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An Empirical Kaiser Criterion

Johan Braeken
University of Oslo

Marcel A. L. M. van Assen
Tilburg University and Utrecht University

In exploratory factor analysis (EFA), most popular methods for dimensionality assessment such as the

screeplot, the Kaiser criterion, or—the current gold standard—parallel analysis, are based on eigenvalues

of the correlation matrix. To further understanding and development of factor retention methods, results

on population and sample eigenvalue distributions are introduced based on random matrix theory and

Monte Carlo simulations. These results are used to develop a new factor retention method, the Empirical

Kaiser Criterion. The performance of the Empirical Kaiser Criterion and parallel analysis is examined in

typical research settings, with multiple scales that are desired to be relatively short, but still reliable.

Theoretical and simulation results illustrate that the new Empirical Kaiser Criterion performs as well as

parallel analysis in typical research settings with uncorrelated scales, but much better when scales are

both correlated and short. We conclude that the Empirical Kaiser Criterion is a powerful and promising

factor retention method, because it is based on distribution theory of eigenvalues, shows good perfor-

mance, is easily visualized and computed, and is useful for power analysis and sample size planning for

EFA.

Keywords: exploratory factor analysis, Kaiser criterion, parallel analysis

In exploratory factor analysis, most popular methods for dimen-

sionality assessment such as the screeplot (Cattell, 1966), the

Kaiser criterion (Kaiser, 1960), or—the current gold standard—

parallel analysis (Horn, 1965), are based on eigenvalues of the

correlation matrix. Unfortunately, (a) the link between such meth-

ods and statistical theory on eigenvalues is often weak and incom-

plete, and (b) neither the methods’ origin nor the evaluation of

their performance is set within the larger context of practical scale

development.

These two gaps in research on factor analysis should come as a

surprise, because factor analysis is one of the most commonly

applied techniques in scale development, and one can argue that

the determination of the number of factors to retain is likely to be

the most important decision in exploratory factor analysis (Zwick

& Velicer, 1986). Specifying too few factors will result in the loss

of important information by ignoring a factor or combining it with

another (Zwick & Velicer, 1986); specifying too many factors may

lead to an overcomplicated structure with many minor factors

consisting of one or very few observed variables. Examples of the

latter are so-called “bloated specifics,” which are factors arising

due to artificial overlap between variables, for instance due to

similar item phrasing (Cattell, 1961). The consensus is that both

underfactoring and overfactoring are likely to result in noninter-

pretable or unreliable factors and can potentially mislead theory

and scale development efforts (Fabrigar, Wegener, MacCallum, &

Strahan, 1999; Garrido, Abad, & Ponsoda, 2013; Velicer, Eaton, &

Fava, 2000; Zwick & Velicer, 1986).

Dozens of factor retention methods do exist (e.g., Peres-Neto,

Jackson, and Somers, 2005), but their use in practice can be quite

striking. For instance, despite having been repeatedly shown not to

work in simulation studies, the so-called Kaiser criterion or

eigenvalue-greater-than-one rule (Kaiser, 1960) continues to be

very popular, mostly because of its simplicity, ease of implemen-

tation, and it being the default method in many general statistical

software packages (e.g., SPSS and SAS). In contrast, parallel

analysis, the factor retention method that generally has shown the

best performance in simulation studies and gets most recommen-

dations from specialists (for thorough recent reviews, see, e.g.,

Garrido et al., 2013; Timmerman & Lorenzo-Seva, 2011), is not as

well established among practitioners (see, e.g., Dinno, 2009; Fab-

rigar et al., 1999; Ford, MacCallum, & Tait, 1986). Notwithstand-

ing, in view of its generally good performance and its recom-

mended status, the performance of parallel analysis will be our

reference in the current article.

The basic idea of parallel analysis (Horn, 1965) is to use the

observed eigenvalues, and not comparing them with a fixed ref-

erence value of 1 as in the Kaiser criterion, but instead to reference

eigenvalues from generated random data (i.e., independent data

without factor structure). In the current article, we use the most

recommended variant of parallel analysis suggested by Glorfeld

(1995), which retains the first factors that all exceed the 95th

percentile of their corresponding distribution of reference eigen-
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values. The need for Monte Carlo simulations to generate such

reference data, combined with tradition, out-of-date textbooks and

educational training, and the lack of default implementation in

general commercial software (see, e.g., Dinno, 2009; Hayton et al.,

2004), apparently puts a high threshold on the use of parallel

analysis in everyday practice.

A first objective of this article is to further understanding and

encourage new developments in factor retention methods by bridg-

ing the gap between factor retention methods and statistical theory

on eigenvalues. Theoretical results on the distribution of sample

eigenvalues open up new pathways to develop simple and efficient

factor retention rules that are widely applicable and that do not

require simulation. A second objective of this article is to propose

a new factor retention method that is specifically tailored toward

typical research settings in which multiple scales are designed

which are desired to be relatively short, but still reliable. The

demand for and use of such short(ened) tests has recently become

more common (Ziegler, Kemper, & Kruyen, 2014). In personnel

selection for instance, there is an increasing tendency to use short

tests consisting of, say, five to 15 items, for making decisions

about individuals applying for a job (Kruyen, Emons, & Sijtsma,

2012, p. 321). Because of the ubiquity of short tests, factor reten-

tion models should particularly perform well in these cases. In this

particular setting with correlated factors consisting of only a few

variables, the performance of parallel analysis is known to deteri-

orate significantly (see, e.g., Cho, Li, & Bandalos, 2009; Crawford

et al., 2010; De Winter, Dodou, & Wieringa, 2009; Garrido et al.,

2013; Green, Levy, Thompson, Lu, & Lo, 2012; Turner, 1998).

Thus, this setting would be serviced by having a more suitable

alternative factor retention method.

In the next sections we will provide theoretical statistical

background for factor retention methods with particular atten-

tion to the distinction between population-level and sample-

level eigenvalues. These theoretical foundations will be directly

linked to the development of a new factor retention method that

is easily visualized and very straightforward to apply without

requiring Monte Carlo simulation. The new retention method is

called the “Empirical Kaiser Criterion:” “Empirical,” because

the method’s series of reference eigenvalues is a function of an

application’s (a) variables-to-sample-size ratio, and (b) ob-

served eigenvalues; “Kaiser,” because, similar to the original

Kaiser criterion, it requires eigenvalues to be at least equal to 1,

which implies that at the population-level the new and the

Kaiser method retrieve the same number of factors. We make

analytical predictions under which conditions the Empirical

Kaiser Criterion (EKC) will perform well in practically relevant

situations, and provide empirical support by targeted simulation

studies in which we compare the performance of the newly

developed EKC with the performance of parallel analysis and

the original Kaiser criterion. For illustration, the methods are

applied to data on the Guilt and Shame Proneness Scale (GASP;

Cohen, Wolf, Panter, & Insko, 2011), which is a short 16-item

scale consisting of four highly correlated subscales. We con-

clude with a brief discussion and conclusions. An R-Shiny

applet, available on our web site https://cemo.shinyapps.io/

EKCapp, allows the reader to directly implement the EKC, as

well as parallel analysis.

Characterizing the Behavior of Eigenvalues

We will first provide an overview of the relevant theoretical

background on eigenvalues under the null model assuming no

underlying factors. Using results from random matrix theory, we

distinguish between eigenvalues at the population level and eigen-

values at the sample level. After better understanding the sample

behavior of eigenvalues, we explain why, at the sample level under

the null model, Kaiser’s greater-than-one rule fails and parallel

analysis works well. We continue with results under the factor

model, again distinguishing between eigenvalues at the population

and eigenvalues at the sample level. We explain why parallel

analysis cannot be expected to work well in all situations, and how

factor retention methods can and are being adapted to improve

upon the performance of parallel analysis under the factor model.

Under the Null Model

Population level. The null model for factor analysis assumes

there is no factor structure, that is, all variables are uncorrelated in the

population. The null model corresponds to a correlation matrix with

all zeros on the off-diagonal and all ones on the diagonal (i.e., the

identity matrix). All eigenvalues of an identity matrix are equal to 1.

The “eigenvalues greater than one” rule, often attributed to

Kaiser (1960), is implicitly linked to this null model and states that

the number of factors to retain should correspond to the number of

eigenvalues greater than one (i.e., deviating from the null expec-

tation). Intuitively, one can motivate this rule by stating that an

eigenvalue that represents a “true structural dimension” should at

least explain more variance than contained in a single variable. A

theoretical justification is that for a factor to have positive Kuder–

Richardson reliability (cf. Cronbach’s alpha), it is necessary and

sufficient that the associated eigenvalue be greater than 1 (Kaiser,

1960, p. 145). Hence, the greater-than-one rule is essentially an

asymptotical and theoretical lower bound (see, e.g., Guttman,

1954) to the number of true and reliable structural dimensions at

the population level. Yet at the sample level, Monte Carlo simu-

lation studies showed the rule to have low accuracy in practice

(see, e.g., Velicer, Eaton, & Fava, 2000; Zwick & Velicer, 1986).

Sample level. Eigenvalues at the sample level show random

variation, with typically about the first half of the eigenvalues

above and the latter half below 1 under the null model. Hence, the

main reason why the Kaiser criterion underperforms under the null

model is that the first sample eigenvalues capitalize on coinciden-

tal sampling associations and exceed thereby 1, yielding an over-

estimation of the number of factors.

Results from random matrix theory (see, e.g., Anderson, Gui-

onnet, & Zeitouni, 2010; Wigner, 1955) show that this wider range of

sample eigenvalues is in fact nonrandom, but a direct function of �, the

ratio of the number of variables J to the sample size n (i.e., � � J/n). The

distribution of sample eigenvalues L � [l1, . . . , lj, . . . , lJ] under the null

model follows asymptotically the Marčenko-Pastur (1967) distri-

bution with density function

d(l) ���(lup � l)(l � llow)

2��l
∀l � �llow, lup�

0 otherwise,

and an additional point mass of 1 � 1/� at zero when � � 1.

Sample eigenvalues can be expected to fall within the range
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[llow, lup] � [(1 � ��)2, (1���)2], which indicates that when the

number of variables J approaches the sample size n, the sample

eigenvalues get more and more spread out. Figure 1 shows the

Marčenko-Pastur density function for three values of �, illustrating

that dispersion increases in �. Notice how the range of the sample

eigenvalues is considerable, even for a ratio of 25 observations per

variable.

Factor retention rules based upon eigenvalues should incorpo-

rate this random sample variation. Parallel analysis does exactly

that by approximating the distribution of sample eigenvalues under

the null model by means of simulating samples from a multivariate

normal distribution of J variables, all with a variance of 1 and a

zero-correlation between the variables. Figure 2 illustrates the

close relation between the results of parallel analysis and the

quantiles of the Marčenko-Pastur distribution. The gray points are

eigenvalues of 1,000 datasets (n � 300, J � 10) under the null

model, with the gray dashed lines representing their 5% percentile,

mean, and 95% percentile, respectively. The black horizontal

dashed lines demarcate the asymptotical expected first and last

eigenvalue lup and llow. The black straight line represents the

quantiles for lj from the Marčenko-Pastur distribution (Wachter,

1976). Notice that this black line and the middle gray dashed line

(i.e., the mean eigenvalues of the simulated data) are practically

indistinguishable.

Although the distributional result is an asymptotical result under

regularity conditions of a correlation matrix arising from large data

matrices (i.e., n, J ¡ �, with � constant) consisting of indepen-

dently normally distributed variables, this assumption is nonessen-

tial in practice; distributions of eigenvalues of correlation matrices

of non-normal variables are well approximated by the theoretical

distributions, even in small datasets (see, e.g., Johnstone, 2001).

This corresponds to findings for parallel analysis where the per-

formance of the procedure is assessed as being robust to the exact

univariate distributions of the variables (see, e.g., Buja & Eyubo-

glu, 1992; Dinno, 2009) and practically feasible for even small

datasets.

Under the Factor Model

Population level. Under a factor model with K factors the

population eigenvalues will be separated in a structural part

consisting of the first K population eigenvalues that absorb the

shared variance in the variables accounted for by the common

factors, and a residual part consisting of the remaining eigen-

values that will reflect the unique variance. Specific results on

population eigenvalues can be straightforwardly derived from

Figure 1. Marčenko-Pastur density function for three values of � (i.e., the ratio of the number of variables J

to the sample size n).

1 2 3 4 5 6 7 8 9 10

0
.6

0
.8

1
.0

1
.2

1
.4

j
l j

Figure 2. Results of parallel analysis (gray, 1,000 iterations) and quan-

tiles of the Marčenko-Pastur distribution (black) for an example with n �

300 and J � 10 under the null model.
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the factor model structure. Consider a simple structure factor

model with K correlated factors with homogeneous interfactor

correlation 	, and for each factor, J variables with common

factor loading a. The corresponding population eigenvalues are

given by:

�1 � 1 � (J � 1)a2 � (K � 1)J�a2

�2 � . . . � �K � 1 � (J � 1)a2 � J�a2

�K�1 � . . . � �J � (1 � a2)

(1)

In Equation 1, the first term for the first eigenvalue �1 reflects

that it will necessarily account for the variance of at least one

variable; the second term represents the communality with the

other variables loading on the same factor, and the third term

represents the common share of variance in variables loading on

other correlated factors. For the second to Kth eigenvalues, a

similar reasoning holds for the first two terms in the equation, but

the third term now corrects for the common share of variance that

is already accounted for in the first eigenvalue. The second equa-

tion implies that the 2nd to Kth population eigenvalues are typi-

cally small for highly correlated short factors (i.e., small J and high

	), and may even be smaller than 1. The last few eigenvalues are

then equal to a variable’s unexplained variance. Note that the sum

of all eigenvalues equals JK.

Sample level. Because of random variation at the sample

level, sample eigenvalues will deviate from the population

eigenvalues derived above. As far as we know no useful theory

on the distribution of empirical eigenvalues exists when there is

an underlying factor structure, that is, when at least some

variables are correlated in the population. However, a sampling

dispersion effect similar as under the null model can also be

expected to apply.

An extract of Monte Carlo simulation results is shown in

Table 1 to illustrate that two mechanisms play a role: A struc-

tural dispersion effect due to the factor model and a residual

dispersion effect as under the null model. In general, the first

half of eigenvalues in each part (i.e., structural and residual) is

pulled upward, whereas the second half of eigenvalues in each

part is pulled downward. This is apparent from the results of

2,000 simulations on a reference model presented in the first

columns of Table 1. The reference model is based on two

uncorrelated factors, four items per factor with a � .8, and

sample size n � 100. The first population eigenvalue is over-

estimated; the second one is underestimated, whereas the sum

of these two sample eigenvalues is approximately equal to the

sum of population eigenvalues (small bias, last row). As can be

expected, increasing the sample size to get a better � ratio,

reduces the sampling bias in both the factor and the residual

part (Condition 1 in Table 1). Decreasing the factor loadings

(Condition 2) degrades the separation between the structural

and the residual parts, because eigenvalues of the structural part

decrease whereas those of the residual part increase, and the

two dispersion biases can get mixed together for the latter half

of the K factors. Consequently, the fuzzy boundaries between

the structural and residual part will make it increasingly more

difficult to correctly identify multiple factors, and bias for the

structural part increases (last row). Increasing the correlation

between factors appears to reduce the structural dispersion

effect for strong factor structures, but not the residual disper-

sion effect (Condition 3). Combining decreased factor loadings

and increased interfactor correlations blurs the boundaries again

between the structural and residual part, with again higher bias

for the structural part (Condition 4).

Toward Factor Retention Under the Factor Model

In parallel analysis, all reference eigenvalues are simulated

under the null model of no-structure (i.e., independence). Al-

though this procedure has been shown to perform well in a

whole range of conditions, parallel analysis underestimates the

number of factors in conditions with oblique factors that highly

correlate, particularly when each factor is assessed with few

variables (Beauducel, 2001; Cho et al., 2009; Crawford et al.,

2010; De Winter, Dodou, & Wieringa, 2009; Garrido et al.,

2013; Green et al., 2012; Turner, 1998; Zwick & Velicer, 1986).

Harshman and Reddon (1983) were among the first to give an

intuition about why parallel analysis can break down, and what

should be done to fix this. The problem is an instance of an

Table 1

Bias in Sample Eigenvalues Under a Factor Population Model as a Function of Factor Structure

Condition:
J

Reference model

Condition 1:
Increased sample
size to n � 500

Condition 2:
Decrease factor

loading to
a � .4

Condition 3:
Increase factor

correlation to 	 � .6
Condition 4:

	 � .6 and a � .4

lj �j Bias lj �j Bias lj �j Bias lj �j Bias lj �j Bias

1 3.18 2.92 .26 3.03 2.92 .11 1.71 1.48 .23 4.46 4.46 .00 1.94 1.86 .08
2 2.67 2.92 �.25 2.81 2.92 �.11 1.42 1.48 �.06 1.40 1.38 .02 1.26 1.10 .16
3 .51 .36 .15 .42 .36 .06 1.10 .84 .26 .50 .36 .14 1.07 .84 .23
4 .43 .36 .07 .39 .36 .03 .96 .84 .12 .43 .36 .07 .95 .84 .11
5 .37 .36 .01 .37 .36 .01 .85 .84 .01 .37 .36 .01 .84 .84 .00
6 .32 .36 �.04 .35 .36 �.01 .75 .84 �.09 .32 .36 �.04 .74 .84 �.01
7 .28 .36 �.08 .33 .36 �.03 .65 .84 �.19 .28 .36 �.08 .65 .84 �.19
8 .23 .36 �.13 .30 .36 �.06 .54 .84 �.30 .23 .36 �.13 .54 .84 �.30

1 � 2 5.86 5.84 .02 5.84 5.84 .00 3.13 2.96 .17 5.86 5.84 .02 3.20 2.96 .24

Note. Sample eigenvalue lj, population eigenvalue �j; Sample data has sample size n � 100 for J � 8 items under a reference model of simple structure
with K � 2 orthogonal factors (factor correlation 	 � .0), with four items loading on each factor with loading a � .8.
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ill-defined reference. In principle the null model only applies as

an adequate reference to the very first observed eigenvalue. The

second eigenvalue is conditional upon the structure in the data

that is captured by the first eigenvalue. In case of oblique

factors, particularly when scales are short, the first eigenvalue

is relatively very large, whereas the succeeding eigenvalues will

be necessarily much smaller because of the total variance

constraints in the eigenvalue decomposition (i.e., sum of eigen-

values � total variance). Hence, a more accurate reference for

the second observed eigenvalue is the second eigenvalue of a

conditional null model, that is, assuming independence of re-

siduals, conditional on the previous factor. To conclude, a

well-behaved factor retention procedure should consider taking

into account the serial nature of eigenvalues.

Two recently proposed factor retention procedures take into

account the serial nature of eigenvalues. Both computer-intensive

procedures first estimate factor models with 1 up to X factors on

the observed dataset, and then simulate new datasets according to

each of these estimated models (i.e., parametric bootstrap) to serve

as reference base factor retention decisions. Green, Levy, Thomp-

son, Lu, and Lo (2012) suggest using a procedure in which the

sampling distribution of the reference eigenvalues is con-

structed sequentially: The jth eigenvalue of the real data is

compared to the Monte Carlo sampling distribution of the jth

eigenvalue based upon simulated datasets generated in corre-

spondence with the model with (j � 1) factors that was esti-

mated upon the real data. This means, for instance, that for the

second eigenvalue the reference sampling distribution is based

upon the estimated 1-factor model, whereas for the third eigen-

value it is based upon the estimated 2-factors model. Ruscio and

Roche (2012) proposed to compute the discrepancy between the

simulated eigenvalues under each factor model and the ob-

served eigenvalues, and to assess by means of sequential model

comparison which of the data-generating models fits the ob-

served data best. Both procedures were shown to yield a con-

siderable improvement in performance over parallel analysis in

the case with oblique factors.

Yet, the two aforementioned procedures have some disadvan-

tages in common. First, they are not linked to statistical theory on

eigenvalues, which prevents deriving conditions when the proce-

dures can be expected to perform well. Second, both procedures

require extensive Monte Carlo simulations which hinder wide-

spread application in practice. Nevertheless, because both proce-

dures take the serial nature of eigenvalues into account and are

shown to perform better than parallel analysis in applications with

short correlated scales, we examine their factor retention perfor-

mance later on in the Comparison to Computer-Intensive Methods

and Goodness-of-Fit Tests section.

An Empirical Kaiser Criterion (EKC)

The EKC also takes into account the serial nature of eigenval-

ues, but does not have the disadvantages of the procedures of

Green et al. (2012) and Ruscio and Roche (2012): The EKC is both

linked to statistical theory and researchers’ practice to obtain

reliable scales, does not require simulations, and is straightforward

to apply. The development of the EKC is based on three theoret-

ically motivated ingredients that together formulate an adaptive

sequence of reference eigenvalues lEKC � �l1
EKC, . . . , lJ

EKC�. The

first ingredient in the EKC makes use of the known sampling

behavior of eigenvalues under the null model and starts by setting

the first reference eigenvalue to the asymptotic maximum sample

eigenvalue under the null model: l1
EKC � lup � (1���)2. Hence,

this first reference value will be a direct function of the variables-

to-sample-size ratio (i.e., � � j/n) in the dataset as given in the

Marčenko-Pastur distribution.

The second ingredient in the EKC is an expression for calcu-

lating reference values for subsequent eigenvalues that takes into

account the serial nature of eigenvalues by means of a proportional

empirical correction of the first reference value as a function of

prior observed sample eigenvalues:

lj
REF �

J � �
j�0

j�1

lj

J � j � 1
(1 � ��)2, with l0 � 0.

The correction factor
J� �

j�0

j�1
lj

J�j�1
has three interpretations: It is (a) the

average remaining variance after accounting for the first up to the

(j � 1)th observed eigenvalue, (b) the theoretical minimum value

of lj, and (c) the population value of 
j if the null model of

conditional independence were true after accounting for (j � 1)

factors.

The third and final ingredient of the EKC is the requirement

that the observed eigenvalue should exceed 1. We include this

restriction into the factor retention procedure for three reasons.

First, a theoretical justification is that for a scale to have

positive reliability, it is necessary and sufficient that the asso-

ciated eigenvalue be greater than 1 (Kaiser, 1960, p. 145).

Second, a practical justification is that we want to prevent the

procedure to retrieve correlated residuals (corresponding to

bloated specifics) or unique factors (single variables with neg-

ligible to small loadings on all factors) as factors. Third, this

restriction ensures that, at the population level, the EKC is

equivalent to the original Kaiser criterion (i.e., for infinite n, all

reference eigenvalues would be 1).

Putting all ingredients together, the expression for reference

eigenvalues of the EKC becomes:

lj
EKC � max

� J � �
j�0

j�1

lj

J � j � 1
(1 � ��)2, 1

�
, with l0 � 0. (2)

Applying the EKC then implies to retain all factors 1 up to K for

which lj 	 lj
EKC

∀j � �1, K�.

Illustration

Consider a factor model with four factors, each consisting of

five variables with loadings equal to .564 (i.e., corresponding to a

[sub]scale reliability of .7; see next section). The correlation be-

tween factors is .6, and two of the scales have bloated specifics,

that is, a pair of variables with a correlation between their resid-

uals, here equal to .4. Figure 3 illustrates how the EKC works at

the population level (infinite n, panel b) and at the sample level

(n � 200, panel c). The fourth column of panel a presents the

“observed” eigenvalues of one dataset generated using the speci-

fied factor structure.

EKC retrieves the four factors with eigenvalues greater than

1, both at the sample and population level, as indicated by the
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four eigenvalues above EKC’s reference values (black solid

lines). Note that without the eigenvalue-greater-than-one re-

striction, EKC retrieves 14 factors at the population level,

because all first 14 population eigenvalues are larger than the

average of subsequent population eigenvalues (black dashed

line in panel b), with population eigenvalues 15 and 16 corre-

sponding to the bloated specific item pair.

Panel c and the last three columns of panel a of Figure 3

illustrate the performance of the EKC at the sample level and

contrast it with parallel analysis using 100 iterations, column-

wise row permutations, and employing the 95th percentile as

reference value. There are four times five items for a sample

size of 200 in this example, so the first reference eigenvalue

under EKC amounts to (1���)2 � 	1 � �20 ⁄ 200
2 � 1.73.

We observe that, as expected, EKC and parallel analysis, which

has 1.71 as the first reference value, have a similar starting

point. Panels a (last two columns) and c show that subsequent

reference values of the EKC are lower than those of parallel

analysis, because EKC accounts for the large first sample

eigenvalues. As a result, parallel analysis fails to pick up the

multidimensional structure, whereas EKC correctly retrieves all

four factors in the sample data. In the next sections we show

that we can relatively accurately predict when the EKC will

correctly retrieve the number of factors and when it likely goes

wrong.

Research Design

Acceptable Scales

Earlier, we have stressed the importance of looking at perfor-

mance of factor retention methods under practically relevant con-

ditions, that is, we presuppose that researchers are aiming to

identify factors from which acceptable scales can be constructed.

Following others, we argue that only factors or scales containing at

least three variables are viable (e.g., Glorfeld, 1995; Velicer &

Fava, 1998; Zwick & Velicer, 1986). Moreover, we consider a

scale acceptable if corrected-item total correlations are at least .3

(see, e.g., Nunnally & Bernstein, 1994) and the scale is sufficiently

reliable. We consider sufficient reliability values of .6 to .9 in

multiples of .1. Using a factor model, we can now derive require-

ments on factor loading a to obtain acceptable scales of J items

with reliability �.

The population reliability of a scale consisting of J homog-

enous (i.e., parallel) variables, which equals Cronbach’s alpha

of that scale, with variance 1 and factor loading a can be

expressed as:


 �
J

J � 1
Cov(X)
Var(X)

�
J

J � 1
J(J � 1)a2

J(J � 1)a2 � J
�

Ja2

(J � 1)a2 � 1
.

From here, we can derive the value of loading a to obtain a

certain population �:

a �� 

J � (J � 1)


. (3)

Table 2 tabulates a as a function of J (rows) and � (columns).

For instance, to obtain a population reliability � equal to .7 for a

scale consisting of 20 parallel items, factor loadings of .323 are

required. Notice that the factor loading required to obtain a given

reliability decreases in J, because � increases with the number of

items while keeping a constant.

If only corrected item-total correlations of at least .3 are deemed

satisfactory in practice, then 8, 16, 32, 81 parallel items with

loadings of at least .397, .357, .333, .316 (printed in bold in Table

Figure 3. Example illustrating the Empirical Kaiser Criterion (EKC) with and without the greater-than-1

restriction. Note. Successive columns of (a) present the population eigenvalues (� j), population reference

eigenvalues using the unrestricted EKC	� j
REF
, sample eigenvalues (lj), and its reference eigenvalues using

parallel analysis 	l j
Parallel
 and the unrestricted EKC 	l j

REF
. The bold reference eigenvalues shows that EKC

selects four factors in the example, whereas parallel analysis selects one factor. Panels (b) and (c) depict

the same information for the population and sample respectively, with eigenvalues (black squares) and

reference eigenvalues (black [dashed] solid line for [unrestricted] EKC and gray solid line for parallel

analysis). EKC is identical to Kaiser’s greater-than-one rule at the population-level in panel (b).
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2), respectively, yield a population reliability of at least .6, .7, .8,

.9, respectively.1,2 In other words, longer scales yielding these

reliability values are considered unsatisfactory in practice because

the interitem correlations are (too) weak (with corrected item-total

correlations smaller than .3). On the other hand, shorter scales

yielding these reliabilities contain stronger indicator variables

(with higher corrected item-total correlations) and are therefore

satisfactory in practice.

Monte Carlo Experiments

The performance of the EKC is evaluated through a series of

Monte Carlo simulation experiments. Experiments are defined by

their data-generating population factor model, which are the null

model, unidimensional factor models, and orthogonal and oblique

multidimensional factor models. Across the set of experiments, the

following design properties are manipulated: sample size n �

(100, 250, 500), number of items per factor J � (3, 8, 16, 32, 81),

scale reliability � � (.6, .7, .8, .9), number of factors K � (0, 1, 2,

3, 4, 5), and correlation between factors 	 � (0, .2, .4, .6, .8). Exact

combinations of experimental factors and levels depend on the

experiment. For the null model only sample size and number of

items are considered, and for multidimensional factor models K �

1 and J � 81, for orthogonal and unidimensional models 	 � 0.

Additionally, we examined the performance of the retention crite-

ria in an experiment focusing on short scales (J � 3–6).

For all experiments, 2,500 datasets are simulated in each con-

dition, with variables being multivariate normally distributed with

a correlation matrix defined by the data-generating population

model. For factor models we assume simple structure with homog-

enous factor loadings as derived in Equation 3. The population

factor models that are in line with our definition of an acceptable

scale correspond to conditions for which J � 8 & � � .6, J � 16

& � � .7, J � 32 & � � .8, and J � 81 & � � .9.

Analytical Predictions

For each experiment, analytical predictions are made on under

which conditions the EKC can be expected to successfully retrieve

the number of factors of the data-generating model. The analytical

predictions are based on a comparison between the population

eigenvalues of the data-generating model (see Equation 1) and the

EKC’s reference eigenvalues for the condition’s sample size and

number of variables (see Equation 2), where we plug in the

population eigenvalues to the correction factor as proxy for

the sample eigenvalues. We expect our predictions to be conser-

vative (i.e., too restrictive), as the first sample eigenvalue(s) will

be typically larger than the corresponding population eigenvalues.

Specific details of the experimental design and analytical predic-

tions for each simulation can be found in the corresponding Re-

sults section.

Performance Evaluation

For each experimental condition, the percentage of datasets for

which the number of factors of the data-generating model is

correctly identified is computed per factor retention method. This

percentage is referred to as “hit rate” or “power,” because it

corresponds to the probability of correctly specifying the true

“hypothesis” or number of factors. In the further evaluation of

these results, a distinction will be made between relevant condi-

tions with acceptable scales and less relevant conditions with

unacceptable scales. Performance of the EKC will be classified as

successful if it reaches a hit rate of at least 80% (cf., common

power value) in conditions with acceptable scales where the

method is predicted to work.

EKC’s performance was compared to that of parallel analysis.

For parallel analysis, a version was employed based on 100 iter-

ations using column-wise row permutations and the 95th percentile

as reference value (Glorfeld, 1995). This version of parallel anal-

ysis performs well in many studies (Buja & Eyuboglu, 1992;

Dinno, 2009; Garrido et al., 2013; Hayton et al., 2004; Peres-Neto

et al., 2005; Ruscio & Roche, 2012; Velicer, Eaton, & Fava, 2000).

Given that EKC is an empirical version of the original Kaiser

criterion, the performance of the latter was also evaluated, but only

in the context of short correlated scales, because it may perform

well in this context whereas it is well-known to perform very badly

in most other conditions. Other factor retention methods were not

included in our analyses because they either perform worse than

parallel analysis or are not easily applicable.

Results

The Null Model: Zero Factors

Theoretical expectations. By definition of the procedure par-

allel analysis was expected to have a power of about 95% to detect

zero factors. EKC was also predicted to have high power since

1 Population corrected item-total correlation

RXjX�j
�

Cov(Xj, X�j)

�Var(Xj)Var(X�j)
�

(J � 1)a2

�1 � �(J � 1)(J � 2)a2 � (J � 1)�
.

2 Scales with satisfactory corrected item-total correlations amount to
interitem correlations equal to at least .158 (a � .397, � � .6, J � 8), .127
(a � .357, � � .7, J � 16), .111 (a � .333, � � .8, J � 32), and .100 (a �
.316, � � .9, J � 81).

Table 2

Factor Loading a Required to Obtain Scale Reliability � as a

Function of Number of Items J

Number of
items

J

Scale reliability

� � .6 � � .7 � � .8 � � .9

3 .577 .661 .756 .866
4 .522 .607 .707 .832
5 .480 .564 .667 .802
6 .447 .529 .632 .775
7 .420 .500 .603 .750
8 .397 .475 .577 .728

10 .361 .435 .535 .688
12 .333 .403 .500 .655
16 .293 .357 .447 .600
20 .264 .323 .408 .557
25 .238 .292 .371 .514
32 .212 .261 .333 .469
50 .171 .211 .272 .391
81 .135 .167 .217 .316
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L1 � (1���)2 is the asymptotically expected first sample eigen-

value under the null model.

Monte Carlo results. The Monte Carlo results summarized in

Table 3 supported our expectations. The hit rate of parallel analysis

was 95% in all 15 conditions; hit rate of the EKC even surpassed

95% for up to 32 variables, whereas power was somewhat lower

than 95% for 81 variables. For the record, the traditional Kaiser

criterion was too liberal: It retrieved more than two factors in 49%

of the iterations in the J � 3 conditions, and 100% in all other

conditions.

Unidimensionality: One Factor

Theoretical expectations. We predict the EKC to correctly

identify the single factor whenever the population eigenvalue 
1

exceeds the asymptotically expected first sample eigenvalue under

the null model (1���)2. Hence, the analytical predictions (con-

trasting Equation 1 and 2) are based on whether it holds that:

J
J � (J � 1)


	 (1 � �J ⁄ n)2.

Solving for sample size n, we predict that EKC will work for all

60 conditions except for three of the practically irrelevant condi-

tions: (J � 32, � � .6, n � 108), (J � 81, � � .6, n � 252), and

(J � 81, � � .7, n � 127). Given that the first reference eigenvalue

under parallel analysis is the simulated counterpart of the first

reference eigenvalue for EKC, we do not anticipate large differ-

ences between the performances of the two methods.

Monte Carlo results. In Table 4 we provide the percentage of

correct identifications by both EKC as well as parallel analysis as

a function of reliability, number of variables, and sample size.

These results can be summarized as follows: (a) For relevant

conditions corresponding to acceptable scales for which EKC is

predicted to work (upper right of Table 4, normal font), the single

factor corresponding to the acceptable scale was correctly identi-

fied in all conditions, and this by both methods; with a hit rate of

at least 93% (M � 97.8%) for EKC and at least 97.5% (M �

99.8%) for parallel analysis. Parallel analysis slightly outper-

formed EKC in most of these conditions. (b) For irrelevant con-

ditions with a practically unacceptable scale but for which EKC is

still anticipated to work (lower left of Table 4, italic font), EKC

still had a high hit rate (at least 93.5%, M � 95.9%), whereas

parallel analysis showed more variable and generally weaker per-

formance (at least 78.6%, M � 92.3%). (c) Finally, for irrelevant

conditions with a practically unacceptable scale for which EKC

does not give theoretical guarantees (Table 4, bold font), the

anticipated underperformance is confirmed. EKC’s performance

was still good (89.7, 92.2, and 95.0%) in conditions almost satis-

fying 
1 � (1���)2, but considerably worse when this was

clearly not satisfied (62.2%; J � 81, � � .6, n � 100). In contrast,

parallel analysis’ performance was under the 80% threshold in all

these conditions (48.4%–77.5%).

Multidimensionality: K Orthogonal Factors

Theoretical expectations. Given that the K population eigen-

values are all equal to
J

J � 	J � 1

 under this design, we predict the

EKC to correctly identify the K orthogonal factors whenever the

first population eigenvalue 
1 exceeds the asymptotically expected

first sample eigenvalue under the null model (1���)2. The sec-

ond to Kth population eigenvalue will also exceed their corre-

sponding reference values as EKC corrects the starting reference

eigenvalues downward for each subsequent factor. Hence, the

analytical predictions are based on whether it holds that:

J
J � (J � 1)


	 (1 � �JK ⁄ n)2.

We are aware that the sample structural eigenvalues differ

systematically from their corresponding population eigenvalues,

and that this may affect the accuracy of our predictions. In the

orthogonal case the first half of the structural eigenvalues has a

positive bias, whereas the second half of structural eigenvalues has

a negative bias (Table 1, columns 2 and 3, row 4). This implies that

the first half of the structural sample eigenvalues will be more

easily retrieved than the latter half. Yet, this positive bias also

results in even lower subsequent reference eigenvalues and we

expect that this downward adjustment will compensate for the

slightly downward bias in the latter half of structural sample

eigenvalues. Our predictions’ accuracy in the simulation study will

shed light on this issue.

Table 5 presents the predictions on EKC’s performance as a

function of sample size, reliability, and number of factors. Scale

lengths from J � 3 up to J � 70 items were examined. Each cell

presents the maximum scale length at which EKC is still predicted

to accurately retrieve the number of factors. For instance, the

number “28” for n � 100, � � .7, K � 2 means that EKC is

predicted to accurately retrieve two factors if each of the two

equally long scales consists of up to 28 homogenous items with

factor loadings resulting in a scale reliability of .7. Using the fact

that scales are acceptable up to length J � 8, 16, 32, for reliabilities

� � .6, .7, .8, respectively, it follows from Table 5 that EKC is

Table 3

Percentage of Correct Identifications of Zero Factors as a Function of Sample Size n and the

Number of Variables J

K � 0 EKC Parallel analysis

J n � 100 n � 250 n � 500 n � 100 n � 250 n � 500

3 99.2 99.4 99.2 94.3 95.6 95.2
8 97.9 98.2 97.6 94.7 95.5 95.0

16 97.1 97.0 96.6 95.5 95.2 95.0
32 96.2 96.0 95.4 95.2 95.4 94.8
81 94.4 94.4 93.6 95.4 95.4 95.6
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predicted to retrieve up to five acceptable scales for sample

sizes of 250 and 500. For N � 100, EKC is not predicted to

perform well for three or more acceptable scales with � � .6,

for four or five acceptable scales with � � .7, and for five

scales with � � .8. We excluded the theoretical predictions for

� � .9 from Table 5 because EKC is predicted to perform well

in all these conditions.

Monte Carlo results. Table 6 summarizes the simulation

results by presenting the hit rate across the 192 conditions as a

function of scale quality (i.e., acceptable or not) and theoretical

predictions. (a) Both EKC and parallel analysis perform at a very

high standard in conditions containing acceptable scales for which

EKC is predicted to correctly identify the number of factors (upper

left). Only in the two conditions with acceptable scales where the

number of variables was larger than the sample size (cf. � ratio �

1), EKC showed a hit rate under 90% (i.e., 82% and 87%).

Noteworthy is that EKC accurately retrieved the number of factors

when it was predicted to work even in the 18 conditions with

unacceptable scales, whereas parallel analysis broke down (lower

left). (b) Both EKC and parallel analysis showed bad performance

in the 30 conditions where we were unable to give theoretical

guarantees that the EKC would work (right column). In the 12

conditions containing acceptable scales (upper right) there is a

large variability in performance as indicated by the large differ-

ence between minimum and mean hit rate. Not surprisingly, all 12

conditions are characterized by low sample sizes (n � 100) and the

worst performing of these combine small sample size with low

scale reliability (� � .6) and many factors (K 
 4; i.e., all

ingredients for a small signal-to-noise ratio).

Multidimensionality: K Oblique Factors

Theoretical expectations. We predict EKC to correctly re-

trieve the number of factors if �k 	
KJ � �j�0

k�1
�j

KJ � K�1
	1 � �KJ⁄n
2 �

Lk
*, for all values k � 1, . . . , K. Using population structural

eigenvalues we derived a range for the correlation between factors

(	) for which this condition is satisfied. This yields three condi-

tions for 	, as a function of sample size, number of factors,

reliability of scales (or factor loading), and number of items.

The first condition is that the first population eigenvalue 
1 


L1, which is satisfied if

� 

(1 � ��)2 � 1 � (J � 1)a2

(K � 1)Ja2
. (4)

Table 4

Percentage of Correct Identifications of One Factor by the Empirical Kaiser Criterion (EKC) and Parallel Analysis as a Function of

Reliability (�), Number of Variables (J), and Sample Size (N)

K � 1 EKC Parallel analysis

J n � � .6 � � .7 � � .8 � � .9 � � .6 � � .7 � � .8 � � .9

3 100 98.9 100.0 100.0 100.0 99.7 100.0 100.0 100.0
250 100.0 99.9 99.8 100.0 100.0 100.0 100.0 100.0
500 99.9 99.9 100.0 99.9 100.0 100.0 100.0 100.0

8 100 98.2 98.8 98.7 97.6 98.0 99.9 100.0 100.0
250 99.2 98.8 98.2 97.5 99.9 100.0 100.0 100.0
500 98.8 97.4 98.0 97.6 100.0 100.0 100.0 100.0

16 100 96.1 98.1 97.8 96.2 91.6 97.8 99.9 100.0
250 98.6 98.0 97.5 96.6 98.1 99.8 100.0 100.0
500 97.6 97.4 96.8 95.8 99.3 100.0 100.0 100.0

32 100 89.7 96.6 96.0 94.6 77.5 90.4 97.5 100.0
250 96.6 96.8 96.0 95.6 89.8 96.6 99.9 100.0
500 97.0 96.4 95.9 95.6 94.7 98.9 100 100.0

81 100 62.2 92.2 94.4 93.0 48.4 75.3 88.3 98.7
250 95.0 94.8 94.9 94.0 75.7 84.2 94.5 99.9
500 93.5 94.9 93.8 94.4 78.6 89.3 97.7 100

Note. The 18 conditions with practically unacceptable scales are printed in italics; the conditions for which EKC does not give theoretical guarantees are
also printed in bold.

Table 5

Maximum Scale Length at Which EKC is Predicted to Accurately Retrieve the Number of Factors as a Function of Sample Size (N),

Reliability (�), and Number of Factors (K)

K

n � 100 n � 250 n � 500

� � .6 � � .7 � � .8 � � .6 � � .7 � � .8 � � .6 � � .7 � � .8

2 12 28 68 � � � � � �
3 X 16 43 23 51 � 52 � �
4 X 10 30 16 37 � 37 � �
5 X 6� 22 12 28 68 29 62 �

Note. � � performance guarantee for scale length J � 3 up to J � 70; X � no performance guarantee given; � � no performance guarantee for scale
length J � 3.
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It is obtained by equating 
1 to L1. The first condition reflects

the fact that the first eigenvalue increases with the correlation

between factors. The second condition is that �2 
 L2
*. Note that if

the first factor is retrieved, the first sample eigenvalue exceeds L1,

and hence it follows from Equation 2 that L2
* exceeds L2. There-

fore, if �2 
 L2
* it also exceeds L2. The second condition holds if

� �
1 � (J � 1)a2(KJ � 1) � (1 � ��)2(KJ � 1 � (J � 1)a2)

Ja2(KJ � 1) � (1 � ��)2(K � 1)Ja2

(5)

which is obtained by equating 
2 to L2
*. Because 
2 � . . . � 
K and

L2
* 	 . . . 	 LK

* , we get �k 
 Lk
* for all 2 � k � K. The second

condition reflects that the 2nd to Kth eigenvalues decrease with the

correlation between factors; if this correlation is too high, the 2nd

to Kth eigenvalues will not exceed their corresponding reference

values. The third and final condition is that 
2 � . . . � 
K 
 1.

It directly follows from Equation 1 that the third condition holds if

� �
J � 1

J
. (6)

The third condition reflects that, if the correlation between

factors is too high, the remaining structural eigenvalues will be

smaller than 1. Again, we are aware that the sample structural

eigenvalues differ systematically from their corresponding popu-

lation eigenvalues, and that this may affect the accuracy of our

predictions.

Table 7 presents the correlation ranges for the conditions cor-

responding to acceptable scales (� � .6, J � 3, 8), (� � .7, J �

3, 8, 16), and (� � .8, J � 3, 8, 16, 32). For instance, the “.325”

in row “K � 2, J � 16” and column “N � 100, � � .7” means that

in this condition EKC is predicted to accurately retrieve the two

Table 6

Monte Carlo Experiment for Orthogonal Factors: Hit Rate (i.e., Correctly Identified Factors) as

a Function of Scale Quality and Theoretical Predictions for the Empirical Kaiser Criterion

#C � 192

EKC Predicted to work EKC No guarantee provided

#C � 144 EKC PAR #C � 12 EKC PAR

Acceptable scales Mean .98 .99 Mean .67 .72
Min .82 .84 Min .11 .46

#C � 18 EKC PAR #C � 18 EKC PAR

Unacceptable scales Mean .97 .75 Mean .47 .37
Min .95 .33 Min .00 .11

Note. #C indicates the number of represented experimental conditions. EKC � Empirical Kaiser Criterion;
PAR � parallel analysis.

Table 7

Range for the Correlation Between Factors (	) as a Function of Sample Size n, Number of Factors K, Reliability of Scales �, and

Number of Items J per Factor, for Which EKC is Predicted to Perform Well

n � 100 n � 250 n � 500

� � .6 � � .7 � � .8 � � .6 � � .7 � � .8 � � .6 � � .7 � � .8

K � 2
J � 3 .469 .658 .667� .667� .667� .667� .667� .667� .667�

J � 8 .264 .527 .724 .576 .727 .841 .714 .816 .875�

J � 16 X .325 .606 X .616 .776 X .743 .850
J � 32 X X .410 X X .671 X X .783

K � 3
J � 3 .012–.203 .488 .667� .571 .667� .667� .667� .667� .667�

J � 8 X .352 .622 .439 .639 .790 .628 .761 .860
J � 16 X .089 .469 X .498 .707 X .669 .807
J � 32 X X .204 X X .570 X X .721

K � 4
J � 3 X .311 .598 .455 .650 .667� .650 .667� .667�

J � 8 X .185 .524 .316 .560 .743 .552 .712 .832
J � 16 X X .337 X .391 .645 X .604 .769
J � 32 X X X X X .478 X X .665

K � 5
J � 3 X .01–.12 .486 .342 .577 .667� .586 .667� .667�

J � 8 X .012–018 .427 .199 .485 .700 .482 .667 .806
J � 16 X X .209 X .290 .586 X .543 .734
J � 32 X X X X X .390 X X .613

Note. Only the upper bound of the range is given; the lower bound is equal to zero, unless mentioned otherwise. X � no performance guarantee can be
given for EKC in this condition; � � the upper bound is set to (J � 1)/J, the third condition of the EKC such that 
2 � . . . � 
K 
 1.
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factors if their correlation is in the interval [0, .325]. Note that

there are three cells (e.g., K � 3, J � 3, � � .6, N � 100) with a

correlation range excluding 	 � 0, suggesting that in some con-

ditions EKC may perform better if factors are slightly correlated

than when they are uncorrelated. This occurs if 	 � 0 and L1 



1 � �2 
 L2
*; because 
1 is increasing in 	, and 
2 is decreasing

in 	, a slight increase in 	 may result in 
1 
 L1 
 �2 
 L2
*. A

further increase of 	 ultimately yields �2 � L2
*. Hence, EKC is not

predicted to perform well when factors are strongly correlated,

particularly so for smaller sample size, more factors, lower reli-

ability, and more variables (conditional on reliability). Some cor-

relation ranges are indexed with �, which reflects that the upper

bound of the range is equal to (J � 1)/J (see Equation 6). This also

reflects that EKC may detect the K factors, after omitting the

restriction 
j 
 1.

Monte Carlo results. Table 8 summarizes the simulation

results by presenting the hit rate across the 768 conditions as a

function of scale quality (i.e., acceptable or not) and theoretical

predictions. We predicted EKC to correctly retrieve the number of

factors in 407 conditions with acceptable scales (upper left cell).

The average hit rate across all 407 conditions was .95, and the hit

rate exceeded .8 in 384 of these conditions (94.3%), generally

corroborating the good performance of EKC. However, EKC did

not correctly retrieve the number of factors with hit rate larger than

.8 in 23 conditions (5.7%), with a minimum hit rate of .15. All

these conditions had in common that the scales consisted of J � 3

items, whereas they differed in number of scales, scale reliability,

sample size, and correlation between factors. Closer inspection of

these cases revealed that the sample structural eigenvalues, based

on three variables each, was higher than their corresponding ref-

erence value, but not higher than 1. Dropping the eigenvalue-

greather-than-1 restriction boosted EKC’s performance dramati-

cally. Average hit rate increased to 97%, whereas the hit rate

exceeded .8 in all but three conditions (99.3%), with a minimal hit

rate across all conditions equal to .71. Turning to the unacceptable

scales where EKC was also predicted to work (lower left cell),

EKC indeed performed well in all 23 conditions; the minimum hit

rate was .94, with average hit rate equal to .97.

In the conditions where EKC was predicted to work (left col-

umn), parallel analysis’ performance failed to match EKC’s per-

formance. Parallel analysis’ hit rate did not exceed .8 in 89

conditions with acceptable scales (21.9%), with a minimum hit

rate of 0% (attained for 18 conditions), whereas average hit rate

was .83. Closer inspection of conditions where parallel analysis

failed, confirmed that it mainly failed to detect strongly correlated

scales. This was the case even for conditions with scale reliability

as high as .9 (e.g., hit rate of 0.00 for five strongly correlated (	 �

.8) scales with 16 items each and sample size n � 250). Concern-

ing unacceptable scales, the hit rate of parallel analysis did not

exceed .8 in 5 of 23 conditions (22%), with the average hit rate

equal to .85.

Both EKC and parallel analysis showed bad performance in the

338 conditions where we were unable to give theoretical guaran-

tees that the EKC would work (right column); average hit rates did

not exceed .26. Noteworthy, dropping the eigenvalue-greater-

than-1 restriction did not improve EKC’s performance much;

average hit rate increased to .39 and .23 for acceptable and unac-

ceptable scales, respectively. This implies that the signal-to-noise

ratio in these conditions is just too small to allow for accurate

factor retrieval, and that our derivations accurately predicted this.

Short Scales

We set up a fully factorial Monte Carlo simulation design with

720 conditions in which we manipulated sample size n � (100,

250, 500), number of items per factor J � (3, 4, 5), scale reliability

� � (.6, .7, .8, .9), number of factors K � (2, 3, 4, 5), and

interfactor correlations 	 � (0, .2, .4, .6, .8). All population models

are in line with our definition of an acceptable scale.

Theoretical expectations. Applying our analysis using the

three conditions in Equation 4–6 yields 499 conditions in which

EKC is predicted to work, and 221 where our analytical predic-

tions would not guarantee EKC to work. We evaluate performance

of the EKC and parallel analysis, but now also explicitly include

the original Kaiser criterion. Kaiser’s criterion is expected to

perform better than parallel analysis for short correlated scales,

particularly for larger 	, for two reasons. First, the reference

eigenvalues of Kaiser (equal to 1) are smaller than those of parallel

analysis (larger than 1). Second, it follows from Equation 1 that the

2nd to Kth population eigenvalues decrease in 	 and are especially

small when scales are short. Hence, particularly for larger 	, the

2nd to Kth population eigenvalue will likely be larger than 1 but

not larger than the corresponding reference eigenvalue of parallel

analysis.

Monte Carlo results. The simulation results (see Table 9)

mirror those of the previous sections. EKC performs well when it

Table 8

Monte Carlo Experiment for Oblique Factors: Hit Rate (i.e., Correctly Identified Factors) as a

Function of Scale Quality and Theoretical Predictions for the Empirical Kaiser Criterion

#C � 768

EKC Predicted to work EKC No guarantee provided

#C � 407 EKC PAR #C � 217 EKC PAR

Acceptable scales Mean .95 .83 Mean .26 .15
Min .15 .00 Min .00 .00

#C � 23 EKC PAR #C � 121 EKC PAR

Unacceptable scales Mean .97 .85 Mean .23 .24
Min .94 .59 Min .00 .00

Note. #C � number of represented experimental conditions; EKC � Empirical Kaiser Criterion; PAR �
parallel analysis.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

460 BRAEKEN AND VAN ASSEN



is predicted to work; the average hit rate was .97, with hit rate

exceeding .8 in 468 conditions (93.8%), with minimum hit rate

equal to .17. Again, performance of the EKC was boosted if

the eigenvalue-greater-or-equal-to-1 restriction was dropped; hit

rate exceeded .8 in all but six conditions (98.8%), with minimal hit

rate across all conditions equal to .74. Performance of parallel

analysis was worse than EKC, but also worse than the original

Kaiser criterion in conditions when EKC was predicted to work;

the average hit rate was .83, but the hit rate did not exceed .8 in

23% of conditions, with 30 conditions having a hit rate smaller

than .05 (6%). Finally, all four methods performed poorly in

conditions where our analytical predictions would not guarantee

EKC to work (average hit rates were .18, .07, .46, and .25 for the

EKC, parallel analysis, the unrestricted EKC, and the original

Kaiser criterion, respectively).

Comparison to Computer-Intensive Methods and

Goodness-of-Fit Tests

Finally, we conclude this series of Monte Carlo experiments

with a head-to-head comparison of parallel analysis and the EKC

to other methods. These methods include the two computer-

intensive methods of Green et al. (2012) and Ruscio and Roche

(2012). For these two methods 100 parametric bootstrap samples

were estimated per estimated factor model. Two other methods are

based on goodness-of-fit tests within the structural equation mod-

eling framework, that is, the chi-square test of exact fit and the

RMSEA test for close fit. For these methods a parsimony heuristic

was applied that selects the factor model with the least number of

factors for which the goodness-of-fit test of exact/close fit was not

rejected. Table 10 summarizes the procedures of all methods.

Notice that Green et al.’s (2012) method is a more direct logical

extension of parallel analysis, whereas Ruscio and Roche’s (2012)

method is more similar to the goodness-of-fit statistics in the sense

that their underlying reference statistic is based on the full eigen-

values series under a simulated model.

The comparison is focused on conditions that pose the greatest

challenges to factor retention methods: Few items per factor (J �

3) for a relatively large number of factors (K � 3) with low scale

reliability (� � .6, i.e., relatively low factor loadings), and inter-

factor correlations varied across four levels 	 � (0, .25, .5, .75)

with higher correlations being more challenging for accurate factor

retention. All population models are in line with our definition of

an acceptable scale and will be tested across three sample size

levels n � (100, 250, 500), leading to an experimental design with

12 conditions. We feel it is important to mention here that we did

not examine other conditions; hence, we did not select these 12

conditions post hoc to give the impression that some methods

perform particularly good or bad relative to the EKC. Finally, we

do not report the results of the unrestricted EKC because it did not

perform substantially better than the EKC.

Theoretical expectations. Our analysis using Equations 4–6

predicts the EKC to accurately predict the number of factors in five

out of 12 conditions. These are indicated by bold sample sizes in

Table 11. Based on the results of previous sections, we expect the

predictions to be correct and a deterioration of the performance of

parallel analysis for correlated scales. Given that the chi-square

and RMSEA test are asymptotically based, it may be possible that

their performance is relatively worse in conditions with small

sample size (n � 100).

Monte Carlo results. Corroborating our expectations and pre-

vious results, the EKC accurately retrieves the number of factors

when it is predicted to do so (hit rate 
 .97), and fails to do so

otherwise (hit rate � .71; see Table 11). Moreover, parallel anal-

ysis performed very bad in one condition where the EKC per-

formed well (hit rates of .17 vs. .97, respectively, for 	 � .5 and

n � 500). Importantly, the methods of Green et al. (2012); Ruscio

et al. (2012), and the chi-square test performed well when the EKC

was predicted to perform well (hit rates 
 .99, 
 .92, 
 .94,

respectively), and also performed worse otherwise (hit rates �

.83, � .65, � .61). The RMSEA test did not perform well, at least

not as we implemented it; it failed to accurately retrieve the

number of factors in two out of five conditions where the other

methods performed well. Hence, our general conclusions are that

our method for predicting conditions of accurate factor retention

also seems to work for three other methods, and in the case of

correlated short scales EKC and these three other methods perform

about equally well and outperform parallel analysis.

Application: The Guilt and Shame Proness

Scale (GASP)

Cohen, Wolf, Panter, and Insko (2011) developed and validated

the GASP to measure individual differences in the propensity to

experience the related moral emotions guilt and shame. The 16-

item GASP consists of four highly correlated subscales called

guilt-NBE (negative behavior-evaluations), guilt-repair, shame-

NSE (negative self-evaluations), and shame-withdraw, each con-

sisting of four items with seven response alternatives. The GASP

was developed in their first study. After about half of their 450

student participants answered 60 potential GASP items (15 for

each scale), the 16 GASP items were selected based on both item

score analysis and strongest factor loadings obtained by explor-

atory factor analyses, conducted separately for each of the four

subscales. Confirmatory factor analysis (CFA) on the data of

remaining participants validated the 16-item GASP scale. CFA

also validated GASP’s factor structure in their Study 2 with 862

Table 9

Monte Carlo Experiment for Short Scales: Hit Rate (i.e.,

Correctly Identified Factors) Across the 720 Conditions as a

Function of Theoretical Predictions for the Empirical

Kaiser Criterion

EKC Predicted to work
EKC No guarantee

provided

#C � 499 #C � 221

EKC PAR EKC PAR

Mean .97 .83 .18 .07
Min .17 .00 .00 .00

EKC(un) Kaiser EKC(un) Kaiser

Mean .98 .89 .46 .25
Min .74 .59 .00 .00

Note. #C � number of represented experimental conditions; EKC �
Empirical Kaiser Criterion; PAR � parallel analysis; Kaiser � eigenvalue-
greater-than-one rule; EKC(un) is obtained after dropping the restriction
from EKC that factor eigenvalues should exceed 1.
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adults from an online subject pool. The four-factor model fitted

best in both samples, although both CFAs revealed three strong

correlations between factors (e.g., .67, .83, .84 in Study 2). Reli-

abilities of all the four scales varied from .61 to .69 in Study 1 and

.62 to .71 in Study 2. The construct and predictive validity GASP

were corroborated in Study 1 and Study 2, as well as in their last

Study 3. Based on Cohen et al.’s (2011) findings we assume the

GASP indeed measures four separate but highly related concepts.

Will parallel analysis and the EKC retrieve the four GASP

factors in the data of Study 1 and Study 2 of Cohen et al. (2011)?

Based on previous findings and our analysis showing bad perfor-

mance of parallel analysis in contexts with short correlated sub-

scales, we expected parallel analysis to retrieve too few factors.

Because the EKC performed well in our analysis, and also in

contexts with short correlated subscales, we expected EKC to

accurately retrieve four factors. Figure 4 shows the results of EKC

and parallel analysis on the data of the second half of Study 1

(panel a) and Study 2 (panel b). The data of the first half of Study

1 were initially not included, because these data were used to

create the four subscales. Parallel analysis suggested extracting

only two factors in both data sets. EKC retrieved four factors in the

data of the second half of Study 1, with the fourth sample eigen-

value just above the EKC reference value, and three factors in

Study 2, with the fourth sample eigenvalue being equal to .981, just

below the EKC reference value. Finally, we note that EKC retrieved

four factors when only applied to the data of the first half of Study 1,

and when applied to the dataset combining the data of the second half

of Study 1 and Study 2. Thus, all in all, the EKC provides evidence

in favor of the four factors of the GASP with four short highly

correlated scales. Yet, the results also illustrate that the factor structure

of the GASP is relatively noisy, as the forth structural eigenvalue is

not well separated from the residual eigenvalues.

Discussion

We developed a new factor retention method, the Empirical

Kaiser Criterion (EKC), which is directly linked to statistical

theory on eigenvalues and to researchers’ goals to obtain reliable

Table 10

Procedural Overview of Factor Retention Methods

Empirical Kaiser Criterion

Computation Compute lup � 	1 � �J ⁄n
2

Compute Define cumulatively summed eigenvalue vector V: vj � �i�1
j li

Omit last element and put a zero upfront: V � 	0, v1, . . . , vJ�1

Define reflected eigenvalue order vector W � 	J, J � 1, J � 2, . . . , 1


Reference eigenvalues Set vector of reference eigenvalues as max	J � V
W

lup, 1

Decision step Choose the number of factors K for which the 1st to Kth observed eigenvalue is higher than their

corresponding reference eigenvalue

Goodness-of-Fit tests Chi-square RMSEA

Estimation step Based on the observed dataset, estimate factor model with k factors;
Start at k � 0, and proceed onwards until positive decision on K

Decision step Choose the number of factors K corresponding
to the first model that does not significantly
deviate from the null hypothesis of exact fit

Choose the number of factors K corresponding
to the first model that does not significantly
deviate from the null hypothesis of close fit

Computer intensive simulation methods

Simulation step 1 Estimate factor model with k factors based on the observed dataset (if k � 0, no estimation required)
Repeatedly simulate datasets of size n by J under model with k factors
Compute eigenvalues of the correlation matrix of each simulated dataset

Parallel Analysis Green et al., 2012

Simulation step 2 Not required (k � 0) Repeat step 1 until decision has been reached
(i.e., K � 1)

Reference eigenvalues Set reference value for each observed
eigenvalue as the value corresponding to the
95% percentile in the simulated distribution
for that jth eigenvalue under the null model

Set reference value for the jth observed
eigenvalue as the value corresponding to the
95% percentile in the simulated distribution
for that jth eigenvalue under the model with
(j � 1) factors

Decision step Choose the number of factors K for which the 1st to Kth observed eigenvalue is higher than their
corresponding reference eigenvalue

Ruscio & Roche, 2012

Simulation step 2 Repeat step 1 until decision has been reached (i.e., K � 1)
Reference

For each simulated dataset, compute the root mean square residual eigenvalue: RMSR � �	lj � lj
Simulated�
2

Decision step Choose number of factors K corresponding to the first model not showing significantly lower RMSR compared
to the model with one additional factor (nonparametric difference test).

Note. n � sample size; J � total number of items.
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scales. EKC is easily visualized, and easy to compute and apply

(no specialized software or simulations are needed). EKC can be

seen as a sample-variant of the original Kaiser criterion (which is

only effective at the population level), yet with a built-in empirical

correction factor that is a function of the variables-to-sample-size

ratio and the prior observed eigenvalues in the series. The links

with statistical theory and practically relevant scales allowed us to

derive conditions under which EKC accurately retrieves the num-

ber of acceptable scales, that is, sufficiently reliable scales and

strong enough items.

Our simulations verified our derivations, and showed that (a)

EKC performs about as well as parallel analysis for data arising

from the null, 1-factor, or orthogonal factors model; and (b) clearly

outperforms parallel analysis for the specific case of oblique

factors, particularly whenever interfactor correlation is moderate to

high and the number of variables per factor is small, which is

Table 11

Monte Carlo Experiment Comparing the Hit Rate (i.e., Correctly Identified Factors) Between the Empirical Kaiser Criterion and

Alternative Methods That are Either Computer-Intensive or Rely on Asymptotical Goodness-of-Fit Tests

Condition Factor retention method

K � 3, J � 3, � � .6 n
Parallel
analysis

Empirical Kaiser
Criterion

Green et al.
2012 Ruscio Roche 2012


2

Exact fit
RMSEA
Close fit

	 � .00 100 77 69 83 65 52 19
250 100 100 99 94 95 81
500 100 100 99 94 94 100

	 � .25 100 30 35 54 35 34 8
250 90 100 99 92 94 44
500 100 100 100 95 95 90

	 � .50 100 0 2 7 3 10 1
250 3 71 81 61 61 2
500 17 97 99 93 95 6

	 � .75 100 0 0 0 0 1 0
250 0 0 1 1 4 0
500 0 0 27 13 23 0

Note. The sample sizes (n) of the conditions for which EKC does not give theoretical guarantees are printed in bold.

(a) Study 1: n  = 225  (b) Study 2: n  = 862  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1

0
1

2
3

4

j

l j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1

0
1

2
3

4

j

l j

Figure 4. Annotated screeplots for the two GASP studies. Note. Black squares represent sample eigenvalues,

whereas reference values are represented by solid black lines (EKC) and gray lines (parallel analysis, 95%

percentile).
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characteristic of many applications these days. Moreover, addi-

tional simulations suggest that our method for predicting condi-

tions of accurate factor retention also work for the more computer-

intensive methods of Green et al. (2012) and Ruscio et al. (2012).

The GASP, a scale consisting of four highly correlated subscales

of four variables each, was used as an illustration. The ease-of-use

and effectiveness of EKC make this method a prime candidate for

replacing parallel analysis, and the original Kaiser criterion that,

although it empirically does not perform too well, is still the

number one method taught in introductory multivariate statistics

courses and the default in many commercial software packages.

Furthermore, the link to statistical theory opens up possibilities for

generic power curves and sample size planning for exploratory

factor analysis studies.

The overall pattern of results for all Monte Carlo experiments is,

unsurprisingly, in line with previous simulation studies, showing

that accuracy of factor retention improves as number of variables

per scale increases, sample size increases, item strengths (factor

loadings) increase, number of scales decrease, and the interfactor

correlation decreases. In other words, performance deteriorates

with less information and a noisier factor structure. The results also

indicate that it will likely be impossible to propose universal factor

retention rules that always work, because the rules’ performance is

highly dependent on aforementioned application characteristics.

Hence, to achieve accurate factor retention in an application of

exploratory factor analysis, we recommend defining a potential set

of expected factor structures and predefining requirements for the

scales, and then conducting targeted power studies. These power

studies identify the minimum sample size needed to accurately

retrieve the number of factors given the predefined factor structure

and scale requirements.

From the perspective of power studies, an important result of

our simulations is that the formally derived predictions on perfor-

mance of the EKC were confirmed by the simulations. Generally,

the EKC accurately retrieved the number of factors in conditions

whenever it was predicted to work well, and its performance was

worse when it was not predicted to work well. More precisely, hit

rate or power exceeded .8 in accordance with predictions under the

null model, 1-factor model, the orthogonal factor model, and the

oblique factor model with more than three variables per scale.

Only in the case of minimal scales, that is, with three items per

scale, did EKC sometimes not accurately retrieve the number of

factors as predicted; dropping the restriction that eigenvalues

should exceed 1 then mended EKC’s performance. A general

guideline for application that can be derived from our results (and

would not need a study-specific power study), is that EKC will

accurately retrieve the number of factors in samples of at least 100

persons, when there is no factor, one practically relevant scale, or

up to five practically relevant uncorrelated scales with a reliability

of at least .8.

More generally, our analytic and simulation results improve

understanding of the role of sample size in factor retention. There

are many rules of thumb that prescribe minimum sample sizes for

exploratory factor analysis (see, e.g., Steger, 2006, p. 268), but that

lack clear foundations. This is for instance illustrated by de Winter,

Dodou, and Wieringa (2009) that show that in some cases sample

sizes below 50 can be sufficient. Hence, it appears that in the

current state, there is no solid advice available for sample size

planning for an exploratory factor analysis study. Yet, our tech-

nique for making theoretical predictions shows promise and can

potentially provide the basis for generic power curves and sample

size recommendations based on hypothesized factor structure or

acceptable-scale requirements.

Our predictions and results on the performance of EKC also

enable improving our understanding of findings of previous stud-

ies on factor retention. We provide a few examples, particularly

relevant for the practice of using correlated short scales. Cho, Li,

and Bandalos (2009) and Garrido et al. (2013) examined the

performance of parallel analysis with ordinal variables in a simu-

lation study. They found that “with highly correlated factors,

parallel analysis tends to moderately underfactor with the mean

eigenvalue criterion and to severely underfactor with the 95th

percentile criterion” (Garrido et al., 2013, p. 13), and “the perfor-

mance of the P[arallel] A[analysis] procedure with highly corre-

lated factors improved somewhat as the number of variables

increased. . . . also interesting to note that increases in the [factor]

loading size did little or nothing to ameliorate the effects of the

high interfactor correlations.” (Cho et al., 2009, p. 757). Explain-

ing first Garrido et al.’s (2013) finding, the population 2nd to Kth

eigenvalues decrease as a function of the interfactor correlation

(see Equation 1). As a result, parallel analysis tends to underfactor,

and factor retention methods with lower reference values perform

better, such as parallel analysis with the mean eigenvalue criterion,

and even more so the original Kaiser criterion and EKC as shown

in our study. Note, however, that parallel analysis with the mean

eigenvalue criterion and the original Kaiser criterion perform

poorly in other cases, such as no or orthogonal factors. Explaining

Cho et al.’s (2009) findings, loading size is irrelevant whenever

interfactor correlation is higher than (J � 1)/J (see Equation 6);

whatever the loading size, population eigenvalue will be smaller

than 1, and the corresponding sample eigenvalue lower than its

reference value. Finally, increasing the number of variables J will

improve performance of factor retention methods when factors are

correlated; the 2nd to Kth population eigenvalues will increase in

J linearly by a factor of (1 � 	)a2 (see Equation 1), whereas

reference eigenvalues will increase less than linearly in J.

As a final example, Green et al. (2012) examined seven variants

of parallel analysis in a simulation study varying five dimensions.

After summarizing their results they state that “readers are likely to

wonder what to make of recommendations of seven different

methods dependent on conditions of a study” (p. 16). Calculating

population eigenvalues in their conditions enables interpreting

their results. For instance, they found that the variants of parallel

analysis performed very badly when interfactor correlation was .8,

and number of variables per factor was three or six, with perfor-

mance even decreasing in sample size (p. 15). They report these

“results were particularly difficult to understand” (p. 15), but

calculations using Equation 1 show that the population eigenvalues

of these conditions were only a little larger than 1 (
2 � 1.03 for

J � 6, a � .4; 
2 � 1.1 for J � 6, a � .7) or smaller than 1 (
2 �

.94 for J � 3, a � .4; 
2 � .8 for J � 3, a � .7). Factors with these

low population eigenvalues, particularly those with values smaller

than 1, are difficult to extremely hard to detect with parallel

analysis using the 95th percentile criterion; for a population eigen-

value equal to 1, the probability of detection is about 5% by this

variant of parallel analysis.

All in all, our theoretical and simulation results show that

eigenvalues of a correlation matrix are useful summary statistics
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that can be employed to obtain accurate factor retention rules. In

the literature there is some controversy about this, because eigen-

values of a correlation matrix also form the basis for principal

components analysis (PCA). We agree with Widaman (1993) that

PCA is not optimally designed for interpreting the factor structure

of a set of variables as it concentrates on extracting the total

instead of the common variance. Yet, we disagree with the sug-

gestions that there is no direct relationship between eigenvalues of

a correlation matrix and the number of common factors (e.g.,

Timmerman & Lorenzo-Seva, 2011, p. 210). In fact, our theoret-

ical results show that eigenvalues can be directly derived from a

hypothesized population factor model. Furthermore, eigenvalues

of a reduced correlation matrix are likely influenced by additional

sources of sampling and systematic bias induced by the model

used for constructing plug-in estimates for the common variances,

whereas eigenvalues of the original correlation matrix are more

data-driven. Some studies (e.g., Garrido et al., 2013; Velicer &

Fava, 1998) suggest that variants of parallel analysis that use a

reduced correlation matrix with an estimate of the common vari-

ance on the diagonal (i.e., in line with principal-axis factor anal-

ysis), or are based on minimum rank factor analysis, are less

accurate than the default parallel analysis variant (i.e., using

“PCA”-based eigenvalues).

Further research needs to explore how the proposed EKC per-

forms under less clear-cut factor structures, that is, with different

number of variables per factor, cross-loadings, more heteroge-

neous factor loadings, and including bloated specifics. Bloated

specifics, caused by for instance items that are essentially rephras-

ings of each other, are a commonly observed anomaly in practice,

but their impact on factor retention has not yet been thoroughly

investigated. Deriving predictions on the performance of EKC

given these less clear-cut factor structures is rather straightforward,

since their population eigenvalues can directly be calculated and

EKC’s reference eigenvalues are not dependent on this structure.

However, it is yet unclear how well these predictions for these

structures will perform. An underlying assumption remains that

some factor model underlies the variables’ population covariance

structure; hence, we need to be cautious with generalizations to

conditions with population-model error (see, e.g., MacCallum,

2003).

Another direction of future research is further examining and

developing the statistical theory on eigenvalues of correlation

matrices. The Marčenko-Pastur distributional result provides an

indication of the expected values for the sequence of eigenvalues,

but it does not provide an indication about the variability around

each individual sample eigenvalue. However, for covariance ma-

trices of identically and independently normally distributed vari-

ables, Johnstone (2001) derived the asymptotical sampling distri-

bution of the first eigenvalue to be the Tracy and Widom (1996)

distribution of order 1. Unfortunately a similar result that holds for

correlation matrices is not available (although, for a potential ad

hoc simulated adaptation, see p. 308, Johnstone, 2001), and theo-

retical results for subsequent eigenvalues or for more complex

structural models than the null model are—as far as we know—

less developed or absent. Still, there might be other hidden gems or

new developments in random matrix theory that are useful for

factor analysis or other classical multivariate statistical methods

such as MANOVA and canonical correlation analysis.

A practical venue for future research, as suggested by John

Ruscio (personal communication, October, 2015), is to apply the

EKC retroactively to published EFA results. This is possible

because only sample size and number of variables are required to

calculate the reference values, and observed eigenvalues are usu-

ally reported. Hence, the quality of factor retention decisions in

EFA in the literature, and its development over time, can now

easily be addressed using the EKC.

As a final thought we want to add that we do not advocate

considering factor retention as a one-time event merely determined

by a statistical optimality criterion, a yes-or-no outcome in line

with current hasty scientific practice. We stress that in practice

factor retention should be seen as part of a larger cumulative

measurement validation project (as in the empirical illustration of

the GASP), benefitting from other than statistical optimality cri-

teria: Substantive interpretation, practical relevance, purpose of the

scales, and the extent to which structures replicate for the same

target population or generalize across different populations (for a

discussion on replicable vs. optimal factors, see, e.g., Preacher,

Zhang, Kim, & Mels, 2013) should all form important pieces of the

bigger picture.
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