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Confirmatory factor analysis (CFA) is widely used for examining hypothesized relations
among ordinal variables (e.g., Likert-type items). A theoretically appropriate method fits the
CFA model to polychoric correlations using either weighted least squares (WLS) or robust
WLS. Importantly, this approach assumes that a continuous, normal latent process determines
each observed variable. The extent to which violations of this assumption undermine CFA
estimation is not well-known. In this article, the authors empirically study this issue using a
computer simulation study. The results suggest that estimation of polychoric correlations is
robust to modest violations of underlying normality. Further, WLS performed adequately
only at the largest sample size but led to substantial estimation difficulties with smaller
samples. Finally, robust WLS performed well across all conditions.

Variables characterized by an ordinal level of measure-
ment are common in many empirical investigations within
the social and behavioral sciences. A typical situation in-
volves the development or refinement of a psychometric test
or survey in which a set of ordinally scaled items (e.g., 0 �
strongly disagree, 1 � neither agree nor disagree, 2 �
strongly agree) is used to assess one or more psychological
constructs. Although the individual items are designed to
measure a theoretically continuous construct, the observed
responses are discrete realizations of a small number of
categories. Statistical methods that assume continuous dis-
tributions are often applied to observed measures that are
ordinally scaled. In circumstances such as these, there is the
potential for a critical mismatch between the assumptions
underlying the statistical model and the empirical charac-
teristics of the data to be analyzed. This mismatch in turn
undermines confidence in the validity of the conclusions

that are drawn from empirical data with respect to a theo-
retical model of interest (e.g., Shadish, Cook, & Campbell,
2002).

This problem often arises in confirmatory factor analysis
(CFA), a statistical modeling method commonly used in
many social science disciplines. CFA is a member of the
more general family of structural equation models (SEMs)
and provides a powerful method for testing a variety of
hypotheses about a set of measured variables. By far the
most common method of estimation within CFA is maxi-
mum likelihood (ML), a technique which assumes that the
observed variables are continuous and normally distributed
(e.g., Bollen, 1989, pp. 131–134). These assumptions are
not met when the observed data are discrete (as occurs when
using ordinal scales), thus significant problems can result
when fitting CFA models for ordinal scales using ML esti-
mation (e.g., B. Muthén & Kaplan, 1985). Although several
alternative methods of estimation have been available for
some time, these have only recently become more accessi-
ble to applied researchers through the continued develop-
ment of SEM software. Despite this increased availability,
key unanswered questions remain about the accuracy, va-
lidity, and empirically informed guidelines for the optimal
use of these methods, particularly with respect to conditions
commonly encountered in behavioral research. The goal of
our article was to systematically and empirically address
several of these important questions.

Structural Equation Modeling (SEM)

SEM is a powerful and flexible analytic method that plays
a critically important role in many empirical applications in
social science research. Because the general linear model is
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embedded within SEM, this modeling framework can be
used in a wide variety of applications. The general goal of
SEM is to test the hypothesis that the observed covariance
matrix for a set of measured variables is equal to the
covariance matrix implied by an hypothesized model. This
relationship can be formally stated as

� � ����, (1)

where � represents the population covariance matrix of a
set of observed variables and �(�) represents the population
covariance matrix implied by �, a vector of model param-
eters. The vector � thus defines the form of a particular SEM
through the specification of means and intercepts, variances
and covariances, regression parameters, and factor loadings.

A particular parameterization of � leads to the well-
known CFA model (Jöreskog, 1969). In CFA, the covari-
ance matrix implied by � is a function of �, a matrix of
variances and covariances among latent factors; �, a matrix
of factor loadings; and ��, a matrix of measurement errors
(i.e., uniqueness). The model-implied covariance structure
is

���� � ���� � ��. (2)

Usual assumptions for CFA are that the model is properly
specified (i.e., the model hypothesized in Equation 2 corre-
sponds directly to the model that exists in the population),
that �� is independent of the vector � of latent factors, and
that the measurement errors themselves are uncorrelated
(i.e., �� is a diagonal matrix), although this latter condition
is to some degree testable.

ML is the most commonly applied method for estimating
the model parameters in �. In addition to the usual CFA
assumptions named above, ML assumes that the sample
covariance matrix is computed on the basis of continuous,
normally distributed variables.1 Given adequate sample
size, proper model specification, and multivariately nor-
mally distributed data (or more specifically, no multivariate
kurtosis; Browne, 1984), ML provides consistent, efficient,
and unbiased parameter estimates and asymptotic standard
errors as well as an omnibus test of model fit (Bollen, 1989;
Browne, 1984).

However, in many applications in the behavioral sci-
ences, the observed variables are not continuously distrib-
uted.2 Instead, variables are often observed on a dichoto-
mous or ordinal scale of measurement. It is well-known
from both statistical theory and prior simulation studies that
ML based on the sample product–moment correlation or
covariance matrix among ordinal observed variables does
not perform well, especially when the number of observed
categories is small (e.g., five or fewer). In particular, the
chi-square model fit statistic is inflated (Babakus, Ferguson,
& Jöreskog, 1987; Green, Akey, Fleming, Hershberger, &
Marquis, 1997; Hutchinson & Olmos, 1998; B. Muthén &
Kaplan, 1992), parameters are underestimated (Babakus et

al., 1987; B. Muthén & Kaplan, 1992), and standard error
estimates tend to be downwardly biased (B. Muthén &
Kaplan, 1985, 1992). An alternative approach to estimating
CFA models for ordinal observed data involves the estima-
tion and analysis of polychoric and polyserial correlations.

Polychoric Correlations

There is a long history of theory and research with poly-
choric and polyserial correlations dating back to Pearson
(1901). The polychoric correlation estimates the linear re-
lationship between two unobserved continuous variables
given only observed ordinal data, whereas the polyserial
correlation measures the linear relationship between two
continuous variables when only one of the observed distri-
butions is ordinal and the other is continuous. Thus, calcu-
lation of a polychoric correlation is based on the premise
that the observed discrete values are due to an unobserved
underlying continuous distribution. We adopt the terminol-
ogy of B. Muthén (1983, 1984) to refer to an unobserved
univariate continuous distribution that generates an ob-
served ordinal distribution as a latent response distribution.

The relationship between a latent response distribution,
y*, and an observed ordinal distribution, y, is formalized as

y � c, if �c � y* � �c�1, (3)

with thresholds � as parameters defining the categories c �
0, 1, 2, . . . , C � 1, where �0 � �� and �C � �. Hence, the
observed ordinal value for y changes when a threshold � is
exceeded on the latent response variable y*. The primary
reason that ML based on sample product–moment relation-
ships does not perform well with ordinal observed data is
that the covariance structure hypothesis (see Equation 1)
holds for the latent response variables but does not generally
hold for the observed ordinal variables (Bollen, 1989, p.
434).

Polychoric correlations are typically calculated using the
two-stage procedure described by Olsson (1979). In the first
stage, the proportions of observations in each category of a
univariate ordinal variable are used to estimate the threshold
parameters for each univariate latent response variable sep-
arately. Formally, for an observed ordinal variable y1, with
thresholds denoted by ai, i � 0, . . . , s, and y2, with thresh-
olds denoted by bj, j � 0, . . . , r, the first step is to estimate

ai � �1
�1�Pi�� (4)

1 This assumption specifically applies to endogenous variables,
or residuals (see Bollen, 1989, pp. 126–127). Given our focus on
the CFA model, all observed variables are endogenous here.

2 Strictly speaking, all observed measurements are discrete, but
here we are talking about coarse categorization of a theoretically
continuous distribution resulting in a small number of discrete
levels.
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and

bj � �1
�1�P �j�, (5)

where Pij is the observed proportion in cell (i, j), Pi� and P�j

are observed cumulative marginal proportions of the con-
tingency table of y1 and y2, and �1

�1 represents the inverse
of the univariate standard normal cumulative distribution
function. In the second stage, these estimated threshold
parameters are used in combination with the observed bi-
variate contingency table to estimate, via maximum likeli-
hood, the correlation that would have been obtained had the
two latent response variables been directly observed. The
log-likelihood of the bivariate sample is

� � ln K � �
i�1

s �
j�1

r

ni,jln �i,j, (6)

where K is a constant, ni,j denotes the frequency of obser-
vations in cell (i, j), and �i,j denotes the probability that a
given observation falls into cell (i, j) (Olsson, 1979).

Critically important in the calculation of a polychoric
correlation is the assumption that the pair of latent response
variables has a bivariate normal distribution. This assump-
tion becomes evident in the reference to the univariate
standard normal distribution in the calculation of the thresh-
olds (see Equations 4 and 5). Under the assumption of
bivariate normality for y*1 and y*2, Olsson (1979) gave the
probability �i,j (see Equation 6) that an observation falls
into a given cell of the contingency table for y1 and y2 as

�i,j � �2�ai, bj� � �2�ai�1, bj� � �2�ai, bj�1�

� �2�ai�1, bj�1�, (7)

where �2 is the bivariate normal cumulative density func-
tion with correlation �. The ML estimate of � yields the
polychoric correlation between the observed ordinal vari-
ables y1 and y2. Olsson reported limited simulation results
showing that this two-stage method for calculating a poly-
choric correlation between two ordinal variables gives an
unbiased estimate of the correlation between a pair of bi-
variate normal latent response variables.

Although the assumption of bivariate normality for latent
response variables has been criticized as unrealistic in prac-
tice (e.g., Lord & Novick, 1968; Yule, 1912), other re-
searchers have advocated the practical convenience of this
assumption (e.g., B. Muthén & Hofacker, 1988; Pearson &
Heron, 1913). Specifically, regardless of whether a pair of
observed ordinal variables represents the realization of a
categorized bivariate normal distribution or some other bi-
variate continuous distribution, if the continuous distribu-
tions are correlated, one would expect to see evidence for
this correlation in the observed contingency table for the
two ordinal variables. That is, for a positive correlation,
inspection of the relative frequencies in the individual cells

of the contingency table for the two ordinal variables would
be expected to reflect that lower values on one ordinal
variable would be associated with lower values on the other
ordinal variable, whereas higher values on one variable
would be associated with higher values on the other. Given
that the contingency table supplies the only observed data
for estimation of the correlation between the latent contin-
uous variables, it is necessary to specify some (albeit un-
known) distribution for the underlying continuous variables
to allow estimation of their correlation. Because of its
well-known mathematical properties, the assumption of a
bivariate normal distribution considerably facilitates estima-
tion of the correlation, as shown in Equations 4–7. Al-
though two correlated nonnormal y* variables would be
expected to generate a contingency table with similar pat-
terns to that observed for two normal y* variables with the
same correlation, the extent to which calculation of the
polychoric correlation is robust to this nonnormality re-
mains a matter of empirical investigation. Our goal in this
article was to pursue such an empirical examination.

To our knowledge, Quiroga (1992) represents the only
simulation study that has empirically evaluated the accuracy
of polychoric correlations under violations of the latent
normality assumption. Quiroga manipulated the skewness
and kurtosis of two continuous variables (i.e., y* variables)
to examine the effects of nonnormality on polychoric cor-
relation estimates between two variables, each with four
observed ordinal categories. The polychoric correlation val-
ues consistently overestimated the true correlation between
the nonnormal latent response variables. However, the ex-
tent of the overestimation was small, with bias typically less
than 2% of the true correlation. Although the findings of
Quiroga suggest that polychoric correlations are typically
robust to violation of the underlying y* normality assump-
tion, to our knowledge no prior studies have examined the
effect of violating this assumption on fitting CFAs to poly-
choric correlations. That is, demonstrating lack of bias in
the estimation of polychoric correlations is necessary but
not sufficient for inferring the robustness of CFAs fitted to
these correlations more generally. This is particularly sa-
lient when considering alternative methods for fitting these
models in practice. Two important methods of interest to us
in this article are fully weighted least squares (WLS) and
robust WLS.

WLS Estimation

Both analytical and empirical work have demonstrated
that simply substituting a matrix of polychoric correlations
for the sample product–moment covariance matrix in the
usual ML estimation function for SEM is inappropriate.
Although this approach will generally yield consistent pa-
rameter estimates, it is known to produce incorrect test
statistics and standard errors (Babakus et al., 1987; Dolan,
1994; Rigdon & Ferguson, 1991). Over the past several
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decades, a WLS approach has been developed for estimat-
ing a weight matrix based on the asymptotic variances and
covariances of polychoric correlations that can be used in
conjunction with a matrix of polychoric correlations in the
estimation of SEM models (e.g., Browne, 1982, 1984;
Jöreskog, 1994; B. Muthén, 1984; B. O. Muthén & Satorra,
1995).

WLS applies the fitting function

FWLS � �s � ����	
W�1�s � ����	, (8)

where s is a vector of sample statistics (i.e., polychoric corre-
lations), �(�) is the model-implied vector of population ele-
ments in �(�), and W is a positive-definite weight matrix.
Browne (1982, 1984) showed that if a consistent estimator of
the asymptotic covariance matrix of s is chosen for W, then
FWLS leads to asymptotically efficient parameter estimates and
correct standard errors as well as a chi-square-distributed
model test statistic. Furthermore, Browne (1982, 1984) pre-
sented formulae for estimating the correct asymptotic covari-
ance matrix in the context of continuously distributed observed
data using observed fourth-order moments. Because these for-
mulae hold without specifying a particular distribution for the
observed variables, FWLS is often called the asymptotically
distribution free (ADF) estimator when used with a correct
asymptotic covariance matrix.

Browne (1982, 1984) primarily focused on WLS as ap-
plied to continuous but nonnormal distributions, whereas B.
Muthén (1983, 1984) presented a “continuous/categorical
variable methodology” (CVM) for estimating SEMs that
allows any combination of dichotomous, ordered categori-
cal, or continuous observed variables. With CVM, bivariate
relationships among ordinal observed variables are esti-
mated with polychoric correlations, and the SEM is fit using
WLS estimation. The key contribution of CVM is that it
essentially generalizes Browne’s work with FWLS beyond
the case of continuous observed data, as Muthén described
the estimation of the correct asymptotic covariance matrix
among polychoric correlation estimates (B. Muthén, 1984;
B. O. Muthén & Satorra, 1995). Thus, unlike normal-theory
estimation, CVM provides asymptotically unbiased, consis-
tent, and efficient parameter estimates as well as a correct
chi-square test of fit with dichotomous or ordinal observed
variables. Parallel but independent research by Jöreskog
(Jöreskog, 1994; Jöreskog & Sörbom, 1988) similarly gen-
eralized Browne’s work to the estimation of the correct as-
ymptotic covariance matrix among polychoric correlations.3

Despite its asymptotic elegance, there are two potential
limitations of full WLS estimation in research applications
of CFA with ordinal data. First, although limited prior
simulation evidence suggests that the computation of poly-
choric correlations is generally robust to violations of the
latent normality assumption (Quiroga, 1992), to our knowl-
edge the ramifications of these violations for the estimation
of asymptotic covariances among polychoric correlations

have yet to be considered. Thus, although polychoric cor-
relations may be generally unbiased, CFA model test sta-
tistics and standard errors might be adversely affected be-
cause of biases in the asymptotic covariance matrix
introduced by nonnormality among latent response vari-
ables. Second, a frequent criticism against full WLS esti-
mation is that the dimensions of the optimal weight matrix
W are typically exceedingly large and increase rapidly as a
function of the number of indicators in a model. By virtue
of its size in the context of a large model (i.e., a model with
many observed variables), W is often nonpositive definite
and cannot be inverted when applying the WLS fitting
function (e.g., Bentler, 1995; West, Finch, & Curran, 1995).
Furthermore, calculation of these asymptotic values re-
quires a large sample size to produce stable estimates.
Specifically, Jöreskog and Sörbom (1996) suggested that a
minimum sample size of (k � 1)(k � 2)/2, where k is the
number of indicators in a model, should be available for
estimation of W. As the elements of W have substantial
sampling variability when based on small sample sizes, this
instability has an accumulating effect as the number of
indicators in the model increases (Browne, 1984).

Thus, it is well-known that significant problems arise
when using full WLS estimation in conditions commonly
encountered in social science research. Simulation studies
have shown that chi-square test statistics are consistently
inflated when ADF estimation is applied to sample product–
moment covariance or correlation matrices of continuous
observed data (e.g., Chou & Bentler, 1995; Curran, West, &
Finch, 1996; Hu, Bentler, & Kano, 1992). Similarly, simu-
lation studies applying WLS estimation to the analysis of
polychoric correlation matrices have also reported inflated
chi-square test statistics (Dolan, 1994; Hutchinson & Ol-
mos, 1998; Potthast, 1993) and negatively biased standard
error estimates (Potthast, 1993). In particular, both Dolan
and Potthast reported that these problems worsen as a func-
tion of increasing model size (i.e., number of indicators) and
decreasing sample size. Thus, full WLS is often of limited
usefulness in many applied research settings.

Robust WLS

To address the problems encountered when using full
WLS with small to moderate sample sizes, B. Muthén, du
Toit, and Spisic (1997; see also L. K. Muthén & Muthén,
1998, pp. 357–358) presented a robust WLS approach that

3 Although the methods of B. Muthén and Jöreskog for estimat-
ing the asymptotic covariance matrix are highly similar, they differ
in their treatment of the threshold parameters categorizing latent
response distributions into observed ordinal distributions. The
simulation study by Dolan (1994) suggested that the Jöreskog
approach to estimating the asymptotic covariance matrix elicits
virtually identical results as the Muthén approach with respect to
the estimation of CFA models.
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is based on the work of Satorra and colleagues (Chou,
Bentler, & Satorra, 1991; Satorra, 1992; Satorra & Bentler,
1990).4 With this method, parameter estimates are obtained
by substituting a diagonal matrix, V, for W in Equation 8,
the elements of which are the asymptotic variances of the
thresholds and polychoric correlation estimates (i.e., the
diagonal elements of the original weight matrix). Once a
vector of parameter estimates is obtained, a robust asymp-
totic covariance matrix is used to obtain parameter standard
errors. Calculation of this matrix involves the full weight
matrix W; however, it need not be inverted. Next, Muthén
et al. described a robust goodness-of-fit test via calculation
of a mean- and variance-adjusted chi-square test statistic.
Calculation of this test statistic also involves the full weight
matrix W but similarly avoids inversion. An interesting
aspect of this robust WLS method is that the value for the
model degrees of freedom is estimated from the empirical
data, in a manner inspired by Satterthwaite (1941; cited in
Satorra, 1992), rather than being determined directly from
the specification of the model. The robust goodness-of-fit
test presented by Muthén et al. essentially involves the usual
chi-square test statistic multiplied by an adjustment akin to
the Satorra and Bentler (1986, 1988) robust chi-square test
statistic, with model degrees of freedom estimated from the
data.5 Detailed formulae describing estimation of standard
errors and model fit statistics with robust WLS were given
by B. Muthén et al. as well as by L. K. Muthén and Muthén
(1998, pp. 357–358).

The Current Study

Our motivating goal was to provide an empirical evalu-
ation of a set of specific hypotheses derived from the sta-
tistical theory underlying the calculation of polychoric cor-
relations and their use in estimating CFAs in applied
research. A small number of simulation studies, most nota-
bly by Potthast (1993; see also Babakus et al., 1987; Dolan,
1994; Hutchinson & Olmos, 1998), have previously evalu-
ated the use of polychoric correlations with full WLS esti-
mation for CFA. In each of these studies, researchers gen-
erated y* variables from continuous, multivariate normal
data with known factor structures. Different sets of thresh-
old values were then applied to these normal y* variables to
create ordinal y variables with varying observed distribu-
tions. These studies generally found that as the skewness or
positive kurtosis of the observed (ordinal) variables de-
parted from zero, the estimation of the known factor struc-
ture among the unobserved normal y* variables deteriorated
despite that the statistical theory underlying CFA with poly-
choric correlations makes no explicit assumption about the
skewness and kurtosis of the observed ordinal variables.
This finding likely occurred in part because highly kurtotic
ordinal distributions produce contingency tables with low
expected cell frequencies, which Olsson (1979) speculated
would lead to poor polychoric correlation estimates and

which Brown and Bendetti (1977) showed would lead to
biased tetrachoric correlations.6

In the present study, rather than manipulating the thresh-
old values along normal y* distributions to generate y vari-
ables of varying observed skewness and kurtosis, we instead
manipulated the unobserved skewness and kurtosis of the y*
variables. In this way, we directly evaluated robustness of
CFA with polychoric correlations under violation of the
explicit, theoretical assumption that y* variables underlying
polychoric correlations be normally distributed. Further-
more, if there is little practical consequence to violation of
the latent normality assumption, we will have partially
demonstrated that this assumption merely provides a math-
ematical convenience facilitating the calculation of correla-
tions among latent response variables, as implied by Pear-
son and Heron (1913) and B. Muthén and Hofacker (1988).7

Thus, our study focused on the systematic variation of the
unobserved distribution of y* rather than on the observed
distribution of y. This is an important distinction given that
manipulation of the latter has been the sole focus of prior
research (e.g., Potthast, 1993).

Statistical theory and prior empirical findings have high-
lighted three issues of critical importance when considering
the estimation of CFA models (and SEMs in general) using
polychoric correlations. First, although limited evidence
suggests that polychoric correlations are robust to violations
of bivariate normality for continuous latent response vari-
ables eliciting observed ordinal variables, we are aware of
no prior research examining whether this robustness extends
to the estimation of CFA model parameters, test statistics,
and standard errors using WLS estimation with a correct
asymptotic covariance matrix. Second, we are aware of no
prior research examining the stability and accuracy of ro-
bust WLS under either bivariate normality or bivariate
nonnormality for latent response variables. This is a prom-
ising method for use in social science research, and the finite
sample performance of robust WLS is an issue of key

4 Jöreskog and Sörbom (1996) described a similar approach,
termed diagonally weighted least squares.

5 A drawback of this robust WLS method is that the robust
chi-square values cannot be used to compare nested models be-
cause the degrees of freedom may vary within a given model
specification.

6 The tetrachoric correlation is a special case of the polychoric
correlation where both observed variables are dichotomous.

7 It is possible to create any ordinal distribution from a normal
distribution given the correct set of threshold values. Likewise,
given an observed ordinal distribution in a practical setting (i.e.,
not an artificially simulated distribution), it is impossible to know
whether it was generated from a normal or nonnormal continuous
variable. However, applied researchers may be highly skeptical of
whether it is realistic to assume that the latent response variable is
in fact normal (e.g., it may represent propensity toward an abnor-
mal behavior, such as illegal drug use).
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interest. Finally, we are not aware of any existing systematic
study that explores these questions with respect to the
specific number of discrete levels observed in the ordinal
scale; this has significant implications in the design of item
response scales in anticipation of using these techniques in
practice. We explore all three of these issues in detail in this
article.

We drew on statistical theory and prior empirical research
to generate several hypotheses that we empirically exam-
ined using a comprehensive computer simulation study.
First, consistent with Quiroga (1992), we predicted that the
estimates of polychoric correlations would be relatively
unbiased as a function of minor to modest violations of
normality of the latent response distributions. Next, we had
several hypotheses pertaining to full WLS estimation of
CFA models using polychoric correlations. Consistent with
Dolan (1994) and Potthast (1993), we predicted that full
WLS would lead to inflated test statistics and underesti-
mated parameter standard errors and that these biases would
worsen substantially as a function of increasing model size
(i.e., number of indicators) and decreasing sample size.
Although we focused on the chi-square test statistics as a
primary outcome, this was essentially an examination of the
discrepancy function upon which all commonly used fit
indices for SEM are based. Thus, conditions that contribute
to inflated chi-square values were also expected to contrib-
ute to bias in other fit indices, causing them also to suggest
poorer fit.

A polychoric correlation matrix is a consistent estimator
of the population correlation matrix for continuous latent
response variables. Thus, like Rigdon and Ferguson (1991)
and Potthast (1993), we expected to find unbiased parameter
estimates independently of sample size and model complex-
ity. However, because nonnormality in latent response dis-
tributions may introduce small positive biases in polychoric
correlations (Quiroga, 1992), we predicted that nonnormal-
ity in latent response distributions would create modestly
positively biased parameter estimates. Further, because cal-
culation of the asymptotic covariance matrix among poly-
choric correlations takes into account fourth-moment infor-
mation based on the distribution-free technique of Browne
(1984), we did not predict that underlying nonnormality
would have a substantial effect on full WLS chi-square test
statistics or standard errors at larger sample sizes for less
complex models.

Finally, like full WLS estimation, we expected that robust
WLS would result in unbiased parameter estimates with
normal latent response distributions and modestly overesti-
mated parameters with nonnormal latent response distribu-
tions. Drawing from the results of Curran et al. (1996)
relating to the Satorra–Bentler corrections applied to non-
normal but continuous measures, we predicted that robust
WLS would generally produce unbiased parameter standard

errors and test statistics across a wider range of sample sizes
and model complexity than would full WLS. However, it is
not known to what degree robust WLS would provide
accurate estimates at the smallest sample sizes for the most
complex models. Taken together, we believe that our results
make unique contributions both to the understanding of the
finite sampling properties of these asymptotic estimators
and to the provision of recommendations for applied re-
searchers using these methods in practice.

Method

We used Monte Carlo computer simulation methodology
to empirically study the effects of varying latent response
distribution, sample size, and model size on the computation
of chi-square model test statistics, parameter estimates, and
associated standard errors pertaining to CFAs fitted to or-
dinal data. For each simulated sample of ordinal data, we
calculated the corresponding polychoric correlation matrix
and fit the relevant population model using both full and
robust WLS estimation.

Continuous Latent Response Distributions

We generated random samples from five different contin-
uous y* distributions. The first was multivariate normal,
whereas the remaining four represented increasing levels of
nonnormality. We carefully chose the nonnormal distribu-
tions according to two criteria. First, the distributions were
selected to allow examination of the separate effects of
skewness and kurtosis on the outcomes of interest. Second,
the distributions were selected to be representative of levels
of nonnormality commonly encountered in applied psycho-
logical research as reported by Micceri (1989).8 Table 1
presents specific population characteristics of each y* dis-
tribution. Each sample of multivariate data was generated to
be consistent with a given population correlation structure
(see Model Specifications below).

Ordinal Observed Distributions

After sampling continuous data from the distributions
described above, we transformed these samples into two-
category and five-category ordinal data by applying a set of
thresholds that remained constant across all y* distributions.

8 Our motivating goal for this study was not to determine what
extreme level of nonnormality for y* would guarantee a poorly
estimated CFA model; that is, we had no interest in “breaking” the
estimator. Instead, we sought to assess the performance of the
methods used herein under conditions of nonnormality commonly
encountered in practice. Although this decision potentially limits
the generalizability of our findings, it also increases our ability to
more closely examine realistic distributions that might commonly
occur in practice.
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For the two-category condition, a single threshold was used
to transform the continuous response distributions into the
observed dichotomy. For the five-category condition, a set
of four thresholds was used to transform the data.9 For the
four nonnormal conditions, although these sets of thresholds
resulted in observed ordinal distributions with nonzero lev-
els of skewness and kurtosis, categorization resulted in y
variables that were much less skewed and kurtotic than the
y* population distributions used to generate them. See Table
1 for population characteristics of each y distribution.

Model Specifications

Each sample of multivariate data we generated had a
population correlation matrix conforming to one of four
factor model specifications that hold for the y* latent re-
sponse variables. We selected these models to be represen-
tative of CFA model specifications that might be encoun-
tered in practice (e.g., models showing the relationships
among a set of Likert-type variables). Model 1 (see Figure
1) consisted of a single factor measured by five ordinal
indicators (i.e., observed y variables), each of which was
determined by a latent response variable (i.e., an unobserved
y* variable), as described above. Model 2 (see Figure 2)
consisted of a single factor measured by 10 indicators.
Model 3 (see Figure 3) consisted of two correlated factors
each measured by five indicators. Finally, Model 4 (see
Figure 4) was identical to Model 3, except each factor was
measured by 10 indicators. As with Model 1, each of the
ordinal indicators for Models 2, 3, and 4 was determined by
its own y* variable.

To facilitate interpretation, we defined the values of the
population parameters to be homogeneous across all four
model specifications. That is, within and across the models,
all factor loadings were equal (�s � .70), and all unique-
nesses were equal (�	s � .51). Importantly, these loadings
represent the regression of the latent response variables (i.e.,
the y* variables), and not the ordinal indicators, on the
factor. Models 3 and 4 included an interfactor correlation,
which was set to �21 � .30 for both. All y* distributions
were standardized to have a mean of zero and standard

deviation equal to one, such that �i
2 � �	i � 1 for y*i. The

variances of the factors and of the uniquenesses were all set
to equal one. Thus, the proposed models for the latent
response variables were scale invariant (Cudeck, 1989, p.
326), and it was valid to define the implied population
covariance matrices for data simulation in terms of
correlations.

Data Generation and Analysis

For each combination of y* distribution and model spec-
ification described above, we generated random samples of
four different sizes: 100, 200, 500, and 1,000. We replicated
the 5 (distributions)  4 (model specifications)  4 (sample
sizes)  2 (number of categories) � 160 independent cells
of the study 500 times each, using EQS (Version 5.7b;
Bentler, 1995) to generate all data for the study.10 For each
replication, we fit the relevant population factor model
using both full and robust WLS estimation as implemented

9 In the five-category condition, we used the Case 1 threshold
set from B. Muthén and Kaplan (1985), such that that categoriza-
tion of a normal y* population distribution would result in an
ordinal y distribution with zero skewness and kurtosis. This same
threshold set was also applied to each nonnormal y*distribution.

10 We generated the raw data with the EQS implementation of
the methods of Fleishman (1978), who presented formulae for
simulating univariate data with nonzero skewness and kurtosis,
and Vale and Maurelli (1983), who extended Fleishman’s method
to allow simulation of multivariate data with known levels of
univariate skewness and kurtosis and a known correlational struc-
ture. To ensure that EQS properly created the data according to the
desired levels of skewness and kurtosis for the y* variables, we
generated a set of continuous data conforming to Model 1 with
N � 50,000 for each level of our manipulation of the y* distribu-
tions. The values of univariate skewness and kurtosis calculated
from these large-sample data closely reflected the nominal popu-
lation values. Previous studies have also successfully implemented
this method of data generation (e.g., Chou et al., 1991; Curran et
al., 1996; Hu et al., 1992).

Table 1
Skewness and Kurtosis of Univariate Latent Response (y*) Distributions and Five-Category
Ordinal (y) Distributions

Condition

y* distribution y distribution

Skewness Kurtosis Skewness Kurtosis

Normal 0.00 0.00 0.02 �0.00
Low skewness vs. low kurtosis 0.75 1.75 0.30 0.22
Low skewness vs. moderate kurtosis 0.75 3.75 0.22 0.60
Moderate skewness vs. low kurtosis 1.25 1.75 0.49 �0.06
Moderate skewness vs. moderate kurtosis 1.25 3.75 0.47 0.39

Note. Skewness and kurtosis for y* distribution are nominal population values. Skewness and kurtosis for y
distribution are approximate population values estimated from simulated samples of size N � 50,000.
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with Mplus (Version 2.01; L. K. Muthén & Muthén,
1998).11

Study Outcomes

We began by examining rates of improper solutions
across all study conditions. An improper solution was de-
fined as a nonconverged solution or a solution that con-
verged but resulted in one or more out-of-bound parameters
(e.g., Heywood cases). Because the underlying purpose of
our study was to explicitly evaluate our proposed research
hypotheses under conditions commonly encountered in ap-
plied research settings, we defined improper solutions to be
invalid empirical observations. To maximize the external
validity of our findings, we removed improper solutions
from subsequent analyses (see Chen, Bollen, Paxton, Cur-
ran, & Kirby, 2001, for further discussion of this strategy).12

We considered three major outcomes of interest: the chi-
square test statistics, parameter estimates (i.e., factor load-
ings and factor correlations), and standard errors.

We examined the mean relative bias (RB; or percentage
bias) of each outcome across all study conditions. The
general form of this statistic is

RB � �
̂ � 



 � � 100, (9)

where 
̂ is the estimated statistic (i.e., chi-square test statis-
tic, CFA parameter estimate, or standard error) from a given
replication, and 
 is the relevant population parameter. For
each outcome, we calculated the mean RB across replica-
tions within a given condition. Consistent with prior simu-
lation studies (e.g., Curran et al., 1996; Kaplan, 1989), we
considered RB values less than 5% indicative of trivial bias,
values between 5% and 10% indicative of moderate bias,
and values greater than 10% indicative of substantial bias.

For the chi-square test statistics from full WLS estima-

tion, we calculated relative bias with respect to the degrees
of freedom for each model specification, given that this
value reflects the expected value of a chi-square distribu-
tion. With robust WLS estimation, the degrees of freedom
for the chi-square test statistic are estimated from the data
and, therefore, the expected value of the chi-square statistic
varies across samples within the same model specification.
Thus, for each replication within a given condition, we used
the estimated degrees of freedom to calculate the relative
bias of the chi-square statistic elicited from the robust
method. We then calculated the mean RB across samples
within a given study condition.

Because of the large number of factor loadings estimated
both within and across replications, we examined the mean
factor loading values to summarize our results more effi-
ciently. This strategy was appropriate given the homoge-
neous values of factor loadings within each model specifi-
cation. Specifically, within a given cell of the study, we first
calculated the mean across replications of each individual
loading parameter separately (e.g., for Model 1, we obtained
�̂11, �̂21, �̂31, �̂41, and �̂51). In addition, we calculated the

11 Although we estimated our models using the commercial
software package, Mplus (L. K. Muthén & Muthén, 1998), equiv-
alent results would be expected using any software package with
the capability for estimating polychoric correlations and their
asymptotic variances and covariances (e.g., PRELIS/LISREL:
Jöreskog & Sörbom, 1988, 1996; Mx: Neale, Boker, Xie, & Maes,
2002).

12 Additional analyses reflected that the simultaneous inclusion
of both proper and improper solutions resulted in modest changes
in the summary statistics of the outcomes under study; however,
the overall conclusions based only on the proper solutions remain
substantively unchanged. Thus, there is no evidence suggesting
that the omission of the improper solutions poses a threat to either
the internal or the external validity of our study.

Figure 1. Model 1.
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sample variance of each factor loading across replications.
Because the population value of each loading parameter was
homogeneous (i.e., .70) across and within all replications,
we calculated the mean of these factor loadings within each
cell of the study. Thus, for each cell of the experimental
design we present

Pooled Mean � P�1 �
i�1

P

�̂i, (10)

where P is the number of indicators in the model. Also, to
provide a statistic analogous to the standard deviation of the
mean factor loading, we calculated the square root of the
mean of the factor loading variances. Thus, for each cell, we
present

Pooled SD � �P�1 �
i�1

P

VAR��̂i�. (11)

Finally, we evaluated standard error estimation by com-
paring the mean value of the estimated standard error for the
parameter of interest to the empirical estimate of the stan-
dard error as measured by the standard deviation of the
parameter estimates across the replications of a given cell.

Results

Polychoric Correlation Estimates

Our first hypothesis related to the accuracy of polychoric
correlation estimates resulting from the various latent re-
sponse distribution (i.e., y*) manipulations we used to gen-
erate the data conforming to population-level CFA models.
Because there were only two possible correlation values
implied by our CFA model specifications of interest, � �
.49 (the correlation between two indicators loading on the
same factor) and � � .147 (the correlation between two
indicators loading on separate factors), we considered the
effect of varying y* distribution on these two population
correlation values. Because polychoric correlations are cal-
culated from bivariate distributions and because we wanted
to focus on the robustness of polychoric correlations across
varying y* distributions prior to fitting CFA models, we
began by generating 500 replications of bivariate data for
each of two population correlation values (.49 and .147)
within each combination of the y* distribution, y* catego-
rization (two or five categories), and sample size conditions
described above. Although this portion of our study ana-
lyzed only bivariate data, our results regarding the accuracy
of polychoric correlations may be generalized across all
fully multivariate distributions implied by all four of our
CFA model specifications.

Figure 2. Model 2.
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Table 2 summarizes results for the polychoric correlations
in the different study conditions. When the data were gen-
erated from a bivariate normal y* distribution, the mean
polychoric correlation across replications was essentially
equal to its population value (mean RB was less than 1% in
nearly every cell with underlying skewness � 0 and under-
lying kurtosis � 0). The polychoric correlation estimates
tended to become positively biased as a function of increas-
ing nonnormality in the y* distributions; however, mean RB
remained under 10% in almost all cells. For example, Figure
5 presents box plots illustrating the distributions of poly-
choric correlation estimates of � � .49 obtained with N �
1,000 for the five-category condition. The figure reveals that
although the correlation estimates were frequently posi-
tively biased, the center of these distributions did not depart
substantially from the population correlation value, even
with y* nonnormality. Overall, correlation estimates of � �
.147 rarely exceeded .16, and correlation estimates � � .49
rarely exceeded .52. Finally, sample size did not have any
apparent effect on the accuracy of the polychoric correla-
tions, although there was a tendency for correlations calcu-
lated from two-category data to be slightly more biased than
those calculated from five-category data.

Theory would not predict that varying the thresholds
across observed variables would influence our findings de-
scribed above. However, to examine this possibility empir-
ically, we generated additional bivariate y* data from the
condition with skewness � 1.25 and kurtosis � 3.75. We

applied the threshold values to y*1 to create a five-category
y1 distribution with the same skewness and kurtosis values
as given in the moderate versus moderate case in Table 1,
but different threshold values were applied to y*2 resulting in
a five-category population distribution for y2 with skew-
ness � �2.36 and kurtosis � 5.15. When samples of size
N � 1,000 (again with 500 replications) were generated
from this bivariate population distribution with true corre-
lation � � .49, the mean polychoric correlation estimate was
0.51 (SD � 0.04), with mean RB of 3.21%. Thus, this result
shows that polychoric correlations remain only slightly bi-
ased when markedly different sets of threshold values are
applied to the two correlated y* variables generating the
observed ordinal variables.

Finally, to evaluate the effect of extremely nonnormal
distributions, we generated data from correlated y* vari-
ables defined by drastically nonnormal distributions (skew-
ness � 5, kurtosis � 50) and applied the same sets of
thresholds as above to create five-category ordinal variables
(resulting in skewness � 1.68 and kurtosis � 7.01 for y1

and y2 when the same set of thresholds was applied to both
y*1 and y*2 and skewness � �7.86 and kurtosis � 64.63 for
y2 when different thresholds were applied to y*2). We again
generated 500 replications with N � 1,000 from each of
these bivariate population distributions. With a true corre-
lation of � � .49, the mean polychoric correlation estimate
was 0.65 (SD � 0.04), with mean RB of 31.43% when
thresholds were equal across y*1 and y*2. When the set of

Figure 3. Model 3.
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thresholds varied across y*1 and y*2, the mean polychoric
correlation was 0.64 (SD � 0.09), with mean RB of 32.21%.
Thus, polychoric correlations do not appear to be robust to
extreme violations of the latent normality assumption, and

this result does not seem to vary substantially when differ-
ent sets of thresholds are applied to y* variables.

In sum, consistent with Quiroga (1992), our empirical
results suggest that polychoric correlations provide unbi-

Figure 4. Model 4.
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ased estimates of the correlations among normal and mod-
erately nonnormal latent response variables. We did find
evidence that severely nonnormal distributions led to sub-
stantial distortions in the estimation of the polychoric cor-
relation structure and, given this distortion, we did not
pursue the fitting of subsequent CFAs further. However, the
robustness of polychoric correlations to minor-to-moderate
violations of normality is a necessary but, quite importantly,
not a sufficient condition to establish whether CFA models
for latent response variables can be accurately fitted with
polychoric correlation matrices. Thus, we next turn to the
estimation of our CFA models using polychoric correlations
estimating the relationships among latent response variables
of varying distribution.

Estimation of CFA Models

Rates of improper solutions. The rates of improper and
nonconverged solutions obtained with full WLS estimation
are given in Table 3. With N � 100, full WLS did not
produce any solutions for Model 4, the 20-indicator model
(due to noninvertible weight matrices). In general, the rates
of improper solutions were greater in the two-category
versus five-category condition. For the two 10-indicator
models (Models 2 and 3), two-category data produced high
rates of improper solutions with N � 100, whereas the rates
were near zero in the five-category condition. Also, nearly
100% of replications of Model 4 (the 20-indicator model)

were improper in the two-category condition where N �
200, whereas the corresponding rates in the five-category
condition were only around 30%. Although the rates of
improper solution obtained with full WLS varied somewhat
across different y* distributions, this variation did not ap-
pear to be systematically associated with degree of nonnor-
mality in y*. At the two largest sample sizes (N � 500 and
N � 1,000), full WLS estimation converged to proper
solutions of all four models across 100% of replications.

In sum, there were modest differences evident in the
convergence rates for the two-category and five-category
conditions. However, extensive analyses (not fully reported
here) revealed that the empirical results for the chi-square
test statistics, parameter estimates, and standard errors were
nearly identical for these two conditions across all experi-
mental conditions. Given this equivalence, we present the
findings related to the five-category condition to retain
scope and maximize focus.13

Chi-square test statistics. Tables 4–7 present findings
for the chi-square test statistics from Models 1 through 4,

13 A technical appendix containing all results from the two-
category condition can be obtained from either David B. Flora or
Patrick J. Curran or can be directly downloaded from www
.unc.edu/�curran or from http://dx.doi.org/10.1037/1082-989X.9
.4.466.supp. This appendix also includes example EQS code for
data generation and Mplus code for model estimation.

Table 2
Means, Standard Deviations, and Relative Bias of Polychoric Correlation Estimates

N

y*
distribution

2 categories
� � .147

5 categories
� � .147

2 categories
� � .49

5 categories
� � .49

s k M SD RB M SD RB M SD RB M SD RB

100 0.00 0.00 .158 .15 7.46 .147 .11 0.26 .49 .12 �0.03 .49 .10 �0.55
0.75 1.75 .144 .16 �1.95 .161 .11 9.62 .48 .13 �1.29 .51 .09 3.23
0.75 3.75 .148 .15 0.43 .158 .12 7.43 .50 .13 1.27 .52 .09 5.53
1.25 1.75 .161 .16 9.19 .153 .11 3.98 .52 .13 4.49 .50 .09 1.47
1.25 3.75 .157 .15 6.89 .159 .11 8.18 .50 .14 2.03 .52 .09 4.44

200 0.00 0.00 .148 .10 0.47 .148 .08 0.76 .49 .10 �0.97 .49 .06 0.32
0.75 1.75 .157 .11 6.66 .149 .08 1.34 .50 .09 1.33 .50 .06 1.55
0.75 3.75 .153 .11 4.27 .156 .08 6.13 .50 .09 1.94 .51 .07 3.22
1.25 1.75 .161 .12 9.31 .150 .08 2.03 .52 .09 6.99 .50 .06 1.29
1.25 3.75 .163 .11 10.82 .150 .08 1.84 .51 .09 3.80 .51 .06 3.20

500 0.00 0.00 .151 .07 3.05 .147 .05 �0.13 .49 .06 0.78 .49 .04 0.35
0.75 1.75 .152 .07 3.31 .150 .05 2.08 .50 .06 1.20 .50 .04 1.60
0.75 3.75 .158 .07 7.61 .151 .05 2.48 .51 .06 3.17 .50 .04 2.99
1.25 1.75 .160 .07 8.75 .155 .05 5.31 .52 .06 5.84 .50 .04 1.29
1.25 3.75 .153 .07 4.20 .158 .05 7.35 .51 .06 3.51 .51 .04 4.55

1,000 0.00 0.00 .147 .05 �0.05 .147 .04 0.12 .49 .04 �0.81 .49 .03 0.61
0.75 1.75 .153 .05 3.83 .151 .04 2.77 .50 .04 1.77 .50 .03 1.99
0.75 3.75 .155 .05 5.77 .154 .04 4.67 .50 .04 2.73 .50 .03 2.73
1.25 1.75 .162 .05 10.11 .153 .03 4.16 .52 .04 5.39 .49 .03 0.54
1.25 3.75 .156 .05 5.82 .157 .04 7.18 .51 .04 3.58 .51 .03 3.94

Note. s � skewness; k � kurtosis; � � population correlation value; RB � mean relative bias across replications.
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respectively. Recall that with full WLS, the model degrees
of freedom, and hence the expected value of the chi-square
test statistic, is determined directly from model specifica-
tion, whereas with robust WLS, the model degrees of free-
dom is estimated in part from characteristics of the data and
varies across samples. Thus, although we present the across-
replication mean and standard deviation of chi-square sta-
tistics obtained with full WLS, we do not present the across-
replication mean and standard deviation of chi-square
values obtained with robust WLS because the expected
value of these statistics varies across replications within a
given cell. For both methods of estimation, we present the
mean RB of the chi-square test statistics and the observed
Type I error rate (using � � .05) for each cell. With robust
WLS, we calculated chi-square percentage bias for each
replication relative to its observed degrees of freedom and
then computed the mean percentages across replications to
estimate RB.

Both the chi-square test statistics and their standard de-
viations tend to be positively biased across all cells of the

study, particularly with full WLS estimation. This bias
increases as a function of increasing model complexity. For
example, full WLS chi-square statistics from Model 1 have
RB values ranging from 0.02% to 7.63% with N � 500,
whereas full WLS chi-square values from Model 4 show
much greater inflation, as RB is approximately 65% with
N � 500. Comparison of the findings for Model 2 with those
for Model 3 reveals that the bias in chi-square statistics is
affected not only by the number of indicators for a model
but also by model complexity. Model 2 and Model 3 both
have 10 indicators, but in Model 3 the indicators measure
two correlated factors, whereas the indicators for Model 2
measure a single dimension. Because of this added model
complexity, the chi-square statistics for Model 3 are slightly
more inflated than those for Model 2.

The effect of sample size on the inflation in chi-square
test values varies substantially with model specification.
Within each of the four models, the chi-square RB de-
creases as sample size increases, but this effect is more
pronounced for larger models. In addition, there appears

Figure 5. Distribution of polychoric correlation estimates obtained with N � 1,000 (horizontal line
represents population correlation value). s � skewness; k � kurtosis.
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to be some indication that the chi-square statistics are
affected by nonnormality in y*. Within any given level of
model specification and sample size, chi-square statistics
tend to be slightly more inflated in the conditions of
nonnormal y* distribution. Although there is often sub-

stantial variability in the distribution of chi-square sta-
tistics across the four nonnormal y* distributions, the
pattern of differences does not reflect any consistent
pattern across the other study conditions. Importantly, the
effect of nonnormality on chi-square statistics is much

Table 3
Rates of Improper Solutions Obtained With Full WLS Estimation

N

y*
distribution

2 categories
Model

5 categories
Model

s k 1 2 3 4 1 2 3 4

100 0.00 0.00 2.2 30.4 40.2 — 0.0 0.0 1.2 —
0.75 1.75 0.6 31.6 40.6 — 0.0 0.4 1.4 —
0.75 3.75 2.0 34.0 43.6 — 0.0 0.4 1.2 —
1.25 1.75 1.6 36.4 52.0 — 0.0 0.0 1.2 —
1.25 3.75 1.4 31.2 50.6 (0.2) — 0.0 0.6 1.8 —

200 0.00 0.00 0.0 0.0 0.6 94.02 (5.77) 0.0 0.0 0.0 28.8
0.75 1.75 0.0 0.0 0.2 86.00 (13.54) 0.0 0.0 0.0 27.8
0.75 3.75 0.0 0.0 0.8 83.46 (16.54) 0.0 0.0 0.0 33.2
1.25 1.75 0.0 0.2 0.4 66.51 (33.49) 0.0 0.0 0.0 21.6
1.25 3.75 0.0 0.0 0.8 76.95 (23.05) 0.0 0.0 0.0 29.4

Note. Tabled values are proportions of improper solutions for each cell. Values in parentheses are proportions
of nonconverged solutions. Dashes indicate that no solutions were obtained for any replications of these cells.
For N � 500 and N � 1,000, all replications converged to proper solutions (rates of improper solutions equaled
0.0% for all cells with these sample sizes). s � skewness; k � kurtosis.

Table 4
Chi-Square Test Statistics for Model 1 (Five Indicators, One Factor)

N

y*
distribution Full WLS Robust WLS

s k M SD RB % reject RB % reject

100 0.00 0.00 5.81 3.87 16.22 10.40 8.66 5.60
0.75 1.75 5.78 4.13 15.67 8.80 8.05 6.40
0.75 3.75 5.82 4.03 16.34 10.20 7.78 6.20
1.25 1.75 6.03 4.27 20.56 10.00 10.65 7.20
1.25 3.75 5.88 3.82 17.68 9.40 8.12 4.60

200 0.00 0.00 4.99 3.21 �0.28 5.40 �4.32 3.60
0.75 1.75 5.27 3.51 5.30 7.20 �1.06 3.80
0.75 3.75 5.55 3.91 10.99 8.40 4.23 6.00
1.25 1.75 5.47 3.53 9.50 6.60 6.41 5.60
1.25 3.75 5.56 3.55 11.13 8.00 7.60 7.60

500 0.00 0.00 5.06 3.32 1.28 5.80 �1.22 5.40
0.75 1.75 5.00 3.00 0.02 5.20 �1.92 4.00
0.75 3.75 5.38 3.45 7.63 7.60 4.98 6.00
1.25 1.75 5.26 3.30 5.23 6.60 3.13 5.60
1.25 3.75 5.02 2.95 0.43 4.40 �1.74 3.60

1,000 0.00 0.00 4.78 3.20 �4.44 5.00 �5.21 4.60
0.75 1.75 4.89 2.99 �2.16 4.20 �3.55 4.40
0.75 3.75 5.16 3.26 3.13 4.60 2.27 4.20
1.25 1.75 5.50 3.53 10.00 6.80 9.47 7.00
1.25 3.75 4.83 2.95 �3.49 4.00 �3.88 3.20

Note. For full weighted least squares (WLS), expected value of the chi-square statistic is 5; expected standard
deviation is 3.16. For robust WLS, expected value of the chi-square statistic varies within each cell, thus it is not
appropriate to calculate the mean and standard deviation of chi-square statistics across replications within a given
cell. s � skewness; k � kurtosis; RB � mean relative bias across replications; % reject values are Type I error
rates at � � .05.
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less pronounced than are the effects of model specifica-
tion and sample size.

In general, the robust WLS chi-square statistics are in-
flated across most cells of the study, although typically by
less than 10% of their population values (except with N �
100, where RB values tend to be between 10% and 20%).
This positive bias is drastically smaller with robust WLS
estimation relative to full WLS estimation, especially for
the larger models. Furthermore, the influence of sample size
on the chi-square test statistics appears to be much greater
with full WLS than it does with robust WLS. Figure 6
illustrates Type I error rates for the model chi-square test by
sample size for Models 1 and 3, as estimated with both full
WLS and robust WLS. The figure reflects that for small
models (i.e., the five-indicator Model 1), both methods of
estimation lead to Type I error rates close to the nominal
alpha level of .05 across all four sample sizes. The figure
also shows that for a more complex model (i.e., Model 3,
where 10 indicators represent two factors), full WLS esti-
mation produces vastly inflated Type I error rates with
samples of size less than N � 1,000, whereas the robust
WLS method continues to produce Type I error rates close
to the nominal alpha level across all sample sizes. Finally,
there does not appear to be any consistent tendency for

robust WLS chi-square values to be more biased under
nonnormal y*.

Parameter estimates. Tables 8–11 present findings per-
taining to the parameter estimates (i.e., factor loadings and
interfactor correlations) obtained for Models 1, 2, 3, and 4,
respectively. On average, the parameters are overestimated
across all conditions, and this positive bias increases with
increasing model size. However, the overall bias in param-
eter estimation is notably smaller with robust WLS than it is
with full WLS, especially for larger models and smaller
sample sizes. In general, the bias in parameter estimates
obtained with robust WLS is consistently trivial (i.e., less
than 5%, with the exception of estimates of factor correla-
tions with N � 100 and 200, where RB is trivial to mod-
erate, or less than 10%). Even with full WLS estimation, the
parameter overestimation is typically small, rarely leading
to parameter estimates greater than the corresponding pop-
ulation value by more than .1 in the correlation metric.
Whereas the overestimation of parameters with full WLS
increases as a function of increasing number of indicators
for the model, there is no such effect of model size on
parameter estimation with robust WLS. Furthermore, pa-
rameter overestimation with full WLS improves as a func-
tion of increasing sample size, particularly with larger mod-

Table 5
Chi-Square Test Statistics for Model 2 (10 Indicators, One Factor)

N

y*
distribution Full WLS Robust WLS

s k M SD RB % reject RB % reject

100 0.00 0.00 59.68 19.94 70.50 63.80 8.42 6.40
0.75 1.75 61.33 20.39 75.21 66.06 8.65 7.40
0.75 3.75 63.14 21.49 80.41 70.68 10.17 8.00
1.25 1.75 64.51 19.28 84.32 77.60 16.10 12.40
1.25 3.75 60.19 18.69 71.99 70.42 7.68 5.00

200 0.00 0.00 44.55 12.88 27.28 28.60 4.25 5.60
0.75 1.75 45.14 12.73 28.98 32.00 4.05 3.80
0.75 3.75 45.40 12.19 29.70 33.60 4.46 6.40
1.25 1.75 47.88 13.86 36.81 38.80 9.15 10.20
1.25 3.75 45.37 12.52 29.64 33.20 5.34 4.00

500 0.00 0.00 38.53 10.11 10.08 13.80 1.85 6.00
0.75 1.75 38.13 9.68 8.95 12.80 0.11 3.60
0.75 3.75 38.61 9.79 10.31 13.00 1.02 3.80
1.25 1.75 41.01 10.23 17.23 18.60 6.19 7.80
1.25 3.75 38.30 9.90 9.42 11.40 1.62 6.20

1,000 0.00 0.00 36.52 9.31 4.35 8.40 �0.15 5.00
0.75 1.75 36.54 9.51 4.39 9.40 �0.22 6.00
0.75 3.75 36.77 9.46 5.06 9.40 0.13 5.80
1.25 1.75 39.00 9.78 11.42 14.00 6.44 9.20
1.25 3.75 36.98 9.38 5.67 8.60 1.59 6.00

Note. For full weighted least squares (WLS), expected value of the chi-square statistic is 35; expected standard
deviation is 8.37. For robust WLS, expected value of the chi-square statistic varies within each cell, thus it is not
appropriate to calculate the mean and standard deviation of chi-square statistics across replications within a given
cell. s � skewness; k � kurtosis; RB � mean relative bias across replications; % reject values are Type I error
rates at � � .05.
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els. But with robust WLS, the effect of sample size on
parameter estimation is quite small.

Parameter estimates (both factor loadings and factor cor-
relations) seem to be affected by nonnormality in the y*
variables, although this effect is small. Across all cells, the
parameter estimates are positively biased, even with normal
y*, and this parameter overestimation increases with greater
nonnormality in y*. For example, using full WLS estima-
tion, the mean RB of factor loadings when Model 1 is
estimated from normally distributed y* variables is 2.57%
with N � 100 and 0.29% with N � 1,000, yet when the
same model is estimated from y* variables with univariate
skewness � 1.25 and univariate kurtosis � 3.75, the mean
RB of factor loadings is 4.86% with N � 100 and 2.29%
with N � 1,000. Overall, this small effect of y* nonnormal-
ity on parameter estimation was found with both full and
robust WLS estimation.

Standard errors. The conditions leading to greater bias
in the standard errors were nearly identical to those that led
to greater bias in chi-square test statistics, thus we do not
present detailed results pertaining to standard error estima-
tion.14 Across all study conditions, the standard errors were
consistently negatively biased relative to the standard devi-
ation of the relevant parameter sampling distribution ob-
tained empirically across replications. Specifically, standard

errors were more biased as a function of increasing model
size and decreasing sample size but were not systematically
affected by y* nonnormality. Under full WLS estimation at
N � 1,000, the mean factor loading standard error RB
ranges from around �2.5% to �1% across replications of
Model 1, from around �9% to �5% across replications of
Models 2 and 3, and from around �25% to �22% across
replications of Model 4. Although the robust WLS approach
also frequently produced negatively biased standard errors,
these biases were much smaller than the standard error bias
produced with full WLS estimation. Using the robust WLS
method with N � 1,000, the mean factor loading standard
error RB ranges from around �1% to 1% across replica-
tions of Model 1, from around �3% to 1% across replica-
tions of Models 2 and 3, and from around �3% to �1%
across replications of Model 4.

14 Complete results pertaining to standard error estimates are
also included in the technical appendix that can be obtained from
either David B. Flora or Patrick J. Curran or downloaded from
www.unc.edu/�curran or from http://dx.doi.org/10.1037/1082-
989X.9.4.466.supp.

Table 6
Chi-Square Test Statistics for Model 3 (10 Indicators, Two Correlated Factors)

N

y*
distribution Full WLS Robust WLS

s k M SD RB % reject RB % reject

100 0.00 0.00 65.25 22.94 91.90 74.29 15.03 12.20
0.75 1.75 65.95 23.71 93.96 73.63 16.85 12.40
0.75 3.75 67.49 22.22 98.51 81.38 14.46 12.00
1.25 1.75 65.78 22.92 93.48 75.51 16.76 12.20
1.25 3.75 65.44 22.54 92.46 77.80 15.10 10.80

200 0.00 0.00 45.98 13.59 35.23 37.80 5.47 6.60
0.75 1.75 46.34 15.03 36.29 39.40 6.53 7.60
0.75 3.75 46.90 13.79 37.94 40.40 5.49 7.80
1.25 1.75 47.73 14.19 40.38 42.40 10.20 8.60
1.25 3.75 46.09 14.06 35.55 38.80 6.51 8.60

500 0.00 0.00 38.14 10.17 12.19 15.60 1.40 5.00
0.75 1.75 38.97 10.06 14.62 16.60 3.33 6.60
0.75 3.75 38.46 9.79 13.10 15.60 3.10 7.80
1.25 1.75 40.16 11.12 18.13 19.00 6.93 8.20
1.25 3.75 38.77 10.65 14.04 15.20 3.65 7.20

1,000 0.00 0.00 36.04 8.88 6.00 9.60 1.36 5.60
0.75 1.75 36.29 9.28 6.74 10.20 1.65 5.80
0.75 3.75 36.11 8.80 6.21 8.20 �0.19 3.80
1.25 1.75 37.24 9.00 9.54 10.60 2.75 5.60
1.25 3.75 35.69 9.38 4.97 8.60 �1.68 3.60

Note. For full weighted least squares (WLS), expected value of the chi-square statistic is 34; expected standard
deviation is 8.25. For robust WLS, expected value of the chi-square statistic varies within each cell, thus it is not
appropriate to calculate the mean and standard deviation of chi-square statistics across replications within a given
cell. s � skewness; k � kurtosis; RB � mean relative bias across replications; % reject values are Type I error
rates at � � .05.
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Discussion

We used a comprehensive simulation study to empirically
test our set of theoretically generated research hypotheses
pertaining to the performance of CFA for ordinal data with
polychoric correlations using both full WLS (as per
Browne, 1984, and B. Muthén, 1983, 1984) and robust
WLS (as per Muthén et al., 1997) estimation. The results of
our study provided support for each of our proposed
hypotheses.

First, as predicted, we replicated Quiroga’s (1992) find-
ings that polychoric correlations among ordinal variables
accurately estimated the bivariate relations among normally
distributed latent response variables and that modest viola-
tion of normality for latent response variables of a degree
that might be expected in applied research leads to only
slightly biased estimates of polychoric correlations. Both
our results and Quiroga’s suggest that this finding occurs
regardless of whether the same set of threshold values is
applied to both latent response variables leading to the
observed ordinal variables. A thorough examination of the
effects of differing thresholds and level of skewness across
the two variables on polychoric correlation estimates is

beyond the scope of our study. However, we note that
Quiroga found that polychoric correlation estimates re-
mained accurate when the ordinal variables had differing
thresholds or skewness of opposite sign. Specifically, al-
though increasing levels of nonnormality tended to produce
increasingly positively biased correlation estimates, these
biases remained quite small and were typically less than .03
in the correlation metric. Furthermore, we found that vari-
ability in polychoric correlations was not affected by non-
normality and that sample size had no effect on the mean
polychoric correlation estimates across cells.

These results likely occurred because nonnormality in the
latent response variables, in combination with the threshold
values used to categorize the data, did not produce contin-
gency tables with low expected cell frequencies (see Brown
& Bendetti, 1977; Olsson, 1979). Because our results indi-
cated that the polychoric correlations accurately recovered
the correlations among the unobserved y* variables even
under modest violation of the normality assumption, we
proceeded to examine the adequacy of fitting CFA models
to these correlation structures.

As we described earlier, it has been analytically demon-
strated that when CFA models are fitted using observed

Table 7
Chi-Square Test Statistics for Model 4 (20 Indicators, Two Correlated Factors)

N

y*
distribution Full WLS Robust WLS

s k M SD RB
%

reject RB % reject

100 0.00 0.00 — — — — 17.13 15.00
0.75 1.75 — — — — 15.46 14.40
0.75 3.75 — — — — 16.19 12.80
1.25 1.75 — — — — 19.45 17.60
1.25 3.75 — — — — 17.03 13.80

200 0.00 0.00 1235.67 317.21 631.16 100.00 8.21 8.20
0.75 1.75 1271.38 327.99 652.29 100.00 7.93 7.80
0.75 3.75 1388.40 404.18 721.54 100.00 7.73 7.60
1.25 1.75 1279.96 322.21 657.37 100.00 10.97 11.00
1.25 3.75 1292.71 369.64 664.92 100.00 9.07 10.00

500 0.00 0.00 272.76 37.90 61.39 97.80 3.94 7.80
0.75 1.75 275.02 40.44 62.73 97.40 3.58 6.80
0.75 3.75 279.43 42.22 65.34 97.80 2.92 6.20
1.25 1.75 285.95 42.51 69.20 99.20 5.91 7.80
1.25 3.75 273.99 38.48 62.13 99.00 3.58 6.80

1,000 0.00 0.00 210.55 26.49 24.59 63.80 1.53 6.40
0.75 1.75 211.90 25.21 25.38 66.60 2.30 7.00
0.75 3.75 211.82 25.63 25.34 65.00 1.98 5.80
1.25 1.75 219.15 26.87 29.68 74.00 3.92 6.80
1.25 3.75 211.43 24.62 25.11 67.40 2.96 7.20

Note. For full weighted least squares (WLS), expected value of the chi-square statistic is 169; expected
standard deviation is 18.38. For robust WLS, expected value of the chi-square statistic varies within each cell,
thus it is not appropriate to calculate the mean and standard deviation of chi-square statistics across replications
within a given cell. Dashes indicate values that are not available because of noninvertible weight matrices. s �
skewness; k � kurtosis; RB � mean relative bias across replications; % reject values are Type I error rates at
� � .05.
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polychoric correlation matrices, full WLS estimation pro-
duces asymptotically correct chi-square tests of model fit
and parameter standard errors (e.g., B. Muthén, 1983, 1984;
B. O. Muthén & Satorra, 1995). However, in practice, the
use of full WLS is often problematic, especially when
models with a large number of indicators are estimated with
sample sizes typically encountered in social science re-
search. In our study, we found that when the 20-indicator
model (Model 4) was estimated using N � 100, the esti-
mated asymptotic covariance matrix W was consistently
nonpositive definite and could not be inverted for any of the
replications. Thus, not a single solution across all replica-
tions was obtained in this situation using full WLS estima-
tion. This finding is consistent with Browne’s (1984) obser-
vation that this method of estimation “will tend to become
infeasible” as the number of variables approaches p � 20 (p.
73) and Jöreskog & Sörbom’s (1996) recommendation that
a minimum sample size be attained for estimation of W.
When Model 4 was estimated with samples of size N � 200,
W was usually invertible, but the full WLS fitting function
frequently failed to converge to a proper CFA solution.

However, the overall rates of nonconvergence and im-

proper solutions obtained with full WLS in the present study
are less than those found in simulation studies applying full
WLS to continuously distributed data (e.g., Curran et al.,
1996). Nonetheless, other studies applying full WLS esti-
mation to the analysis of polychoric correlations have found
rates of nonconvergence and improper solutions similar to
those reported here: Neither Dolan (1994) nor Potthast
(1993) obtained nonpositive definite weight matrices or
improper solutions for any replications of their respective
studies, which analyzed samples of size 200 and greater,
whereas Babakus et al. (1987) obtained high rates of non-
convergence and improper solutions only with samples of
100.

One advantage of the robust WLS method relative to full
WLS is that sample solutions for the CFA model can still be
obtained with robust WLS estimation even when the weight
matrix is nonpositive definite. Thus, robust WLS estimation
successfully obtained solutions to Model 4 with N � 100,
whereas full WLS did not. Furthermore, our findings show
that the likelihood of obtaining an improper solution or
encountering convergence difficulty is near zero with robust

Figure 6. Type I error rates with nominal alpha level � .05 for chi-square test of model fit by
sample size for Model 1 (5 indicators of one factor) and Model 3 (10 indicators of two factors).
WLS � weighted least squares.
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WLS estimation, even when the model is large and the
sample is small.

Next, we hypothesized that full WLS estimation of CFA
models for ordinal data using polychoric correlations would
lead to inflated test statistics and underestimated standard
errors. Our findings supported this prediction in that, on
average, the chi-square test statistics were positively biased
and parameter standard errors were negatively biased in
nearly every cell of the study. The results also supported our
more specific predictions that these biases would increase as
a function of decreasing sample size and increasing model
complexity. Specifically, the effect of sample size was
larger for more complex models. With the five-indicator
model, chi-square statistics were substantially biased at N �
100, whereas sample sizes of 200 and even 500 led to
substantially biased chi-square statistics for the two 10-
indicator models. Sample sizes as large as N � 1,000 still
led to heavily inflated chi-square values for the 20-indicator
model. However, with the two 10-indicator models, chi-
square values showed substantial inflation with sample sizes
below 1,000. For the 20-indicator model, full WLS estima-
tion produced vastly inflated chi-square values across all
sample sizes, virtually guaranteeing rejection of a properly
specified CFA model with N � 200 or N � 500. Thus, our
findings are similar to those of Dolan (1994), who con-

cluded that a sample size of 200 is not sufficient to estimate
an eight-indicator model with full WLS using polychoric
correlations, and to those of Potthast (1993), who reported
significant problems when nine-parameter and larger mod-
els are estimated with a sample size as large as 1,000.

The model test statistics produced with robust WLS also
tended to be positively biased relative to their expected
values; however, these biases were substantially less than
those observed with the test statistics produced by full WLS.
For the 10- and 20-indicator models, the mean RB of the
robust WLS test statistics was typically less than 10% for all
cells with sample size 200 or greater. Whereas full WLS
estimation led to high Type I error rates for the 10- and
20-indicator models, robust WLS model rejection rates
were much closer to the nominal .05 level. Thus, our pre-
diction that robust WLS estimation might produce test sta-
tistics accurately distributed as chi-square, with degrees of
freedom estimated from the data as per B. Muthén et al.
(1997), was supported across all four model specifications
estimated with samples of size 200 or greater.

Because of its reliance on the complete asymptotic vari-
ance–covariance matrix, it is not surprising that full WLS
estimation produced increasingly biased test statistics as a
function of decreasing sample size combined with increas-
ing model size. In contrast, robust WLS estimation is pri-

Table 8
Mean Factor Loadings for Model 1 (Five Indicators, One Factor)

N

y*
distribution Full WLS Robust WLS

s k
Pooled

M
Pooled

SD RB
Pooled

M
Pooled

SD RB

100 0.00 0.00 .718 .080 2.57 .702 .078 0.29
0.75 1.75 .726 .081 3.71 .711 .078 1.57
0.75 3.75 .731 .082 4.43 .717 .078 2.43
1.25 1.75 .717 .081 2.43 .703 .078 0.43
1.25 3.75 .734 .079 4.86 .719 .076 2.71

200 0.00 0.00 .710 .056 1.43 .701 .055 0.14
0.75 1.75 .716 .055 2.29 .707 .054 1.00
0.75 3.75 .722 .056 3.14 .713 .054 1.86
1.25 1.75 .713 .055 1.86 .705 .054 0.71
1.25 3.75 .724 .056 3.43 .715 .055 2.14

500 0.00 0.00 .705 .035 0.71 .701 .034 0.14
0.75 1.75 .711 .034 1.57 .707 .034 1.00
0.75 3.75 .717 .035 2.43 .713 .034 1.86
1.25 1.75 .707 .033 1.00 .703 .033 0.43
1.25 3.75 .717 .033 2.43 .713 .033 1.86

1,000 0.00 0.00 .702 .024 0.29 .700 .024 0.00
0.75 1.75 .709 .024 1.29 .707 .023 1.00
0.75 3.75 .713 .024 1.86 .711 .024 1.57
1.25 1.75 .706 .023 0.86 .704 .023 0.57
1.25 3.75 .716 .024 2.29 .714 .024 2.00

Note. Factor loading population value � .7. s � skewness; k � kurtosis; WLS � weighted least squares;
Pooled M is the mean within-cell factor loadings; Pooled SD is the square root of within-cell factor loading
variances; RB � mean relative bias across replications.
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marily a function of only the asymptotic variances, and not
the covariances, among the sample correlation estimates.
Therefore, solutions obtained with robust WLS estimation
are not affected by inaccuracies in the full weight matrix
nearly to the same extent that full WLS solutions are
affected.

Because polychoric correlations provide consistent esti-
mates of the relationships among latent response variables,
we predicted that CFA parameter estimates would be unbi-
ased. Our findings suggest that, for normally distributed
latent response variables, parameter estimates obtained with
full WLS estimation tended to be somewhat positively
biased with overestimation increasing as a function of in-
creasing model size and decreasing sample size. However,
these biases were relatively small across all cells of the
simulation: Even when the 20-indicator model was esti-
mated with N � 200, estimates of the population factor
loading .70 were consistently less than .80, and estimates of
the population factor correlation .30 were typically less than
.40. Dolan (1994) found that parameters tended to be
slightly overestimated with N � 400 and less, whereas
Potthast (1993) concluded that parameter estimate bias was
trivial across all cells of her simulation study, which only
had two conditions of sample size, N � 500 and N � 1,000.
Our results essentially replicated these findings. With robust

WLS estimation, parameter estimates were mostly unbiased
with normally distributed latent response variables.

As predicted, for both full WLS estimation and robust
WLS estimation, we found that increasing levels of nonnor-
mality in latent response variables was associated with
greater positive bias in parameter estimates, echoing the
tendency of polychoric correlations to be positively biased
when observed ordinal data derives from nonnormal latent
response variables. However, in that nonnormality in latent
response distributions produces only slightly biased poly-
choric correlations, this nonnormality introduces only slight
bias in CFA parameter estimates. As we noted earlier,
because the polychoric correlations resulting from ex-
tremely nonnormal continuous latent response distributions
were substantially distorted, we did not fit CFA models to
these correlation structures. Theory would strongly predict
that the CFA parameter estimates and standard errors would
be biased as a function of the distorted correlation structure.

Finally, we found that nonnormality in latent response
variables contributed to only a slight increase in the positive
bias of chi-square values obtained with full WLS estimation
but not with robust WLS estimation. Similarly, Babakus et
al. (1987), Potthast (1993), and Hutchinson and Olmos
(1998) found that chi-square test statistics become more
biased with increasing nonnormality in the observed ordinal

Table 9
Mean Factor Loadings for Model 2 (10 Indicators, One Factor)

N

y*
distribution Full WLS Robust WLS

s k
Pooled

M
Pooled

SD RB
Pooled

M
Pooled

SD RB

100 0.00 0.00 .775 .080 10.71 .703 .066 0.43
0.75 1.75 .782 .078 11.71 .712 .066 1.71
0.75 3.75 .783 .082 11.86 .715 .067 2.14
1.25 1.75 .780 .077 11.43 .712 .064 1.71
1.25 3.75 .786 .081 12.29 .716 .067 2.29

200 0.00 0.00 .746 .051 6.57 .702 .047 0.29
0.75 1.75 .751 .051 7.29 .707 .047 1.00
0.75 3.75 .753 .052 7.57 .711 .047 1.57
1.25 1.75 .745 .051 6.43 .707 .046 1.00
1.25 3.75 .760 .051 8.57 .717 .047 2.43

500 0.00 0.00 .721 .030 3.00 .701 .029 0.14
0.75 1.75 .726 .031 3.71 .707 .029 1.00
0.75 3.75 .731 .031 4.43 .712 .030 1.71
1.25 1.75 .722 .030 3.14 .704 .029 0.57
1.25 3.75 .733 .031 4.71 .714 .030 2.00

1,000 0.00 0.00 .710 .021 1.43 .701 .020 0.14
0.75 1.75 .716 .021 2.29 .706 .021 0.86
0.75 3.75 .722 .021 3.14 .712 .021 1.71
1.25 1.75 .713 .021 1.86 .704 .020 0.57
1.25 3.75 .723 .022 3.29 .713 .021 1.86

Note. Factor loading population value � .7. s � skewness; k � kurtosis; WLS � weighted least squares;
Pooled M is the mean within-cell factor loadings; Pooled SD is the square root of within-cell factor loading
variances; RB � mean relative bias across replications.
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Table 10
Mean Parameter Estimates for Model 3 (10 Indicators, Two Correlated Constructs)

N

y*
distribution

Full WLS Robust WLS

Loadings (�) Correlation (�21) Loadings (�) Correlation (�21)

s k M SD RB M SD RB M SD RB M SD RB

100 0.00 0.00 .744 .097 6.29 .363 .165 21.16 .703 .078 0.43 .313 .115 4.49
0.75 1.75 .746 .101 6.57 .340 .175 13.31 .707 .080 1.00 .301 .122 0.39
0.75 3.75 .753 .099 7.57 .354 .178 17.87 .713 .078 1.86 .319 .130 6.44
1.25 1.75 .749 .095 7.00 .363 .174 21.00 .709 .078 1.29 .320 .118 6.55
1.25 3.75 .762 .097 8.86 .371 .173 23.69 .721 .078 3.00 .327 .120 8.86

200 0.00 0.00 .727 .060 3.86 .339 .098 13.04 .701 .054 0.14 .306 .079 1.86
0.75 1.75 .733 .061 4.71 .337 .101 12.46 .708 .055 1.14 .311 .087 3.53
0.75 3.75 .737 .061 5.29 .340 .100 13.29 .713 .055 1.86 .311 .084 3.56
1.25 1.75 .729 .061 4.14 .348 .100 15.92 .705 .055 0.71 .317 .083 5.81
1.25 3.75 .740 .060 5.71 .332 .106 10.54 .716 .054 2.29 .311 .087 3.57

500 0.00 0.00 .712 .035 1.71 .316 .059 5.22 .701 .034 0.14 .302 .054 0.82
0.75 1.75 .718 .036 2.57 .318 .055 6.10 .707 .034 1.00 .305 .051 1.55
0.75 3.75 .722 .036 3.14 .317 .057 5.70 .711 .035 1.57 .304 .052 1.35
1.25 1.75 .716 .035 2.29 .322 .057 7.48 .705 .034 0.71 .310 .052 3.40
1.25 3.75 .725 .036 3.57 .323 .058 7.53 .714 .034 2.00 .310 .053 3.28

1,000 0.00 0.00 .706 .024 0.86 .308 .038 2.71 .701 .024 0.14 .302 .036 0.52
0.75 1.75 .712 .025 1.71 .313 .038 4.39 .706 .025 0.86 .306 .037 2.14
0.75 3.75 .716 .025 2.29 .309 .041 2.87 .710 .025 1.43 .302 .039 0.81
1.25 1.75 .709 .024 1.29 .321 .037 6.85 .703 .024 0.43 .314 .036 4.72
1.25 3.75 .719 .024 2.71 .315 .041 5.03 .713 .024 1.86 .309 .039 2.91

Note. Factor loading population value � .7; factor correlation population value � .3. s � skewness; k � kurtosis; WLS � weighted least squares; RB �
mean relative bias across replications. For loadings, M is the pooled mean within-cell factor loadings; SD is the square root of within-cell factor loading
variances.

Table 11
Mean Parameter Estimates for Model 4 (20 Indicators, Two Correlated Constructs)

N

y*
distribution

Full WLS Robust WLS

Loadings (�) Correlation (�21) Loadings (�) Correlation (�21)

s k M SD RB M SD RB M SD RB M SD RB

100 0.00 — — — — — — — .703 .069 0.43 .307 .111 2.24
0.75 1.75 — — — — — — .711 .068 1.57 .305 .107 1.62
0.75 3.75 — — — — — — .716 .070 2.29 .315 .106 5.09
1.25 1.75 — — — — — — .708 .068 1.14 .318 .098 5.92
1.25 3.75 — — — — — — .718 .069 2.57 .310 .102 3.33

200 0.00 0.00 .786 .104 12.29 .423 .185 41.02 .703 .048 0.43 .302 .078 0.54
0.75 1.75 .788 .102 12.57 .404 .184 34.80 .709 .048 1.29 .307 .076 2.22
0.75 3.75 .786 .106 12.29 .413 .179 37.52 .712 .048 1.71 .303 .075 0.96
1.25 1.75 .784 .102 12.00 .419 .183 39.74 .705 .047 0.71 .315 .071 5.12
1.25 3.75 .790 .104 12.86 .400 .180 33.35 .715 .048 2.14 .307 .074 2.19

500 0.00 0.00 .745 .036 6.43 .359 .061 19.59 .701 .030 0.14 .302 .047 0.66
0.75 1.75 .748 .036 6.86 .362 .062 20.61 .706 .030 0.86 .308 .045 2.71
0.75 3.75 .753 .037 7.57 .361 .063 20.26 .712 .030 1.71 .306 .045 1.87
1.25 1.75 .745 .035 6.43 .367 .059 22.18 .704 .029 0.57 .312 .046 4.06
1.25 3.75 .756 .035 8.00 .366 .063 22.07 .714 .030 2.00 .311 .048 3.57

1,000 0.00 0.00 .723 .023 3.29 .328 .039 9.40 .701 .021 0.14 .301 .034 0.26
0.75 1.75 .728 .023 4.00 .331 .036 10.18 .706 .021 0.86 .302 .030 0.63
0.75 3.75 .733 .023 4.71 .333 .039 11.07 .711 .022 1.57 .304 .033 1.47
1.25 1.75 .725 .022 3.57 .339 .039 13.02 .704 .021 0.57 .311 .035 3.68
1.25 3.75 .736 .023 5.14 .337 .037 12.48 .713 .021 1.86 .309 .031 2.87

Note. Factor loading population value � .7, factor correlation population value � .3. Dashes indicate values that are not available because of noninvertible
weight matrices. s � skewness; k � kurtosis; WLS � weighted least squares; RB � mean relative bias across replications. For loadings, M is the pooled
mean within-cell factor loadings; SD is the square root of within-cell factor loading variances.
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variables, although these researchers found a greater effect
of nonnormality than we did here.

However, it is crucial to keep in mind that in the current
study, we created nonnormal ordinal observed data by cat-
egorizing nonnormal continuous latent response variables.
This manipulation is fundamentally different from that im-
plemented in these other studies in which nonnormal ordinal
observed data were created by varying the thresholds used
to categorize normal continuous latent response variables.
As illustrated in Table 1, the nonnormal y* variables from
which we generated our sample data had more extreme
levels of skewness and kurtosis than the observed, ordinal
variables from which polychoric correlations and CFAs
were estimated. Indeed, the levels of skewness and kurtosis
in our ordinal observed data were quite close to those of the
normal distribution, despite that our continuous latent re-
sponse variables were much more nonnormal.

As such, observed ordinal distributions obtained in prac-
tice may often have more extreme levels of skewness and
kurtosis than those used here. Because prior studies (e.g.,
Babakus et al., 1987; Hutchinson & Olmos, 1998; Potthast,
1993; Rigdon & Ferguson, 1991) have effectively demon-
strated the effects of increased skewness and kurtosis in
observed ordinal variables on the estimation of CFAs, we
deemed a more thorough manipulation of y variables to be
beyond the scope of the current study. Rather, as stated
above, our intent was to evaluate the effect of violation of a
crucial theoretical assumption for estimation of CFAs using
polychoric correlations, namely the latent normality as-
sumption for y*, and the manipulations we chose for our
simulations were explicitly targeted to do so. Thus, com-
bining our findings with those from previous studies, we
were able to reach three general conclusions about how
distribution of y* and y affects the estimation of CFA
models from observed ordinal data.

First, estimation of CFA models is robust to moderate
violation of the latent normality assumption for y* vari-
ables, an assumption implicit in the statistical theory under-
pinning the polychoric correlation, at least under conditions
to those studied here. Because polychoric correlations pro-
vide robust estimates of the true correlation even when
different sets of thresholds are applied to y* variables, it
follows that estimation of CFA models is not substantially
affected according to whether or not threshold sets are
constant across indicators.

Second, to the extent that the observed ordinal variables
have nonzero skewness and kurtosis (e.g., as a result of
threshold sets that lead to a dramatically different distribu-
tion shape for y relative to a normal or moderately nonnor-
mal y*), full WLS estimation is known to produce biased
chi-square test statistics and parameter standard error esti-
mates. This latter finding likely occurs because of an in-
creased tendency for low expected cell frequencies in ob-
served contingency tables, especially in the context of

small-to-moderate sample sizes (e.g., fewer than 1,000;
Potthast, 1993).15

Third, when the population y* variables are of extreme
nonnormality (e.g., skewness � 5, kurtosis � 50), the likely
result is that the observed ordinal variables themselves will
also have exaggerated levels of skewness and kurtosis, thus
again leading to low expected frequencies in observed con-
tingency tables. With regard to consideration of the joint
effects of underlying nonnormality and varying thresholds
across indicators, to the extent that these factors jointly
produce observed contingency tables with low (or zero)
expected cell frequencies, they are likely to lead to inaccu-
rate polychoric correlations (as shown by Brown & Ben-
detti, 1977), which in turn adversely affect estimation of
CFA models.

Implications for Applied Research

There are several specific implications of our findings
with respect to using these analytic methods in practice.
First, our findings suggest that the estimation of CFA mod-
els using polychoric correlations is robust to the moderate
levels of nonnormality in the latent response variables that
we considered here. Consistent with Quiroga (1992), our
results showed that polychoric correlations become only
slightly inflated when the latent response variables are mod-
erately nonnormal. In turn, this bias in the correlation esti-
mates contributes to a modest overestimation of CFA model
parameters and has little effect on chi-square test statistics
or parameter standard error estimates. Our findings support
Pearson and Heron’s (1913) argument that the latent nor-
mality assumption is merely a mathematical convenience
that has little practical importance when the latent response
variables are moderately (but not extremely) nonnormal.

Although our study demonstrates robustness to the latent
normality assumption, it is important to stress that our study
does not offer a thorough assessment of the effects of
skewness and kurtosis of the observed ordinal variables. In

15 An anonymous reviewer made the astute observation that for
many cells of the study, chi-square values were more biased in the
condition of y* skewness � 1.75 and kurtosis � 1.75 than in the
condition of skewness � 1.75 and kurtosis � 3.75. This pattern
was likely the result of the particular combination of skewness and
kurtosis in the observed ordinal variables rather than in the latent
y* variables. Specifically, Table 1 reflects that the former distri-
butional condition had observed skewness of 0.486 in the context
of slightly negative kurtosis, whereas the latter distribution was
slightly less skewed in the context of positive kurtosis. In the
present study, our aim was to illustrate robustness to the latent
normality assumption rather than to investigate the effect of par-
ticular combinations of skewness and kurtosis in the observed
variables. This finding offers partial evidence that nonnormality in
the latent y* variables per se does not affect estimation to the same
extent as the level of nonzero skewness and kurtosis in the ob-
served ordinal variables.
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practice, researchers may likely observe ordinal distribu-
tions that are more skewed and kurtotic than those examined
here. We refer applied researchers to prior studies (e.g.,
Babakus et al., 1987; Hutchinson & Olmos, 1998; Potthast,
1993; Rigdon & Ferguson, 1991) to further understand the
effects of high skewness and kurtosis among observed or-
dinal variables on estimation of CFAs using polychoric
correlations.

Consistent with previous studies for both continuous and
ordinal data, our results demonstrate that for CFA models of
realistic size (e.g., with 10 or more indicators), the desirable
asymptotic properties of full WLS estimation are not ob-
served with the types of sample sizes typically encountered
in applied psychological research, even with N � 1,000. In
the situation where a researcher wishes to fit a large model
with N � 1,000 or fewer, our findings imply that when
proper CFA solutions are obtained with full WLS (which
can be quite rare at small-to-moderate sample sizes), these
usually have inflated chi-square test statistics and parameter
estimates and negatively biased standard errors. In contrast,
robust WLS estimation nearly always produces a proper
solution with test statistics, parameter estimates, and stan-
dard errors that are much less vulnerable to the effects of
increasing model size and decreasing sample size. Further-
more, even for the situations in which full WLS estimation
performs well (i.e., with small models and large sample
size), robust WLS still produces less biased parameter es-
timates, standard errors, and test statistics. These results
support the recommendation that applied researchers
closely consider robust WLS estimation for CFAs with
ordinal scales (and for SEMs more generally), particularly
when testing medium-to-large models with a moderate-to-
small sample size.

Given this recommendation, a word of caution is war-
ranted. Despite its apparent finite-sample superiority to full
WLS estimation, robust WLS estimation still leads to
slightly biased test statistics and standard errors when large
models are estimated with small samples. This inflation of
the test statistic increases Type I error rates for the chi-
square goodness-of-fit test, thereby causing researchers to
reject correctly specified models more often than expected.
It may be that researchers can supplement the chi-square
goodness-of-fit test with other fit indices often computed in
applications of SEM to retain a model that would otherwise
be rejected on the basis of the chi-square goodness-of-fit test
alone, although we did not include such measures as formal
outcomes of this study. Examples of such fit indices include
the comparative fit index (Bentler, 1990) and the root-mean-
square error of approximation (Steiger, 1990). However,
because both of these indices are based in part on the sample
value of the fit function (i.e., Equation 8), these are likely to
be biased to some degree as well. There has been little
research explicitly evaluating the performance of these sta-
tistics in the context of CFA with polychoric correlations,
although Hutchinson and Olmos (1998) reported promising
initial findings for the comparative fit index.

Study Limitations and Directions for Future
Research

We believe that the design of our study allows for em-
pirically informed conclusions about the practical useful-
ness of CFA using polychoric correlations across several
model specifications of increasing complexity, a broad
range of sample sizes, several distributions for the latent
response variables, and two types of WLS model-fitting
procedures. However, this study shares the basic limitation
of all Monte Carlo simulations; namely, it is possible that
the findings cannot be generalized beyond the specific con-
ditions studied here. Nonetheless, we believe that our ex-
perimental design and subsequent findings enable stronger
predictions to be made about the finite-sample performance
of these methods across a broad range of realistic conditions
than have been previously available.

We defined our nonnormal underlying distributions by
selecting levels of skewness and kurtosis to represent what
we propose to be minor-to-moderate departures from nor-
mality that might be commonly encountered in behavioral
research. It is important to reiterate that we were not inter-
ested in exploring how severely nonnormal the underlying
distributions would need to be made for these estimators to
fail. Instead, we feel that our results provide strong empir-
ical evidence that robust WLS performs exceptionally well
across a variety of commonly encountered conditions in
applied research, and full WLS works almost as well for
larger sample sizes and for simpler models. In sum, we are
not concluding that robust or full WLS is unaffected by any
degree of nonnormality of the latent response, but we do
conclude that these methods are well-behaved for a variety
of nonnormal distributions that might be expected in prac-
tice. Future research is needed to determine more accurately
at what point full or robust WLS estimation begins to break
down under violations of latent normality. Furthermore, we
again remind readers that our results pertain most directly to
violation of the normality assumption for latent response
variables, a crucial theoretical assumption for the estimation
of polychoric correlations. This is in distinct contrast to
prior research that has addressed the effects of varying
skewness and kurtosis among observed ordinal data in the
context of normal latent response variables. We believe our
findings augment this prior work in important ways.

Given the scarcity of studies that have explicitly assessed
the application of CFA using polychoric correlations to
realistic CFA models for ordinal variables, we felt that it
was important to focus exclusively on the estimation of
properly specified models. However, in practice, a given
model specification is rarely exactly correct (see, e.g.,
Cudeck & Henly, 2003; MacCallum, 1995). Therefore, it is
important that future research assess the ability of CFA with
polychoric correlations to test misspecified models. In par-
ticular, our study provides promising results in support of
the robust WLS method of B. Muthén et al. (1997) when
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applied to correctly specified models. However, the perfor-
mance of this method for the estimation of misspecified
models is still unknown. Because this method calculates test
statistics and standard errors in a manner similar to the
Satorra and Bentler (1986, 1988) method for continuous
observed data, one might predict from the results of Curran
et al. (1996) that robust WLS would produce significantly
underestimated chi-square statistics under model misspeci-
fication, thus reducing power to reject a misspecified model.
Again, future research is needed to determine whether
robust WLS maintains appropriate statistical power to de-
tect a misspecification under violations of distributional
assumptions.

Finally, we considered homogeneous values for the factor
loadings both within and across models. This is of course a
simplification, and it would be interesting to examine the
more realistic situation of heterogeneous factor loading val-
ues in future research. Although we did not empirically
examine the effects of varying the values of factor loadings
here, we can draw on statistical theory to make some
predictions about this issue. Namely, higher factor loading
values are reflective of greater factor determinacy, a condi-
tion that has many benefits in model estimation and testing
(see MacCallum, Widaman, Zhang, & Hong, 1999, for an
excellent review). Given our focus of interest, we would
predict that larger factor loadings would likely serve to
convey information more saliently about violation of the
underlying normality distributions within the CFA. Simi-
larly, weaker loadings would likely dampen these effects.
Taken together, we would expect that a heterogeneous set of
factor loading values would simultaneously exacerbate and
weaken the effect of the violation of assumptions, the spe-
cific effect of which would depend on many other experi-
mental design features. Thus, although future research is
needed to better understand the influences of heterogeneous
loading structures, we do not believe that our use of ho-
mogenous loadings is a limitation here.

Conclusion

In sum, we make the following conclusions based on our
experimental design and associated empirical findings.
First, with the exception of a small number of modest
differences in accuracy of polychoric correlation estimation
and model convergence under full WLS, there were few to
no differences found in any empirical results as a function
of two-category versus five-category ordinal distributions.
Second, moderate nonnormality of latent response distribu-
tions did not significantly effect the accuracy of estimation
of polychoric correlations, although severe nonnormality
did. Third, full WLS rarely resulted in accurate test statis-
tics, parameter estimates, and standard errors under either
normal or nonnormal latent response distributions, and this
accuracy only occurred at large sample sizes and for less
complex models. Fourth, robust WLS resulted in accurate
test statistics, parameter estimates and standard errors under

both normal and nonnormal latent response distributions
across all sample sizes and model complexities studied here
(although there was modest bias found at the smallest sam-
ple size). Fifth, as we studied four variations of a CFA
model here, we would anticipate that these findings would
generalize to SEMs of comparable complexity. Finally, all
of our conclusions are based on proper model specifications,
and future research must address the role of statistical power
and the ability of full and robust WLS to detect misspeci-
fications when such misspecifications truly exist.
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