$\begin{aligned} & \text { AOTBOR } \\ & \text { TITIE } \end{aligned}$	Hamilton, Basil L.
	An Empirical Investigation of the Effects of.
	Heterogeneous Regression Slopes in Analysis of
	Covariance.
Pob date	23 Nov 73
NOTE	21p.: Paper presented at the Anerican Educaticral
	Researcb Association Convention (Chicaqo, Illincis.
	April 15-19. 1974)
EDRS PRICE	MF-\$0.75 HC-\$1.50
DESCRIPTORS	*Analysis of Covariance; *Goodness of Fit;
	*Hypothesis Testing; Measurement Technigues; Bultiple
	Regression Analysis; Research Methodology;
	Statistical analysis; *Tests of Significance
IDEMTIPIERS	* Homogeneity of Regression

ABSTRACT

The effects of violation of the assumpticn of homogeneity of regression on the Type I error rate and on the fower of analysis of covariance (ANCOPA) were investigated. The data situations included in the study involved two groups with one covariate and one criterion, with varying equal and unequal grcup sizes, and varying degrees of violation of the assumption of honogeneity of regression. Results indicate that ANCOVA appeared robnst to the vioiation of the assumption of honogeneity of regression when group sizes were equal; the technique appeared not to be robust for unequal group sizes. For equal group sizes and all slope conbinations, the empirical alpha levels wera near the corresponding nominal alpha levels. for unequal group sizes and unequal regression slopes, hovever, large discrepaucies were orserved between the enpirical alpha levels and the corresponding nominal alpha levels. Results also indicated that the pover of ANCOVA was not severely altered by heterogeneous regression slopes as long as the group sizes vere equal. (Author)

US DEPARTMENT OF HEALTH
NATIONALINSTITUTEDE EDUCATION

An Empirical Investigation of the
Effects of Heterogeneous Regression
Slopes in Analysis of Covariance

AUTHOR:
Dr. Basil L. Hamilton
Dispartment of Psychology
Texas Woman's University
Denton, Texas 76204

DATE: $\quad 23$ November, 1973

SUMMARY

Title: AN EMPIRICAL INLESTIGATION OF THE EFFECTS OF HETEROGENEOUS REGRESSION SLOPES IN ANALYSIS OF COVARIANCE

The effects of violation of the assumption of homogeneity of regression on the Type I error rate and on the power of analysis of covariance (ANCOVA) were investigated. The data situations inclüded in the study involved two groups with one covariate and one criterion, with varying equal and unequal group sizes, and varying degrees of violation of the assumption of homogeneity of regression. . Results indicated that ANCOVA appeared robust to the violation of the assumption of homogeneity of regression when group sizes were equal; the technique appeared not to be robust for unequal group sizes. For equal group sizes and all slope combinations, the empirical alpha levels were near the corresfonding nominal aipha levels. For unequal group sizes and unequal regression slopes, however, large discrepancies were observed between the empirical alpha levels and the corresponding nominal alpha levels. Results also indicated that the power of ANCOVA was not severely altered by heterogeneous regression slopes as long as the group sizes were equal.

AN EMPIRICAL INVESTIGATION OF THE EFFECTS OF HETEPOGENEOUS REGRESSION SLOPES
 IN ANAEYSIS OF COVARIANCE ${ }^{1}$

1. Introduction

Considerable attention inas been centered on the effects of violations of the assumptions of analysis of variance (ANOVA). The robustness of ANOVA to the violation of certain of its assumptions has led to similar questions concerning analysis of covariance (ANCOVA) and its assumptions. A recent article by Glass et al. (1972) details the work that has been done investigating the effets of violation of the assumptions of ANCOVA. Of particular interest is the assumption of homogencity of regression slopes and the Monte Carlo study by Pechhan (1968) that investigated the effects of heterogeneous regression slopes. Peckham investigated the goodness-of-fit of the cmpirical NNCOV F distribution to the theoretical F-distribution under violation of the homogeneity of regression assumption. He varied the number of treatment groups and the number of subjects per treatment group for different sets of heterogencous regression slopes and compared the actual a level with the nominal a level under null conditions. All other assumptions of parametric

ANCOYA were met. peckham found that the actual α level was almost always siightly less than the nominal α level which nesulted in a conservative test. He found that there was goodness-of-fit for regression slores differing as much as .3 and .7 with the test tending to be more conservative as the heterogeneity of the slopes increised. His conclusion was ihat parametric analysis of covariance was robust to all but extreme violations of lhe assumption of homogeneity of regression.

Peckham cbserved that the actual rate of Type I error rate was reduced, but he did not investigate the resulting effect this might have on the jower of ANCOVA; and, as pointed out by Glass et al. (1972), "This could very well be the crucial issue [p. 279]." Furthermore, the effects of unequal group sizes and, avcording to Glass et al. (1972). the effects of a random covariate have yet to be irvestigated. The purpose of the present study was to in itigate the effects of violation of the assumption of homogeneity of regression upinn the Type I error rate and the power of ANCOVA. The data situations included a random covariate with both equal and unequal group sizes.
2. Method

Data Situations Examined

This study simulated a two group experimental situation with one criterion and one covariate. The group sizes used were 10,10; 20,20; 30,30; 10,20; 10,30; 20,30; 20,10; 30,10; and 30,20. Table 1 contains a listing of the slope combinations used. Following Peckham (1968), an attempt was made to include slope combinations tnat might be encountered i: actual research situations. Nominal significance levels of .10, .05, . 02, and. . 01 were used for the comparisons of actual Type I error rates with nominal Type I error rates. Significance levels of . 10, .05, .02, .01, .005, and . 001 were used for investigating the effects on the power of ANCOVA.

Insert Table 1 about here

Each pair of group sizes was combined with each pair of slope sizes resulting in 225 different goodness-of-fit testing sitnatiors. Fower investigations were made for each pair of equal group sizes in combination with each pair of slopes resulting in 75 cifferent power runs. ${ }^{2}$

Random Number Generation Procedure

The random number generator used in this study was PANDN (Math-Pack, 1970). RANDN is designed to produce a set of N pseudo-random numbers which are normally distributed with specified mean and standard deviation. A check was made of, the randomness and normality of 1.00 samples of size 2 C generated by RANDN. The one-sample runs test (Siegel, 1956) was used to check the randomness of the numbers, and the Kolmogorov-Smirnov one-sample goodness-of-fit test (Siegel, 1956) was used to check the normality of the samples. Both tests were run using a level of significance of . 05 , and both yielded four rejections out of the 100 tests made.

The reneration of the slopes within each treatment group was accomplished by means of a p:ocedure used by Knapp and Swoyer (1967), involving the following theorem: "Let X and W be two independent random normal variables with zero mean and unit variance. Then if $Y=a X+\sqrt{1-a^{2}} w$, the correlation between X and $Y, \rho_{X Y}$, is equal to a [p. 393]." So, using RANDN and the formula listed above, a bivariate set of data can be generated with a given slope by first calling RANDN to generate X with a mean of zero and a standard deviation of one, then calling RANDN again to cenerate W with a mean of zero and a standard deviation of
one, and finally using the formula to yenerate \mathfrak{y} such that the correlation between X and Y is equal to a. Since both X and Y have unit standard deviations, the slope will equal the correlation :oefficient. The above process was used to generate the data for each of the-two groups with the slope combinations listed earlier. For the power runs, unequal means were generated by adding .25 to every value of the sriterion in group one and subtracting .25 from every value of the criterion in group two. Thus, a moderate difference between group means of .5 standard deviations was induced to provide the power comparisons.

Goodness-of-fit Procedure
In order to investigate the goodness-of-fit of ANCOVA to the corresponding theoretical F distribution under violation of the assumption of homogeneity of regression, samples were generated from populations which had equal means anc unequal regression slopes. AidCOVA was applied to the data, obtaining the samole F ratio. The above process was repeated 3,000 times for each data situation, thus generating an empirical sampling distribution for each data situation.

The goodness-of-fit of each empirical sampling
distribution to the theoretical was tested using the

Koimogorov-Smirnov one-samplo gooriness-of-fit test. For the purpose of constructing the cumulative frequency distribution, the theoreticel distribution was divided into 100 parts of one percent each. The 99 F values thus obtained were used to construct the cumulative frequency distribution of the sampling distribution. The subprogram FISHIN (Stat-Pack, 1969) was called from the Un: versity of Maryland program library in order to provide hese percentiles. A significance level of .05 was used for these goodness-of-fit tests. In addition to examining the goodness-of-fit under violation of the assumption of homogeneity of regression, the goodness-of-fit was also investigated for five sets of equal regression siopes in order to provide a check on the entire simulation procedure.

The goodness-of-fit phase of this study aiso made it possible to investigate the effects of the various data situations on Type I error rates. An actual significance level for each of four nominai significance levels was estimated by determining the proportion of times the test statıstic exceeded the critical value. These values were computed for all the data situations examined in the goodness-of-fit phase of this study.

Power Procedure

The power of ANCOVA under viciation of the assumption of homogeneity of regression was studied by first generating samples from populations which had unequal means and unequal regression slopes and then applying the parametric analysis of covariance technique to the data, thus obtaining the sample F ratio. The obtained F ratio was compared to a tabled F value for the specified α levels. The above process was repeated 3,000 times for each data situation so that relatively stable estimates could be calculated. The proportion of times the ANCOVA technique yielded a rejecticn of the null hypothesis of no criterion mean difference was computed for each of the specified α levels. This proportion yielded an empirical estimate of the power of parametric analysis of covariance under each specified assumption violation.

In addition to examining the power under the violation of the assumption of homogeneity of regression, powers were aiso computed for five sets of equal regression slopes in order to provide a check on the entire simulation procedure.
3. Results

Table 2 presents the results of the goodness-of-fit tests for all group sizes and all sets of regression slopes. The symbol A stands for the acceptance of the goodness-of-fit
test, and R stands for the rejection of the goodness-of-fit test.

Table 3 prerents, for all group sizes and all sets of regression slopes, the empirical Type I error rates corresponding to the nominal Type I erfor rates of $.10, .05, .02$, and .01.

Tabie 4 presents the empirical powers for equal group sizes and all regression slopes. For all the power tables the decimal point was omitted to conserve space.

Insert Tables 2, 3, and 4 about here
4. Discussion

Goodness-of-fit

According to information presented in Table 2, the goodness-of-fit hypotheses for ANCOVA were accepted in all but two of the 60 tests made under violation of the assumption of homogeneity of regression with equal group sizes. Thus, for the data situations examined, ANCOVA appears to be robust to the violation of the asscimption of homogeneity of regression when group sizes are equal. However, the goodness-of-fit hypotheses for ANCOVA were rejected in 95 of the 120 tests made under violation of the assumption of homogeneity of $r \in g r e s s i o n ~ w i t h ~ u n e q u a l ~$
group sizes. According to these results, for the data situations examined, ANCOVA appears not to be robust to the violation of the assumption of homogeneity of regression when group sizes are unequal. However, it should be noted that when unequal regression slopes were coupled with unequal group sizes that were large, such as 20 and 30 , there was a tendency to accept the goodness-of-fit hypotheses when the slopes did not zreatly differ.

From Table 3, it appears that for equal group sizes and all slope combinations, the empirical alpha levels for ANrovA were near the corresponding nominal alpha levels. It is recognized that gnodness-of-fit tests that lead to rejection can be misleading if the lack of fit occurs in the central portion of the distribution. However, such was not the case in this study. Inspection of the data in ?able 3 reveals that for unequal group sizes and unequal regression slopes, large discrepancies were observed between the empirical alpha levels for $A N C O V A$ and the corresponding nominal alpha levels. For data situations in which the larger group size was coupled with the larger of the two regression slopes, the umpirical alpha levels were greater than the corresponding nominal alpha levels. For data situations in which the larger group size was coupled with the smaller of the two regression slopes, the empirical
alpha levels were less than the corresponding nominal alpha levels. Thesa result: seem to indicate that if ANCOVA were used with unequal group sizes and unequal regression slopes, the Type I error rate could be severely altered in a predictable direction. For a situntior in which the larger aroup size is coupled with the larger of the two regression slopes, rejectior, of a null hypothesis may result fiom an inflated Type I error rate rather than an actual difference in populations. For a situation in which the larger group size is coupled with the smaller of the two regression slopes, failure to reject a null hypothesis may result from the loss of power associated with a deflater alpha. Power

Inspection of the power figures for equal group sizes and for equal regreusion slopes in Table 4 reveals that the power procedure appeared to have functioned properly. For a given level of group sizes, power levels increased as correlations between ccvariate and criterion increased; and for a given set of slope combinations, power levels increased as group sizes increased.

Table 4 is organized to facilitate the comparison of power levels of data situations that meet the assumption of homogeneity of regression with power levels of data situations that violate the assumption of homogeneity of
regression. For example, with an alpha level of .10, group sizes of 30 and 30 , and slope combination of .5 and .5 , the probability of rejecting the false null hypothesis was computed to be .716. This power level was determined for a data situation in which the assumption of homogeneity of regression was satisfied. The power level immediately to the \because ight of .716 represents the probability of rejecting the false null hypothesis when the assumption of homogeneity of regression has been violated. This value of .711 is the proportion of times the false null hypothesis was rejected when the population slopes were . 4 and .6 . The next three power levels to the right of .711 represent empirical power levels under more extreme violation of the assumption of homogeneity of regression. So, if the power is computed assuming equal regression slopes of . 5 and. .5. the loss in power is minimal if the true population regression slopes are .4,.6; .3,.7; .2,.8; or .1,.9.

Similar comparisons for other portions of Table 4 reveal that there is little or no loss of power when the assumption of homogeneity of regression has beer, violated. So, both the Type I error rate and the power do not seem to be severely altered by heterogeneous regression slopes as long as the group sizes are equal.

One final point needs to be made. As pointed out by Bradley (1964),
. . . the question of tne relative sensitivity of a test to violation of its various assumptions [robustness] is fairly meaningless unless one is willing-to specify exactly "how much" violation and under exactly what sampling conditions (i.e., what sample sizes, what significance levels, what rejection regions, etc.). The robustness of the test depends upon the specific situation [p. 171]. Therefore, the findings of this study will of necessity be defined in terms of the specifi.c dat:a situations analyzed. While certain tentative conciusions have been drawn here there should be no attempt to generalize beyond the ipecific data situations investigated in this study. Whether or not the results observed in this study will hold for other slope combinations, other group sizes, more than two groups, etc. will have to await further research.

References

Bradley, J. V. (1964). Studies in research methodology: YI. The central limit effect for a variety of populations and the robustness of z, t, and F. Ohio: Wright-Patterson Air Force Base, Behavioral Sciences Laboratory, Aerospace Medical Research Laboratories, Aerospace Medical Division, Air Force Systems Command.

Glass, G. V., PeckFam, P. D., and Sanders, J. R. (1972). Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance.

Review of Educational Research, 42, 237 -288.
Knapp, T. R., and Swoyer, V. H. (1967). Some empirical results concerning the power of Bartlett's test of the significance of a correlation matrix. American Educational Pesearch Journal, 4, 13-17.

Peckham, P. D. (1968). An investigation of the effects of nonhomogeneity of regression slopes upon the F-test of analysis of covariance. Report No. 16. Boulder, Colo.: Laboratory of Educational Research, University of Colo. Siegel, S. (1956). Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill. Univac 1108 multi-processor system Stat-Pack program abstracts. (1969). New York: Sperry Rand Corporation.

University of Maryland Univac 1108 Exec 8 Math-Pack users' guide. (1970). College Park, Md.: Computer Science Center, University of Maryland.

Footnotes
${ }^{1}$ This pape:- is based on the doctoral dissertation, "A Monte Carin Comparison of Parametric and Nonparametric Uses of a Concomitant Variable," by Basil L. Hamilton, University of Miaryland, College Park, Maryland, 1972.

2 All computer programs used in this study were written by the author in FORTRAN v. Complete listings are available on request.

Table 1

Slope Combinations Examined

	β_{1}						
Mean Slope	β_{2}						
	. 3	. 2	. 1	. 0	-. 1	-. 2	-. 3
. 3	. 3	. 4	. 5	. 6	. 7	. 8	. 9
. 4	. 4	. 3	. 2	. 1	. 0	-. 1	
	. 4	. 5	. 6	. 7	. 8	. 9	
. 5	. 5	. 4	. 3	. 2	. 1		
	. 5	. 6	. 7	. 8	. 9		
. 6	. 6	. 5	. 4	. 3			
	. 6	. 7	. 8	. 9			
.7	. 7	. 6	. 5				
	\because	. 8	. 9				

$$
\text { Table } 2
$$

Results of the Goodness of-fir Tests of Analysis of Covariance
 Reata of the
to its Theoretical Distribution

ERIC

Table J
Pmplifical type 1 Ercar maten for Analyete ot Covertance for
Different Grouy siaea and slope combinationa

;						Group	-0					
lope Conbisatione $\epsilon_{1} \cdot \theta_{2}$. 10	$\begin{aligned} & n_{1}=10 . \\ & \text { mominnil } \\ & .05 \end{aligned}$	$\begin{aligned} & n_{2}=10 \\ & \text { Alpha } \\ & .02 \end{aligned}$. 01	. 10	$\begin{aligned} & n_{1}=20 . \\ & \text { monine } \\ & .05 \end{aligned}$	$n_{2}-20$ 1 Alphe	. 01	. 10	$n_{1}=30 .$	$\begin{aligned} & n_{2}-30 \\ & 1 \text { Alpha } \end{aligned}$	
Parametric Anslyela of coveriance												
.3. 3	. 0963	. 0497	. 0170	. 0007	. 1050	. 0537	. 0260	. 0130	. 1040	. 0537	. 0213	. 0083
.2..4	. 0935	.0453	. 0160	. 00083	. 2030	. 0483	. 0190	. 0100	. 1033	. 0487	. 0197	. 00097
.1.. 3	.0933	. 0433	. 0167	. 0087	. 0910	. 0450	.0183	. 0100	. 1003	.0543	.0213	. 0093
.0..6	. 0993	. 0500	. 0173	. 0097	.0943	.0413	. 0157	.0073	. 0970	. 0503	. 0170	. 00097
-.1..7	. 1057	.0543	.0233	.0133	. 1030	. 0587	. 0270	. 0133	.1047	.0523	. 0190	. 0090
-.2.0	.1143	.0557	.0193	. 0100	. 1067	.0587	. 02310	. 0100	.1037	. 0567	. 0240	. 0107
-.3..9	. 1047	. 0557	.0257	.0127	. 2027	. 0587	. 0260	.0143	. 1067	.0577	. 0227	. 0093
-4. 4	. 6953	. 0517	. 0203	. 0090	. 0950	.0453	. 0207	. 0093	. 0963	. 0467	. 0200	. 0107
. $3 . .5$. 1097	. 0517	. 0190	. 0087	. 3010	. 0510	. 0197	.0073	. 1010	. 0487	. 0163	. 0077
.2. 6	. 0977	. 0417	. 0183	. 0087	. 0963	. 0447	. 0163	. 00080	. 1013	.0563	.0207	. 0100
.1..7	. 1003	. 0490	.0213	. 0107	. 0963	.0443	. 0167	. 0067	. 1057	. 0517	. 0240	. 0163
.0..8	. 1117	. 0587	. 0220	. 0130	. 0990	.0493	. 0187	. 007 ?	. 0977	.0477	. 0167	. 01210
-.1. 9	. 1020	.0523	. 0200	. 0117	.1123	. 0577	.0273	.014	. 1060	.0543	.0213	. 0137
.5. 5	. 0983	.0493	. 0203	. 0130	. 1150	.0573	. 0280	. 01.7	. 0980	. 0520	. 0193	. 6100
.4. 6	. 0993	.0533	. 0210	. 0107	. 1027	. 0520	. 0200	. 0210	. 1020	. .0527	. 0227	. 0117
.3..?	.1037	. 0513	. 0197	. 0101	. 1000	. 0540	.0233	. 0120	. 0940	. 0500	. 0230	. 01017
.2.08	. 1047	. 0583	.0237	. 0130	. 1030	. 0507	. 0203	. 0087	. 0963	. 0497	. 0227	. 0127
.1. 9	. 1090	. 0567	.0247	. 0150	. 2036	. 0563	.0273	. 0247	. 0977	.04:3	.0237	. 0127
.6. 6	.0957	. 0497	.0213	. 0090	. 2083	. 0487	.0193	. 0093	. 0953	.0493	. 0180	. 0100
.5,.7	. 1097	.0543	. 0240	. 0113	. 1017	. 0547	. 0220	. 0077	$\therefore 0920$. 0477	.0180	. 0080
.4. 6	. 1093	. 0573	. 0240	. 0120	. 1013	. 0477	. 0197	. 0073	. 1080	.0547	. 0207	.0133
.3. 9	. 1140	. 0557	.0243	. 0127	. 092 ?	. 0467	. 0163	. 0080	. 0997	.0533	. 0210	. 2087
.7..7	. 0967	. 0463	. 0207	. 0117	. 0927	.0443	.c190	. 0100	. 80	.0453	. 0180	. 0107
.6. A	.1007	.0523	. 0197	. 0100	. 1067	. 0507	.0173	. 0897	. 1023	.0333	. 0227	. 0103
.5. 9	. 0987	.0493.	.0163	.0093	. 0910	. 0487	.0173	. 0050	. 1010	.0513	. 0260	. 0120
		$n_{1}=10$.	$n_{2}=20$			$n_{2}=10$.	$n_{2}-30$			$n_{1}=30$.	$n_{2}-30$	
.3. 3	.0920	. 0403	.0137	.0073	. 0963	. 0483	. 02210	. 0100	. 2120	. 0567	. 0257	. 0107
.2..4	. 1093	. 0613	.0253	. 0130	. 1107	. 0510	. 0247	. 0130	. 0 ¢080	. 0507	. 0250	. 0130
.1. 5	. 1113	.0553	. 0223	. 0120	. 1520	.0773	.0353	. 0180	. 1053	. 0600	.0253	. 0130
.0. 6	-1340	. 0110	. 0290	. 0150	. 1593	. 0877	.0390	. 0213	. 1327	.0593	. 0270	. 6160
-.1.. 7	. 1440	. 0820	. 0367	. 0200	. 1920	. 1260	. 0607	. 0407	. 1220	. 0703	. 0300	.0133
-.2. 8	. 1817	. 1120	. 0580	.0347	. 2313	. 1490	.0833	.0583	. 1383	.0773	.0310	. 0180
-.3. 9	.1877	. 1183	. 0657	. 0417	. 2553	.1783	.1143	. 0857	. 1510	. 0830	. 0393	. 0217
.4. 4	. 1100	. 0560	. 0193	. 0090	. 2070	. 0587	. 0207	. 0087	. 1033	.0487	. 0207	. 00
.3. 5	. 1090	. 0560	. 0227	. 0117	. 1147	. 0607	. 0240	. 01313	. 1090	.0543	. 0217	. 01
.2. 6	. 1290	. 0671	. 0307	. 0157	. 1400	. 0790	.0393	. 0217	. 1180	. 0660	.0303	. 01
.1..7	. 1390	. 0717	.0393	. 0217	. 1800	. 1090	. 0577	.0373	. 1180	.0643	. 0317	. 01
.0. 8	.1733	. 1073	.0553	. 0300	. 2070	. 1373	. 0763	.0527	. 1420	.0783	.0330	. 02
-.1.9	.1967	. 1240	. 0677	. 0450	. 2647	. 1873	. 1160	. 0190	. 1483	. 0863	. 0407	. 0220
.3. 5	.0937	. 0440	. 0190	. 0080	. 0957	. 0487	. 0190	. 0077	. 1067	. 08613	. 040217	. 0220
.4. 6	. 1220	. 0631	. 0300	. 0163	. 1310	. 0700	.0293	.0133	. 1200	. 06627	. 6277	. 0147
.3. 7	. 1410	. 0787	. 0370	. 0223	. 1417	. 0877	1.0440	.0237	. 1123	. 06277	. 0253	. 0143
.2. 0	. 1593	. 0940	.0453	.02:0	. 1943	. 21303	. 0700	. 0430	. 1350	. 0777	.0317	.0203
1. 19	.1947	. 1257	. 0680	.043"	. $\because 510$. 2830	.1123	. 0790	. 1510	. 0797	.0383	. 0223
.6. 6	. 1060	. 0507	. 0187	.0103	. 1010	.053]	. 0203	. 0107	. 1030	.0517	. 0210	.0127
.3. 7	.2213	.0633	. 0290	.0143	. 1360	.0737	. 0340	. 0197	. 1087	. 0590	. 0240	.0113
.4. 6	. 1610	. 0850	. 0427	.0257	. 1823	. 1143	.0673	. 0440	. 1260	. 0677	. 0257	. 0163
.3..9	. 1947	. 1247	. 0720	. 0437	. 2607	. 1843	. 1107	.073	. 1513	. 0640	. 0400	. 0220
.7..7	. 0967	. 0513	. 0217	. 0107	.0930	. 0460	. 0160	.0073	. 0990	.0483	. 0185	. 0870
.6. 8	.1297	. 0677	. 0297	.0153	. 1657	. 0850	. 0400	. 0260	. 1127	.0577	. 0270	. 0143
.5. 9	. 1847	. 1123	. 0571	.0373	. 2370	.1600	.0943	. 0627	. 1383	. 0750	.0363	. 0190
		$n_{1}=20$.	$\mathrm{n}_{2}-10$			$n_{1}=30$.	$n_{7}=10$			$n_{1}=30$.	$n_{2}{ }^{-20}$	
.3..3	. 0920	. 0403	. 0137	. 0073	. 0963	. 0483	. 0210	. 0100	. 1020	.0567	. 0257	. 0107
.2. 4	. 0977	. 0403	. 0153	. 0053	. 0927	. 0413	.0193	. 0090	. 0953	.04i3	. 0153	. 0023
.1,. 5	. 0893	.0413,	. 0183	. 0077	. 0867	.0437	. 0190	. 0070	. 0930	.0453	.0197	.0113
.0..6	. 0947	. 0450	. 0203	. 0117	. 0907	. 0403	.0177	. 0083	. 09313	. 0517	. 0167	. 00013
-.1.. 9	. 0907	. 0480	. 0170	. 0093	. 0857	. 0440	. 0157	.0080	. 0820	. 0350	.0143	. 0010
-.2..0	. 0810	. 0387	.0133	. 0073	. 0913	. 0427	.0293	. 0101	. 0920	.0437	. 0150	. 0080
-.3..9	. 0910	. 0390	. 0160	. 0070	. 1073	. 2527	. 0190	. 0113	. 0813	. 0380	.0133	. 0047
.4. 4	. 1100	. 0560	. 0193	. 0090	. 1070	.0587	. 0207	. 00097	. 1053	. 0487	. 0207	. 0090
.3. 5	. 0917	. 0457	. 0190	. 0113	.0793	. 0367	. 0180	. 0100	. 0893	. 0477	. 0180	. 0077
. 2.6	.0733	. 0327	. 0137	. 0070	.0783	. 0307	. 0 c) 9	. 0010	. 0823	.0393	. 0177	. 0090
.1..7	. 0840	. 0400	. 0160	. 0090	. 0717	. 0363	. 0110	. 0050	. 0840	. 0457	. 0160	. 0083
.0. 6	. 0810	. 0350	. 0157	. 0063	. 0717	. 0297	.0123	.2063	. 0890	. 0440	. 0187	. 0093
-.1. 9	. 0697	. 0310	. 0113	. 0053	. 0783	. 0360	. 0117	. 0050	. 0840	. 0400	.0123	. 0063
.5..5	. 0937	. 0440	. 0190	. 0080	.0957	. 0487	. 0190	. 0017	. 1067	. 0613	. 0217	. 0123
.4. 6	.0913	. 0423	. 0170	. 0077	. 0760	.0313	. 0141	. 0077	. 0057	.0623	. 0143	. 0067
.3. 7	. 0797	.0373	. 0127	. 0057	. 0680	. 0290	. 0090	. 0047	. 0903	.0477	. 0163	. 0003
.2. 8	. 0787	. 0357	. 0113	. 0043	. 0667	. 0240	. 0070	. 0030	. 0760	. 0383	.0157	. 0067
.1. 9	. 0643	. 0280	. 0093	. 0050	. 0620	. 0230	. 0067	. 0020	. 0797	. 0393	. 0127	. 0050
.6..6	. 1060	. 0507	. 0107	.0103	. 1010	.0533	.0203	. 0107	. 1030	. 0517	. 0210	. 0127
.5. 7	. 0780	. 0363	. 0153	. 0060	. 0723	. 0310	.0093	. 0050	. 0020	.0383	. 0170	. 0097
-4. 8	. 0670	. 030	. 0123	. 0057	. 063	. 0217	. 0120	. 0063	. 0743	. 0347	. 0150	. 0063
.3. 8	.0557	.0223	. 0057	.0030	. 0453	.0173	.0047	. 0010	. 0653	. 0283	.0093	. 0043
.7..7	.0987	. 0513	. 0217	. 0107	.0910	. 0460	. 0160	. 0073	. 0990	.0483	. 0180	. 0070
.6. $\cdot 1$.0733	. 0350	. 0127	. 0057	.0613	. 0250	.0103	. 0043	. 0077	.0390	.0137	. 0070
.3. 9	.05s3	. 0263	. 0000	.0037	. 0420	.01?3	.0033	. 0011	. 0780	. 0400	.0143	. 0063

