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ABSTRACT

This paper extends the class of stochastic volatility diffusions for asset returns to encompass

Poisson jumps of time-varying intensity.  We find that any reasonably descriptive continuous-time model

for equity-index returns must allow for discrete jumps as well as stochastic volatility with a pronounced

negative relationship between return and volatility innovations.  We also find that the dominant empirical

characteristics of the return process appear to be priced by the option market.  Our analysis indicates a

general correspondence between the evidence extracted from daily equity-index returns and the stylized

features of the corresponding options market prices.
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Much asset and derivative pricing theory is based on di�usion models for primary securi-

ties. However, prescriptions for practical applications derived from these models typically produce

disappointing results. A possible explanation could be that analytic formulas for pricing and hedging

are available for only a limited set of continuous-time representations for asset returns and risk-free

discount rates. It has become increasingly evident that such \classical" models fail to account ad-

equately for the underlying dynamic evolution of asset prices and interest rates. Not surprisingly,

the inadequacy of these speci�cations also shows up in bond and derivatives pricing, where the stan-

dard representations falter systematically. For example, the Black-Scholes pricing formula, although

widely used by practitioners, is well known to produce pronounced and persistent biases in the pric-

ing of options. Deviations of actual prices from Black-Scholes benchmarks result in the extensively

documented \volatility smiles" and \smirks" reported in, e.g., Rubinstein (1994).

The above observations suggest that practical �nancial decision making based on the continuous-

time setting will be satisfactory only if it builds upon reasonable speci�cations of the underlying asset

price processes. Speci�cally, bond and derivatives prices are very sensitive to volatility dynamics.

Likewise, the extent of skewness and the presence of outliers in the underlying return distribution are

critical inputs to hedging and risk management decisions as well as for option pricing. It has long been

asserted that jumps or stochastic volatility may account for such return characteristics. Unfortunately,

these features are generally explored separately and not within a uni�ed framework. Until recently,

a major obstacle was the lack of feasible techniques for estimating and drawing inference on general

continuous-time models using discrete observations. Over the last few years, new methods for di�usion

estimation have emerged. Nonetheless, the inference tools are often speci�c to a limited number of

models. Moreover, the related empirical �ndings have so far been inconclusive or contradictory and

most studies fail to produce a satisfactory �t to the underlying asset return dynamics.

From a di�erent vantage point, a number of studies extract information about the parameters

of the underlying returns process from derivatives prices and contrast the �ndings to the time series

behavior of the return series; see, e.g., Bates (1996a, 2000), Bakshi, Cao and Chen (1997), and Chernov

and Ghysels (2000). The results are striking: there is a strong disparity between the characteristics of

the return dynamics implied by the derivative prices and those inferred from the actual time series of

underlying returns. The lack of consensus about the proper speci�cation of continuous-time models

for asset returns and the inability to link the estimated representations coherently to corresponding

features of associated �nancial instruments remain a cause for concern since they suggest that a

critical element may be missing from the model speci�cation.

The objective of this paper is to identify a class of jump-di�usion models that are successful

in approximating the S&P500 return dynamics and should therefore constitute an adequate basis

for continuous-time asset pricing applications. We explore alternative representations for the daily

equity-index return dynamics within a general jump-di�usion setting. We consider speci�cations

both inside and outside the popular class of aÆne models that generally provide tractable pricing
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and estimation procedures; see, for example, DuÆe, Pan and Singleton (2000). Our broad-based

approach to model selection is critical in order to establish the merits of the di�erent formulations. It

further helps assess the severity of the constraints imposed by inference techniques that are tailored

on the family of aÆne models, which are widely used in the literature. Along the way, we identify

the features of the return dynamics that account for the inadequate performance of the classical

models. Finally, we explore the relationship between our estimated speci�cation and the associated

derivatives prices. First, we contrast our estimates for the model parameters that are una�ected by

the adjustments for volatility and jump risks with those extracted from options in previous empirical

work. Second, we provide a qualitative comparison of the pricing implications of our model estimated

solely from equity returns and the stylized evidence from actual options data.

The need for a general, yet eÆcient framework for inference leads us to adopt a variant of the

simulated method of moments (SMM) technique of DuÆe and Singleton (1993). Moment conditions

are obtained from an implementation of the eÆcient method of moments (EMM) procedure of Gallant

and Tauchen (1996) and performance is judged through the associated speci�cation tests and model

diagnostics. We apply this approach to daily observations from the S&P500 index. Besides being a

broad indicator of the equity market, this index is the asset underlying the SPX option, an important

and highly liquid contract in the derivatives market. Both data sets have been studied extensively, so

we have natural reference points for our analysis. Finally, the daily sampling frequency allows us to

capture high-frequency uctuations in the returns process that are critical for identi�cation of jump

components, while avoiding modeling the intra-day return dynamics which are confounded by market

microstructure e�ects and trading frictions.

Our results indicate that both stochastic volatility and discrete jump components are critical

ingredients of the data generating mechanism. Also, a pronounced negative correlation between

return and volatility innovations appears necessary to capture the skewness in S&P500 returns. A

relatively low-frequency jump component accounts for the fat tails of the returns distribution. We

estimate that jumps occur on average 3-4 times a year. The discontinuities are relatively small, with

most of the jumps lying within the �3% range. All variants of our model without a negative return-

volatility relation or jumps are overwhelmingly rejected, while two stochastic volatility jump-di�usion

(SVJD) speci�cations provide acceptable characterizations. Hence, we �nd that a combination of

fairly standard and parsimonious representations of stochastic volatility and jumps accommodates

the dominant features of the S&P500 equity-index returns, and o�ers an attractive alternative to,

for example, the complex four-factor pure di�usion speci�cation of Gallant and Tauchen (1997). We

thus �nd empirical support for the aÆne jump-di�usion model of Bates (1996a) and Bakshi, Cao and

Chen (1997), which provides a convenient setting for asset pricing applications.

Interestingly, our estimates for the model parameters that are una�ected by the adjustment for

volatility and jump risks are generally similar to those obtained in previous work exploiting only

equity options. In line with this observation, our model also produces option pricing implications
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that correspond qualitatively to those obtained from actual derivatives data. For example, the jump

component and, more prominently, the asymmetric return-volatility relationship induce a smirk in the

typical implied volatility pattern which resembles that extracted from options data. Moreover, like in

the actual data, this smirk becomes less pronounced as maturity increases. Finally, relatively small

premia for the uncertainty associated with volatility and jumps are suÆcient to replicate most of the

salient features of the term structure of implied volatility. Hence, a large number of characteristics

of the stock price process, which seem to be implied or priced by the derivatives contracts, are

independently identi�ed as highly signi�cant components of the underlying dynamics uncovered in our

empirical analysis of the S&P500 returns. Consequently, our results indicate a general correspondence

between the dominant features of the equity-index returns and option prices.

We deliberately avoid exploting derivatives prices for estimation purposes. Although this is not

fully eÆcient, there are important advantages associated with this approach. First, we are able to

focus exclusively on the adequacy of the model under the \physical" measure. Features such as

stochastic volatility, a negative correlation between return and volatility innovations, and jumps, are

consequently not extracted from derivatives prices, and are therefore shown to be inherent character-

istics of the underlying return dynamics. This analysis is an important benchmark since the option

prices speak to the parameters of the return system under the \risk-neutral" measure. Hence, joint

estimation requires distributional assumptions not only for the stock return dynamics, but also for the

associated market premia for undiversi�able risks such as stochastic volatility and jumps. Rejection

of the joint model may thus result from either the speci�cation of the risk premia (the risk-neutral dis-

tribution), the stock return dynamics (the physical distribution), or both. This ambiguity is avoided

when concentrating solely on the underlying asset return dynamics. Since the stock return dynamics

is critical for a number of practical hedging, risk management, portfolio allocation and asset pricing

decisions, it is advantageous to have a robust characterization that is immune to either misspeci�-

cation or instability of the speci�ed process for the risk premia. The relevance of this observation

is underscored by the documentation of a structural break in option prices around the market cor-

rection in 1987. Prior to October 1987, the volatility implied by the equity-index option contracts

displayed a largely symmetric smile pattern, but after October 1987 it turned into an asymmetric

smirk, reecting the higher prices for out-of-the-money put options (which are valuable for portfolio

insurance strategies). Consequently, many studies utilizing option data end up having to focus on a

limited sample from 1988 onwards. There is no evidence of a corresponding break in the underlying

stock price dynamics. Thus, a second advantage of focusing exclusively on equity returns is that

we may exploit a large daily sample originating with the initiation of the S&P500 index in 1953. A

large sample allows for more accurate inference about the strongly persistent volatility process and its

identi�cation relative to the jump distribution. We are also able to gauge structural stability directly

by considering subsample estimation. Third, drawing inference from joint return and derivatives data

poses severe computational problems. To circumvent them, we would have to restrict our analysis to
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models that deliver (near) closed-form solutions for the option price. This would in e�ect limit our

applications to speci�cations within the aÆne class. But if explicit solutions for derivatives prices

are not required, the EMM simulation approach readily accommodates alternative speci�cations for

the di�usion and jump components, allowing for a broader study of candidate models including those

outside of the tractable aÆne setting.

The remainder of the paper is structured as follows. In Section I we discuss the candidate

continuous-time models for stock returns and provide a selective overview of the existing litera-

ture. Empirical results and the details of the EMM implementation are documented in Section II. In

Section III we illustrate potential derivative pricing implications and compare our �ndings with the

results reported in the empirical option pricing literature. Concluding remarks are in Section IV.

I. Model Speci�cation and Estimation Methodology

A. Candidate Models

We focus on a class of continuous-time models that are suÆciently general to capture the salient

features of equity-index returns, and also provide relatively straightforward comparisons to the rep-

resentations appearing in the literature. We pay particular attention to speci�cations that facilitate

derivative pricing, but without limiting ourselves to models that deliver (near) closed-form pricing

formulas.

The following general representations turn out to be satisfactory for our application

dSt

St
= (�+ c Vt � �(t) � )dt+

p
V t dW1;t + �(t) dqt ; (1)

where the (log-)volatility process obeys a mean-reverting di�usion, given as

d lnVt = (�� � lnVt )dt+ � dW2;t ; (2)

or

dVt = (�� �Vt )dt+ �
p
V t dW2;t : (3)

W1 and W2 are standard Brownian motions with correlation corr(dW1;t; dW2;t) = �, q is a Poisson

process, uncorrelated with W1 and W2 and governed by the jump intensity �(t), i.e., Prob(dqt = 1)

= �(t) dt, �(t) is an aÆne function of the instantaneous variance,

�(t) = �0 + �1 Vt: (4)

�(t) denotes the magnitude of the jump in the return process if a jump occurs at time t. It is assumed

to be log-normally distributed,

ln(1 + �(t)); N( ln(1 + �)� 0:5 Æ2; Æ2 ) : (5)
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This class of models subsumes a number of important special cases that we consider in our

empirical analysis. To establish a benchmark, we initially estimate a representation that is compatible

with the Black-Scholes option pricing model. This is obtained by assuming that the drift and di�usion

coeÆcients in (1) are constant and that there is no jump component, i.e., �(t) = 0. Thus, (1) reduces

to
dSt

St
= �dt+ �dWt : (6)

The option pricing formula associated with the Black-Scholes di�usion (6) is routinely used to price

European options, although it is known to produce systematic biases. These are typically illustrated

by the \smile" in implied volatilities extracted from a cross-section of options, sorted according to the

degree of moneyness. That is, option prices consistently violate the basic assumption of a constant

di�usion coeÆcient in the underlying stochastic di�erential equation for stock returns. This should

not be surprising since high-frequency stock returns exhibit leptokurtosis, skewness and pronounced

conditional heteroskedasticity, all characteristics ruled out by the Black-Scholes assumptions.

As a �rst extension of the representation (6), we estimate the Merton (1976) model, obtained by

adding a jump component with constant intensity to the Black-Scholes formulation. This is also a

special case of (1), obtained imposing the restriction �(t) = � and assuming volatility to be constant.

Economically, jumps in stock returns are easily rationalized: the discrete arrival of new information

induces an instantaneous revision of stock prices. Adding a jump component should improve the �t

to the observed time-series of returns, since the jumps may help accommodate outliers as well as

asymmetry in the return distribution. The presence of outliers is regulated by the magnitude and

variability of the jump component, while the asymmetry is controlled by the average magnitude of

the jump, �. The Merton jump-di�usion has been estimated from time series data on asset returns

by a number of authors { among them, Press (1967), Jarrow and Rosenfeld (1984), Ball and Torous

(1985), Akgiray and Booth (1986), and, more recently, Das and Uppal (1998) and Das (1999). The

jump component has generally been found to be signi�cant, and the speci�cation does accommodate

some of the observed skewness and leptokurtosis in the returns process. Nonetheless, the resulting

representations are, as also documented below, seriously inadequate. They cannot account for the

strong conditional heteroskedasticity of stock returns nor rationalize the substantial time-variation

that is observed in the level and shape of the implied volatility smile.

These facts motivate estimation of alternative extensions of representation (6). As a �rst step,

we rule out the jump component by setting �(t) = 0 in the di�usion (1), but allow volatility to be

stochastic. This produces a pure two-factor di�usion,

dSt

St
= (�+ c Vt) dt+

p
V t dW1;t ; (7)

where the variance process V follows either the log-variance speci�cation (2) or the aÆne speci�-

cation (3). Stochastic volatility induces excess kurtosis in the return process, governed largely by
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the volatility di�usion parameters �, � and �. The asymmetry observed in the return process may

be captured by a negative correlation between shocks to the variance and the return process, i.e.

corr(dW1;t; dW2;t) = � < 0. The square-root variance speci�cation in (3) is particularly attractive

for option pricing applications since Heston (1993) provides a closed-form solution for the option

price when the underlying return process obeys (7) and (3). On the other hand, the log-variance

speci�cation in (7) and (2) is more in line with standard discrete-time stochastic volatility models

as well as the popular EGARCH representation for equity-index returns. This suggests that the

log-variance model is a good starting point for our di�usion speci�cation since it provides a basis for

comparisons with the usual discrete-time results. The representation is, however, less convenient for

derivatives pricing than the speci�cation incorporating square-root variance, since numerical methods

are required for the computation of option prices; see, e.g., Melino and Turnbull (1990) and Benzoni

(1998). Also, note that we have included the volatility factor in the mean return (drift coeÆcient),

and thus rule out arbitrage opportunities by ensuring that equities do not provide a �xed excess

return over the risk-free rate when volatility approaches zero. However, given the mixed evidence on

volatility-in-mean e�ects in the discrete-time oriented empirical literature, the associated coeÆcient

is likely to be small.

It is strictly an empirical issue whether the models (7) and (2) or (7) and (3) provide adequate

descriptions of stock returns. Our empirical work leads us to expand both representations by including

a jump component. This yields the most general speci�cation, that of (1)-(5). The joint presence of

jump and stochastic volatility factors provides additional exibility in capturing the salient features

of equity returns, including skewness and leptokurtosis. From an option pricing perspective, this

extension has the advantage of delivering closed-form solutions if V obeys (3), see Bates (1996a,

2000), or numerical approximation schemes when V satis�es (2). Moreover, several studies have

noted that the incorporation of a jump component is essential when pricing options that are close

to maturity.1 Indeed, if volatility follows a pure di�usion the implied continuous sample path may

be incapable of generating a suÆciently volatile return distribution over short horizons to justify the

observed prices of derivative instruments.

B. Estimation Methodology

The main diÆculty in conducting eÆcient inference for continuous-time model from discretely

sampled data is that closed-form expressions for the discrete transition density generally are not

available, especially in the presence of unobserved and serially correlated state variables. The latter

is usually the case, for example, for stochastic volatility models. Although maximum likelihood

estimation is, in principle, feasible via numerical methods { see, e.g., Lo (1988) { the computational

demands are typically excessive if latent variables must be integrated out of the likelihood function.

In response to this challenge, a number of alternative consistent inference techniques for continuous-
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time processes have been developed in recent years. Among the early contributions are the (semi-

)nonparametric approaches of, e.g., A��t-Sahalia (1996) and Hansen and Scheinkman (1995); and,

among the more recent, Conley et al. (1997), Stanton (1997), Jiang and Knight (1997), Johannes

(1999), Bandi and Phillips (1998), Bandi and Nguyen (2000) and Poteshman (1998). Unfortunately,

it is diÆcult to apply such methods in our setting because of the joint presence of stochastic volatility

and jumps. At the same time, re�nements of the Pedersen (1995) approach of treating the estimation

problem as a missing values problem have appeared. Although the method may appear unable to

accommodate latent factors, the development of Markov Chain Monte Carlo (MCMC) techniques

has provided interesting progress; see Eraker (2001), Jones (1998), and Elerian, Chib and Shephard

(2001).2 Nonetheless, the approach is not ideal for our application since the implementation of the

MCMC sampler must be tailored to the model of choice, and it is therefore hard to make comparisons

across a broad range of di�erent speci�cations. Yet another approach, developed in DuÆe, Pan and

Singleton (2000) and Liu (1997), has inspired work using empirical characteristic functions; see, e.g.,

Chacko and Viceira (1999), Jiang and Knight (1999), Singleton (2001) and Carrasco et al. (2001).

However, this methodology is designed for the aÆne class and it is hard to adapt it to, e.g., the

log-variance representation (2).

We turn instead to the EMM estimation procedure, a simulation-based method of moments tech-

nique. In principle, simulation approaches are feasible if it is possible to simulate the underlying

di�usion paths arbitrarily well and obtain suÆcient identifying information for parameter estimation

via moment conditions. This typically produces ineÆcient inference, but careful moment selection can

greatly alleviate this problem. The SMM procedure of DuÆe and Singleton (1993) matches sample

moments with simulated moments, i.e., moments computed using a long simulated series obtained

from the assumed data generating mechanism. The EMM procedure of Gallant and Tauchen (1996)

re�nes the SMM approach by providing a speci�c recipe for the generation of moment conditions.

They are extracted from the expectation of the score of a discrete-time auxiliary semi-nonparametric

model which closely approximates the distribution of the discretely sampled data. An attractive

feature is that EMM achieves the same eÆciency as maximum likelihood (ML) when the score of the

auxiliary model (asymptotically) spans the score of the true model. Moreover, as for the generalized

method of moments (GMM), the EMM criterion function may be used to construct a Chi-square

statistic for an overall test of the over-identifying restrictions. Since this procedure is based on the

identical moment conditions - the auxiliary model score vector - for all models under investigation,

it allows for comparison of non-nested representations, like the log-variance and aÆne volatility pro-

cesses in (2) and (3). Finally, the �t of individual scores may be used to gauge how well the model

captures particular characteristics of the data. Although the EMM procedure has been used before

to estimate stochastic volatility (SV) models, our extension to a fully speci�ed SVJD setting, which

produces eÆcient estimation of a model with both stochastic volatility and jumps, is to the best of

our knowledge the �rst within the EMM literature.
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In our application we use a sample of equity index returns. A number of authors has advocated

instead the use of derivative prices, based on the conjecture that this data contains superior market-

based information about the evolution of the data generating process. As a result, they obtain

model parameters exclusively under the \risk-neutral" probability measure using, for example, the

pricing techniques within general aÆne settings found in, e.g., DuÆe, Pan and Singleton (2000) and

Bakshi and Madan (2000). These approaches allow for inversion of option prices into (constant)

model parameter and period-by-period implied volatility estimates, e.g., Bates (1996a, 2000), or even

period-by-period implied parameters and period-by-period implied volatilities for aÆne stochastic

volatility jump-di�usions, as explored by Bakshi, Cao and Chen (1997).3 These studies invariably

�nd the extracted time series of volatility to be inconsistent with the observed dynamics of the

underlying equity returns, thus highlighting the diÆculty of jointly rationalizing derivatives prices

and the underlying asset price dynamics. These results can be ascribed to a misspeci�cation of the

return generating process, and thus the \physical" measure, as well as the factor risk premia, i.e.,

the \risk-neutral" measure. Our paper, along with a few other recent contributions reviewed in the

following section, shed additional light on the sources of model misspeci�cation.

C. Recent Empirical Findings

Pan (1999) undertakes joint estimation of the return dynamics and the risk-neutral distribution

underlying the derivatives prices using weekly data for 1989-1996 in an aÆne setting. Her constrained

jump-di�usion appears to �t relatively well, although it fails to capture fully the volatility dynamics.

What is more important for us, however, the use of weekly observations and a relatively small sample

suggest that identi�cation of the stochastic process governing the jump behavior is based almost

exclusively on the derivatives prices. This may explain why our results indicate a much higher jump

intensity in the return process than she reports. Jones (1999) exploits the VIX implied volatility index

and daily S&P100 equity-index returns to estimate a constant elasticity of variance (CEV) extension

of the square-root model using a Bayesian MCMC procedure. He �nds this speci�cation to do better

than the square-root version and suggests that his extension may serve as a reasonable substitute

for a jump component. As in prior work, however, the full option smirks cannot be rationalized

by the estimated model, and the performance of the CEV speci�cation relative to jump-di�usions

is unclear. Benzoni (1998) estimates square-root and non-aÆne stochastic volatility models using

S&P500 returns, and explores the pricing implications for the corresponding S&P500 index options.

He �nds that the two speci�cations have similar empirical properties and provide comparable �ts

for both equity returns and option prices. He concludes that volatility risk is priced by the market

and documents di�erent sources of misspeci�cation in the models considered. Chernov and Ghysels

(2000) also estimate the square-root stochastic volatility di�usion. In a noteworthy departure from

the extant literature, their EMM based estimates from both stock-index returns and option prices
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imply no signi�cant asymmetry in the relation between return and volatility innovations. Their

speci�cations, however, are overwhelmingly rejected by the associated goodness-of-�t tests. In recent

work, Johannes, Kumar and Polson (1999) and Eraker, Johannes and Polson (1999) explore discretized

versions of pure jump and square-root stochastic volatility jump-di�usions at the daily level with an

emphasis on generalized jump representations. In particular, they consider models with jumps to

volatility and perform estimation with the MCMC method using S&P500 index returns. Eraker

(2000) extends this approach to a joint data set of S&P500 returns and option prices. More general

jump-di�usion speci�cations are also explored in current EMM-based work by Chernov et al. (1999,

2000).4

II. Empirical Results

In the following sections we report on our EMM implementation. In Section A we outline the

semi-nonparametric (SNP) estimation of the conditional return density by quasi-maximum likelihood.

In Section B we discuss the EMM estimation results and interpret the speci�cation tests used to gauge

the performance of the di�erent models along various dimensions.

A. A SNP Model for the S&P500 Returns

The key to a successful application of the EMM procedure is the choice of an auxiliary model that

closely approximates the conditional distribution of the return process. Loosely speaking, Gallant

and Long (1997) have shown that if the score function of the auxiliary model asymptotically spans

the score of the true model, then EMM is (asymptotically) eÆcient. Also, they have demonstrated

that, within the class of discrete-time auxiliary models, SNP densities are good candidates for this

task.

SNP models are based on the notion that a polynomial expansion can be used as a nonparametric

estimator of a density function; see Gallant and Nychka (1987). In addition, SNP densities allow

for a leading parametric term that may be used to capture the dominant systematic features of

the (discrete-time) return dynamics, thus providing a parsimonious representation of the conditional

density for the observed series. An ARMA term, potentially extended by a volatility-in-mean e�ect,

is a natural candidate for the conditional mean, and the ARCH speci�cation generally provides a

reasonable characterization of the pronounced conditional heteroskedasticity of stock returns. Hence,

we search over ARMA-ARCH type models for an initial (leading) term in the SNP-representation.

Our speci�cation analysis suggests an EGARCH representation for the conditional variance process.5

Besides superior in-sample performance as measured by standard information criteria statistics, the

EGARCH form has other attractive properties. As originally argued by Nelson (1991), it readily

accommodates an asymmetric response of the conditional volatility process to return innovations and
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it renders non-negativity restrictions for the volatility parameters unnecessary.

To provide a basis for comparison with prior studies, we initially �t the pure ARMA-EGARCH

model by quasi-maximum likelihood (QML), thus excluding the nonparametric expansion of the

conditional density that is unique to the SNP approach. Our main results are based on daily returns

for the S&P500 equity index6 from 01/02/1953 to 12/31/1996, a sample of 11,076 observations. We

also make use of a smaller sample of 4,298 daily observations from 01/03/1980 to 12/31/1996 to gauge

the temporal stability of our �ndings. Summary statistics are provided in Table I. The unit root

hypothesis is convincingly rejected in favor of stationarity for the return series { a condition required

for any method of moments approach predicated on stability of the return generating mechanism.

The price and return series are depicted in Figure 1.

The QML estimates of the pure ARMA-EGARCH (not reported) are indicative of strong temporal

persistence in the conditional variance process: the parameters governing the persistence are within,

but close to, the boundaries of the covariance stationary region. Also, the correlation between the

return innovations and the conditional variance is negative and highly signi�cant, as observed in

many prior studies. A relatively high-order AR term in the mean equation is necessary to capture the

autocorrelation structure in the S&P500 returns, although this pattern is accommodated nicely by a

single MA(1) term. Such pronounced short-run return predictability is somewhat diÆcult to reconcile

with market eÆciency and is likely spurious since it is consistent with non-synchronous trading in

the stocks of the underlying index; see, e.g., Lo and MacKinlay (1990). Finally, the short-run return

autocorrelation is quantitatively less important than the pronounced volatility uctuations for most

applications, and the inference on the volatility process is largely una�ected by the short-run mean

dynamics { a result con�rmed by the �ndings reported below. For these reasons, we pre�lter the

data using a simple MA(1) model for the S&P500 daily returns and rescale the residuals to match

the sample mean and variance in the original data set. This residual series is then treated as the

observed return process.7

Quasi-maximum likelihood estimation is performed on the fully speci�ed semi-nonparametric

(SNP) auxiliary model,

fK(rtjxt; �) =
 
� + (1� � )� [PK(zt; xt)]

2R
R[PK(zt; xt)]

2�(u)du

!
�(zt)p
ht

;

where � is a small constant (�xed at 0.01),8 �(:) denotes the standard normal density, xt is a vector

containing a set of lagged observations, and

zt =
rt � �tp

ht
;

�t = �0 + c ht +
sX
i=1

�irt�i +
uX
i=1

Æi"t�i ;

lnht = ! +
pX
i=1

�i lnht�i + (1 + �1L + :::+ �qL
q) [ �1zt + �2 (b(zt)�

q
2=�) ] ;
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b(z) = jzj for jzj � �=2K; b(z) = (�=2� cos(Kz))=K for jzj < �=2K ;

PK(z; x) =
KzX
i=0

ai(x)z
i =

KzX
i=0

0
@ KxX
jjj=0

aijx
j

1
A zi ; a00 = 1 ;

where j is a multi-index vector, xj � (x
j1
1 ; : : : ; x

jM
M ) and jj j � PM

m=1 jm. As in Andersen and Lund

(1997), b(z) is a smooth (twice-di�erentiable) function that closely approximates the absolute value

operator in the EGARCH variance equation, with K = 100.

With this speci�cation, the main task of the nonparametric polynomial expansion in the condi-

tional density is to capture any excess kurtosis in the return process and, to a lesser extent, any

asymmetry which has not already been accommodated by the EGARCH leading term. In practice,

the nonparametric speci�cation is implemented via an orthogonal Hermite polynomial representation.

We also allow for heterogeneity in the polynomial expansion (Kx > 0), but these terms are insigni�-

cant, indicating that the EGARCH leading term provides an adequate characterization of the serial

dependence in the conditional density.

Within this class of SNP models, we rely on the Bayesian (BIC) and Hannan-Quinn (H-Q) in-

formation criteria for model selection, as the commonly used Akaike criterion (AIC) tends to over-

parameterize the models. (Actual values of the statistics are not reported.) This selection strategy

points towards an ARMA(0,0)-EGARCH(1,1)-Kz(8)-Kx(0). It is theoretically desirable to include a

volatility-in-mean e�ect, but, since the term is insigni�cant and induces additional estimation uncer-

tainty for the remaining drift coeÆcients, we report EMM results both excluding and including this

e�ect in the auxiliary model. Table II reports the value of the parameter estimates and corresponding

standard errors. Ljung-Box tests for the autocorrelation of the residuals (not reported) con�rm that

the selected speci�cation successfully removes the systematic �rst- and second-order dependencies in

the data.

B. EMM Estimation

The expectation of the auxiliary model score function provides the moment conditions for simu-

lated method of moment estimation of the continuous-time SVJD.

Let frt( ); xt( )gT (N)
t=1 denote a sample simulated from the SVJD using the parameter vector

 = (� � � � � �0 �1 � Æ ). The EMM estimator of  is then de�ned by

 ̂N = argmin
 

mT (N)( ; �̂)
0 WN mT (N)( ; �̂) ;

where mT (N)( ; �̂) is the expectation of the score function, evaluated by Monte Carlo integration at

the quasi-maximum likelihood estimate of the auxiliary model parameter �̂, i.e. ,

mT (N)( ; �̂) =
1

T (N)

T (N)X
t=1

@ ln fK(rt( )jxt( ); �̂)
@�

;
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and the weighting matrix WN is a consistent estimate of the inverse asymptotic covariance matrix

of the auxiliary score function. Following Gallant and Tauchen (1996), we estimate the covariance

matrix of the auxiliary score from the outer product of the gradient. In simulating the return sequence

frt( ); xt( )gT (N)
t=1 , two antithetic samples of 75,000 � 10 + 5,000 returns are generated from the con-

tinuous-time model at time intervals of 1/10 of a day9 The �rst 5,000 observations are discarded to

eliminate the e�ect of the initial conditions. Lastly, a sequence of T (N) = 75; 000 daily returns is

obtained by summing the elements of the simulated sample in groups of 10.

B.1. Black-Scholes

To obtain an initial benchmark, we estimate the Black and Scholes speci�cation (6). The results

for the auxiliary model without volatility-in-mean e�ect are given in Table III, and for the auxiliary

model including the e�ect in Table IV. Note that, from here on, dt = 1 corresponds to one trading

day and parameter estimates are expressed in percentage form on a daily basis.

As is evident from both tables, the model is overwhelmingly rejected at any reasonable con�dence

level, based on the Chi-square test for over-identifying restrictions. Parameter estimates are therefore

largely uninterpretable, the reason being that the EMM procedure confronts the model with auxiliary

scores moments and not sample return moments, as maximum likelihood reduces to in this case.

The former are vastly more informative about the dynamic features of the return data than are

the sample moments. However, without the ability to accommodate any of the dominant SNP

moments, the parameter estimates are determined by features that have little to do with their natural

interpretation in the underlying (misspeci�ed) model. For example, the � estimate is approximately

0.6 and signi�cantly di�erent from the return standard deviation of 0.83. Since the return standard

deviation for the auxiliary model matches that of the data (we checked that it does by simulating a

long return sample from the SNP density), the � estimate of 0.6 is explained by the poor �t of the

Black-Scholes speci�cation, rather than a problem with the SNP model.

The signi�cance of individual score t-ratios associated with corresponding SNP parameters, re-

ported in Table V, are suggestive of the source of model misspeci�cation, even though, given the

above observation, the statistics for the Black-Scholes model must be interpreted with caution. The

moment associated with the asymmetry parameter in the EGARCH variance equation is highly signif-

icant, indicating that the model fails to accommodate the observed asymmetry in the return process.

Also, the moments associated with the even terms in the polynomial approximation are non-zero, and

this suggests that the excess kurtosis of the S&P500 returns exceeds what can be rationalized by the

model. This is consistent with the �ndings in, e.g., Gallant, Hsieh and Tauchen (1997). As expected,

the Black-Scholes representation does not provide an acceptable characterization of the time-series

properties of daily stock-index returns.
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B.2. Black-Scholes with Jumps

We �rst extend the Black-Scholes model by incorporating a jump component with constant in-

tensity: �(t) = �0. Initial experimentation reveals that the � parameter is insigni�cant, but also

somewhat poorly identi�ed by the auxiliary score moments, and we consequently impose the restric-

tion � = 0. The results obtained from this constrained speci�cation are also reported in Tables III

and IV for the (slightly) di�erent versions of the auxiliary score moments. Of particular interest is

the jump intensity parameter �0. The coeÆcient is signi�cant and implies an average of about 14

jumps per year. But even though incorporating a jump component improves the �t considerably { the

Chi-Square statistic drops from 127.41 to 90.82 { the model is nevertheless overwhelmingly rejected.

The score t-ratio diagnostics in the BSJ column of Table V are indicative of numerous problems.

The fat tails of the return innovations are somewhat better accommodated, but the model still fails in

this dimension. Further, the conditional variance process appears seriously misspeci�ed. In particular,

the symmetric (� = 0) jump-di�usion does not capture the asymmetry manifest in the �1 coeÆcient.

Relaxing the � = 0 constraint did not lead to a marked improvement in the �t of the score component

corresponding to �1, suggesting that an asymmetric jump component cannot capture the skewness in

the S&P500 returns.

B.3. Stochastic Volatility: Log-Variance Model

Next, we investigate the stochastic volatility di�usion (7) and (2); again the results are reported in

Tables III and IV. The estimation is �rst performed with � = 0, but this constraint is subsequently

removed allowing the model to possibly accommodate the asymmetries in the stock returns and

variance. The resulting estimates of � are strongly negative and highly signi�cant. Moreover, with an

unconstrained � the overall �t is substantially improved. The model is, however, rejected. This result

is consistent with the �ndings in empirical studies of corresponding discrete-time stochastic volatility

models, Gallant, Hsieh and Tauchen (1997), Liu and Zhang (1997), van der Sluis (1997) and others.

Turning to the remaining parameters, we note �rst that the estimate of the (daily) drift term �

(in Table 3, 0.0314) implies an annual return of 7.91%, which is in line with the sample mean of 7.59%

for 1953-1996. Second, the signi�cantly positive � estimate ensures that the (log-)variance process is

stationary and controls the persistence of shocks to the process. The solution to (2) takes the form

[see, e.g., Andersen and Lund (1997)]

ln�2s = expf��(s� t )g ln�2t + (�= �)(1� expf��(s� t )g) + �
Z s

t
expf��(s� v)gdW2;v; (8)

which is a discrete-time representation of the variance process governed by the di�usion parameters.

For s� t = 1, expf��g = 0:9865 without the volatility-in-mean e�ect (Table 3) and 0.9841 with that

e�ect (Table 4). Those estimates, which imply a strong daily (log-)volatility persistence, are consistent

with estimates reported in the discrete-time literature. The score t-ratio diagnostics are again reported
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in Table V. The symmetric (� = 0) stochastic volatility representation fares somewhat better than

the Black-Scholes model, but also fails to accommodate the skewness and kurtosis in the returns.

Allowing for an asymmetric volatility response improves the �t dramatically. The corresponding

score parameter �1 is no longer signi�cant, which suggests that the asymmetry is induced by a so-

called \leverage" or \volatility feedback" e�ect. However, the score moments associated with the

even terms of the nonparametric expansion are again non-zero, indicating that the pure stochastic

volatility di�usion is incompatible with the degree of kurtosis observed in the data.

B.4. Stochastic Volatility: Square-Root Model

Here we consider the alternative stochastic volatility di�usion (7) and (3), inspired by the square-

root, or Cox, Ingersoll and Ross (1985) type representation. The model is also estimated with and

without the restriction � = 0. Although the square-root model appears to do marginally worse than

the log-variance version, the �ndings reported in Tables III and IV imply similar characteristics. For

example, the square-root model successfully accommodates the asymmetry in the S&P500 returns,

but fails to induce a suÆcient degree of kurtosis in the return series, as con�rmed by the score t-

ratios (not reported).10 In summary, allowing for an asymmetric stochastic volatility factor greatly

enhances performance, and yet does not provide an adequate description of the S&P500 returns. We

consequently turn to another generalization.

B.5. Stochastic Volatility with Jumps

The models in this section incorporate both a stochastic volatility and a jump component. We

focus initially on the model (1) and (2) with a log-variance speci�cation and constant jump intensity:

�(t) = �0. As for the simple jump-di�usion, the � parameter is insigni�cant and imprecisely estimated.

This suggests that the asymmetry is more appropriately captured through a negative correlation

between the return innovations and the di�usion variance (i.e., � < 0.). Consequently, the restriction

� = 0 is imposed in the following estimation results.

The SVJD provides a substantial improvement over the earlier results, as is evident from the results

in Tables III and IV. The Chi-square test statistics for overall goodness-of-�t decrease to 13.34 without

the volatility-in-mean e�ect and 13.13 with that e�ect. The associated p-values are 6.4% and 6.9%, so

the model is not rejected at a 5% signi�cance level. Furthermore, the stochastic volatility parameters

are virtually una�ected by the introduction of the jump component. Thus, the earlier interpretation

of these parameters remains valid, except that it applies only to the di�usion component of the return

variance. We must include a genuine return jump component in the characterization of the overall

volatility process.

The estimates of the jump parameters are of independent interest. The average number of jumps

per day, �0, is 0.0137, which implies 3 to 4 jumps per year. The variability of the jump magnitude is
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characterized by the Æ coeÆcient. Our estimate for Æ implies a standard deviation of 1.5%, so most

jumps should fall within the �3% range.11

The score t-ratio diagnostics, reported in the SV J1 column of Table V, reveal that almost all score

moments are insigni�cant at the 5% level. These results do not point to any particular inadequacy

of the SVJD, but rationalizing exceptional episodes such as the sharp market drop in October 1987

remains diÆcult. It may be that adding another jump component or an alternative distribution for

the jump magnitude �(t) that allows for larger (negative) jumps would help. However, given the

very few instances of such jumps, over�tting is a very real possibility, and we did not consider either

of those extensions. Overall, allowing for Poisson jumps as well as stochastic volatility appears to

capture the main characteristics of the return series quite well.

We also estimate the SVJD (1) and (3) with a square-root volatility speci�cation and constant

jump intensity which then becomes the Bates (1996a) model. The results are included in Tables

III and IV. The model performs marginally worse than the SVJD (1) and (2) with a log-variance

speci�cation { for the square-root representation, the test associated with the over-identifying restric-

tions attains a p-value of 3.73% (4.96%) { but, realistically, we cannot di�erentiate between the two

models. Again, the t-ratio diagnostics do not identify any particular source of misspeci�cation: all

score moments are insigni�cant at the 5% level.

We come now to the most general model considered, where the jump intensity is a function of the

volatility level: �(t) = �0 + �1 Vt. This generalizes not only the constant intensity representations,

but also the model of Pan (1999) for which �(t) = �1 Vt. Our results are summarized in Tables III

and IV. Across the di�erent speci�cations, the estimates of �1 are all positive, suggesting that the

jump probability may depend on the instantaneous volatility. On the other hand, the point estimates

of �1 are also imprecise and insigni�cant in all cases.

The point estimates of �0 are also insigni�cant. This �nding, somewhat surprising, could be an

artifact of the approximation used to compute the (Wald) standard errors.12 To investigate that

possibility, we also constructed con�dence intervals by inverting a critical region for the criterion

function, as proposed by Gallant and Tauchen (1997). The constructed intervals are in general

good approximations to those computed from the Wald standard errors, except for �0. For the

SVJD with log-variance, the 95% con�dence interval for �0 becomes [0.008, 0.022]. Consequently,

when con�dence intervals are constructed by inverting the criterion function, the aÆne term �0 is

statistically signi�cant and, overall, results are similar to those for the corresponding model with

constant jump intensity. Identical conclusions hold for the square-root speci�cation.

Consistent with the above observations, the p-values associated with the overall goodness-of-�t

test are marginally lower than in the models with constant jump intensity. Hence, the linear part

of the jump intensity speci�cation seems to have little explanatory value for the distribution of

daily equity-index returns. Of course, there is a possibility that the parameter �1 simply cannot be

estimated precisely from our return data. Moreover, even if it is insigni�cant under the \physical"
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measure, the identical e�ect may still be important under the risk-neutral distribution and thus for

valuation of derivatives. Speci�cally, a large risk premium associated with the jump intensity and the

use of option prices for estimation may explain in part the distinctly di�erent conclusions obtained

by Pan (1999) for both the average jump intensity and the (conditional) dependence of the jump

intensity on concurrent (di�usion) volatility.

As estimated, both SVJD's indicate a weak volatility-in-mean e�ect. The c coeÆcients are small,

but positive. Hence, there is some evidence of a positive association between equity volatility

and expected return, which is consistent with a volatility risk premium. However, since the esti-

mated premium is small and statistically insigni�cant, the empirical importance of the e�ect remains

questionable.13 Note also that, except for a compensating decrease in the drift term constant, none of

the parameter estimates change signi�cantly with its inclusion. To conclude, the volatility-in-mean

e�ect has a limited impact on the quality of our characterization of the equity-index return process

and will likely be of minimal concern for practical option pricing applications.

B.6. Estimation over a Shorter Sample

EMM results for our continuous-time models based on the relatively small daily sample 1980-1996,

and an SNP auxiliary model with a leading EGARCH(2,1) term, are given in Table 6. The auxiliary

model is further characterized in Table 7.

The small sample �ndings are generally consistent with those obtained from the full sample.

Consequently, there is no need to qualify our conclusions regarding the inadequacy of the speci�cations

without stochastic volatility or jump components. Furthermore, the SVJD's appear to �t the return

distribution better over the small than over the full sample, although the speci�cation tests with the

small sample are less powerful. As was found using the full sample, allowing the jump intensity to

depend on volatility does not improve the quality of the �t, and the small sample estimate of �1

remains insigni�cant.

Between the two sets of estimates, one main di�erence is in the strength of the asymmetric return-

volatility relationship. For the small sample, it is also highly signi�cant but appears somewhat weaker,

with estimates of � around -0.40. Not surprisingly, given the dramatic market corrections observed

over this sample, the jump intensity is now estimated marginally higher with a jump probability per

day of around 1.9% or about 5 jumps per year. Moreover, the estimated average jump size increases

as reected in a larger Æ coeÆcient, implying a standard deviation of 2.15%, i.e. jumps will typically

fall within the �4:3% range. Finally, the volatility persistence measure given by expf��g drops

marginally to approximately 0.980 at the daily level.

In summary, there are no indications of a substantial structural change in the return generat-

ing mechanism during the years 1953-1996. What the relatively smaller sample yields, less precise

inference aside, is a marginal increase in the level and variability of volatility, as reected in more
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frequent and larger jumps and a quicker mean reversion in the volatility di�usion process. Overall, we

deem the longer sample more useful in providing identifying information regarding the jumps in the

equity-index return process and the asymmetric relation between returns and volatility. But on the

record, the EMM procedure seems fully capable of extracting meaningful inference from the shorter

sample as well. We conclude that the empirical �ndings discussed in the previous sections are not an

artifact of our choice of sample period.

III. Implications for Option Pricing

A common �nding of the empirical derivatives pricing literature is that the return dynamics im-

plied by option prices are incompatible with the time series properties of the underlying asset prices.

To the contrary, in this section we establish a general correspondence between the dominant char-

acteristics of the equity return process and options prices. More speci�cally, we show that most

parameter estimates obtained from the daily S&P500 returns under the \physical" probability mea-

sure are similar to those extracted in previous studies from option prices under the \risk-neutral"

distribution. We also show that the jump component and the asymmetric return-volatility relation-

ship identi�ed from the equity return series are qualitatively consistent with the dynamics implied by

derivative prices. For example, our EMM point estimates generate a pronounced volatility \smirk"

e�ect for short-maturity contracts, which, just as in the actual data, becomes less pronounced as

maturity increases. Finally, we illustrate how small and sensible risk premia for jump and volatility

components are able to reconcile the typical shape of the term structure of implied volatilities in the

option prices generated by our model to that observed in market prices. Hence, a large number of

characteristics of the stock return process which seem to be implied or priced by associated derivative

contracts are independently identi�ed in our empirical analysis as highly signi�cant components of

the underlying dynamics of the S&P500 returns.

The computations below rely on the jump-di�usion with square-root volatility de�ned through

equations (1) and (3).14 The parameters �, �, �, �, �0, �1 and Æ under the \physical" measure are �xed

at the EMM estimates in Table IV. In the presence of jumps and stochastic volatility, appropriate

risk adjustment must be incorporated into derivative prices. As suggested by Bates (2000), this can

be done in a representative agent economy by rewriting the model (1) and (3) in \risk-neutral" form:

dSt

St
= (r � d� ��(t) ��) dt+

p
V t dW

�

1;t + ��(t) dq�t ; (9)

dVt = (�� �Vt � � Vt ) dt+ �
p
V t dW

�

2;t ; (10)

where r and d are respectively the instantaneous risk-free interest rate and the dividend yield for

the underlying stock, q� is a Poisson process with parameter ��, W �

1 and W �

2 are Standard Brownian

Motions under the risk adjusted measure with correlation corr(dW �

1;t; dW
�

2;t) = �, and �� is the jump
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in the return when the Poisson event occurs, with expected value �� and variance var(��). With this

speci�cation, a (semi-)closed form solution { reproduced in Appendix B { is available for computing

option prices.

A. Stochastic Volatility and Jumps

The e�ects of stochastic volatility and jumps on the pricing of options are shown in Figure 2.

Each panel displays Black-Scholes implied volatilities extracted from put option prices computed

from our SV di�usion, both with and without a jump component. In all panels, the independent

variable is \moneyness," de�ned as the ratio of the strike price K to the underlying price S minus

unity, K=S � 1. All option prices are computed for a value of the underlying equity-index price S of

$800. The interest rate r and dividend yield d equal 5.1% and 2%, respectively, and the risk premia

on volatility and jump risk are �xed at zero. Maturities go from a week to six months.

The left column panels are drawn for an instantaneous volatility level corresponding to an annual

return volatility of 11:5%, which is consistent with the estimates for the long-run mean of volatility

reported in previous sections. The pronounced skew in implied volatility patterns, induced by the

negative relationship between return innovations and volatility, is evident across all maturities. The

jump component adds an upward tilt to the pattern at the right end for shorter maturities. This is

indicative of a return distribution with fatter tails. Interestingly, with our speci�cation the smile is

induced by jumps rather than stochastic volatility, which traditionally has been identi�ed as causing

smiles. When the jump intensity is constant (dashed line), the relatively small number of jumps

identi�ed in our EMM estimation does not a�ect the long-term return distribution much: jumps

simply add to the unconditional long-term mean of the volatility process. Allowing the jump inten-

sity to depend on volatility (dotted line) does not alter this conclusion: the two plots are virtually

indistinguishable, except for minor di�erences at longer maturities. This should not be surprising,

given the small and insigni�cant �1 estimate. Thus, in sum, the presence of jumps manifests itself in

the (asymmetric) smile pattern of implied volatility at shorter maturities, but the smile dissipates at

longer horizons where we observe a pure skew. Since the long-run mean of volatility is near identical

across our two models, implied volatilities are virtually the same at longer maturities.

In the right column panels of Figure 2 we illustrate the sensitivity of the option price to the level of

(instantaneous) return volatility. The panels depict the Black-Scholes implied volatilities of put prices

generated from the SVJD with constant jump intensity. The plots are constructed for instantaneous

volatilities that correspond to annualized return volatility of 7%, 11.5%, and 15.5%, respectively.

Obviously, an increase in the instantaneous return volatility increases implied volatilities, i.e. option

prices. The e�ect is very strong at short maturities, but becomes less pronounced rather quickly as

the time to expiration increases. Indeed, at longer maturities the mean-reverting component of the

variance process pushes volatility back towards its long-run level, and the plots converge to that for
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a long-run average of 11.5%. Also of interest, the implied volatility smile for the short maturity and

low volatility case is nearly symmetric, while for the short maturity and high volatility scenario it is a

pure negatively sloped smirk. This is because in the low instantaneous volatility case a large fraction

of return volatility is attributable to the jump component, and for the high volatility scenario that is

not so. In the latter case, the e�ect of the jump component not surprisingly weakens.

The evidence in Figure 2 indicates a qualitative correspondence between our estimation results,

obtained from a sample of equity returns only, and the stylized characteristics of option prices.

This analysis is reinforced by a comparison of our parameter estimates to those reported in studies

in which models in \risk-neutral" form are estimated using derivative prices. One key parameter

is the � asymmetry coeÆcient, which is independent of risk adjustments for volatility and jump

uncertainty. Our point estimates fall in the -0.58 to -0.62 range for all model speci�cation. These

estimates are similar to those obtained from derivative prices. Bakshi, Cao and Chen (1997) report

values between -0.57 and -0.64 for the corresponding speci�cations. Interestingly, they portray their

estimates as inconsistent with the underlying equity return dynamics, and, in support of their claim,

cite the typical estimate for the discrete-time EGARCH asymmetry coeÆcient, �1, in the time-series

literature, which is about -0.12; see, e.g., Nelson (1991). Our estimate of �1 is -0.17 (Table II), which,

as our results indicate, is fully consistent with { indeed implies { a much more negative value for

the corresponding asymmetry coeÆcient � in the continuous-time model. Another striking, albeit

indirect, validation of this �nding within the option pricing literature comes from Dumas, Fleming

and Whaley (1998). They compute a correlation of -0.57 (page 2064) for the �rst-order di�erences of

equity-index prices and Black-Scholes implied volatilities.

The importance of this strong negative return-volatility relation in the continuous-time represen-

tation of equity index returns is illustrated in Figure 3. The left column of Figure 3 conveys the

impact of the � coeÆcient. The panels depict the Black-Scholes implied volatilities at di�erent matu-

rities, for both the asymmetric (� 6= 0, solid line) and symmetric (� = 0, dashed line) pure stochastic

volatility model. Volatility risk premia are constrained to zero. It is evident that a negative � not

only is critical for obtaining an adequate �t to the dynamics of equity returns, but it also induces

an asymmetric volatility smile over both short and relatively longer maturities, consistent with the

volatility \smirk" typically observed in equity-index option markets.

Another set of parameters, � and �, are invariant to the risk adjustment in equations (9)-(10).

Our estimates for the SVJD with constant jump intensity, annualized and expressed in decimal form,

are � = 0:0470 and � = 0:1845. The corresponding (average) estimates based on option prices

in Bakshi, Cao and Chen (1997) are 0.04 and 0.38 (Table III, p. 2018). The estimates of � are

essentially the same, so the only di�erence arises with the � coeÆcient, where the options data

indicate a signi�cantly higher volatility of volatility. There are several plausible explanations for this

discrepancy. First, it may be evidence of model misspeci�cation. An implausibly high value of � may

be needed to accommodate the volatility smile/smirk observed in actual options data. This problem
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may be alleviated by a model with two volatility factors or, possibly, by the presence of jumps in the

volatility process. This latter hypothesis has also been conjectured by Pan (1999) and Bates (2000),

and investigated by Eraker, Johannes and Polson (1999) and Eraker (2000). Second, it may be

attributed to a misspeci�cation of (time-varying) risk premia in option prices. Such misspeci�cation

may show up in a high \volatility of volatility" coeÆcient �, which helps accommodate the otherwise

unexplained variability in the (risk neutral) volatility process. Third, there may be a small sample

bias in the Bakshi, Cao and Chen (1997) coeÆcient estimate arising from the fact that they consider

a short sample for which return volatility typically is well above the average for our longer sample.

Fourth, it is likely that the volatility process estimated from daily (squared) returns data using our

models is overly smooth, as the daily innovation variance in the volatility process is small { and thus

hard to discern from daily data { relative to the variance of the daily return innovation. Hence,

although the models generally perform well, they may fail to pick up high-frequency uctuations in

the volatility process. This is illustrated in Andersen, Bollerslev, Diebold and Labys (2001), who

contrast volatility estimates obtained from daily data to more accurate high-frequency measures of

volatility obtained from intraday time series. The implication is that estimation from daily return

data will be able to identify the dominant characteristics of the volatility process, but systematically

underestimate the extent of high-frequency movements in the volatility process. In contrast, option

based volatility measures are better equipped to capture such movements.

In summary, the qualitative correspondence between the option pricing implications of our EMM

estimates and the patterns in actual data is encouraging. This conclusion is supported by the close

similarities observed for the key parameters that are invariant across the two probability measures.

The only noteworthy exception is the � coeÆcient which, according to our estimates, is about one

half the value reported in the option pricing literature. As indicated, this �nding suggests a number

of potential model misspeci�cations in both the objective and the risk-neutral probability measure

representations. Since these conjectures are impossible to test eÆciently using only daily return data,

we leave them for future research.

B. Volatility and Jump Risk Premia

It has been pointed out in numerous studies that Black-Scholes implied volatilities are systemat-

ically higher than realized (historical) volatilities, an observation which suggests that option prices

embody premia for either volatility or jump risk, or both. In this section we illustrate the pric-

ing of options for \moderate and reasonable" speci�cations of the risk premia. More speci�cally,

we show that small risk adjustments to our parameters suÆce to replicate many of the qualitative

characteristics of the volatility \smirk."

The panels on the right in Figure 3 illustrate how a variance risk premium changes option prices.

Each panel contains plots of Black-Scholes implied volatilities computed from put prices generated
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by the asymmetric (� 6= 0) stochastic volatility model (no jumps). The assumption underlying the

solid line plots is a zero volatility premium, and for the dashed line plots the underlying assumption

is a � = �0:01 risk adjustment for volatility uncertainty. The premium increases implied volatilities:

a negative � increases the long-run mean of the (risk-neutral) volatility process, thus boosting option

prices, and the e�ect is more pronounced at longer maturities.

In Figure 4 we illustrate how a jump risk premium a�ects option prices. The model used is one

with constant jump intensity. Di�erent plots reect variation in the (average) jump size coeÆcient

�� (left column) and intensity ��0 (right column). Plotted in the left panels are Black-Scholes implied

volatilities obtained from put prices generated by the SVJD with �� equal to 0%, -1%, and -3%.

Making the �� coeÆcient more negative increases the skewness in the risk neutral return distribution

and thus potentially rationalizes the even more pronounced \smirk" pattern. For �� = 0, the an-

nualized instantaneous return volatility is 11:5%. But because volatility changes with ��, we adjust

the (instantaneous) di�usion volatility at which we compute option prices to o�set changes in ��,

and thus keep the level of instantaneous volatility constant over the values of ��.15 Given the mean

reversion in the volatility process, signi�cant di�erences in average volatility to maturity remain, but

the adjustment renders the scenarios more comparable at the short end, where the impact of the

jump component is most important. The negative �� accentuates the smile asymmetry, suggesting

that a negative premium for jump uncertainty may be helpful, or even necessary, in accommodating

the volatility smirk observed in option prices, as argued by, e.g., Pan (1999). However, the impact of

the jump speci�cation is again only pronounced at shorter maturities. That is, the implied volatility

plots atten as time to expiration increases. At long maturities, the volatility smile approaches the

same degree of asymmetry as for �� = 0, even though, with a reversion of volatility to its higher

long-run value, the implied volatility level is much higher. In summary, given our estimated asymme-

try coeÆcient �, a small risk adjustment on �� generates a deep volatility \smirk" in short-maturity

options. This e�ect becomes less pronounced as maturity increases, as it does for actual S&P500

options data.

Figure 4, right column, relates to the identical model, but illustrates the e�ect of a risk adjustment

involving ��0. The unbroken line is for ��0 = 0:0202, or an average of 5 jumps per year. Increasing

the average number of jumps to 10 per year increases implied volatilities (dotted line); and reducing

the average number of jumps to 2 per year lowers the implied volatilities (dashed line). For short

maturities, the increased jump intensity accentuates the upward tilt at the right end of the implied

volatility pattern, making the smirk more of a symmetric smile. But the change is minimal for

the longest maturities. Similar results (not reported) are obtained if the jump intensity is an aÆne

function of volatility: ��(t) = ��0 + ��1 Vt. The impact of more jumps per year increases with the level

of volatility and the magnitude of ��0 and �
�

1. Higher values of the intensity parameters increase the

probability of a jump, and a higher volatility level magni�es the e�ect. We can sum up as follows:

changing the jump intensity impacts the qualitative characteristics of option prices mostly at the
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shorter maturities, and a time-dependent jump intensity does not alter this result signi�cantly.

C. The Term Structure of Implied Volatilities

The term structure of implied volatilities in Figure 5 are for put prices obtained using the stochastic

volatility model with constant intensity jumps. The full drawn line displays an \average" Black-

Scholes implied volatility dynamics under the \physical" probability measure, as estimated in Table

IV, and the dashed line incorporates instead the combined e�ect of jump and volatility risk premia.

The panels on the left are constructed for instantaneous volatility �xed at 11.5%, while the panels on

the right portray an average term structure across di�erent volatility levels, as indicated below. To

compare our term structures to those implicit in actual option data, we rely on the evidence in Table

II (p. 2015) of Bakshi, Cao and Chen (1997) (BCC). Among their �ndings is that Black-Scholes

implied volatilities for out-of-the-money puts are decreasing in term to maturity. That is consistent

with the term structure in the upper left panel. Another �nding of BCC is that the term structure

for at-the-money puts is at or sometimes slightly upward sloping. This is also in line with our model

implications in the middle left panel. The term structure is at under the \physical" probability

measure, while very small values of the risk premia are enough to generate a moderate upward tilt, as

observed in market prices. Finally, BCC report a downward sloping term structure for in-the-money

puts. This is partially con�rmed by the bottom panel of Figure 5. The downward sloping pattern is

strong for maturities up to 2 months. For longer maturities, though, the term structure exhibits a

slight upward tilt. Nevertheless, these results are readily reconciled. The key is to recognize that the

BCC �ndings arise from an averaging of term structures across di�erent (instantaneous) volatility

levels. By comparison to our daily series, the sample used by BCC is small and characterized by

alternating periods of average and well above average equity-index return volatility. Hence, their

Table II describes the average Black-Scholes implied volatilities over a period with generally high

return volatility. It is obviously not necessary for any individual term structure, even if it attains the

average volatility over the sample, to replicate the shape of the term structure averaged across all

realized volatility levels. Nonetheless, to assess the consequences of the BCC high volatility bias, we

average our implied volatilities across medium- and high-volatility states (11.5%-15.5%). The averages

are plotted in the right column of Figure 5. Averaging accentuates the downward trend in the term

structure, as higher volatility states revert towards the lower long-run mean. The term structure in

the bottom panel of the right column mimics that estimated using the BCC sample. Moreover, very

small values of the volatility and jump risk premia are enough to make the term structure virtually

at for at-the-money contracts, as observed in market prices. Thus, our model, obtained under the

\physical" measure, replicates most of the stylized facts for option prices. Volatility and jump risk

premia provide additional exibility, and only small risk adjustments are required to make model and

market patterns of implied volatilities qualitatively very similar.
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IV. Conclusions

Much asset and derivative pricing theory is based on di�usion models for primary securities. Yet,

there are very few estimates of satisfactory continuous-time models for equity returns. The objective

of this paper is to identify a class of jump-di�usions that are successful in approximating the S&P500

return dynamics and therefore should constitute an adequate basis for continuous-time asset pricing

applications. We extend the class of stochastic volatility di�usions by allowing for Poisson jumps of

time-varying intensity in returns. We also explore alternative models both within and outside of the

popular aÆne class. Estimation is performed by careful implementation of the EMM that provides

powerful model diagnostics and speci�cation tests. Finally, we explore the relationship between our

estimated models and option prices. We contrast those of our parameter estimates which are invariant

to adjustments for volatility and jump risk to those reported in the option literature, and provide a

qualitative comparison of the pricing implications of our estimated system and the stylized evidence

from actual option data.

We �nd that every variant of our stochastic volatility di�usions without jumps fails to jointly

accommodate the prominent characteristics of the daily S&P500 returns. Further, every speci�cation

that does not incorporate a strong negative correlation between return innovations and di�usion

volatility fails as well. In contrast, two versions of our SVJD's that incorporate discrete jumps and

stochastic volatility, with return innovations and di�usion volatility strongly and negatively correlated,

accommodate the main features of the daily S&P500 returns. This is true not only of the models

estimated using the entire sample of daily return observations, but also as estimated using subsamples.

The models therefore appear to be structurally stable. Finally, we �nd that those parameter estimates

which are invariant to adjustments for volatility and jump risk generally are similar to those reported

in the option literature, and document that \small" risk premia suÆce to produce pronounced patterns

in Black-Scholes option implied volatilities that are qualitatively consistent with the stylized evidence

from derivatives markets. Thus, the main characteristics of the stock price process implied by options

data are independently identi�ed as highly signi�cant components of the underlying S&P500 returns

dynamics.

One potential extension of our work is to obtain direct estimates for the underlying volatility pro-

cess. That could be done, as Gallant and Tauchen (1998) suggest, by means of \reprojection" within

the EMM setting. Obtaining such estimates will facilitate forecasting of future return distributions,

with obvious implications for portfolio choice and derivatives pricing. Further, providing a reasonable

�t to the long memory characteristics of the volatility process { excluded by us from our di�usion

speci�cations { appears to be another interesting extension. Finally, there is more experimentation

with alternative jump speci�cations to be done, in light of the extreme and infrequent outliers that

have been observed and not yet fully rationalized. On this dimension, the recent work of Eraker,

Johannes and Polson (1999) and Chernov et al. (1999) provides an interesting starting point.
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Appendix A: Numerical Implementation of EMM

In this Appendix we provide more details on the algorithm used to simulate returns from the

SVJD model.

First, log-returns are used to �t the auxiliary model, hence Itô's Lemma is applied to the

continuous-time model to obtain a characterization for the log-return process. Expressing returns

in decimal form, this yields:

d ln(S) = (�� �(t)�� 0:5Vt)dt+
q
VtdW1;t + ln(1 + �(t))dqt (11)

where ln(1 + �(t)) ; N( ln(1 + �) � 0:5 Æ2; Æ2 ) and the (log-)variance process V obeys either (2) or

(3). Log-returns in percentage form satisfy an expression similar to (11), obtained by multiplying

(11) by a factor of 100.

The Euler scheme - see, e.g., Kloeden and Platen (1992) - is then applied to generate a sample

frt( ); xt( )gT (N)
t=1 from the continuous-time model for log-returns. Simulation from the stochastic

volatility model is not problematic, hence we refer to Andersen and Lund (1997) for more details and

focus exclusively on the jump component.

Poisson jumps are �rst approximated with a Binomial distribution, i.e., we replace dqt with a

random variable Y such that ProbfY = 1g = �(t) dt and ProbfY = 0g = (1 � �(t) dt). For this

purpose, we generate a random variable U Uniform(0,1) and we smooth the discontinuity of Y over

an interval centered around 1� �(t):

Y =

8>><
>>:
0 if 0 � U < 1� �(t) dt� h=2,

g(X) if 1� �(t) dt� h=2 � U < 1� �(t) dt+ h=2,

1 if 1� �(t) dt+ h=2 � U � 1,

where X = U � (1� �(t) dt� h=2) and g(X) = �2=h3X3 + 3=h2X2 for 0 � X � h. Notice that g is

a C1 function, and that it becomes steeper as the interval length h goes to zero. In our application

we �ne-tune h by choosing the smallest possible size for the interpolation interval that eliminates the

numerical problems in the EMM criterion function. This yields an accurate approximation to the

jumps in the simulated return sequence.

Convergence conditions for the Euler approximations in a jump-di�usion setting are discussed

in, e.g., Kloeden and Platen (1989) and Protter and Talay (1997). These conditions are not ex-

plicitly veri�ed for our speci�c approximation algorithm. As is often the case with these high-level

assumptions, it is very hard to do. Nevertheless, it does not appear to constitute a problem for our

application as extensive simulations verify that the moments of the simulated process converge.

As a �nal remark, at any iteration of the minimization each jump �(t) is generated, in the event

dqt = 1, using the identical seed. Also, we obtain variance reduction through the use of antithetic

variates in the simulation; see, e.g., Geweke (1996) for a discussion of this technique.
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Appendix B: Option prices in the presence of stochastic

volatility and jumps

Given the risk-adjusted model (9)-(10) a closed-form formula is available for computing option

prices. As shown in, e.g., Bates (2000), it is given by

f(St; Vt; � ;K) = e�d�St P1 + e�r�KP2 ;

where, for j = 1; 2 :

Pj =
1

2
+

1

�

Z
1

0

imag
�
Fj(i�)e

�i�x
�

�
d� ;

Fj(�;V; �) = exp fAj(� ; �) +Bj(� ; �)V + ��0 � Cj(�)g ;
Aj(� ; �) = (r � d) � � � ��

�2
(� ��� �j � j)�

2�

�2
ln

 
1 +

1

2
(� ��� �j � j)

1� ej�

j

!
;

Bj(� ; �) = �2 1=2 (�
2 + (3� 2 j)�) + ��1Cj(�)

� ��� �j + j
1+e

j �

1�e
j �

;

Cj(�) = (1 + ��)(2�j)
�
(1 + ��)�e1=2Æ

2(�2+(3�2 j)�) � 1
�
� ��� ;

j =
q
(� ��� �j)2 � 2�2(1=2 (�2 + (3� 2 j)�) + ��1Cj(�)) ;

�j = � + � + � � (j � 2) ; x = ln(K=St) ;

and r, d are respectively the instantaneous risk-free interest rate and the dividend yield for the

underlying stock.
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Sampled Data, Econometric Theory 4, 231-247.

Lo, Andrew W., and A. Craig MacKinlay, 1990, An Econometric Analysis of Nonsynchronous Trad-

ing, Journal of Econometrics 45, 181-212.

Longsta�, Francis A., 1995, Option Pricing and the Martingale Restriction, Review of Financial

Studies 8, 1091-1124.

Melino Angelo, and Stuart M. Turnbull, 1990, Pricing Foreign Currency Options with Stochastic

Volatility, Journal of Econometrics 45, 239-265.

Merton, Robert C., 1976, Option Pricing when Underlying Stock Returns Are Discontinuous, Journal

of Financial Economics 3, 125-144.

Naik, Vasant, 1993, Option Valuation and Hedging Strategies with Jumps in the Volatility of Asset

Returns, Journal of Finance 48, 1969-1984.

Naik, Vasant, and Moon H. Lee, 1990, General Equilibrium Pricing of Options on the Market

Portfolio with Discontinuous Returns, The Review of Financial Studies 3, 493-521.

Nelson, Daniel B., 1991, Conditional Heteroskedasticity in Asset Returns: a New Approach, Econo-

metrica 59, 347-370.

Pan, Jun, 1999, The Jump-Risk in Options: Evidence from an Integrated Time-Series Study, forth-

coming Journal of Financial Economics.

Pastorello, Sergio, Eric Renault, and Nizar Touzi, 2000, Statistical Inference for Random Variance

Option Pricing, Journal of Business and Economic Statistics 18, 358-367.

Pedersen, Asger, 1995, A New Approach to Maximum Likelihood Estimation for Stochastic Di�er-

ential Equations Based on Discrete Observations, Scandinavian Journal of Statistics 22, 55-71.

Poteshman, Allen M., 1998, Estimating a General Stochastic Variance Model from Option Prices,

Working Paper, University of Illinois at Urbana-Champaign.

Press, S. James, 1967, A Compound Events Model for Security Prices, Journal of Business 40,

317-335.



32 Continuous-Time Equity Return Models

Protter, Philip, and Denis Talay, 1997, The Euler Scheme for L�evy Driven Stochastic Di�erential

Equations, Annals of Probability 25, 393-423.

Rubinstein, Mark, 1994, Implied Binomial Trees, Journal of Finance 49, 771-818.

Singleton, Kenneth J., 2001, Estimation of AÆne Asset Pricing Models Using the Empirical Char-

acteristic Function, Journal of Econometrics 102, 111-141.

Stanton Richard H., 1997, A Nonparametric Model of Term Structure Dynamics and the Market

Price of Interest Rate Risk, Journal of Finance 52, 1973-2002.

van der Sluis, Pieter J., 1997, Computationally Attractive Stability Tests for the EÆcient Method

of Moments, Working Paper, University of Amsterdam.



Andersen, Benzoni and Lund 33

Notes

1See, e.g., Das and Foresi (1996) and Bakshi, Cao and Chen (1997). Also, on the importance of

jumps for option pricing and hedging see, among others, Ball and Torous (1985), Das and Sundaram

(1999), Jorion (1988), Naik and Lee (1990) and Naik (1993).
2This work builds on the earlier contributions on discrete-time MCMC estimation by Jacquier,

Polson and Rossi (1994) and Kim, Shephard and Chib (1998).
3See also the analysis in Jarrow and Rudd (1982), Longsta� (1995), Brenner and Eom (1997) and

Backus et al. (1997) based on a semi-nonparametric approximation of the return density.
4Additional work on continuous- and discrete-time estimation of stochastic volatility models for

asset returns based on method of moments procedures includes, among others, Andersen and Lund

(1996, 1997), Gallant and Tauchen (1997, 1998), Gallant, Hsu and Tauchen (1999), Ho, Perraudin

and S�rensen (1996), Jiang and van der Sluis (1999), Liu and Zhang (1997), Pastorello, Renault and

Touzi (2000), and van der Sluis (1997).
5Gallant and Long (1997) show that certain non-Markovian score generators are valid auxiliary

models, so that lower-order GARCH and EGARCH models may be used in lieu of less parsimonious

pure ARCH representations. This is essential for good �nite-sample performance, as is evident from

the simulation evidence in Andersen, Chung and S�rensen (1999).
6Since the S&P500 index is not adjusted for dividends, it is more correct to state that we model

the observed series of log-price di�erences. We adopt the term \return process" for ease of exposition.
7Gallant, Rossi and Tauchen (1992) also use dummy variables to capture day-of-the-week, week,

month, and year e�ects in the S&P500 returns. Our approach falls somewhere between using their

extensive pre�ltering procedure and using the raw returns.
8The mixture in the conditional density fK(rtjxt; �) is used to avoid instability during EMM

estimation. For a given simulated trajectory, PK(z; x) might equal zero, which would cause numerical

problems when evaluating the score function (the practical importance of this point was noted by

Qiang Dai).
9We also estimated the system using two antithetic simulated samples of 150,000 � 10 + 10,000

returns, �nding nearly identical results. Furthermore, when the data generating process contains a

jump component, the simulation step involves an additional layer of approximation as our procedure

for generating jumps render the EMM criterion function discontinuous in the parameter vector, and

this creates problems for the numerical minimization of the EMM objective function. To avoid this

problem, jumps are smoothed using a close continuously di�erentiable approximation, as described

in Appendix A.
10To facilitate a comparison with the empirical option pricing literature, it may be useful to convert

parameter estimates for the square-root model into decimal form on a yearly basis. Assuming 252

business days per year, they become: � = 0:0756, � = 0:0438, � = 3:2508, � = 0:1850, � = �0:5878.
11t-ratios and con�dence intervals are constructed in the usual way from the (Wald) estimate of
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asymptotic standard errors. Gallant and Tauchen (1997) warn that this approach may be somewhat

misleading if the EMM criterion function is highly nonlinear in the parameters as may occur near

the boundary of the parameter space. To address this concern we also compute likelihood-ratio style

con�dence intervals via an inversion of the criterion function as illustrated in Gallant and Tauchen

(1997). The constructed intervals are in general good approximations of those computed from the

Wald standard errors. The only noteworthy exception concerns the �0 coeÆcient in the case where

the jump intensity depends on the volatility level. This case is discussed below.
12Alternatively, there is a multicollinearity type problem induced through a high degree of correla-

tion between the estimates of �0 and �1.
13There is, in fact, no compelling theoretical reason to believe that c must be positive over the

entire support of the volatility process, as discussed by, e.g., Backus and Gregory (1993) and Glosten,

Jagannathan and Runkle (1993). The violation of no-arbitrage conditions is limited to the case

where stocks earn (risk-free) excess returns while the di�usion volatility is (near) zero. Volatility

levels approaching zero are actually not observed over our sample.
14See also, among others, Bakshi, Cao and Chen (1997, 2000), Bates (1996a,b, 2000), Benzoni

(1998), Chernov and Ghysels (2000), Das and Sundaram (1999), DuÆe, Pan and Singleton (2000),

Heston (1993), Jiang and van der Sluis (1999), Jones (1999), Poteshman (1998) and Pan (1999) for

applications based on a similar model.
15With constant jump intensity, the variance of the jump component, evaluated under the risk-

neutral measure, is given by VJ(�
�) � V art(k(t) dq(t))=dt = (1 + ��)2(eÆ

2 � 1)��0 + (��)2��0. In our

application, we adjust the return volatility by VJ(�
� = k)�VJ(�� = 0), where k = �1% and k = �3%

respectively.
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Tables and Figures

Table I
S&P500 daily rate of return

Summary statistics. Data on daily rates of return of the S&P500 index, 01/02/1953-12/31/1996
(N=11,076 observations) and 01/03/1980-12/31/1996 (N=4,298 observations). All �gures expressed
on a daily basis in percentage form.

1953-96 1980-96

Mean 0.0301 0.0453

Std. Dev. 0.8324 0.9619

Skewness -2.0353 -3.3390

Kurtosis 60.6019 83.4004

Autocorrelation of Returns:

1st 2nd 3rd 4th 5th 6th

1953-96 0.1240 -0.0320 -0.0084 -0.0056 0.0222 -0.0131

1980-96 0.0535 -0.0322 -0.0324 -0.0424 0.0418 0.0089

Augmented Dickey Fuller test for the presence of unit roots. The test is based on the regression:

�Xt = �+ Æt + Xt�1 +
12X
j=1

 j�Xt�j + "t:

S&P500 daily prices S&P500 daily returns

Augmented D. F.
53-96 2.85 -29.65

80-96 -0.40 -18.97

5% critical value -3.41 -3.41

1% critical value -3.96 -3.96
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Table II
SNP model estimates

Data on daily rates of return of the S&P500 index, 01/02/1953-12/31/1996, �ltered using an MA(1)
model (N=11,076 observations). Parameter estimates are expressed in percentage form on a daily
basis, and refer to the following model:

fK(rtjxt; �) =
 
� + (1� � )� [PK(zt; xt)]

2R
R[PK(zt; xt)]

2�(u)du

!
�(zt)p
ht

; � = 0:01;

where �(:) is the standard normal density,

zt =
rt � �tp

ht
;

�t = �0 + c ht ;

lnht = ! +
pX
i=1

�i lnht�i + (1 + �1L + :::+ �qL
q) [ �1zt + �2 (b(zt)�

q
2=�) ] ;

b(z) = jzj for jzj � �=2K; b(z) = (�=2� cos(Kz))=K for jzj < �=2K ; K = 100 ;

PK(z; x) =
KzX
i=0

ai(x)z
i =

KzX
i=0

0
@ KxX
jjj=0

aijx
j

1
A zi ; a00 = 1 :

Parameter
EGARCH leading term EGARCH-M leading term

Estimate (std. error) Estimate (std. error)

�0 0.0331 (0.0142) 0.0546 (0.0394)

c 0.0315 (0.0331)

! 4.3769 (1.1249) 3.5526 (1.4211)

� -0.4391 (0.0635) -0.4367 (0.0624)

�1 0.9893 (0.0022) 0.9880 (0.0028)

�1 -0.1581 (0.0195) -0.1407 (0.0304)

�2 0.2973 (0.0280) 0.3003 (0.0269)

a10 -0.0102 (0.0109) -0.0489 (0.0495)

a20 -0.2499 (0.0291) -0.2480 (0.0314)

a30 -0.0208 (0.0069) -0.0021 (0.0242)

a40 0.1234 (0.0177) 0.1213 (0.0195)

a50 -0.0065 (0.0077) -0.0177 (0.0161)

a60 -0.0516 (0.0089) -0.0504 (0.0100)

a70 0.0010 (0.0065) 0.0087 (0.0100)

a80 0.0508 (0.0098) 0.0509 (0.0097)
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Panel 1: S&P500 price index.

Panel 2: S&P500 daily rate of return.

Figure 1. S&P500 prices and returns, 01/02/1953-12/31/1996.
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Figure 2. Black-Scholes implied volatilities from option prices generated by the stochastic

volatility model, square-root speci�cation. Model coeÆcients are equal to the EMM estimates

in Table IV. Underlying stock price equals $800. Volatility and jump risk premia are set equal to

zero. Left column panels: Put prices are generated from the stochastic volatility model without (|)

and with jumps: constant (- -) and aÆne (� � �) jump intensity. The underlying returns volatility is

11.5% (equal to the long-run volatility mean). Right column panels: Put prices are generated from

the stochastic volatility model with jumps, constant jump intensity. Instantaneous return volatility

is set equal to 7% (- -), 11.5% (|), 15.5% (� � �).
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Figure 3. Black-Scholes implied volatilities from option prices generated by the stochastic

volatility model without jumps, square-root speci�cation. Model coeÆcients are equal to the

EMM estimates in Table IV. Put prices are generated using a stock price of $800 and a volatility of

11.5% (equal to the long-run volatility mean.) Left column panels: Di�erent plots illustrate the e�ect

of the asymmetry coeÆcient �: � = 0 (- -) and � = �0:6 (|). The volatility risk premium is set equal

to zero. Right column panels: Di�erent plots illustrate the e�ect of the volatility risk-adjustment:

� = 0 (|) and � = �0:0100 (� � �). The � coeÆcient is set equal to -0.6.
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Figure 4. Black-Scholes implied volatilities from option prices generated by the stochastic

volatility model with jumps, constant jump intensity, square-root speci�cation. Model

coeÆcients are equal to the EMM estimates in Table IV. Put prices are generated using a stock

price of $800 and a volatility of 11.5% (equal to the long-run volatility mean.) Left column panels:

Di�erent plots illustrate the e�ect of the risk-adjustment on the jump size: �� = 0 (|), �� = �0:01
(- -), �� = �0:03 (� � �). Volatility and jump intensity risk premia are set equal to zero. Right column

panels: Di�erent plots illustrate the e�ect of the risk-adjustment on the jump intensity, ��0 coeÆcient:

��0 = 0:0202 (|), ��0 = 0:0079 (- -), ��0 = 0:0397 (� � �). Volatility and jump size risk premia are set

equal to zero.
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Figure 5. The term structure of Black-Scholes implied volatilities from option prices

generated by the stochastic volatility model with jumps, constant jump intensity,

square-root speci�cation. Model coeÆcients are equal to the EMM estimates in Table IV.

Put prices are generated using a stock price of $800. Out-of-the-money (K=S = :9) puts in the

top panels, at-the-money in the middle and in-the-money (K=S = 1:1) bottom. Di�erent plots

illustrate the e�ect of jump and volatility risk adjustments: [��0; �
�; �] = [0:0202; 0; 0] (|) and

[��0; �
�; �] = [0:0397;�0:005;�0:0015] (- -). Left column panels: Black-Scholes implied volatilities

from put prices generated using a return volatility of 11.5% (equal to the long-run volatility mean.)

Right column panels: Average of Black-Scholes implied volatilities computed across high-volatility

states. (11.5% and 15.5%).


