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Abstract— Humanoid research has made remarkable progress 
during the past 10 years. However, currently most humanoids 
use the target ZMP (Zero Moment Point) control algorithm for 
bipedal locomotion, which requires precise modeling and 
actuation with high control gains. On the contrary, humans do 
not rely on such precise modeling and actuation. Our aim is to 
examine biologically related algorithms for bipedal locomotion 
that resemble human-like locomotion. This paper describes an 
empirical study of a neural oscillator for the control of biped 
locomotion. We propose a new neural oscillator arrangement 
applied to a compass-like biped robot. Dynamic simulations and 
experiments with a real biped robot were carried out and the 
controller performs steady walking for over 50 steps. Gait 
variations resulting in energy efficiency was made possible 
through the adjustment of only a single neural activity parameter. 
Aspects of adaptability and robustness of our approach are 
shown by allowing the robot to walk over terrains with varying 
surfaces with different frictional properties. Initial results 
suggesting optimal amplitude for dealing with perturbation are 
also presented. 
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I. INTRODUCTION 

Humanoid research and development has made remarkable 
progress during the past 10 years, for example: ASIMO 
(Honda) [1], SDR-4XII (Sony) [2] and HRP (AIST) [3]. Most 
of these presented humanoids utilize the target ZMP (Zero 
Moment Point) tracking algorithm for bipedal locomotion. 
ZMP is used to describe the stability of the system, and is used 
to control a system by following a target ZMP trajectory [4]. 
This control strategy provides a simple and straightforward 
method to permit biped robots to be realized. However, in 
order to accomplish successful locomotion this approach 
requires precise modeling and precise joint actuation with high 
joint control gains.  

In many ways human walking is quite different to that of 
current biped robots. Humans change joint stiffness by 
activating antagonistic muscles depending on the phase of the 
walking cycle. Humans touch the heel to the ground first to 
absorb collision impact. The knee joint is extended in the 
middle of the stance phase to support the body weight 
mechanically exploiting a singular posture. 

One of our goals is to develop biologically plausible 
bipedal locomotion algorithms. In doing so, we hope to gain a 

better understanding of the inner workings of human 
information processing. Our approach draws knowledge from 
related research areas such as neuroscience and biomechanics. 

Here we will briefly introduce some related work: Passive 
Dynamic Walker (PDW) and CPG (Central Pattern Generator). 
Both strategies are closely related to achieving human-like 
walking. 

A passive dynamic walker (PDW) can walk gently down a 
slightly inclined slope without any actuation; only gravitational 
force drives the robot. McGeer clearly showed that a walking 
motion can be realized intrinsically via mechanical design 
without any control input [5]. An efficient, natural, and smooth 
walking pattern was successfully demonstrated  resembling 
that of human. Like PDW, humans also exploit body dynamics 
to minimize energy expenditure during walking. Therefore, the 
idea of a passive dynamic walker will help us in deriving a 
controller that can produce effective human-like walking. 

There is evidence showing that animals have inherent 
rhythmic pattern generators within their neural circuitry [6]. 
Many attempts have been made to investigate biped CPG 
controllers that have self-adaptive properties to cope with 
environmental changes. Taga successfully applied a CPG 
controller for an 8-link simulated planar biped model [7]. 
Antagonistic muscles for joint actuation were controlled using 
neural oscillators. In conjunction with appropriate neural 
connections and biologically based sensory feedback pathways 

 stable bipedal locomotion emerged. It is surprising that 
simple neural oscillators and their connections are adequate for   
bipedal locomotion. However, there is no analytical way to 
determine the parameters in the system; hand tuning is still 
required. Others have addressed this problem through 
parameter optimization [8][9]. 

Although many attempts have been made to investigate 
CPG controllers for legged locomotion, there are only a few 
successful experimental studies on actual robots. Noticeably 
Kimura’s quadruped walker; it demonstrated amazing terrain 
adaptability and quick response against environmental changes 
[10]. Their system includes sensory feedback to the oscillators, 
such as foot tactile sensors and a body inclinometer. The 
framework demonstrated promising results of the CPG 
approach. It cannot be directly applied to biped locomotion but 
has provided hints toward realization of CPG controlled biped 
locomotion. 
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In this paper, we investigate experimentally CPG controller 
for biped control based on current knowledge of biological 
systems. We address the problem of controlling a 5-link planar 
biped robot. Numerical dynamic simulation as well as 
experimental investigation is performed. The next section 
describes the biped model used. In Section III, the neural 
oscillator model and its arrangement are discussed. Section IV 
presents the CPG controller, implemented both on the dynamic 
simulator and on the real robot and compares experimental 
results. Additionally, the effectiveness of gait variation via 
changing the neural activity of the CPG is presented in Section 
V.

II. BIPED MODEL

Figure 1 shows our experimental system: A planar robot 
with lateral movement restricted by a boom to its left. A direct 
drive actuation was selected in order to control joint stiffness 
and provide back drivability. The knee joint is a wire driven 
system with reduction ratio of 2.0. Four motors are mounted in 
total. Feet with rounded soles are installed to allow rolling 
contact, and to exploit dynamics of the robot as in PDW. The 
foot has radius is 0.1[m] with a length of 0.06[m]. Leg states 
(stance/swing) are detected by foot switches. Mechanical 
properties of the biped are shown in Table 1. 

A numerical simulator was also developed for our studies. 
The simulator uses SD/FAST (Parametric Technology Corp, 
Inc.) for rigid body dynamics calculation. A simple spring-
dumper model is employed to model reaction forces due to 
ground contact (see Appendix A). 

Although effective for initial evaluation, we believe that 
numerical simulation is not sufficient to fully explore 
applicable bipedal locomotion. This is primarily due to the 
difficulty of collision modeling between feet and the ground, 
which directly affects the movements of the robot. 

III. CPG CONTROLLER

A. Neural Oscillator 
The Neural Oscillator originally formulated by Matsuoka is 

commonly used to model CPG [11]. 
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2222 x      (4) 

21 xxy      (5) 

where x1, x2, v1, v2 are internal variables; 1, 2, c, , , hj are 
constant parameters; gj, y are input and output signals 
respectively. Any number of inputs gj  can be applied to the 
oscillator, which can either be proprioceptive signals, or signals 
from other neurons. As shown in Figure 2, the input is arranged 
to excite one neuron and inhibit the other, by applying the 
positive part ([gj]+) to one neuron and the negative part to the 
other. The inputs are scaled by a gain hj (Figure 2). Time 
constant 1 and 2 determine the output wave shape and its 
frequency. Neural activity c represents tonic excitation 
modulating output amplitude. Without any input signals g, the 
neural oscillator can produce oscillation at its natural frequency 
via 1 and 2. If g is large enough, and close to the oscillator’s 
natural frequency, the phase difference between input and 
output is tightly locked due to entrainment. It is impossible to 
analytically solve the above equations. However Williamson 
has numerically investigated relationship between sinusoidal 
input and the oscillator’s output in conjunction with the effect 
of the constant parameters [12], suggesting that an empirical 
exploration of CPG for biped locomotion is feasible. 

B. Neural Oscillator Arrangement  
Previous approaches follow a physiological arrangement, 

directly connecting the CPG to each joint to model antagonistic 
muscles and CPG outputs are used as torque commands. 
However, it is not necessarily true that one joint is driven by 
only a pair of antagonistic muscles, as in case of humans. 
Human’s musculo-skeletal system is actuated by multiple 
redundant muscles. For example, hamstrings and quadriceps

Figure 1.   Left: physical system, Right: 5-link robot model 

TABLE I.  PHYSICAL PARAMETERS OF THE ROBOT MODEL

Figure 2.   Matsuoka Coupled Neural Oscillator



include double joint muscles that drive not only knee joint but 
also hip joint. Therefore, it may be natural to assume that some 
sort of signal conversion exists between CPG and muscles. 

Additionally, in terms of development for applicable biped 
robot controller, this arrangement makes it difficult to 
understand how each oscillator contributes to the overall 
behavior, for example, the height of the center of gravity 
because of direct kinematics actuation. Furthermore, the neural 
oscillators are intrinsically non-linear. As a result, it is very 
difficult to adjust the parameters for the complete system based 
on a high-level criterion, such as the prevention of falling. 

Inverse kinematics can be quite helpful for understanding 
the robot’s movement in Cartesian space. A CPG could 
produce horizontal and vertical motion directly. Although 
Cartesian control is common practice in robotics, but it is hard 
to believe that low level neural oscillators in biology would 
operate using Cartesian coordinates. Moreover, inverse 
kinematics requires avoiding singular postures. This motivated 
us to propose a new CPG arrangement that could satisfy both 
biological plausibility and ease of comprehension. We arrange 
neural oscillators for a compass-like biped robot, decomposing 
leg movements into a linear motion (LM) controlling leg length 
and a swing motion controlling the leg angle (SM) (Figure 3).

The compass-like biped is commonly used to approximate 
human walking motion in biomechanics, and there exist 
simulation studies that show sinusoidal linear motion and 
passive swing motion, given appropriate initial conditions can 
generate open-loop biped locomotion. The reaction forces 
profile is quite similar to human walking [13]. Therefore, we 
consider the compass-like biped as a biologically plausible 
model.   

 Additionally, the model decomposes leg function into 
weight support and thrusting force generation. They provide an 
easy way to intuitively understand the robot’s motion. In this 
paper, we assume the existence of a local controller between a 
CPG and a muscle that drives each joint depending on two 
distinctive leg functions: weight support and leg swing. In other 
words, CPG outputs are not utilized for joint level commands 
but as controlling leg functionality. 

C. Neural Oscillator Connection and Feedback Pathways 
We assumed that a single oscillator drives one decomposed 

motion (LM/SM) and the oscillator output is a position 
command for each movement. Right and left neurons are 
connected by mutual inhibition to generate symmetrical motion 
(Figure 3). 

We explored feedback pathways for each oscillator to 
produce a walking pattern that would cope with the interacting 
environment. We decomposed walking motion into stepping 
motion in place, and swing motion before combining them to 
produce the overall walking motion. The stepping motion 
without propulsion is achieved by LM, performing leg lifting 
and body support alternately. If the leg swing motion 
cooperates with LM with the proper phase, walking motion is 
produced. 

Figure 4 shows stepping motion in place and the 
experimentally derived feedback pathways. The body pitch 

oscillation was generated by LM via an inverse phase 
expansion and contraction. When both legs are in the stance 
phase, the body pitch angle is fed back to LM to prevent falling 
from occurring; this is done by adjusting the leg length. For 
example, if the body inclines forward then the length of the 
front leg increases and the hind leg decreases to generate a 
backward recovery movement. We introduce a “stability 
measure”, as an indicator to switch feedback pathways because 
pitching angle arises an opposite activation for LM depending 
on foot placement. We approximate the stability measure by 

Figure 3.   Compass-like biped and neural oscillator arrangement 

Figure 4.   Feedback pathways for linear motion 

Figure 5.   Feedback pathway for swing motion 



the distance between foot position and the projection of the hip 
joint to the ground (Figure 3). We also introduce an additional 
feedback pathway to provide clearance between the foot and 
the ground, in order to prepare for the swing motion. When the 
leg is lifted off the ground (detected by a foot switch), leg 
length is decreased. 

We empirically examined the neural oscillators’ parameters 
using the real robot and were able to achieve stable stepping 
motion that can cope with small disturbances. The parameter 
for the SM feedback pathway is also derived through 
experimentation, as shown in Figure 5. To induce cooperative 
movements LM output is directly fed into SM input. That is, 
SM takes forward maximum position with minimum leg length 
and takes backward maximum position with maximum length. 
This posture emulates the gravitational driving force of a PDW 
and provides forward falling motion. (see Appendix B for 
additional detail.) 

IV. EXPERIMENT

The controller was implemented on the real biped robot. At 
the beginning of every walking experiment, we suspended the 
robot to initiate appropriate gait with proper sensor signals. 
During 3–5 steps, oscillatory movements gradually entrained 
and a steady walking gait was established. The robot produced 
steady walking for over 50 steps with a typical walking period 
and velocity of 0.4 [s/step] and 0.47 [m/s]. 

The controller was implemented on both a dynamic 
simulator and on a real robot. Results of steady, constant 
walking are shown in Figures 6 (dynamics simulation) and 7 
(experiment). The actual hip joint is entrained with constant 
phase delay compared to the neural oscillator output and the 
actual knee joint produced a large deviation from the desired 
posture when legs touched down. These errors resulted from 
low control gains. In terms of trajectory tracking control, these 
deviations indicate low joint accuracy. Conversely, the 

Figure 6.   Simulation results (a) hip joint trajectory, (b) knee joint 
trajectory, (c) foot state, (d) phase plot of hip joint 
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Figure 7.   Experimental results: (a) hip joint trajectory, (b)knee joint 
trajectory, (c) foot state, (d) phase plot of hip joint 
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controller effectively exploits the low gain with a virtual 
spring-dumper property to absorb the impact during leg 
touchdown. This result also indicates that walking movement is 
strongly related to joint gains.  

Phase diagrams are shown in Figure 6 (d) and Figure 7 (d). 
They illustrate stable limit cycles for both simulation and the 
real robot. There are large angular velocity changes at leg 
touchdown, indicating that the relative vertical velocity 
between foot and ground is not zero. If joints are controlled 
rigidly to follow a nominal ZMP trajectory, the robot cannot 
cope with such a high frequency impact. As contemporary 
humanoids walk with unnaturally stealthy steps, producing 
motion that is unlike human motion. Humans effectively 
exploit heel strike to adjust walking velocity. Therefore, our 
controller is closer to human walking than ZMP. A large 
difference is shown between simulation and experiment during 
the touchdown phase. This is due to the difficulty of impact 
modeling in simulation.  

With regard to step cycle, the real experiment shows a step 
cycle of 0.39 [s/step] whereas the natural frequency of the 
neural oscillator was 0.33 [s/step]. This indicates that the step 
cycle was altered due to entrainment, thus exploiting body 
dynamics effectively.  

Robustness during walking was confirmed via the dynamic 
simulation and the robot implementation. In the simulator, we 
applied a forward perturbation force at the body (link 3) for a 
duration 0.2 [s] at random intervals and using a typical 
parameter set the controller could cope with up to 3.7 [N]. 
Robustness depends on the stride length in terms of the 
stability measure. Figure 8 shows the relationship between 
oscillator activity parameter c in (1) and (3), which is 
proportional to stride and maximum allowable disturbance. 
Gait changes are discussed in the next section. 

We also made walking experiments on different surfaces 
with different friction property (Figure 9, a metal sheet 2[mm] 
thick, a cork sheet 3[mm] thick and carpet). Photos were taken 
every half second. The controller could deal with this friction 
property changes without any problem. After walking through 
this area, perturbed gait pattern converged to a steady gait 
within 2 to 3 cycles due to neural oscillator entrainment, and 
the robot continued to walk steadily. 

V. GAIT   VARIATION

We observed step length variation through the experiment 
depending on initial condition. For example, sometimes the left 
leg step was larger than the right leg step. Even in this case, the 
robot walked steadily walking without falling over. We 
investigated gait variation to improve walking efficiency by 
changing c and measured the resulting walking velocity and 
mechanical power consumption to derive walking efficiency 
measured by specific resistance [15]. The smaller  indicates 
the higher energy efficiency. 

We could modulate the parameter c between 2.0 to 4.0 
effectively. Walking failed outside of this range, as the smaller 
the c value, the smaller the step length. Larger c values result in 
greater touchdown impact, disturbing stability. Interestingly, 

Figure 8.   Relationship between neural activity and maximum 

Figure 9.   Walking on different surface 

Figure 10.   Gait variation:  (a) c=2.0, =0.169,  (b) c=3.5, =0.294 



we found that smaller c gives rise to a more graceful walk and 
larger c produces energetic marching like walk (Figures 10 a 
and b). 

Figure 11 shows the relationship between c and walking 
velocity, and the associated mechanical power consumption 
and specific resistance. Mechanical power consumption was 
calculated from the actuator torque command and the measured 
angular velocity.  

Specific resistance  was obtained from power divided by 
measured velocity, mass, and gravitational acceleration. 
Experimental power consumption was 3-4 times higher than 
that of simulation. This is primarily due to inaccuracy of 
modeling of the impact. However, it was useful in providing an 
initial qualitative measure for our comparison. 

Changing the neural activity c did not significantly affect 
the walking velocity of the robot. It seems that the round foot 
shape and body dynamics actively contributes to walking 
velocity. Thus, walking velocity is determined by body 
dynamics, like a passive dynamic walker. Since this property is 
unavoidable for a dynamics dependent walker, different control 
strategies, such as posture control, may be needed to be 
investigated for slow walking, perhaps through ankle joint 
actuation. Larger neural activity c, required greater 
consumption of power. Minimum specific resistance was 
obtained at minimum c=2.0. However, the smaller step length 
decreased stability measure, so there is a trade-off between 
walking efficiency and stability. Thus, optimum c is expected 
to be 2.0 to 4.0, providing energy efficiency and stability. 

Additionally, applied electrical power consumption was 
approximately 340[W] at c=2.0 and actuator efficiency was 
only 0.7%. The same tendency was reported by the Spring 
Flamingo aiming at high efficient walking [16]. These results 
obviously show the importance of a careful hardware 
implementation in practice. 

VI. CONCLUSION

In this paper, we applied a biologically inspired walking 
algorithm to an actual experimental setup and compared 
between simulation and experiments. A neural oscillator 
controller was implemented on a planar biped. We proposed a 
new neural oscillator arrangement, for a compass-like biped 
model, that decouples leg length and leg angle control. Then 
neural connection and feedback pathways were investigated by 
empirical exploration and the controller implemented on a 
simulator and an experimental setup. We confirmed that the 
robot had a robust, steady walk and the simulation results 
showed similar tendencies as the experimental results. Finally, 
we discussed gait variations through neural activity that 
improve walking efficiency. 

Currently we are studying velocity control by changing 
both the time constant and the neural activity. Though the 
range is not large, we experimentally verified velocity could be 
adjusted from 0.4 – 0.5[m/s]. Velocity largely depends on foot 
shape, so optimum radius and shape should be further 
investigated. 

 In this paper, we dealt with steady state walking and it was 
difficult to initiate walking. Transition controllers and posture 
controllers should be investigated in the future. 
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APPENDIX A: GROUND CONTACT MODEL

x, y denote foot position, and xg, yg are the ground contact 
points. Reaction forces are modeled as following. 

if gyy

ybyykFxbxxkF ygyyxgxx ,
       

(A1) 

if gyy

0,0 yx FF           (A2) 

Fx, Fy are the horizontal and vertical ground reaction forces, 
respectively. We set the horizontal spring coefficient kx=3000, 
and dumping coefficient bx=10. For the vertical direction, 
ky=30000, and by =100. A slippage model is established using 
the following condition; if Fx >  Fy, then slip occurs. =1.0 
is the static friction coefficient. 

Figure 11.   Neural activity and energy efficiency                   
(a) Power Consumption, (b) Velocity and specific resistance 



APPENDIX B: CPG PARAMETERS , FEEDBACK PATHWAYS ,
AND JOINT KINEMATICS

Common parameters for all neural oscillators: 

0.2,5.2,2.1,6.0 21

Tonic excitation c (when c=2.05, output amplitude = 1.0): 

0.3,0.40.2 SWLMSW ccc

Neural connections for right-and-left inverse phase Figure 3 

5.0h

SWRightSWLeft yg __ , SWLeftSWRight yg __

LMRightLMLeft yg __ , LMLeftLMRight yg __

Feedback pathway for linear motion. 

Swing phase: 

Stance phase:  

Feedback pathway for swing motion. 

5.0h

LMRightSWLeft yg __ , LMLeftSWRight yg __

Relation of oscillator output and joint command (Figure 12) 

LMLMSWSWhip yAyA

LMLMknee yA2

deg5.13,deg0.4 LMSW AA

where SWA , LMA  are swing and linear motion amplitude, 
respectively. Servo gains are set as follows. 

radsmNDradmNP gaingain 08.0,0.4
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Figure 12.   Oscillator output and joint command 


