
1

An Empirical Evaluation of Deep Learning on

Highway Driving
Brody Huval∗, Tao Wang∗, Sameep Tandon∗, Jeff Kiske∗, Will Song∗, Joel Pazhayampallil∗,

Mykhaylo Andriluka∗, Pranav Rajpurkar∗, Toki Migimatsu∗, Royce Cheng-Yue†,

Fernando Mujica‡, Adam Coates§, Andrew Y. Ng∗

∗Stanford University †Twitter ‡Texas Instruments §Baidu Research

Abstract—Numerous groups have applied a variety of deep
learning techniques to computer vision problems in highway
perception scenarios. In this paper, we presented a number of
empirical evaluations of recent deep learning advances. Com-
puter vision, combined with deep learning, has the potential
to bring about a relatively inexpensive, robust solution to au-
tonomous driving. To prepare deep learning for industry uptake
and practical applications, neural networks will require large
data sets that represent all possible driving environments and
scenarios. We collect a large data set of highway data and apply
deep learning and computer vision algorithms to problems such
as car and lane detection. We show how existing convolutional
neural networks (CNNs) can be used to perform lane and vehicle
detection while running at frame rates required for a real-time
system. Our results lend credence to the hypothesis that deep
learning holds promise for autonomous driving.

I. INTRODUCTION

Since the DARPA Grand Challenges for autonomous vehi-

cles, there has been an explosion in applications and research

for self-driving cars. Among the different environments for

self-driving cars, highway and urban roads are on opposite

ends of the spectrum. In general, highways tend to be more

predictable and orderly, with road surfaces typically well-

maintained and lanes well-marked. In contrast, residential or

urban driving environments feature a much higher degree of

unpredictability with many generic objects, inconsistent lane-

markings, and elaborate traffic flow patterns. The relative

regularity and structure of highways has facilitated some of the

first practical applications of autonomous driving technology.

Many automakers have begun pursuing highway auto-pilot

solutions designed to mitigate driver stress and fatigue and

to provide additional safety features; for example, certain

advanced-driver assistance systems (ADAS) can both keep

cars within their lane and perform front-view car detection.

Currently, the human drivers retain liability and, as such,

must keep their hands on the steering wheel and prepare to

control the vehicle in the event of any unexpected obstacle or

catastrophic incident. Financial considerations contribute to a

substantial performance gap between commercially available

auto-pilot systems and fully self-driving cars developed by

Google and others. Namely, today’s self-driving cars are

equipped with expensive but critical sensors, such as LIDAR,

radar and high-precision GPS coupled with highly detailed

maps.

In today’s production-grade autonomous vehicles, critical

sensors include radar, sonar, and cameras. Long-range vehicle

Fig. 1: Sample output from our neural network capable of lane

and vehicle detection.

detection typically requires radar, while nearby car detection

can be solved with sonar. Computer vision can play an

important a role in lane detection as well as redundant object

detection at moderate distances. Radar works reasonably well

for detecting vehicles, but has difficulty distinguishing between

different metal objects and thus can register false positives on

objects such as tin cans. Also, radar provides little orientation

information and has a higher variance on the lateral position

of objects, making the localization difficult on sharp bends.

The utility of sonar is both compromised at high speeds and,

even at slow speeds, is limited to a working distance of about

2 meters. Compared to sonar and radar, cameras generate a

richer set of features at a fraction of the cost. By advancing

computer vision, cameras could serve as a reliable redundant

sensor for autonomous driving. Despite its potential, computer

vision has yet to assume a significant role in today’s self-

driving cars. Classic computer vision techniques simply have

not provided the robustness required for production grade

automotives; these techniques require intensive hand engineer-

ing, road modeling, and special case handling. Considering

the seemingly infinite number of specific driving situations,

environments, and unexpected obstacles, the task of scaling

classic computer vision to robust, human-level performance

would prove monumental and is likely to be unrealistic.

Deep learning, or neural networks, represents an alternative

ar
X

iv
:1

50
4.

01
71

6v
3 

 [
cs

.R
O

] 
 1

7 
A

pr
 2

01
5



2

approach to computer vision. It shows considerable promise

as a solution to the shortcomings of classic computer vision.

Recent progress in the field has advanced the feasibility

of deep learning applications to solve complex, real-world

problems; industry has responded by increasing uptake of such

technology. Deep learning is data centric, requiring heavy

computation but minimal hand-engineering. In the last few

years, an increase in available storage and compute capabilities

have enabled deep learning to achieve success in supervised

perception tasks, such as image detection. A neural network,

after training for days or even weeks on a large data set, can

be capable of inference in real-time with a model size that is

no larger than a few hundred MB [9]. State-of-the-art neural

networks for computer vision require very large training sets

coupled with extensive networks capable of modeling such

immense volumes of data. For example, the ILSRVC data-set,

where neural networks achieve top results, contains 1.2 million

images in over 1000 categories.

By using expensive existing sensors which are currently

used for self-driving applications, such as LIDAR and mm-

accurate GPS, and calibrating them with cameras, we can

create a video data set containing labeled lane-markings and

annotated vehicles with location and relative speed. By build-

ing a labeled data set in all types of driving situations (rain,

snow, night, day, etc.), we can evaluate neural networks on this

data to determine if it is robust in every driving environment

and situation for which we have training data.

In this paper, we detail empirical evaluation on the data set

we collect. In addition, we explain the neural network that we

applied for detecting lanes and cars, as shown in Figure 1.

II. RELATED WORK

Recently, computer vision has been expected to player a

larger role within autonomous driving. However, due to its

history of relatively low precision, it is typically used in

conjunction with either other sensors or other road models

[3], [4], [6], [7]. Cho et al. [3] uses multiple sensors, such

as LIDAR, radar, and computer vision for object detection.

They then fuse these sensors together in a Kalman filter using

motion models on the objects. Held et al. [4], uses only a

deformable parts based model on images to get the detections,

then uses road models to filter out false positives. Carafii et al.

[6] uses a WaldBoost detector along with a tracker to generate

pixel space detections in real time. Jazayeri et al. [7] relies on

temporal information of features for detection, and then filters

out false positives with a front-view motion model.

In contrast to these object detectors, we do not use any

road or motion-based models; instead we rely only on the

robustness of a neural network to make reasonable predictions.

In addition, we currently do not rely on any temporal features,

and the detector operates independently on single frames from

a monocular camera. To make up for the lack of other sensors,

which estimate object depth, we train the neural network to

predict depth based on labels extracted from radar returns.

Although the model only predicts a single depth value for

each object, Eigen et al. have shown how a neural network

can predict entire depth maps from single images [12]. The

network we train likely learns some model of the road for

object detection and depth predictions, but it is never explicitly

engineered and instead learns from the annotations alone.

Before the wide spread adoption of Convolutional Neu-

ral Networks (CNNs) within computer vision, deformable

parts based models were the most successful methods for

detection [13]. After the popular CNN model AlexNet [9]

was proposed, state-of-the-art detection shifted towards CNNs

for feature extraction [1], [14], [10], [15]. Girshick et al.

developed R-CNN, a two part system which used Selective

Search [16] to propose regions and AlexNet to classify them.

R-CNN achieved state-of-the-art on Pascal by a large margin;

however, due to its nearly 1000 classification queries and

inefficient re-use of convolutions, it remains impractical for

real-time implementations. Szegedy et al. presented a more

scalable alternative to R-CNN, that relies on the CNN to

propose higher quality regions compared to Selective Search.

This reduces the number of region proposals down to as low as

79 while keeping the mAP competitive with Selective Search.

An even faster approach to image detection called Overfeat

was presented by Sermanet et al. [1]. By using a regular

pattern of “region proposals”, Overfeat can efficiently reuse

convolution computations from each layer, requiring only a

single forward pass for inference.

For our empirical evaluation, we use a straight-forward

application of Overfeat, due to its efficiencies, and combine

this with labels similar to the ones proposed by Szegedy et al..

We describe the model and similarities in the next section.

III. REAL TIME VEHICLE DETECTION

Convolutional Neural Networks (CNNs) have had the

largest success in image recognition in the past 3 years [9],

[17], [18], [19]. From these image recognition systems, a

number of detection networks were adapted, leading to further

advances in image detection. While the improvements have

been staggering, not much consideration had been given to

the real-time detection performance required for some appli-

cations. In this paper, we present a detection system capable

of operating at greater than 10Hz using nothing but a laptop

GPU. Due to the requirements of highway driving, we need

to ensure that the system used can detect cars more than

100m away and can operate at speeds greater than 10Hz; this

distance requires higher image resolutions than is typically

used, and in our case is 640 × 480. We use the Overfeat

CNN detector, which is very scalable, and simulates a sliding

window detector in a single forward pass in the network by

efficiently reusing convolutional results on each layer [1].

Other detection systems, such as R-CNN, rely on selecting

as many as 1000 candidate windows, where each is evaluated

independently and does not reuse convolutional results.

In our implementation, we make a few minor modifications

to Overfeat’s labels in order to handle occlusions of cars, pre-

dictions of lanes, and accelerate performance during inference.

We will first provide a brief overview of the original imple-

mentation and will then address the modifications. Overfeat

converts an image recognition CNN into a “sliding window”

detector by providing a larger resolution image and trans-

forming the fully connected layers into convolutional layers.



3

Then, after converting the fully connected layer, which would

have produced a single final feature vector, to a convolutional

layer, a grid of final feature vectors is produced. Each of the

resulting feature vectors represents a slightly different context

view location within the original pixel space. To determine

the stride of this window in pixel space, it is possible to

simply multiply the strides on each convolutional or pool layer

together. The network we used has a stride size of 32 pixels.

Each final feature vector in this grid can predict the presence

of an object; once an object is detected, those same features are

then used to predict a single bounding box through regression.

The classifier will predict “no-object” if it can not discern any

part of an object within its entire input view. This causes large

ambiguities for the classifier, which can only predict a single

object, as two different objects could can easily appear in the

context view of the final feature vector, which is typically

larger than 50% of the input image resolution.

The network we used has a context view of 355×355 pixels

in size. To ensure that all objects in the image are classified

at least once, many different context views are taken of the

image by using skip gram kernels to reduce the stride of the

context views and by using up to four different scales of the

input image. The classifier is then trained to activate when an

object appears anywhere within its entire context view. In the

original Overfeat paper, this results in 1575 different context

views (or final feature vectors), where each one is likely to

become active (create a bounding box).

This creates two problems for our empirical evaluation. Due

to the L2 loss between the predicted bounding box and actual

bounding proposed by Sermanet et al., the ambiguity of having

two valid bounding box locations to predict when two objects

appear, is incorrectly handled by the network by predicting a

box in the center of the two objects to minimize its expected

loss. These boxes tend to cause a problem for the bounding

box merging algorithm, which incorrectly decides that there

must be a third object between the two ground truth objects.

This could cause problems for an ADAS system which falsely

believes there is a car where there is not, and emergency

breaking is falsely applied. In addition, the merging algorithm,

used only during inference, operates in O(n2) where n is the

number of bounding boxes proposed. Because the bounding

box merging is not as easily parallelizable as the CNN, this

merging may become the bottleneck of a real-time system in

the case of an inefficient implementation or too many predicted

bounding boxes.

In our evaluations, we use a mask detector as described

in Szegedy et al. [10] to improve some of the issues with

Overfeat as described above. Szegedy et al. proposes a CNN

that takes an image as input and outputs an object mask

through regression, highlighting the object location. The idea

of a mask detector is shown in Fig 2. To distinguish multiple

nearby objects, different part-detectors output object masks,

from which bounding boxes are then extracted. The detector

they propose must take many crops of the image, and run

multiple CNNs for each part on every crop. Their resulting

implementation takes roughly 5-6 seconds per frame per class

using a 12-core machine, which would be too slow for our

application.

CNN

Fig. 2: mask detector

We combine these ideas by using the efficient “sliding

window” detector of Overfeat to produce an object mask and

perform bounding box regression. This is shown in Fig 3.

In this implementation, we use a single image resolution of

640 × 480 with no skip gram kernels. To help the ambiguity

problem, and reduce the number of bounding boxes predicted,

we alter the detector on the top layer to only activate within

a 4 × 4 pixel region at the center of its context view, as

shown in the first box in Fig 3. Because it’s highly unlikely

that any two different object’s bounding boxes appear in a

4 × 4 pixel region, compared to the entire context view with

Overfeat, the bounding box regressor will no longer have to

arbitrarily choose between two valid objects in its context

view. In addition, because the requirement for the detector to

fire is stricter, this produces many fewer bounding boxes which

greatly reduces our run-time performance during inference.

Although these changes helped, ambiguity was still a com-

mon problem on the border of bounding boxes in the cases of

occlusion. This ambiguity results in a false bounding box being

predicted between the two ground truth bounding boxes. To

fix this problem, the bounding boxes were first shrunk by 75%
before creating the detection mask label. This added the addi-

tional requirement that the center 4×4-pixel region of the de-

tector window had to be within the center region of the object

before activating. The bounding box regressor however, still

predicts the original bounding box before shrinking. This also

further reduces the number of active bounding boxes as input

to our merging algorithm. We also found that switching from

L2 to L1 loss on the bounding box regressions results in better

performance. To merge the bounding boxes together, we used

OpenCV’s efficient implementation of groupRectangles,

which clusters the bounding boxes based on a similarity metric

in O(n2) [8].

The lower layers of our CNN we use for feature extraction

is similar to the one proposed by Krizhevsky et al. [9]. Our

modifications to the network occurs on the dense layers which

are converted to convolution, as described in Sermanet et

al. [1]. When using our larger image sizes of 640 × 480
this changes the previous final feature response maps of size

1 × 1 × 4096 to 20 × 15 × 4096. As stated earlier, each of

these feature vectors sees a context region of 355×355 pixels,

and the stride between them is 32 × 32 pixels; however, we

want each making predictions at a resolution of 4× 4 pixels,

which would leave gaps in our input image. To fix this, we use

each 4096 feature as input to 64 softmax classifiers, which are

arranged in an 8×8 grid each predicting if an object is within

a different 4×4 pixel region. This allows for the 4096 feature

vector to cover the full stride size of 32× 32 pixels; the end



4

Mask Detector 
Result

Bounding Box 
RegressionDetectorContext

“Sliding Window”

Fig. 3: overfeat-mask

result is a grid mask detector of size 160 × 120 where each

element is 4×4 pixels which covers the entire input image of

size 640× 480.

A. Lane Detection

The CNN used for vehicle detection can be easily extended

for lane boundary detection by adding an additional class.

Whereas the regression for the vehicle class predicts a five

dimensional value (four for the bounding box and one for

depth), the lane regression predicts six dimensions. Similar to

the vehicle detector, the first four dimensions indicate the two

end points of a local line segment of the lane boundary. The

remaining two dimensions indicate the depth of the endpoints

with respect to the camera. Fig 4 visualizes the lane boundary

ground truth label overlaid on an example image. The green

tiles indicate locations where the detector is trained to fire,

and the line segments represented by the regression labels are

explicitly drawn. The line segments have their ends connected

to form continuous splines. The depth of the line segments

are color-coded such that the closest segments are red and

the furthest ones are blue. Due to our data collection methods

for lane labels, we are able to obtain ground truth in spite of

objects that occlude them. This forces the neural network to

learn more than a simple paint detector, and must use context

to predict lanes where there are occlusions.

Similar to the vehicle detector, we use L1 loss to train

the regressor. We use mini-batch stochastic gradient descent

for optimization. The learning rate is controlled by a variant

of the momentum scheduler [11]. To obtain semantic lane

information, we use DBSCAN to cluster the line segments

into lanes. Fig 5 shows our lane predictions after DBSCAN

clustering. Different lanes are represented by different colors.

Since our regressor outputs depths as well, we can predict the

lane shapes in 3D using inverse camera perspective mapping.

IV. EXPERIMENTAL SETUP

A. Data Collection

Our Research Vehicle is a 2014 Infiniti Q50. The car

currently uses the following sensors: 6x Point Grey Flea3 cam-

eras, 1x Velodyne HDL32E lidar, and 1x Novatel SPAN-SE

Fig. 4: Example of lane boundary ground truth

Fig. 5: Example output of lane detector after DBSCAN

clustering

Receiver. We also have access to the Q50 built-in Continental

mid-range radar system. The sensors are connected to a Linux

PC with a Core i7-4770k processor.

Once the raw videos are collected, we annotate the 3D

locations for vehicles and lanes as well as the relative speed

of all the vehicles. To get vehicle annotations, we follow the

conventional approach of using Amazon Mechanical Turk to

get accurate bounding box locations within pixel space. Then,

we match bounding boxes and radar returns to obtain the

distance and relative speed of the vehicles.



5

Unlike vehicles that can be annotated with bounding boxes,

highway lane borders often need to be annotated as curves

of various shapes. This makes frame-level labelling not only

tedious and inefficient, but also prone to human errors. For-

tunately, lane markings can be considered as static objects

that do not change their geolocations very often. We follow

the process descried in [5] to create LIDAR maps of the

environment using the Velodyne and GNSS systems. Using

these maps, labeling is straight forward. First, we filter the

3D point clouds based on lidar return intensity and position

to obtain the left and right boundaries of the ego-lane. Then,

we replicate the left and right ego-lane boundaries to obtain

initial guesses for all the lane boundaries. A human annotator

inspects the generated lane boundaries and makes appropriate

corrections using our 3D labelling tool. For completeness, we

describe each of these steps in details.

1) Ego-lane boundary generation: Since we do not change

lanes during data collection drives, the GPS trajectory of our

research vehicle already gives a decent estimate of the shape

of the road. We can then easily locate the ego-lane boundaries

using a few heuristic filters. Noting that lane boundaries on

highways are usually marked with retro-reflective materials,

we first filter out low-reflectivity surfaces such as asphalt

in our 3D point cloud maps and only consider points with

high enough laser return intensities. We then filter out other

reflective surfaces such as cars and traffic signs by only consid-

ering points whose heights are close enough the ground plane.

Lastly, assuming our car drives close to the center of the lane,

we filter out ground paint other than the ego-lane boundaries,

such as other lane boundaries, car-pool or directional signs,

by only considering markings whose absolute lateral distances

from the car are smaller than 2.2 meters and greater than 1.4

meters. We can also distinguish the left boundary from the

right one using the sign of the lateral distance. After obtaining

the points in the left and right boundaries, we fit a piecewise

linear curve similar to the GPS trajectory to each boundary.

2) Semi-automatic generation of multiple lane boundaries:

We observe that the width of lanes during a single data

collection run stays constant most of the time, with occasional

exceptions such as merges and splits. Therefore, if we prede-

fine the number of lanes to the left and right of the car for a

single run, we can make a good initial guess of all the lane

boundaries by shifting the auto-generated ego-lane boundaries

laterally by multiples of the lane width. We will then rely on

human annotators to fix the exception cases.

B. Data Set

At the time of this writing our annotated data-set consists

of 14 days of driving in the San Francisco Bay Area during

the months of April-June for a few hours each day. The

vehicle annotated data is sampled at 1/3Hz and contains nearly

17 thousand frames with 140 thousand bounding boxes. The

lane annotated data is sampled at 5Hz and contains over 616
thousand frames. During training, translation and 7 different

perspective distortions are applied to the raw data sets. Fig 6

shows an example image after perspective distortions are

applied. Note that we apply the same perspective distortion

Fig. 6: Image after perspective distortion

to the ground truth labels so that they match correctly with

the distorted image.

C. Results

The detection network used is capable of running at 44Hz

using a desktop PC equipped with a GTX 780 Ti. When using

a mobile GPU, such as the Tegra K1, we were capable of

running the network at 2.5Hz, and would expect the system

to run at 5Hz using the Nvidia PX1 chipset.

Our lane detection test set consists of 22 video clips

collected using both left and right cameras during 11 different

data collection runs, which correspond to about 50 minutes of

driving. We evaluate detection results for four lane boundaries,

namely, the left and right boundaries of the ego lane, plus

the outer boundaries of the two adjacent lanes. For each of

these lane boundaries, we further break down the evaluation

by longitudinal distances, which range from 15 to 80 meters

ahead of the car, spaced by 5 meters. Thus, there are at

maximum 4 × 14 = 56 positions at which we evaluate the

detection results. We pair up the prediction and ground truth

points at each of these locations using greedy nearest neighbor

matching. True positives, false positives and false negatives are

accumulated at every evaluation location in a standard way:

A true positive is counted when the matched prediction and

ground truth differ by less than 0.5 meter. If the matched

prediction and ground truth differ by more than 0.5 meter,

both false positive and false negative counts are incremented.

Fig 7 shows a visualization of this evaluation method on

one image. The blue dots are true positives. The red dots are

false positives, and the yellow ones are false negatives. Fig 8

shows the aggregated precision, recall and F1 score on all test

videos. For the ego-lane boundaries, we obtain 100% F1 score

up to 50 meters. Recall starts to drop fast beyond 65 meters,

mainly because the resolution of the image cannot capture the

width of the lane markings at that distance. For the adjacent

lanes, recall is low for the nearest point because it is outside

the field of view of the camera.

The vehicle detection test set consists of 13 video clips

collected from a single day, which corresponds to 1 hour



6

Fig. 7: Left: lane prediction on test image. Right: Lane

detection evaluated in 3D

(a) (b)

(c) (d)

Fig. 8: Lane detection results on different lateral lanes. (a)

Ego-lane left border. (b) Ego-lane right border. (c) Left adja-

cent lane left border. (d) Right adjacent lane right border.

and 30 mins of driving. The accuracy of the vehicle bound-

ing box predictions were measured using Intersection Over

Union (IOU) against the ground truth boxes from Amazon

Mechanical Turk (AMT). A bounding box prediction matched

with ground truth if IOU≥ 0.5. The performance of our

car detection as a function of depth can be seen in Fig 9.

Nearby false positives can cause the largest problems for

ADAS systems which could cause the system to needlessly

apply the brakes. In our system, we found overpasses and

shading effects to cause the largest problems. Two examples

of these situations are shown in Fig 10.

As a baseline to our car detector, we compared the detection

results to the Continental mid-range radar within our data

collection vehicle. While matching radar returns to ground

truth bounding boxes, we found that although radar had nearly

100% precision, false positives were being introduced through

errors in radar/camera calibration. Therefore, to ensure a fair

comparison we matched every radar return to a ground truth

bounding box even if IOU< 0.5, giving our radar returns 100%
precision. This comparison is shown in Fig 11, the F1 score

for radar is simply the recall.

In addition to the bounding box locations, we measured

the accuracy of the predicted depth by using radar returns as

Fig. 9: Car Detector Bounding Box Performance

(a) FP: tree (b) FP: overpass

Fig. 10: Vehicle False Positives

ground truth. The standard error in the depth predictions as a

function of depth can be seen in Fig 12.

For a qualitative review of the detection system, we have

uploaded a 1.5 hour video of the vehicle detector ran on our

test set. This may be found at youtu.be/GJ0cZBkHoHc. A

short video of our lane detector may also be found online

at youtu.be/__f5pqqp6aM. In these videos, we evaluate the

detector on every frame independently and display the raw

detections, without the use of any Kalman filters or road

models. The red locations in the video correspond to the mask

detectors that are activated. This network was only trained on

the rear view of cars traveling in the same direction, which is

why cars across the highway barrier are commonly missed.

We have open sourced the code for the vehicle and lane

Fig. 11: Radar Comparison to Vehicle Detector



7

Fig. 12: Car Detector Depth Performance

detector online at github.com/brodyh/caffe. Our repository was

forked from the original Caffe code base from the BVLC

group [20].

V. CONCLUSION

By using Camera, Lidar, Radar, and GPS we built a highway

data set consisting of 17 thousand image frames with vehicle

bounding boxes and over 616 thousand image frames with

lane annotations. We then trained on this data using a CNN

architecture capable of detecting all lanes and cars in a single

forward pass. Using a single GTX 780 Ti our system runs

at 44Hz, which is more than adequate for real-time use. Our

results show existing CNN algorithms are capable of good

performance in highway lane and vehicle detection. Future

work will focus on acquiring frame level annotations that will

allow us to develop new neural networks capable of using

temporal information across frames.

ACKNOWLEDGMENT

This research was funded in part by Nissan who generously

donated the car used for data collection. We thank our col-

leagues Yuta Yoshihata from Nissan who provided technical

support and expertise on vehicles that assisted the research.

In addition, the authors would like to thank the author of

Overfeat, Pierre Sermanet, for their helpful suggestions on

image detection.

REFERENCES

[1] Sermanet, Pierre, et al. ”Overfeat: Integrated recognition, localization and
detection using convolutional networks.” arXiv preprint arXiv:1312.6229
(2013).

[2] Rothengatter, Talib Ed, and Enrique Carbonell Ed Vaya. ”Traffic and
transport psychology: Theory and application.” International Conference
of Traffic and Transport Psychology, May, 1996, Valencia, Spain. Perga-
mon/Elsevier Science Inc, 1997.

[3] Cho, Hyunggi, et al. ”A multi-sensor fusion system for moving object
detection and tracking in urban driving environments.” Robotics and
Automation (ICRA), 2014 IEEE International Conference on. IEEE,
2014.

[4] Held, David, Jesse Levinson, and Sebastian Thrun. ”A probabilistic
framework for car detection in images using context and scale.” Robotics
and Automation (ICRA), 2012 IEEE International Conference on. IEEE,
2012.

[5] Levinson, Jesse, et al. ”Towards fully autonomous driving: systems and
algorithms.” Intelligent Vehicles Symposium, 2011.

[6] Caraffi, Claudio, et al. ”A system for real-time detection and tracking of
vehicles from a single car-mounted camera.” Intelligent Transportation
Systems (ITSC), 2012 15th International IEEE Conference on. IEEE,
2012.

[7] Jazayeri, Amirali, et al. ”Vehicle detection and tracking in car video based
on motion model.” Intelligent Transportation Systems, IEEE Transactions
on 12.2 (2011): 583-595.

[8] Bradski, Gary. ”The opencv library.” Doctor Dobbs Journal 25.11 (2000):
120-126.

[9] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. ”Imagenet
classification with deep convolutional neural networks.” Advances in
neural information processing systems. 2012.

[10] Szegedy, Christian, Alexander Toshev, and Dumitru Erhan. ”Deep neural
networks for object detection.” Advances in Neural Information Process-
ing Systems. 2013.

[11] Sutskever, Ilya, et al. ”On the importance of initialization and momentum
in deep learning.” Proceedings of the 30th International Conference on
Machine Learning (ICML-13). 2013.

[12] Eigen, David, Christian Puhrsch, and Rob Fergus. ”Depth map prediction
from a single image using a multi-scale deep network.” Advances in
Neural Information Processing Systems. 2014.

[13] Felzenszwalb, Pedro F., et al. ”Object detection with discriminatively
trained part-based models.” Pattern Analysis and Machine Intelligence,
IEEE Transactions on 32.9 (2010): 1627-1645.

[14] Szegedy, Christian, et al. ”Scalable, High-Quality Object Detection.”
arXiv preprint arXiv:1412.1441 (2014).

[15] Girshick, Ross, et al. ”Rich feature hierarchies for accurate object
detection and semantic segmentation.” Computer Vision and Pattern
Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014.

[16] Uijlings, Jasper RR, et al. ”Selective search for object recognition.”
International journal of computer vision 104.2 (2013): 154-171.

[17] Szegedy, Christian, et al. ”Going deeper with convolutions.” arXiv
preprint arXiv:1409.4842 (2014).

[18] He, Kaiming, et al. ”Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification.” arXiv preprint
arXiv:1502.01852 (2015).

[19] Simonyan, Karen, and Andrew Zisserman. ”Very deep convolutional net-
works for large-scale image recognition.” arXiv preprint arXiv:1409.1556
(2014).

[20] Jia, Yangqing, et al. ”Caffe: Convolutional architecture for fast feature
embedding.” Proceedings of the ACM International Conference on Mul-
timedia. ACM, 2014.

http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1412.1441
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1409.1556

	I Introduction
	II Related Work
	III Real Time Vehicle Detection
	III-A Lane Detection

	IV Experimental Setup
	IV-A Data Collection
	IV-A1 Ego-lane boundary generation
	IV-A2 Semi-automatic generation of multiple lane boundaries

	IV-B Data Set
	IV-C Results

	V Conclusion
	References

