
An empirical evaluation of bufferbloat
in IEEE 802.11n wireless networks

Item Type Conference Paper

Authors Showail, Ahmad; Jamshaid, Kamran; Shihada, Basem

Citation Showail, A., Jamshaid, K., & Shihada, B. (2014). An empirical
evaluation of bufferbloat in IEEE 802.11n wireless networks. 2014
IEEE Wireless Communications and Networking Conference
(WCNC). doi:10.1109/wcnc.2014.6953002

Eprint version Post-print

DOI 10.1109/WCNC.2014.6953002

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Journal 2014 IEEE Wireless Communications and Networking Conference
(WCNC)

Rights (c) 2014 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other users,
including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale
or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.

Download date 05/08/2022 07:25:14

Link to Item http://hdl.handle.net/10754/362461

http://dx.doi.org/10.1109/WCNC.2014.6953002
http://hdl.handle.net/10754/362461

An Empirical Evaluation of Bufferbloat

in IEEE 802.11n Wireless Networks

Ahmad Showail, Kamran Jamshaid, and Basem Shihada

Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division

King Abdullah University of Science and Technology

Thuwal, Saudi Arabia

Email: {ahmad.showail, kamran.jamshaid, basem.shihada}@kaust.edu.sa

Abstract—In this paper, we analyze the impact of large,
persistently-full buffers (‘bufferbloat’) on various network dy-
namics in IEEE 802.11n wireless networks. The bufferbloat prob-
lem has mostly been studied in the context of wired networks.
We study the impact of bufferbloat on a variety of wireless
network topologies, including wireless LAN (WLAN) and multi-
hop wireless networks, with varying wireless link rates. Our
results show that a single FTP transfer between two Linux
wireless hosts can saturate the buffers in the network stack,
leading to RTT delays exceeding 4.5 s in multi-hop configurations.
We show that Aggregate MAC Protocol Data Unit (A-MPDU)
MAC-layer frame aggregation can be used to reduce RTT delays
while simultaneously increasing network throughput. However,
additional measures may still be required to meet the constraints
of real-time flows (such as VoIP). Our experiments show that
large buffers can deteriorate the fairness in rate allocation in
parking lot based multi-hop networks.

Index Terms—Bufferbloat, IEEE 802.11n, Frame Aggregation,
A-MPDU, TCP

I. INTRODUCTION

The impact of ‘persistently-full’, large buffers on network

performance have been known for many years. These buffers

build up at network bottlenecks along the routing path of

a flow. Recently, the term ‘bufferbloat’ [2] has been used

to describe the performance impact when these large buffers

are used with simplistic FIFO queue management with drop

tail packet scheduling. Most of the existing work on buffer

sizing has been studied in the context of core Internet routers

with a large number of flows (e.g., [5], [7], among others).

With the network core increasingly being over-provisioned

and popularity of wireless hand-held devices, the bottlenecks

often lie in the access network. For example, many enterprise

users accessing server applications via their corporate wireless

LAN (WLAN) are bottlenecked by the wireless link capacity.

Similarly, users accessing the Internet via a metropolitan area

Wi-Fi Mesh Network (WMN) or a 3G/4G cellular network, are

likely to be bottlenecked by the slow wireless link capacity.

Thus, it is important to study the impact of bufferbloat on

wireless network performance.

In this paper we study the impact of bufferbloat on high-

speed IEEE 802.11n wireless networks. The wireless envi-

ronment brings new challenges to our understanding of buffer

sizing requirements [11]. In particular, wireless networks have

time-varying link rates, variable packet inter-service time, as

well as experience interference from other devices sharing the

same frequency spectrum. In addition, various enhancements

for improving efficiency, such as frame aggregation, also

impact packet scheduling dynamics that need to be considered

while designing buffer sizing mechanisms.

The MAC layer in IEEE 802.11n standard introduces two

types of frame aggregation techniques [9]: Aggregate MAC

Protocol Service Data Unit (A-MSDU) and Aggregate MAC

Protocol Data Unit (A-MPDU). A-MSDU aggregates multiple

MAC Service Data Units (MSDUs) destined to a common

receiver into a single MAC Protocol Data Unit (MPDU). It

then appends a single MPDU header, as well as a Frame Check

Sequence (FCS) trailer. The maximum A-MSDU frame size

that a receiver can process is advertised in the HT Capabilities

Information field, and is either 3,839 bytes or 7,935 bytes. A-

MPDU consists of multiple MPDUs aggregated into a frame.

Each MPDU has its own FCS field. This allows a receiver to

request a retransmission of corrupted MPDUs by transmitting

a Block Ack frame containing a bitmap to identify the status

of individual MPDUs. A-MPDU is limited in size to 65,535

bytes (bound by the 16-bit length field in the HT-SIG headers)

and can carry a maximum of 64 sub-frames (limited by the

bitmap in the Block ACK frame). The actual A-MPDU size

used for communication may further be limited by the HT

receiver, as advertised in its HT Capabilities element. The

aggregation logic is not specified in the standard, and thus it

varies between vendors based on their implementation. Ideally,

these algorithms need to balance the requirements between

making efficient use of channel resources using large frames

aggregates when the channel is good, while attempting to

minimize queueing delays and processing packets quickly.

Our main contributions in this paper are as follows: we

characterize the impact of bufferbloat on a 802.11n testbed

using both single hop and multi-hop topologies. We show

that a suitably designed A-MPDU aggregation scheduler can

substantially reduce delays while simultaneously increasing

throughput. Our experiments span a range of wireless link

rate configurations and our observations can be used to design

optimal buffer sizing mechanisms for wireless networks.

The remainder of this paper is organized as follows. We

first summarize the background and related work. Next, we

describe our experimental setup and the A-MPDU aggregation

scheduler used in our experiments. Our performance results are

described in Sect. V. Finally, we conclude in Sec. VI.

II. RELATED WORK

Buffer sizing has been extensively studied for wired net-

works. A widely used rule-of-thumb is to have buffers larger

than the bandwidth-delay product (BDP) of the network [17],

i.e., B ≥ RTT × C, where C is the bottleneck link capacity

along the path, and RTT is the effective round-trip propa-

gation delay through the bottleneck link. The buffer size B
reflects the number of packets queued at a bottleneck link

to keep it fully utilized while a TCP source recovers from a

loss-induced window reduction. This rule-of-thumb holds for

a single TCP flow in a wired network. When a large number

of flows (say, N) share a bottleneck router, the window size

processes quickly synchronize in lockstep. As a result, the

aggregate window size is still a sawtooth pattern and the BDP

guideline for sizing the bottleneck buffer still holds. However,

when the flows are desynchronized and the window processes

are independent, the buffer size B can be reduced to B =

RTT ×C/
√

N while still achieving near 100% utilization [5].

Enachescu et al. [7] suggest that B can further be reduced

to O(log W), where W is the window size of each flow,

resulting in buffer sizes of only 10−20 packets while achieving

85 − 90% of link utilization.

There has been a limited amount of work on buffer sizing for

wireless networks. For single-hop 802.11 WLANs, large Ac-

cess Point (AP) buffers can improve fairness between upstream

and downstream TCP flows [6]; a large buffer increases the

queueing delay for TCP ACKs being transmitted back to the

upstream wireless source, in effect rate limiting the upstream

flows. This scheme, however, disturbs the tight feedback loop

necessary for optimal operation of TCP. The AP buffer can

be sized dynamically to strike a balance between channel

utilization and delay requirements of various flows [14].

For multihop wireless networks, network congestion can

be detected by monitoring queue sizes. Xu et al. [18] have

extended this notion to a distributed ‘neighborhood queue’.

Their NRED algorithm improved flow rate fairness by proba-

bilistically dropping packets when the cumulative size of this

distributed queue exceeds a threshold. Jamshaid et al. [11]

have proposed a distributed buffer sizing scheme using a

similar notion of a ‘neighborhood buffer’ spanning a set of

interfering nodes that constitute the network bottleneck. Using

802.11b networks, they found that small buffers (as low as 1-4

packets) at each node are sufficient to provide high network

throughput without incurring large queueing delays. However,

it is unclear if similar buffer sizes would also be useful in

802.11n networks with much higher link rates.

The impact of packet aggregation in 802.11n has been

discussed in prior work [8], [16]. The authors show that frame

aggregation improves network throughput, though its impact

on end-to-end delays, and in particular, its relation to buffer

sizes is not considered.

Recent work has also uncovered overbuffering in 3G/4G

mobile networks [13]. The experimental results showed RTT

latency exceeding 1 s across the 3G networks of four major

US carriers. As a counter-measure, some mobile phones based

on the Android platform use a preset, small maximum receive

window size advertised by the receiver to limit the growth of

the TCP congestion window. However, this small size leads to

a suboptimal throughput in networks with large BDP (such as

high speed, long distance networks). Similarly, for networks

with low BDP, this preset value is too large and results in

excessive RTT delays.

III. EXPERIMENTAL SETUP

Our testbed consists of small form-factor Shuttle comput-

ers [3] with an Intel E7500 Core 2 Duo processor, 1 GB

of DRAM, and a TP-Link WDN4800 (Atheros AR9380)

802.11 a/b/g/n wireless card. The chipset supports three spatial

MIMO streams for a maximum wireless link rate of 450 Mb/s.

Our network uses the 5 GHz U-NII (Unlicensed National

Information Infrastructure) radio band. This does not interfere

with the production WLAN on our campus which uses the

2.4 GHz spectrum. We run a custom 3.3 Linux kernel with

Web10g [4] instrumentation to monitor the state characteristics

of our TCP streams. It uses an efficient Netlink-based kernel

Application Binary Interface to make the TCP statistics avail-

able in userspace. We use ath9k drivers [1] to configure the

wireless interfaces. We disabled wireless link rate adaptation

algorithms, and set link rates manually. These link rates are

varied, as specified alongside each experiment. We use iperf

and netperf to generate traffic. Our Linux distribution uses

TCP Cubic. Window scaling [10] is enabled, as per the default

configuration on all recent Linux kernels. This enables TCP to

support a receive window size greater than 64 kB. Our wireless

configuration parameters are summarized in Table I.

Parameter Value

Link rates 6.5 Mb/s, 144.4 Mb/s, 300 Mb/s

MAC protocol IEEE 802.11n

Traffic source iperf, netperf

Packet size 1500 Bytes

txqueue size 1000 packets (Default size)

TCP Flavor Cubic with window scaling

Test duration 200 s

Routing Fixed path routing

TABLE I: Experimental setup

The ath9k driver supports A-MPDU transmission (both

A-MSDU and A-MPDU reception is mandatory per IEEE

802.11 standard specifications). The maximum aggregate size

achieveable in practice is limited to a frame duration of 4 ms

to comply with regulatory requirements for operation in the

5 GHz U-NII band. Thus the actual density of MPDUs in an

A-MPDU is partly dependent on the wireless link rate which

determines the frame transmit duration. We conduct experi-

ments both with and without A-MPDU aggregation to isolate

the impact of aggregation on wireless network performance.

Each experiment for a given link rate and network topology is

performed 5 times. The throughput and RTT results are then

averaged across these runs.

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 1 2 3 4 1 2 3 4

Th
ro

ug
hp

ut
 (M

b/
s)

Path Length (in hops)

Average throughput

6.5 Mb/s

144.4 Mb/s

300 Mb/s

(a) Throughput without aggregation

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

1 2 3 4 1 2 3 4 1 2 3 4

RT
T

(m
se

c)

Path Length (in hops)

Average RTT

6.5 Mb/s

144.4 Mb/s

300 Mb/s

(b) Delay without aggregation

 0

 25

 50

 75

 100

 125

 150

 175

 200

1 2 3 4 1 2 3 4

Th
ro

ug
hp

ut
 (M

b/
s)

Path Length (in hops)

Average throughput

144.4 Mb/s

300 Mb/s

(c) Throughput with aggregation

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 3 4 1 2 3 4

RT
T

(m
se

c)

Path Length (in hops)

Average RTT

144.40 Mb/s

300 Mb/s

(d) Delay with aggregation

 0

 5

 10

 15

 20

 25

3 4 3 4

Th
ro

ug
hp

ut
 (M

b/
s)

Path Length (in hops)

Average throughput

144.4 Mb/s

300 Mb/s

(e) Throughput with partial aggregation

 0

 200

 400

 600

 800

 1000

 1200

 1400

3 4 3 4

RT
T

(m
se

c)

Path Length (in hops)

Average RTT

144.4 Mb/s

300 Mb/s

(f) Delay with partial aggregation

Fig. 1: Flow throughput and RTT for links with and without aggregation and with partial aggregation

IV. A-MPDU AGGREGATION ALGORITHM

The IEEE 802.11n standard does not specify the packet

scheduler for assembling A-MPDUs for transmission. A naı̈ve

packet scheduler that always waits to assemble a maximum

sized A-MPDU frame for transmission can potentially further

deteriorate the delay performance. The A-MPDU aggregation

logic used in our setup is listed in Algo. 1. This algorithm

balances delay and throughput trade-off by preferring time-

liness over capacity; instead of waiting to assemble maximal

allowable A-MPDU aggregates which may maximize through-

put, we aggregate as many MPDUs as available at that time

in the buffer subject to the regulatory and receiver constraints.

Thus, while we may not use optimal A-MPDU sizes, the fact

that we never spend time waiting for new frames to arrive

from higher layers can result in improving end-to-end delays

while increasing throughput. We analyze the performance of

this algorithm in Sect. V.

V. EXPERIMENTAL ANALYSIS

We conducted a number of experiments to understand the

impact of bufferbloat on wireless network performance. We

used three link rates for our experiments: 6.5 Mb/s (Modu-

lation and Coding Scheme (MCS) index 0, 20 MHz channel

bandwidth, 800 ns Guard Interval (GI)), 144.4 Mb/s (MCS

15, 20 MHz channel, 400 ns GI), and 300 Mb/s (MCS 15, 40

MHz channel, 400 ns GI).

A. Single-flow topologies

We first document the performance analysis of a single

TCP flow. We disable transmit A-MPDU aggregation for our

first set of results. We then vary the path length of the flow

from a single-hop network to a 4-hop chain topology. A given

Input: Number of frames in buffer (Q), Regulatory A-MPDU size limit
(δ1), Receiver A-MPDU size limit (δ2), Number of frames in
this A-MPDU (n)

Output: Assemble A-MPDU for transmission

n = 0, A-MPDU = 0;
while Q 6= 0 do

// Check for regulatory or receiver limit;
if (n > δ1 or n > δ2) then

break;
end

Add padding (if necesary) to A-MPDU to align frame boundry;
Link this frame to the aggregate A-MPDU;
Q- -; // Decrement buffer count by 1;
n++; // Increment frame count by 1;

end

Deliver assembled A-MPDU to driver transmit function;

Algorithm 1: ALGORITHM FOR A-MPDU AGGREGATION

LOGIC

experiment uses a uniform wireless link rate between adjoining

nodes. This rate is varied from 6.5 Mb/s, 144.4 Mb/s, and

300 Mb/s in different experiments. Our results are shown

in Figs. 1a and 1b. The error bars represent the standard

deviation.

As expected, throughput increases with the link rate, and

shows a decreasing trend with the hop-count. The throughput

drops by 1

2
, 1

3
, and 1

4
, for 2, 3, and 4-hop networks, suggesting

sparse spatial reuse in our topologies. The difference in

throughput between 144.4 Mb/s links and 300 Mb/s links is

small, and almost within error bounds of our measurements for

3 and 4-hop topologies. Our RTT delay measurements clearly

show the impact of bufferbloat. The average 1-hop RTT delay

measurements are 1853 ms, 328 ms, and 286 ms for 6.5 Mb/s,

144.4 Mb/s, and 300 Mbp/s links. These delays show that a

single file-transfer between two wireless nodes can saturate

the device buffers, even at the 300 Mb/s link rate, as shown in

Basem
Sticky Note
should merge this section with the above one. let us make sub-section A and B

 200000
 400000
 600000
 800000
 1e+06

 1.2e+06
 1.4e+06
 1.6e+06

 0 20 40 60 80 100 120 140 160 180

 100

 200

 300

Co
ng

es
tio

n
w

in
do

w
 [B

]

RT
T

[m
s]

Time (s)

TCP window [B]
RTT [ms]

 0
 200000
 400000
 600000
 800000
 1e+06

 1.2e+06
 1.4e+06

 0 20 40 60 80 100 120 140 160 180

Time (s)

Queue [B]

Fig. 2: TCP congestion window, RTT, and egress queue

utilization for a 1-hop TCP flow over a 300 Mb/s wireless

link

 400000

 800000

 1.2e+06

 0 20 40 60 80 100 120 140 160 180 200

 2000
 4000
 6000
 8000

[B
yt

es
]

RT
T

[m
s]

Time (s)

TCP window [B]
RTT [ms]

 0

 400000

 800000

 0 20 40 60 80 100 120 140 160 180 200

Time (s)

Source Queue [B]

 0

 200000

 400000

 0 20 40 60 80 100 120 140 160 180 200

Time (s)

Relay 1 Queue [B]

 0

 50000

 100000

 0 20 40 60 80 100 120 140 160 180 200

Time (s)

Relay 2 Queue [B]

 0
 0 20 40 60 80 100 120 140 160 180 200

Time (s)

Relay 3 Queue [B]

Fig. 3: TCP congestion window size, RTT, and txqueue size

distribution for a TCP flow in a 4-hop chain topology with 6.5

Mb/s wireless links

Fig. 2. We observe that the buffer size grows up to its limit of a

1000 packets (each packet of 1500 bytes), before registering a

queue drop and triggering TCP’s congestion control algorithm.

In general, we observe that while RTT measurements in-

crease with the hop count, they do not always exhibit a

proportionate increase, e.g., for 6.5 Mb/s links, a 3-hop and a

4-hop network shows an increase of only 4.5% and 10% over

the 2-hop delays. This suggests that with slow speed links,

TCP’s feedback mechanism is unable to saturate all buffers

along the multi-hop path. This is also validated by the buffer

utilization plots shown in Fig. 3, where none of the buffers

fills up to the capacity. In such networks, TCP’s congestion

control mechanisms are triggered by losses other than queue

drops, such as wireless collisions. In contrast, topologies using

144 Mb/s or 300 Mb/s links show a more uniform, consistent

increase in RTT with increasing hop-count.

Next, we enable A-MPDU transmit aggregation based on

the scheduler described in Sect. IV. Our measurement results

are shown in Figs. 1c and 1d. The ath9k release used in

our experiments does not support A-MPDU aggregation at

6.5 Mb/s, as transmitting a large A-MPDU at this link rate

may violate the 4 ms frame transmit duration regulatory

requirement in 5 GHz band. Thus, we only show the results

for 144.4 Mb/s and 300 Mb/s link rates. A-MPDU aggregation

significantly increases the network throughput. For a 1-hop

network, 144.4 Mb/s link shows a throughput improvement of

3×, while a 300 Mb/s link shows an improvement of 5×. For

multi-hop networks using 144.4 Mb/s, the throughput rougly

decreases by 1

2
, 1

3
, and 1

4
for 2, 3, and 4-hop chain topologies.

However, the throughput drop is higher when using the 300

Mb/s link rate, averaging across 60% for each additional hop.

To investigate further, we measured the A-MPDU size (in

terms of MPDUs per A-MPDU) at each hop along the path

to the destination. The average A-MPDU size is shown in

Fig. 4. We observe that for 1-hop networks, the A-MPDU size

approaches the maximum limit of 32 MPDUs imposed by our

device driver. However, the average A-MPDU size is smaller in

multi-hop networks. This is because the packets are dispersed

in queues at multiple nodes along the path to the destination,

and thus a given node may not always have the maximum

number of MPDUs ready to transmit together. In particular,

300 Mb/s links use a smaller A-MPDU size compared to 144

Mb/s links for the 2nd, 3rd, and 4th relay nodes in the multi-

hop topologies, leading to higher than 50% drop in throughput

over a 1-hop 300 Mb/s link.

Fig. 4: Average A-MPDU size. For multi-hop networks, we

report the A-MPDU size measured at each hop along the

path to the destination. ath9k does not support Tx A-MPDU

aggregation at 6.5 Mb/s link rate.

In addition to the increase in throughput, A-MPDU aggrega-

tion also considerably lowers the RTT across all topologies as

shown in Fig. 1d, e.g., the 4-hop RTT improves by over 3× for

both link rates. We observe that our A-MPDU scheduler does

not always transmit a maximum sized A-MPDU, as illustrated

in Fig. 4. Our measurements showed that many A-MPDUs

were transmitted with a smaller size based on the number of

frames available in the buffer at a given time. Transmitting

multiple MPDUs together debloats the txqueue size, leading

to smaller queueing delays and the subsequent reduction in

RTT.

Finally, we conducted an additional set of single flow

experiments for multi-hop topologies where only part of the

nodes used transmit A-MPDU aggregation. Such networks are

likely in heterogeneous environments with a mix of equipment

from different vendors or support for backward compatibility

with 802.11 a/b/g technologies. The source node and the

first relay node had A-MPDU aggregation enabled, while all

subsequent relay nodes had A-MPDU aggregation disabled.

Our throughput and RTT measurement results are shown in

Figs. 1e and 1f. We omit the 1-hop and 2-hop results, as those

are similar to results in Figs. 1c and 1d.

 0
 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06

 0 50 100 150 200

 400
 800
 1200
 1600

[B
yt

es
]

RT
T

[m
s]

Time (s)

TCP window [Bytes]
RTT [ms]

 0
 200000
 400000
 600000
 800000
 1e+06

 1.2e+06
 1.4e+06

 0 20 40 60 80 100 120 140 160 180 200

Time (s)

Source Queue [Bytes]

 0
 100000
 200000
 300000
 400000

 0 20 40 60 80 100 120 140 160 180 200

Time (s)

Relay 1 Queue [Bytes]

 0
 200000
 400000
 600000
 800000
 1e+06

 1.2e+06

 0 20 40 60 80 100 120 140 160 180 200

Time (s)

Relay 2 Queue [Bytes]

 0
 100000
 200000
 300000
 400000

 0 20 40 60 80 100 120 140 160 180 200

Time (s)

Relay 3 Queue [Bytes]

Fig. 5: TCP congestion window size, RTT, and txqueue size

distribution for a TCP flow in a 4-hop chain topology with

144.4 Mb/s wireless links. The source and 1-hop relay node

use Tx A-MPDU aggregation

We observe that throughput drops below the values observed

when all links used transmit A-MPDU aggregation (Fig. 1c),

though its still higher than values obtained when A-MPDU

aggregation is disabled for all links (Fig. 1a). Similarly, our

RTT measurements also fall in between the values obtained

with these two cases. This suggests that even having some

partial nodes using A-MPDU transmission in a network can

increase the throughput and reduce delays. In such scenar-

ios, the network is bottlenecked by the nodes that do not

transmit using A-MPDU aggregation. We measured the queue

utilizations across these topologies. One representative result

is shown in Fig. 5 for a 4-hop chain topology using 144.4

Mb/s wireless links. Our analysis shows that sustained queues

mostly build up at the first node that does not support A-

MPDU transmit aggregation. For our 4-hop chain topology,

this is the relay node 2-hops from the source. A buffer sizing

strategy for reducing queueing delays would need to identify

and manage similar set of bottlenecks in the network.

B. Multi-flow topologies

In this set of experiments, we characterize the impact of

bufferbloat in wireless networks with multiple backlogged

TCP flows. We used a 4-hop parking lot topology, with

TCP flows sourced at each successive nodes in a chain, and

terminating at the final node. We used uniform link rates for a

given experiment, varying the link rates from 6.5 Mb/s, 144.4

Mb/s, and 300 Mb/s in different experiments.

Our first set of experiments were performed with transmit

A-MPDU aggregation disabled. Our throughput and RTT

results are summarized in Figs. 6a and 6b.

Fig. 6a shows the flow throughput dropping with increasing

hop-count. Across all scenarios, the 1-hop flow obtained the

highest throughput, followed by the 2-hop flow, etc. This is

the well-known fairness problem in WMN [12]. We use Jain’s

Fairness Index (JFI) to quantify the degree of fairness in rate

allocation. The JFI computed for the parking lot topology

using 6.5 Mb/s, 144.4 Mb/s, and 300 Mb/s links is 0.86,

0.81, and 0.46 respectively. We observe that the rate allocation

becomes more unfair with faster link rates. At these high rates,

the 1-hop node can quickly build up a large TCP congestion

window, saturating its buffers and starving out flows that

traverse more hops. We note that some unfairness in flow

rates is expected, since TCP allocates rates in proportion to

the RTT. The propagation delay for a 4-flow hop is at least 4

times larger than that of a 1-hop flow, but we observe that

its throughput is significantly smaller, e.g., the 1-hop flow

throughput is approximately 2.3×, 4.7×, and 33× the 4-hop

flow throughput with the 6.5 Mb/s, 144.4 Mb/s, and 300 Mb/s

link rates, respectively. This throughput imbalance persists

because of the disproportionate queueing delays experienced

by different flows (We note that nodes in our network do not

suffer from the hidden terminal or related wireless challenges).

Next, we repeated these experiments with transmit A-

MPDU aggregation enabled. Our results are shown in Fig. 6d

and 6d. Experiments with 6.5 Mb/s link rates are omitted

since the ath9k driver does not support transmit A-MPDU

aggregation at that rate.

We observe that the unfairness in rate allocation persists,

as expected. The JFI for 144.4 Mb/s and 300 Mb/s link rate

is 0.77 and 0.50, respectively. The 1-hop flow throughput is

3.38× and 150× the 4-hop flow throughput for the 144.4 Mb/s

and 300 Mb/s, respectively. This reinforces the observation

that unfairness in rate allocation increases with faster link

rates, as both 1-hop and 2-hop flows can quickly saturate

the local node buffers. Indeed, in some of our experimental

runs, the distant hop flows took a long time just to es-

tablish a TCP connections, with initial TCP setup control

messages encountering full buffers along the routing path.

 0
 2
 4
 6
 8

 10
 12

4 3 2 1 4 3 2 1 4 3 2 1

Th
ro

ug
hp

ut
 (M

b/
s)

Path Length (in hops)

Average throughput

6.5 Mb/s

144.4 Mb/s

300 Mb/s

(a) Throughput without aggregation

 0
 1000
 2000
 3000
 4000
 5000
 6000

4 3 2 1 4 3 2 1 4 3 2 1

RT
T

(m
se

c)

Path Length (in hops)

Average RTT

6.5 Mb/s

144.4 Mb/s

300 Mb/s

(b) RTT without aggregation

 0
 10
 20
 30
 40
 50
 60
 70

4 3 2 1 4 3 2 1

Th
ro

ug
hp

ut
 (M

b/
s)

Path Length (in hops)

Average throughput

144.4 Mb/s

300 Mb/s

(c) Throughput with aggregation

 0

 500

 1000

 1500

 2000

 2500

4 3 2 1 4 3 2 1

RT
T

(m
se

c)

Path Length (in hops)

Average RTT

144.40 Mb/s

300 Mb/s

(d) RTT with aggregation

Fig. 6: Flow throughput and RTT for parking lot topologies

This unfairness problem may partly be addressed using buffer

sizing techniques, similar to the AP buffer sizing techniques

described in [6]. We are currently exploring this avenue for

addressing the fairness problem in WMNs.

VI. CONCLUSIONS AND OPEN ISSUES

In this paper we studied the impact of bufferbloat on

wireless network performance. Using experiments on a Linux

testbed with IEEE 802.11n radios, we showed that the Linux

configuration with default buffer sizes can produce large

queueing delays, with RTT values averaging 1700 ms for a

single backlogged TCP stream on a 1-hop network with a

6.5 Mb/s wireless link rate. Multi-hop wireless networks have

additional buffers at each hop. These large buffers further

increase the queueuing delays, with RTT values approaching

4600 ms for a 4-hop chain topology with uniform 6.5 Mb/s

wireless link rates. Our queue utilization analysis shows that

while RTT measurements increase with the hop count, they do

not always exhibit a proportionate increase, especially at low

wireless link rates where TCP’s feedback mechanism is unable

to saturate all buffers. We show that A-MPDU aggregation can

be used to reduce RTT values, while simultaneously improving

throughput. However, the RTT values still approach 350 ms

over a 4-hop network. Such delays are catastrophic when

queues are shared with real-time flows such as VoIP with

strict latency and jitter requirements. Our analysis showed a

smaller A-MPDU size in multi-hop networks; here, packets

are dispersed over multiple nodes, and thus a given node

may not always have the maximum number of MPDUs ready

to transmit together. Clearly, there are performance tradeoffs

involved here between buffer sizes and using maximum-sized

A-MPDU frames that we plan to explore in future work.

Large buffer sizes can also impact the fair rate allocation in

parking lot based wireless topologies. Our experiments showed

that 1-hop and 2-hop flows can quickly saturate their local

buffers, especially at high wireless link rates, starving distant

flows. In our ongoing work, we are exploring the use of buffer

sizing techniques to limit the unbridled growth of the TCP

congestion window for small hop-count flows to improve flow

rate fairness.

The bufferbloat community is exploring the use of Active

Queue Mangagement (AQM) techniques to manage persistent

queues. While AQM techniques are known to have configura-

tion challenges, a new ‘no-knobs’ technique called CoDel [15]

is now actively being researched. However, the current focus

is on performance evaluation for cable modems and DSL

networks. In future work, we plan to conduct a detailed study

of CoDel in multi-hop wireless networks.

REFERENCES

[1] ath9k FOSS drivers. http://wireless.kernel.org/en/users/Drivers/ath9k.
[2] Bufferbloat. http://www.bufferbloat.net.
[3] Shuttle Inc. http://www.shuttle.com.
[4] The Web10g Project. http://www.web10g.org/.
[5] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router buffers. In

Proc. of the ACM SIGCOMM ’04, pages 281–292, Sept. 2004.
[6] R. Bruno, M. Conti, and E. Gregori. Analytical modeling of TCP clients

in Wi-Fi hot spot networks. In Proc. of the IFIP Networking ’04, pages
626–637, May 2004.

[7] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden.
Routers with very small buffers. In Proc. of the IEEE INFOCOM ’06,
Apr. 2006.

[8] J. Friedrich, S. Frohn, S. Gubner, and C. Lindemann. Understanding
IEEE 802.11n Multi-hop Communication in Wireless Networks. In
Workshop on Wireless Network Measurements, pages 321–326, May
2011.

[9] IEEE LAN/MAN Standards Committee. IEEE 802.11 Wireless LAN

medium access control (MAC) and physical layer (PHY) specifications.
IEEE, 2012.

[10] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High
Performance. RFC 1323, Internet Engineering Task Force, May 1992.

[11] K. Jamshaid, B. Shihada, L. Xia, and P. Levis. Buffer sizing in 802.11
wireless mesh networks. In Proc. of the IEEE MASS ’11, pages 272–281,
Oct. 2011.

[12] K. Jamshaid, P. Ward, and M. Karsten. Mechanisms for centralized
flow rate control in 802.11-based wireless mesh networks. Computer

Networks, 56(2):884–901, February 2012.
[13] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling bufferbloat in 3G/4G

mobile networks. In Proc. of the ACM IMC’12, pages 329–342, Oct.
2012.

[14] T. Li, D. J. Leith, and D. Lamone. Buffer sizing in 802.11 wireless
networks. IEEE/ACM Transactions on Networking, 19(1):156–169, Feb.
2011.

[15] K. Nichols and V. Jacobson. Controlling queue delay. Communications

of the ACM, 55(7):42–50, July 2012.
[16] D. Skordoulis, Q. NI, H. Chen, A. Stephens, C. Liu, and A. Jamalipur.

IEEE 802.11N MAC frame aggregation mechanisms for next-generation
high-throughput WLANs. IEEE Wireless Communications, pages 40–47,
February 2008.

[17] C. Villamizar and C. Song. High performance TCP in ANSNET.
SIGCOMM Computer Communications Review, 24(5):45–60, 1994.

[18] K. Xu, M. Gerla, L. Qi, and Y. Shu. Enhancing TCP fairness in ad
hoc wireless networks using neighborhood RED. In Proc. of the ACM

MobiCom ’03, pages 16–28, Sept. 2003.

