed better than the LSTM model, followed by the Naive forecasting model, regard-
less of the missing data processing method. Conversely, regardless of the forecaster used, 
it was difficult to decide whether the zero-filling or the mean imputation is better. Based 
on a smaller WD, the Naive forecasting + mean imputation model is suggested. Table 9 
presents the average share, but in reference to high decline products. The LSTM + mean 
imputation model is suggested in this case. 

The common features of Tables 8 and 9 are those products that both represent the 
average market share and use the mean imputation to deal with the missing data. The 
selection between the Naive forecasting and LSTM models depends on the growth or re-
cession of the last fiscal year. Against the previous two products (BGA 8 × 13 mm and 
TSOP II 54/86P), TQFP 14 × 14 × 1.4 and TSOP II 54/86 135′C products are significantly 
affected by environmental factors. For example, high growth indicates potential, but an 
average share means that the expected potential cannot be fully confirmed and accepted. 

Conversely, high decline means the product is possibly out of fashion but still sur-
vives because the average-share feature means it can still bring in cash. In a BCG matrix, 

Figure 7. Trend chart, the deployed TSOP II 54/86 135′C.

5. Discussion

The results presented in Section 4.3 have answered the two research questions set in
Section 3.4. Table 6 presents the high share and high growth products. It also reveals that
regardless of the forecaster it was combined with, the zero-filling method almost achieved
the best performance in the model evaluation and deployment. Among the individual
forecasters, the ARIMA model achieved the best performance, followed by the LSTM, and
the Naive forecasting models. Table 7 presents the high share, but high decline (in the
last fiscal year) products. Again, the zero-filling method performed better than the mean
imputation method regardless of the forecaster used (i.e., Naïve forecasting, ARIMA, or
LSTM models). Among the individual forecasters, the Naive forecasting model achieved
the best performance, followed by the ARIMA and the LSTM models.

Based on the above results, it is evident that the zero-filling method is the most suitable
for high market share products. The ARIMA and Naive forecasting models can also be
used, depending on whether the product grew significantly or seriously declined in the
previous year. A high market share represents a relatively stable cash flow for companies
that provide many diversified and customized products. Regardless of the growth or
recession in sales, this is a great challenge and has an impact on cash management. In a
BCG matrix, the possible roles are the Star and Cash-cows. For a long-term development,
companies must prioritize the changes in demand for products with a high market share.

Table 8 presents the average share and high growth products. The ARIMA model per-
formed better than the LSTM model, followed by the Naive forecasting model, regardless
of the missing data processing method. Conversely, regardless of the forecaster used, it
was difficult to decide whether the zero-filling or the mean imputation is better. Based on a
smaller WD, the Naive forecasting + mean imputation model is suggested. Table 9 presents
the average share, but in reference to high decline products. The LSTM + mean imputation
model is suggested in this case.

The common features of Tables 8 and 9 are those products that both represent the
average market share and use the mean imputation to deal with the missing data. The
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selection between the Naive forecasting and LSTM models depends on the growth or
recession of the last fiscal year. Against the previous two products (BGA 8 × 13 mm and
TSOP II 54/86P), TQFP 14 × 14 × 1.4 and TSOP II 54/86 135′C products are significantly
affected by environmental factors. For example, high growth indicates potential, but an
average share means that the expected potential cannot be fully confirmed and accepted.

Conversely, high decline means the product is possibly out of fashion but still survives
because the average-share feature means it can still bring in cash. In a BCG matrix, the
possible roles are Problem child and Dogs. Table 10 presents a general summary of the
previous results.

Table 10. General summary of the empirical study.

Group Representative Suggested Model Possible Role in BCG Matrix

High share, high growth BGA 8 × 13 mm ARIMA + zero-filling Star
High share, high decline TSOP II 54/86P Naïve forecasting + zero-filling Cash-cows

Average share, high growth TQFP 14 × 14 × 1.4 Naïve forecasting + mean imputation Problem child
Average share, high decline TSOP II 54/86 135′C LSTM + mean imputation Dogs

6. Conclusions

The primary objective of this article was to prove that a dedicated time series model
can provide accuracy and sustainability for the sales forecasting of a specific product. Part
of the empirical study results achieved this objective. For example, the ARIMA + zero-
filling model can predict high share and high growth products. Although there was an
underestimation of approximately 17%, this gap could effectively be filled by a correction
strategy in real production. The second objective was to prove that a practical observation
of the data background helps the appropriate method for processing the missing data to be
selected. Four specific products with different backgrounds consistently proved that the
zero-filling method achieves the best modeling and deployment performance, regardless
of the forecaster it is combined with. By applying the same modeling process, apart from
the average share and high growth products (no other products were matched), 6 of the
top 10 products sold all led to the same conclusion (see Appendix A). The case company
has recognized the case analysis results. Thus, it can be further confirmed that the two
propositions of this article can be applied to a company’s hot-selling products. They can
also be used as a managerial reference for other companies with similar data backgrounds.

In this article, the empirical case of a univariate analysis was presented and the paper
successfully dealt with the actual case problems related to the sales forecasting performance
for plastic tray manufacturing. By adding other background factors, the contents of the
analysis could be enriched to reduce modeling uncertainty and to provide more accurate
results. From a practical point of view, when a specific model can be applied to other similar
background products and produce effective forecast results, this model can be defined as a
guide model. The integration of the BCG matrix and guidance models would enhance the
efficiency of multi-item demand forecasting decision making. Moreover, the establishment
of the forecasting framework will allow the application of multi-item forecasts. In future
research work, the guide models could be figured out and tested for batch processing and
multiple product management. The advantages of such an approach include a reduced
calculation time, reducing the amount of substitution of other internal products, and
even making a direct purchase list for customers. Companies should conscientiously
master the production and stock management of specific products, continually provide
excellent service regarding fulfillment and shipment, and carefully evaluate the potential
of other products.
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Appendix A. Model Summary of Other Six of the Top 10 Products Sold

Appendix A.1. High Market Share and High Growth Products

Conclusion: Three products included. Following Rule 1 and Rule 2, the zero filling
method generally performedbetter than the mean imputation method in combination with
either the Naïve forecast or ARIMA models.

Table A1. Model summary for high market share and high growth products, the Star of the BCG matrix.

Product Model
Test (Model Evaluation) Validation (Deployment)

MAPE MASE MAPE MASE WD

BGA 7.5 × 13 Naïve forecast + zero-filling 46.307% 210.839% 25.859% 216.694% −1.414%
Naïve forecast + mean imputation 49.205% 167.242% 25.859% 189.118% −1.414%
ARIMA + zero-filling 42.644% 182.028% 48.538% 431.875% −101.771%
ARIMA + mean imputation 43.612% 161.505% 56.998% 438.494% −141.008%
LSTM + zero-filling 45.336% 199.835% 31.478% 284.435% −23.717
LSTM + mean imputation 46.435% 156.697% 30.791% 247.197% −29.617

Product Model
Test (Model Evaluation) Validation (Deployment)

MAPE MASE MAPE MASE WD

QFN 9 × 9 Naïve forecast + zero-filling 357.408% 164.455% 257.754% 148.705% −0.418%
Naïve forecast + mean imputation 403.848% 168.616% 257.754% 148.705% −0.418%
ARIMA + zero-filling 226.165% 90.446% 193.722% 93.259% 1.973%
ARIMA + mean imputation 226.165% 92.847% 193.722% 93.259% 1.973%
LSTM + zero-filling 198.610% 102.422% 167.300% 102.350% −61.201%
LSTM + mean imputation 185.478% 98.911% 160.700% 101.709% −69.277%

Product Model
Test (Model Evaluation) Validation (Deployment)

MAPE MASE MAPE MASE WD

TQFP 7 × 7 × 1.4MM Naïve forecast + zero-filling 391.014% 41.522% 136.602% 64.403% 2.243%
Naïve forecast + mean imputation 391.790% 41.782% 136.602% 63.529% 2.243%
ARIMA + zero-filling 1569.859% 91.731% 251.179% 102.156% 54.323%
ARIMA + mean imputation 1681.998% 110.925% 227.725% 91.246% 50.528%
LSTM + zero-filling 1303.794% 84.954% 155.431% 64.817% 37.895%
LSTM + mean imputation 1358.349% 83.901% 161.280% 66.864% 39.323%

Appendix A.2. High Market Share and High Decline Products

Conclusion: Two products are included. The MAPE values compared to the Test and
the Validation sets are very large, but the MASE values generated by the models with
zero-filling methods are relatively average. Following Rule 1 and Rule 2, it is concluded
that the zero-filling method combined with either with Naïve forecast or ARIMA models
performed better than the mean imputation method combined with the three forecasters.
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Table A2. Model summary for high market share and high decline products, the Cash-cows of the
BCG matrix.

Product Model
Test (Model Evaluation) Validation (Deployment)

MAPE MASE MAPE MASE WD

BGA 8 × 12.5 Naïve forecast + zero-filling 179.464% 65.062% 2452.072% 63.151% −0.562%
Naïve forecast + mean imputation 177.407% 52.413% 2452.072% 63.151% −0.562%
ARIMA + zero-filling 133.806% 41.726% 1222.734% 39.119% −2.172%
ARIMA + mean imputation 135.402% 40.284% 1222.734% 39.119% −2.172%
LSTM + zero-filling 276.828% 104.824% 2844.530% 117.981% 48.804%
LSTM + mean imputation 280.000% 98.208% 2874.039% 119.294% 49.141%

Product Model
Test (Model Evaluation) Validation (Deployment)

MAPE MASE MAPE MASE WD

TSOP I 12 × 20 Naïve forecast + zero-filling 117.730% 60.660% 146.703% 70.566% 9.248%
Naïve forecast + mean imputation 991.467% 96.284% 146.703% 69.797% 9.248%
ARIMA + zero-filling 375.115% 50.505% 76.511% 73.367% −578.007%
ARIMA + mean imputation 1245.648% 116.735% 312.120% 125.780% 59.576%
LSTM + zero-filling 1167.802% 118.220% 247.478% 95.888% 51.315%
LSTM + mean imputation 1479.984% 125.727% 262.089% 103.814% 53.622%

Appendix A.3. Average Market Share and High Decline Products

Conclusion: One product is included and the model of LSTM + mean imputation
outperformed the others. Further, the mean imputation method generally performed well
compared to the zero-filling method whether combined with the Naive forecast, ARIMA,
or LSTM models.

Table A3. Model summary for average market share and high decline products, the Problem child of
the BCG matrix.

Product Model
Test (Model Evaluation) Validation (Deployment)

MAPE MASE MAPE MASE WD

BGA 11.5 × 13 Naïve forecast + zero-filling 79.190% 131.579% 93.991% 126.491% 2.057%
Naïve forecast + mean imputation 79.035% 120.234% 93.991% 130.903% 2.057%
ARIMA + zero-filling 147.469% 87.564% 92.565% 105.350% −16.326%
ARIMA + mean imputation 148.739% 81.934% 93.381% 108.863% −15.218%
LSTM + zero-filling 37.055% 78.889% 98.114% 113.025% −23.588%
LSTM + mean imputation 37.128% 73.817% 97.134% 117.246% −25.090%
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