
 Open access Proceedings Article DOI:10.1145/3196321.3196363

An empirical investigation on the readability of manual and generated test cases
— Source link

Giovanni Grano, Simone Scalabrino, Harald C. Gall, Rocco Oliveto

Institutions: University of Zurich, University of Molise

Published on: 28 May 2018 - International Conference on Program Comprehension

Topics: Test case, Readability, Unit testing and Test (assessment)

Related papers:

 Modeling readability to improve unit tests

 EvoSuite: automatic test suite generation for object-oriented software

 Automatic test case generation: what if test code quality matters?

 Developer’s Perspectives on Unit Test Cases Understandability

 Randoop: feedback-directed random testing for Java

Share this paper:

View more about this paper here: https://typeset.io/papers/an-empirical-investigation-on-the-readability-of-manual-and-
1of9iakgx5

https://typeset.io/
https://www.doi.org/10.1145/3196321.3196363
https://typeset.io/papers/an-empirical-investigation-on-the-readability-of-manual-and-1of9iakgx5
https://typeset.io/authors/giovanni-grano-1tz1uy5otv
https://typeset.io/authors/simone-scalabrino-3sxjo3y8rz
https://typeset.io/authors/harald-c-gall-35lv7iz84j
https://typeset.io/authors/rocco-oliveto-4bsuq6my9t
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/institutions/university-of-molise-8pfc1jb3
https://typeset.io/conferences/international-conference-on-program-comprehension-2zp5wepl
https://typeset.io/topics/test-case-7ehjd9bt
https://typeset.io/topics/readability-2ptpbykv
https://typeset.io/topics/unit-testing-1i0u1ice
https://typeset.io/topics/test-assessment-3fixhlah
https://typeset.io/papers/modeling-readability-to-improve-unit-tests-19l83v34f6
https://typeset.io/papers/evosuite-automatic-test-suite-generation-for-object-oriented-4tj5vvqvqg
https://typeset.io/papers/automatic-test-case-generation-what-if-test-code-quality-50h4ymh7is
https://typeset.io/papers/developer-s-perspectives-on-unit-test-cases-rb1rvppcav
https://typeset.io/papers/randoop-feedback-directed-random-testing-for-java-24xjogeukl
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-empirical-investigation-on-the-readability-of-manual-and-1of9iakgx5
https://twitter.com/intent/tweet?text=An%20empirical%20investigation%20on%20the%20readability%20of%20manual%20and%20generated%20test%20cases&url=https://typeset.io/papers/an-empirical-investigation-on-the-readability-of-manual-and-1of9iakgx5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-empirical-investigation-on-the-readability-of-manual-and-1of9iakgx5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-empirical-investigation-on-the-readability-of-manual-and-1of9iakgx5
https://typeset.io/papers/an-empirical-investigation-on-the-readability-of-manual-and-1of9iakgx5

Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2018

An Empirical Investigation on the Readability of Manual and Generated

Test Cases

Grano, Giovanni ; Scalabrino, Simone ; Oliveto, Rocco ; Gall, Harald C

Abstract: Software testing is one of the most crucial tasks in the typical development process. Developers
are usually required to write unit test cases for the code they implement. Since this is a time-consuming
task, in last years many approaches and tools for automatic test case generation - such as EvoSuite -
have been introduced. Nevertheless, developers have to maintain and evolve tests to sustain the changes
in the source code; therefore, having readable test cases is important to ease such a process. However,
it is still not clear whether developers make an effort in writing readable unit tests. Therefore, in this
paper, we conduct an explorative study comparing the readability of manually written test cases with
the classes they test. Moreover, we deepen such analysis looking at the readability of automatically
generated test cases. Our results suggest that developers tend to neglect the readability of test cases and
that automatically generated test cases are generally even less readable than manually written ones.

DOI: https://doi.org/10.1145/3196321.3196363

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-150985
Conference or Workshop Item
Accepted Version

Originally published at:
Grano, Giovanni; Scalabrino, Simone; Oliveto, Rocco; Gall, Harald C (2018). An Empirical Investigation
on the Readability of Manual and Generated Test Cases. In: Proceedings of the 26th International
Conference on Program Comprehension, ICPC, Gothenburg, 26 May 2018 - 27 May 2018, Association
for Computing Machinery.
DOI: https://doi.org/10.1145/3196321.3196363

An Empirical Investigation on the Readability of
Manual and Generated Test Cases

Giovanni Grano
University of Zurich, Switzerland

Simone Scalabrino
University of Molise, Italy

Harald C. Gall
University of Zurich, Switzerland

Rocco Oliveto
University of Molise, Italy

ABSTRACT

Software testing is one of the most crucial tasks in the typical devel-

opment process. Developers are usually required to write unit test

cases for the code they implement. Since this is a time-consuming

task, in last years many approaches and tools for automatic test

case generation Ð such as EvoSuiteÐ have been introduced. Nev-

ertheless, developers have to maintain and evolve tests to sustain

the changes in the source code; therefore, having readable test

cases is important to ease such a process. However, it is still not

clear whether developers make an effort in writing readable unit

tests. Therefore, in this paper, we conduct an explorative study

comparing the readability of manually written test cases with the

classes they test. Moreover, we deepen such analysis looking at

the readability of automatically generated test cases. Our results

suggest that developers tend to neglect the readability of test cases

and that automatically generated test cases are generally even less

readable than manually written ones.

CCS CONCEPTS

• Software and its engineering → Maintaining software;

Search-based software engineering;

KEYWORDS

Readability, Automated Testing, Empirical Software Engineering

ACM Reference Format:

Giovanni Grano, Simone Scalabrino, Harald C. Gall, and Rocco Oliveto. 2018.

An Empirical Investigation on the Readability of Manual and Generated

Test Cases. In ICPC ’18: 26th IEEE/ACM International Conference on Program

Comprehension , May 27ś28, 2018, Gothenburg, Sweden. ACM, New York, NY,

USA, 4 pages. https://doi.org/10.1145/3196321.3196363

1 INTRODUCTION

Software testing is among the most expensive processes in software

development [5]. In many contexts, developers are required to

thoroughly test the software they write to guarantee a certain level

of external quality. Agile development methodologies and, most

notably, test-driven development (TDD), put a strong accent on

testing: test cases are written when the code itself does not exist

yet [4]. As well as source code, test cases need maintenance: when

a part of the code changes, all the test cases that depend on it

ICPC ’18, May 27ś28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ICPC ’18: 26th
IEEE/ACM International Conference on Program Comprehension , May 27ś28, 2018,
Gothenburg, Sweden, https://doi.org/10.1145/3196321.3196363.

may need to change accordingly, to avoid erroneous failure reports

[22]. If the test cases have poor readability, it may be harder for

developers to evolve and maintain them.

Being the test cases writing a hard and time-consuming task, in

last years different approaches for automatic case generation have

been proposed. They generate test cases for a given unit to test,

aiming at maximizing one or more coverage criteria; such an unit

is typically a class under test (CUT). However, those tests still need

human intervention: human effort in reading, understanding and

modifying test cases is necessary, especially since the oracles have

to be manually specified [2].

Even if the quality of test cases is important to ease their main-

tenance [1, 23], it was shown that test smells, i.e., symptoms of

possible design issues of the test code [22], are very spread both in

open source and industrial code; moreover, they have a strong im-

pact on comprehension and maintenance [3]. This situation is even

worse in automatically generated test cases, since they are more

affected by test smells than their manually written counterparts

[16]. In this context, it is clear that having simple and readable test

cases helps developers to keep the pace with fast development cy-

cles. Therefore, developers should spend the same effort in writing

good Ðand readableÐ unit tests, as they do for the source code.

However, to the best of our knowledge, no previous study analyzed

the relationship between the quality Ðreadability, in particular Ð

of the test cases and source code. Thus, in this paper we aim to

answer the following question: are manually written test cases more

readable than the source code they exercise?

To do that, we conduct an empirical investigation in which we

compare the readability of test cases to the one of the corresponding

CUTs. Moreover, we deepen our analysis studying the difference

between the readability of automatically generated test cases and

manually written ones, to understand if what was found for test

smells [16] is true also for readability.

Our results show that source code is significantly more readable

than test cases. This might suggest that developers do not focus

much on writing good quality test cases. Moreover, we observe

that manually written test cases are significantly more readable

than automatically generated ones, despite the fact the tool we used

applied specific techniques to improve their readability [12]. These

results open new lines of research aimed at automatically improv-

ing the quality of existing test cases, both manually written and

automatically generated, with the effect of reducing maintenance

and testing costs.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden G. Grano et al.

2 BACKGROUND & RELATED WORK

Code readability is an aspect of source code that allows developers

to quickly read and get information from it. Recent studies defined

approaches that automatically measure code readability [6, 17, 21].

They are based on structural [6, 17], visual [9] and textual [21]

features measured on source code. Given a dataset of snippets

evaluated by developers, such approaches consist in training a

classifier able to distinguish readable from unreadable ones.

When developers perform maintenance tasks on the source code,

they are required to update the related test cases. Therefore, read-

able test cases constitutes a benefit for developers. Van Deursen et

al. [22] defined a set of test smells, i.e., symptoms of possible design

problems in the test cases. Bavota et al. [3] studied the prevalence

and the impact of such smells, showing that they are spread and

have a strong impact on comprehension and maintenance. Our

study differs from the latter because we do not only look at the

quality of test code but, instead, we compare it to the source code,

to check if there is any difference.

Writing test cases can be a hard task. For this reason, tools Ðlike

EvoSuite and RandoopÐ that automatically generate test cases

were introduced [10, 14, 20]. They use search-based approaches

[11, 15]: the main goal is to find a sub-optimal set of test cases that

achieve the maximum coverage of the CUT.

Recent studies have focused on the quality of automatically

generated test cases. Palomba et al. [16] showed that such test

cases are significantly more prone to contain test smells compared

to manually written ones. Daka et al. [8] introduced test-specific

features to measure and improve readability of generated tests. Our

study differs from the one by Palomba et al. [16] because (i) wemake

a comparison between source code and test code and (ii) we use

readability as a proxy of code quality instead of the number of test

smells, trying to evaluate test quality from a different perspective.

3 EMPIRICAL STUDY

The goal of our empirical study is to initially investigate the read-

ability of test cases in relation to the CUTs. Moreover, we aim to

detect possible differences in readability metrics between manual

and automatically generate test cases. Our study is steered by the

following research questions:

RQ1. Are test cases equally readable as the corresponding CUTs?

With this first research question, we aim at understanding how test

cases are readable compared to the classes they test. We want to

understand whether developers put an unbalanced effort in writing

readable code, i.e., they care less about the quality of tests.

RQ2. Are automatically generated test cases equally readable as

the manually written ones?

With our second research question, we focus on detecting possible

differences in readability between manually written and automati-

cally generated test cases. We argue that a lower readability might

be a limiting factor in the adoption of such tools.

Table 1: Projects used for the empirical study

Project CUTs CUTs LOC Tests LOC

Commons-BCEL 12 5,563 984

Commons-Math 356 122,545 89,766

Commons-Lang 111 74,639 52,317

Total 479 202,747 143,067

Project Subjects. The context of this study is composed by 3

popular Apache projects: Commons BCEL1, Commons Math2 and

Commons Lang3. The first one provides APIs for manipulating

binary Java classes; the second one is a library of mathematics and

statistic operators; the third one provides helper utilities for Java

core classes. Table 1 summarizes the characteristics of the test cases

and the relative CUTs we consider for every project.

3.1 Experiment Methodology

In our study, we use a state-of-the-art readability model [21] to

compute the readability of both tests and CUTs. We do not use a

specialized readability model [8], since we would not be able to

use it for both test cases and source code. On the other hand, the

model we use is generic, since it is trained on both source code and

test cases. Such a model is based on logistic regression [21] and it

classifies a given snippet as readable or unreadable. In this study, we

compute the continuous readability level r ∈ [0, 1] as the probability

associated to the class readable. Therefore, r = 0 means that the

the classifier is confident in classifying it as unreadable, while r = 1

means that the classifier is sure that it is readable. The training set

of the model is constituted by snippets (e.g., methods) manually

annotated by human developers as for their readability; we used as

trainig set the union of the datasets in the state of the art, i.e., the

ones by Buse and Weimer [6], Dorn [9] and Scalabrino et al. [21].

Since we train our model on small snippets, directly computing the

readability of whole classes may mislead the classifier. Therefore,

we compute the readability of a classC as themean of the readability

computed on all the methods belonging to C .

3.1.1 Manual Test Cases vs CUTs. To answer RQ1, we compute

the readability of both test cases and correspondent CUTs. To select

this set of pairs, we rely on theMaven pom file of each project. Such a

file contains the rule to identify test classes to run when the project

has to be built. Then, using both the name of the test classes and the

patterns in the pom, we detect the CUTs. For example, given a test

case SimpleCurveFitterTest.java and pattern **/*Test.java,

we remove the word Test at the end of the name of the test case to

determine the name of the CUT, i.e., SimpleCurveFitter.java.

We use a two tailed Wilcoxon test to check whether there is any

difference between the readability of test cases and the readability of

the CUTs. Our null hypothesis is that there is no difference between

test cases and CUTs as for code readability. We reject the null

hypothesis if the p-value is lower than 0.05. Finally, if the difference

is significant, we compute the Cliff’s delta δ [7] to measure the

magnitude of such difference. We consider the difference negligible

1 https://goo.gl/MD8A2u 2 https://goo.gl/qW47nj 3 https://goo.gl/8KB6zE

On the Readability of Test Cases ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Table 2: Average readability scores for the CUTs and tests.

Project CUTs Tests p-value Cliff δ

commons-bcel 0.74 0.50 0.009 0.79 (large)

commons-lang 0.86 0.64 < 0.001 0.83 (large)

commons-math 0.82 0.61 < 0.001 0.68 (large)

Overall 0.83 0.61 < 0.001 0.71 (large)

for |δ | < 0.148, small for 0.148 ≤ |δ | < 0.33, medium for 0.33 ≤

|δ | < 0.474 and large for |δ | ≥ 0.474 [13].

3.1.2 Manual vs Automated Test Cases. To answer RQ2, we

compute the readability of the manually written test cases and

the automatically generated ones. We rely on EvoSuite [10] to

automatically generate tests, because it is one of the most popular

tools in automatic test case generation literature. We use its default

algorithm, i.e., the whole test suite approach proposed by Fraser

and Arcuri [11]. We set to 180 seconds the search budget for each

CUT. We run EvoSuite on a Linux machine running Ubuntu 16.04,

having 16 cores and 64GB of RAM. To avoid that the randomness

of automatic test case generation influences our results, we repeat

the process 5 times for each CUT and we compute the average

readability of the all the different versions of each test. It is worth

noting that EvoSuite is not able to generate test cases for some

type of classes (e.g., abstract classes). We ignore such classes in

RQ2. In total, it was not possible to generate test cases for 8 classes

over the 479 we took into account (< 2%).

As we do for RQ1, we use a two tailed Wilcoxon test to check if

the readability of manually written and automatically generated

test cases differ. Our null hypothesis is that there is no difference

between such test cases as for readability. We reject the null hypoth-

esis if the p-value is lower than 0.05. Also in this case, we report the

Cliff’s delta δ of the difference as previously described for RQ1.

3.2 Results & Discussion

3.2.1 Manual Test Cases vs CUTs. Table 2 reports, for every

considered project, the average readability for both the CUTs and

the tests. We show in the łOverallž row the values on the whole

dataset (i.e., not aggregated by project). It is clear that the p-values

of the Wilcoxon tests are lower than 0.05 for all the projects and the

same is also true when looking at the dataset in its entirety. Thus,

we can reject our null hypothesis, i.e., we can report a difference in

term of code readability between CUTs and tests. To understand

the magnitude of such difference, we compute the Cliff’s delta (δ).

Looking at both the score achieved in the single projects and the

overall score, it can be observed a large magnitude of difference,

(0.71, overall). The CUTs classified as readable by the model are 459,

while the tests classified as readable are 370 (∼ 19% percent less).

Result 1. Our analysis shows a significantly lower code read-

ability for the tests cases compared to the corresponding CUTs.

3.2.2 Manual vs Automated Test Cases. In Table 3 we report the

results of our analysis, similarly as we did for RQ1. Analyzing the

Table 3: Average readability scores for the manually and the

automatically generated tests.

Project Man. Aut. p-value Cliff δ

commons-bcel 0.50 0.48 0.791 -

commons-lang 0.64 0.53 < 0.001 0.41 (medium)

commons-math 0.61 0.52 < 0.001 0.29 (small)

Overall 0.61 0.52 < 0.001 0.31 (small)

results at project-level, we notice that for Apache Commons BCEL

the difference is not significant (p > 0.05). However, this might

be caused by the few tests available for such project (only 12). We

observe that the readability of manually written test cases is slightly

higher, on average, in any case. On the other hand, for the other

two projects and overall, the difference in readability between the

manually written and the automatically generated tests is signifi-

cant. Thus, we reject again the null hypothesis and we can say that

the test cases written by developers are more readable than the

automatically generated ones (by EvoSuite, in this case). However,

differently from what happened in RQ1, the overall magnitude of

the difference, is small. In this case, the manually written tests clas-

sified as readable are 365, while the automatically generated tests

classified as readable are 270 (∼ 26% less). It is worth noting that

the absolute number of manually written tests classified as readable

is lower than in RQ1: here, indeed, as previously explained, we had

to ignore some manually written tests, because EvoSuite could not

generate automatic tests for the related CUTs.

Result 2. Tests cases manually written by developers tend to

be more readable than the automatically generated ones.

3.2.3 Discussion. The results of RQ1 can be interpreted in two

different ways. It is possible that developers care less about the

quality of test cases from the beginning, i.e., their effort in making

them readable is relatively small. On the other hand, it is possible

that the lower readability is due to a slow decay in the quality of

test cases during the evolution of the project [22]. In both the cases,

developers do not seem to perceive the quality of test cases as im-

portant. It is worth noting that test cases have some characteristics

that should make them more readable than CUTs. Indeed, they tend

to be shorter and to have a lower number of control structures.

However, despite this theoretical advantage, in reality the opposite

is true. Consider this line from a test case in Commons-Math:

Assert.assertEquals(l.getLocation ().getAlpha (), l.getReverse ().
getLocation ().getAlpha (), 1.0e-10);

the main issue is the fact that it contains longer chains of method

calls, i.e., developers did not use intermediate variables to store

partial results. This results in a longer line, negatively correlated

with readability [6]. Moreover, the only identifier used for a lo-

cal variable, l, is not meaningful. Our results pave the way for a

broader investigation aiming at understanding the differences in

quality between tests and CUTs, why developers underestimate

the importance of quality in test cases and how to improve their

awareness of such a problem. The results of our second research

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden G. Grano et al.

question, instead, confirm what Palomba et al. [16] observed, i.e.,

that automatically generated test cases, compared to manually writ-

ten ones, tend to have a lower quality, i.e., more test smells and, as

we found, lower readability. Overall, we can conclude that there is

still a long way to go to have an adequate level of quality in both

manually written and, mostly, automatically generated tests.

3.2.4 Reproducibility. A replication package with the employed

projects and the generated tests is available here4.

4 THREATS TO VALIDITY

Internal Validity. Our study is mainly focused on code readability

as a proxy for code quality. We used an automatic approach for code

readability measurement. It may not perfectly match the opinion of

actual human developers; however, the approach we used achieves

a reported accuracy in snippet classification of about 80% [21]. Au-

tomatic test case generation is random at its base. To reduce the

influence of randomness in our results, we run EvoSuite 5 times

for each CUT. Previous research [8] focused on the improvement

of the readability of automatically generated test cases. Unfortu-

nately, we could not replicate the results on our dataset, since the

approach is not available in EvoSuite. However, the authors report

a small average improvement in readability (1.9%), while our results

show an average difference between manual and generated tests of

9%, overall. To reduce this threat, we also simulated the best-case

scenario for automatic test case generation as for readability: in-

stead of considering the average readability among the five runs of

EvoSuite, we tried to consider, for each class, the most readable au-

tomatically generated test case. We used class naming conventions

to determine the CUTs of manual tests, e.g., we assumed that a test

named łTestPersonž tests the class łPersonž in the same package.

However, it is possible that also other classes are tested by such a

te. Finally, while readability is an important aspect of source code,

it was showed that it is not related to understandability [19]. There-

fore, it cannot be stated that test cases are less understandable than

source code. The assessment of this different aspect needs further

investigation.

External Validity. We run our experiment on 3 open source

projects, for a total of 479 test cases and CUTs. A larger dataset

might obviously improve the generalizability of our findings. This

is part of our future agenda. In order to automatically generate test

cases we rely on EvoSuite, because it is one of the most mature

tools available. However, we cannot guarantee similar results us-

ing different tools, e.g., Randoop [14] or JTExpert [18]. Further

investigation for such tools is also part of our future work.

5 CONCLUSION AND FUTUREWORK

In this work we conducted an empirical study aiming at investigat-

ing the readability of test cases. In particular, we focused on the

difference in code readability between (i) test cases and correspon-

dent classes under test and (ii) manually written and automatically

generated test cases. Our preliminary results open new interesting

research directions. First of all, we showed that test cases are sig-

nificantly less readable than source code. We argue that this fact

might suggest that developers tend to neglect the quality of such

artifacts in favor to the one of CUTs.
4 https://goo.gl/uHQr9Y

We plan to investigate more in depth this phenomenon. If con-

firmed, this early result would justify the design and implementa-

tion of specific tools to support developers in improving the quality

of test cases. The second finding of our study is that automatically

generated test cases are significantly less readable than the man-

ually written ones. Despite the magnitude of such a difference is

small, we argue that this phenomenon might be one of the causes

of the low adoption of test case generation tools. To tackle such

a problem, we plan to experiment new techniques to improve the

quality of automatically generated test cases.

REFERENCES
[1] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman. Test code quality and its

relation to issue handling performance. IEEE Transactions on Software Engineering,
40(11):1100ś1125, 2014.

[2] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem in
software testing: A survey. IEEE transactions on software engineering, 41(5):507ś
525, 2015.

[3] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley. Are test smells really
harmful? an empirical study. Empirical Software Engineering, 2015.

[4] Beck. Test Driven Development: By Example. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[5] B. Beizer. Software testing techniques. Dreamtech Press, 2003.
[6] R. P. Buse and W. R. Weimer. Learning a metric for code readability. IEEE

Transactions on Software Engineering, 36(4):546ś558, 2010.
[7] N. Cliff. Dominance statistics: Ordinal analyses to answer ordinal questions.

Psychological Bulletin, 114(3):494, 1993.
[8] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer. Modeling readability to

improve unit tests. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, pages 107ś118. ACM, 2015.

[9] J. Dorn. A general software readability model. Master Thesis, U.Virginia, 2012.
[10] G. Fraser and A. Arcuri. Evosuite: Automatic test suite generation for object-

oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering, ESEC/FSE ’11,
pages 416ś419, New York, NY, USA, 2011. ACM.

[11] G. Fraser and A. Arcuri. Whole Test Suite Generation. IEEE Transactions on
Software Engineering, 39(2):276ś291, 2013.

[12] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and oracles.
IEEE Transactions on Software Engineering, 38(2):278ś292, 2012.

[13] R. Grissom and J. Kim. Effect Sizes for Research: A Broad Practical Approach.
Lawrence Erlbaum Associates, 2005.

[14] C. Pacheco and M. D. Ernst. Randoop: feedback-directed random testing for
java. In Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion, pages 815ś816. ACM, 2007.

[15] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random
test generation. In Proceedings of the 29th international conference on Software
Engineering, pages 75ś84. IEEE Computer Society, 2007.

[16] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia. On the
diffusion of test smells in automatically generated test code: An empirical study.
In Proceedings of the 9th International Workshop on Search-Based Software Testing,
pages 5ś14. ACM, 2016.

[17] D. Posnett, A. Hindle, and P. Devanbu. A simpler model of software readability.
In Proceedings of the 8th working conference on mining software repositories, 2011.

[18] A. Sakti, G. Pesant, and Y. Gueheneuc. Instance generator and problem represen-
tation to improve object oriented code coverage. IEEE Transactions on Software
Engineering, 41(3):294ś313, March 2015.

[19] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk, and
R. Oliveto. Automatically assessing code understandability: how far are we? In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, pages 417ś427. IEEE Press, 2017.

[20] S. Scalabrino, G. Grano, D. Di Nucci, R. Oliveto, and A. De Lucia. Search-based
testing of procedural programs: Iterative single-target or multi-target approach?
In Search Based Software Engineering, pages 64ś79, Cham, 2016. Springer Interna-
tional Publishing.

[21] S. Scalabrino, M. Linares-Vásquez, D. Poshyvanyk, and R. Oliveto. Improving
code readability models with textual features. In Program Comprehension (ICPC),
2016 IEEE 24th International Conference on, pages 1ś10. IEEE, 2016.

[22] A. Van Deursen, L. Moonen, A. van den Bergh, and G. Kok. Refactoring test code.
In Proceedings of the 2nd international conference on extreme programming and
flexible processes in software engineering (XP2001), pages 92ś95, 2001.

[23] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer. Studying the
co-evolution of production and test code in open source and industrial developer
test processes through repository mining. Empirical Software Engineering, 2011.

