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Summary The objective of this study was to produce a malaria distribution map that would constitute a useful tool

for development and health planners in West Africa. The recently created continental database of

malaria survey results (MARA/ARMA 1998) provides the opportunity for producing empirical

models and maps of malaria distribution at a regional and eventually at a continental level. This paper

reports on the mapping of malaria distribution for sub-Saharan West Africa based on these data.

The strategy was to undertake a spatial statistical analysis of malaria parasite prevalence in relation

to those potential bio-physical environmental factors involved in the distribution of malaria transmission

intensity which are readily available at any map location. The resulting model was then used to predict

parasite prevalence for the whole of West Africa. We also produced estimates of the proportion of

population of each country in the region exposed to various categories of risk to show the impact that

malaria is having on individual countries. The data represent a very large sample of children in West

Africa. It constitutes a ®rst attempt to produce a malaria risk map of the West African region, based

entirely on malariometric data. We anticipate that it will provide useful additional guidance to control

programme managers, and that it can be re®ned once suf®cient additional data become available.
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Introduction

Accurate knowledge of the distribution of malaria is an

important tool in planning and evaluating malaria control

(Snow et al. 1996). A report to the recently held ®rst sub-

Saharan regional African summit meeting on malaria cites

a `dire lack of extensive and comparable data about

malaria', and calls, amongst other things, for more

research on trends in incidence and prevalence, epidemic

outbreaks and clinical epidemiology (Sachs 2000).

Global, continental and regional maps of malaria

distribution in the past have been largely based on expert

opinion (Molineaux 1988), and more recently on climatic

suitability (Craig et al. 1999). Empirical maps based on

malariometric data have hitherto been produced only at

the country or district level (Snow et al. 1998; Thomson

et al. 1999; Kleinschmidt et al. 2000). These have the

advantage of approximate homogeneity of factors related

to malaria control and health services, but they ignore the

`wider picture' of effects outside the political boundaries of

the country being studied. As transmission intensity and

the factors that determine it are rarely con®ned to these

political boundaries, a country or district map is subject to

inaccuracies due to spatial effects acting across such

boundaries.

The recently created continental database of malaria

survey results (MARA/ARMA 1998) provide the oppor-

tunity for producing empirical models and maps of malaria
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distribution at a regional and eventually at a continental

level. This paper reports on the mapping of malaria

distribution for West Africa based on these data. With a

total population of nearly 300 million people, sub-Saharan

West Africa represents the region with the largest popula-

tion exposed to high levels of malaria transmission

intensity. More detailed knowledge of the distribution of

malaria transmission intensity in this region can be used as

a basis for more targeted malaria control and health service

provision for a very large number of people.

Our objective was to produce a malaria distribution map

that would constitute a useful tool for development and

health planners in West Africa. We also produced estimates

of the proportion of population of each country in the

region exposed to various categories of risk to show the

impact that malaria is having on individual countries.

Methods and materials

Previous studies using the MARA database for the

production of malaria distribution models have described

methodological approaches that we essentially followed in

this study (Snow et al. 1998; Craig et al. 1999; Klein-

schmidt et al. 2000, 2001). In this paper we describe the

methods and data used for this study, the results obtained

and the implications for malaria control in West Africa.

Further details relating to the methods and the results are

contained in a technical report available from the corres-

ponding author (Kleinschmidt et al. 1999).

Data

The entomological innoculation rate (EIR) (the number of

sporozoite positive bites per person per time unit) would

have been the ideal malariometric measure to model for the

purpose of mapping the distribution of transmission

intensity (Snow et al. 1996). As EIR is not widely available,

we modelled parasite prevalence, which is far more

commonly available and which is a reasonable proxy for

EIR (Beier et al. 1999). Results from parasite prevalence

surveys used for this analysis were restricted to those of

childhood populations of less than 10 years of age, in order

to avoid the effects of population immunity in endemic

areas moderating the survey results.

The MARA/ARMA database of geographically refer-

enced survey reports on malaria endemicity in sub-Saharan

Africa has been described elsewhere (MARA/ARMA

1998). For this study all data relating to community based

surveys between latitudes 1° and 22° north and longitudes

17° west and 16° east, in which at least 50 children

between 1 and 10 years of age were examined for the

presence of Plasmodium falciparum in blood smears, were

extracted from the database. In a few instances where no

further age breakdowns were available, surveys on popu-

lations between 1 and 15 years were also included. Surveys

conducted during known epidemics were excluded, as

were those that may represent biased samples, such as

those that were restricted to school attenders only. Data

from island populations were also excluded. The survey

dates covered several decades from about 1970 onwards,

and surveys conducted more than once at the same location

were combined (summing numerators and denominators).

An implicit assumption therefore is that malaria endemi-

city has remained relatively stable over this period, so that

the surveys taken at different time points can be concep-

tually regarded as a cross-section of surveys, taken at many

locations. A total of 450 data points resulted from this

process, representing approximately one quarter of a

million children surveyed for malaria parasites. The loca-

tions of these points are shown in Figure 1.

Distribution of malaria is governed by a large number of

factors relating to the parasite, the vector and the host

(Molineaux 1988). Predominant among these are climatic

and environmental factors, particularly those that affect

habitat and breeding sites of the anopheline vectors such

as temperature, precipitation, humidity, presence of water,

vegetation and man to vector contact. The data used in this

study for modelling and mapping malaria parasite preval-

ence were long-term averages of monthly rainfall, monthly

averages of daily minimum and maximum temperature

(Hutchinson et al. 1995), normalized difference vegetation

index (NDVI, FAO 1991), drainage density (Windmeijer &

Andriesse 1993) and estimated population density

(Deichman 1996). Monthly climate and vegetation data

were aggregated into quarterly averages, from December

onwards (to approximately coincide with the drier and

wetter seasons, respectively).

Four agro-ecological zones (AEZ) were distinguished on

the basis of the length of the growing period, i.e. the period

when water is available for vegetative production on well-

drained soils. This is a function of precipitation, evapor-

ation and the amount of available water in the soil (FAO

1978). The de®nition of the zones is as follows: Equatorial

Forest zone (> 270 days), Guinea Savanna zone

(165±270 days), Sudan Savanna zone (90±165 days) and

the Sahel zone (< 90 days), shown in Figure 1. Such zones

are well established environmental entities with speci®c

agricultural potential (FAO 1978).

Statistical modelling

For the purpose of this study, the data were divided into

three groups corresponding to the AEZ described above,

with Sahel and Sudan Savanna combined into one group.
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A statistical model was derived for each of these three zone

speci®c groups. This approach was based on the assump-

tion that the factors affecting malaria risk, such as rainfall,

would be different in the four AEZ. Parasite prevalence

values varied from 0 to 100%. Of the total number of

individuals surveyed, 48.8% tested positive. A variogram

(Krige 1966; Carrat & Valleron 1992) of prevalence values

showed that spatial dependence of the survey results

extended over a distance of about 160 km.

Initial variable selection for each model was carried out

by performing a stepwise procedure using a generalized

linear model (GLM) with logit link function (Hosmer &

Lemshow 1989; StataCorp. 1997) and with the parasite

prevalence of a point being the response variable. The

criterion for inclusion of a variable into the model was set

to P < 0.01.

To account for spatial correlation in the data, we

followed a previously documented (Kleinschmidt et al.

2001) iterative procedure for improving the speci®cation of

the covariance structure of the data using a generalized

linear mixed model (GLMM) (Littell et al. 1996; SAS

1996). Deviance residuals were calculated for each statis-

tical model that was derived from the initial GLM.

Semivariance (Carrat & Valleron 1992) of the deviance

residuals of all pairs of observations was calculated and a

variogram constructed to determine if there was evidence

of residual spatial correlation, i.e. if the semivariance of

pairs of residuals that are close together is markedly less

than that of observations which are further apart. The

parameters of the function that describes the relationship

between semivariance and separation distance (the spatial

model) is then used to specify the correlation structure of

the data in the GLMM thereby taking account of any

residual non-independence in the data. Allowing for spatial

correlation may therefore lead to removal of some vari-

ables from the model due to the resultant in¯ation of the

standard errors. Deviance residuals of the spatially adjus-

ted model are calculated and a new variogram is con-

structed. This process is iterated until the variogram no

longer changes ± indicating that a covariance structure

corresponding to the model residuals is adequately

speci®ed (Kleinschmidt et al. 2001; Appendix 1).

To improve the ®t (i.e. reduce residual deviance), each

variable that survived the above procedure was trans-

formed into seven different fractional polynomials

(Royston et al. 1999). The transformation producing the

Sahel
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Guinea Savanna

Forest
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Figure 1 Survey locations, and agro-ecological zones for West Africa.
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biggest reduction in residual deviance was chosen if this

reduction in deviance exceeded 3.84 compared with the

untransformed variable. Transformations that were tried

for each variable x were 1/x2, 1/x, 1/x0.5, ln(x), x0.5, x2

and x3.

Once the zone speci®c models had been derived, these

were used to produce a map based on the predictor

variables which are available as map images. The zone

boundaries represent a somewhat arbitrary cut-off, with

places near such a boundary sharing characteristics of the

zones on both sides of the boundary. Predictions of parasite

prevalence along a boundary between two zones were

therefore based on a weighted mean of the predictions

obtained from the models for the two adjoining zones, with

the weights dependent on the distances from the boundary.

This interpolation of predictions along zone boundaries

was carried out up to a distance of 160 km from each zone

boundary, as the previously constructed variogram showed

that spatial effects were limited to approximately this

distance.

To improve prediction in places where there is consid-

erable divergence between model predictions and obser-

vations in a local neighbourhood we used a previously

developed method (Kleinschmidt et al. 2000) based on

kriging (Krige 1966) of the residuals of the ®nal model

predictions. A kriged map of deviance residuals is calcu-

lated, which is added to the predicted values on the logit

scale before transforming the result back to proportions.

The addition of kriged residuals will allow the map to

deviate from the model and move closer to the observed

values, if such deviation is supported by other observed

values in the neighbourhood. This improves the ®nal map

in the sense that it does not deviate too severely from the

observations, which is particularly important if the model

does not adequately explain the observed variation in

transmission risk.

Our method therefore involves a combination of mod-

elling (predictions based on the values of climatic and

environmental variables at each location) and kriging

(interpolation of prevalence values at points between

observed survey locations). This has the effect that the map

predictions are primarily model driven in areas with a

paucity of points, whereas in areas with an abundance of

survey locations the map values will be primarily deter-

mined by the actual observed values at these points.

Predicted population at risk

We overlayed the ®nal predicted prevalence map on a

population density map (Deichman 1996) to calculate the

population at risk for different endemicity categories for

each country, excluding urban areas.

Results and discussion

Signi®cant explanatory variables for the model for the

Sahel and Sudan Savanna zones were: average monthly

rainfall from March to May, average minimum tempera-

ture from September to November and from December to

February, average maximum temperature from March to

May and from September to November, average vegetation

index from March to May and drainage density. For the

model for the Guinea Savanna zone the signi®cant vari-

ables were average monthly rainfall from September to

November, average vegetation index from December to

February, and from March to May, average minimum

temperature from December to February and from June to

August, average maximum temperature from September to

November, difference in maximum monthly and minimum

monthly vegetation index, drainage density and population

density. Finally, the model for the Forest zone contained

average maximum temperature from September to

November and from June to August, and average monthly

rainfall from September to November. As all the models

are multiple variable models, each variable is corrected for

all the other variables in the model. The relationship

between these quantities and parasite prevalence is com-

plex, and we give details of model coef®cients and their

plausibility in the technical report (Kleinschmidt et al.

1999).

Figure 2 shows the ®nal map of predicted risk of malaria

infection for children under 10 years during a location's

main malaria season that was predicted from our models

after processing the predictions in the way described above.

The grouping of the map predictions into the four

categories of risk shown in the map are the same as were

used for a country level malaria map for Mali

(Kleinschmidt et al. 2000).

Our data contained a handful of points (n � 21) that

could be regarded as urban on account of their 1995

population density being above 386/km2 (US Bureau of

the Census 1995). Average parasite prevalence in these

`urban' surveys was 45.1%, compared with a mean of

46.7% for non-urban surveys (two-sample t-test,

P � 0.77). This result was not sensitive to the particular

population density cut-off chosen for the de®nition of

urban sites, and it was true in all three zones. It was only

in the Guinea Savanna zone that there was a signi®cantly

higher prevalence for points with population densities

below 1 per sq km after adjusting for other factors in

the model. Despite this lack of evidence in the MARA

database for lower parasite ratios in urban areas, we

considered our data too unrepresentative of urban areas

to make any predictions there. Urban areas were therefore

excluded from the prediction map, and from the
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population at risk calculations. It is quite likely that some

surveys were taken in places which were rural outskirts of

urban areas at the time of the surveys, but which are now

urban. Whilst climatic factors might justi®ably have been

regarded as constant over the time that the surveys were

conducted, this assumption is almost certainly not uni-

formly valid for population density, and this may be

the reason for it not featuring more prominently as a

signi®cant explanatory variable.

Comparing our ®nal map predictions with the observed

prevalence values of the 450 surveys, 77.6% (349/450) of

the surveys were correctly classi®ed, i.e. the predicted

prevalence category agreed with the observed prevalence

category (j � 0.62, P < 0.0001). Of the points where there

was a disagreement between the observed and predicted

prevalence categories, only three were misclassi®ed by

more than one category value.

A visual comparison of our map with the climatic

suitability map by Craig et al. (1999) shows many similar

features, which is not surprising as climatic factors were

involved in the production of both maps. Visual compar-

isons of our map with previous expert opinion maps

(Haworth 1988; Wernsdorfer & McGregor 1988) and

with a map of Mali derived from MARA data (Klein-

schmidt et al. 2000) also show broad agreement. We

should caution that there were several countries in the

regions which were either poorly covered by surveys, or

not at all. We are optimistic that this situation will improve

in future and this will allow a more accurate map to be

produced. However, in the meantime our map predictions

for these areas are entirely based on our models that were

derived from data from neighbouring countries. This may

still give reasonable predictions for smaller countries or

those that are surrounded by countries with an abundance

of data points, but it is bound to give inaccurate estimates

for countries on the periphery of our map window, such as

Niger. We excluded Niger from the calculation of popu-

lations at risk (Table 1) for this reason. Most of Nigeria,

and the central parts of Ghana, also suffered from a sparse

coverage of points, and hence the predictions in these

regions are model dependent rather than interpolation

driven. A current shortcoming in our modelling methodo-

logy is the fact that we are unable to give an estimation

error for the various parts of the map.

Figure 2 Predicted prevalence of P. falciparum in children aged 2±10 years for West Africa. *Differing map resolutions have caused some
digitization error along the coast, causing some coastal urban areas not to show on the map.

Tropical Medicine and International Health volume 6 no 10 pp 779±786 october 2001

I. Kleinschmidt et al. Malaria distribution map for West Africa

ã 2001 Blackwell Science Ltd 783



The proportion of population in each country exposed to

each of the four risk categories varies considerably between

countries in the region (Table 1). For example, the popu-

lation living in areas with less than 30% prevalence make

up 17% of the population of the entire region, with high

proportions of the population in this category living in

Mauritania (50%), Guinea Bissau (30%), Mali (31%) and

Senegal (23%). Some of these could be populations with

low levels of immunity and it can reasonably be expected

that exceptional rainfall will cause signi®cant morbidity in

all age groups. Often such areas are remote and interven-

tions are hampered by poor health service infrastructures.

On the other hand, populations in areas with predicted

prevalences above 30% (categories 3 and 4 on the map) are

more likely to have some measure of immunity with young

children and pregnant women being the groups most

vulnerable to morbidity and mortality due to malaria.

According to our map, 58% of the population of West

Africa (168 million people) fall into this category. In CoÃ te

d'Ivoire, Togo, Burkina Faso, Sierra Leone and Liberia

70% or more of the population is exposed to this level of

transmission intensity.

Although the highest prevalence category, namely

70±100%, occupies a considerable area on the map, the

proportion of population living in these areas is reasonably

small in all countries except Togo. In the West African region

as a whole, about 16 million people are exposed to this high

level of transmission intensity. Marsh and Snow (1999)

suggested that vector-contact reducing measures such as

insecticide treated materials (ITM) may change severe-

disease patterns of malaria and consequently case-fatality in

high endemicity settings. The introduction of ITMs on a

large scale should be accompanied by more intense monit-

oring efforts in such circumstances. Our prediction map

helps to identify areas where such long-term morbidity

monitoring might need to accompany ITM deployment.

Ideally, we would like to have a map that clearly

identi®es two types of areas requiring two quite distinct

types of intervention packages. These would be epidemic

prone areas, and areas with stable malaria endemicity.

In areas of unstable malaria transmission, surveillance

efforts, the stocking of ef®cacious insecticides such as DDT

for in-house spraying as well as appropriate and affordable

diagnosis and treatment algorithms play a primary role.

In holoendemic areas, on the other hand, rapid diagnosis

and treatment, intermittent treatment during pregnancy,

behavioural aspects related to the large scale use of ITMs

and innovative strategies to ensure the availability of high

Percentage of total population in each risk category*

Country 

Predicted
prevalence
of < 10%

Predicted
prevalence
of 10±30%

Predicted
prevalence
of 30±70%

Predicted
prevalence
above 70%

Benin 0 5 43.4 12
Burkina Faso 0 17 76 0
Cameroon 1 16 58 2
CoÃ te d'Ivoire 0 4 75 0
Gambia 0 8 44 0
Ghana 1 15 46 17
Guinea 1 12 57 3
Guinea Bissau 2 30 13 0
Liberia 0 1 81 2
Mali 3 28 66 1
Mauritania 20 30 6 1
Nigeria 0 8 48 8
Senegal 1 22 41 2
Sierra Leone 0 0 79 2
Togo 0 0 39 38
Entire region 2.4 14.8 52.7 5.4
Total
population
at risk

7 006 869 42 941 669 152 779 264 15 698 929

* Percentages do not sum to 100% as urban populations have been excluded and parts of
some countries lie outside the map `window'.
  Excluding Niger.

Table 1 Predicted percentage of popula-
tion at risk by country and risk category
(excluding urban populations)
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quality ®rst line treatments at home might be considered

high priority by country control programmes. Our map

cannot provide such clear division into endemic and

epidemic areas, but it can be used to guide such decisions.

It is well known that malaria transmission intensity

exhibits strong spatial heterogeneity even at a local level.

It is therefore likely that the map may be at variance with

local experience in some places. Where this occurs, it ought

to motivate further investigation through well conducted

local surveys.

A possible source of variation that is not determined by

natural factors such as climate and drainage density may be

differences in socio-economic development, which have

played a part in malaria control and eradication elsewhere,

probably coinciding with other factors (Bruce-Chwatt &

de Zuleta 1980; Packard 1984; Molineaux 1988; Wern-

sdorfer & Wernsdorfer 1988). Socio-economic develop-

ment could reduce malaria transmission in a variety of

ways. For example, increases in household income of

women and poverty reducing measures in general have the

potential to reduce exposure to malaria and to improve

health seeking behaviour and quality of treatment. How-

ever, socio-economic development in a high transmission

tropical setting could equally increase malaria transmission

because of changes such as forest clearing or the migration

of people with little or no immunity into areas of high

endemicity. We have been unable to model such factors in

our analysis due to the fact that such data for the entire

region are currently not available with adequate spatial

resolution. It is highly likely that there are other unmea-

sured, perhaps more local factors that determine variation

in parasite prevalence.

A further source of variation that has not been taken into

account in this study is variation in prevalence by season

and by age (M S Sissoko, O BrieÈt, M Sissoko et al.

unpublished observation). The impact of these factors will

differ according to the endemicity level of an area. It was

our opinion that the differentiation that was available

within the results of many surveys was inadequate to

stratify the data by these factors.

A regional malaria risk map, such as the one produced in

this study, will allow planners to assess the possible health

impacts of measures aimed at improving food security

through the promotion of large scale irrigation and

wetland management projects. Elsewhere in Africa such

developments have signi®cantly increased malaria infection

and morbidity in epidemic prone areas of unstable malaria

(Ghebreyesus et al. 1999). However, the same agricultural

production methods are unlikely to affect the malaria risk

pro®le of rural populations living in areas characterized by

high parasite prevalences (Faye et al. 1995; Dossou-Yovo

et al. 1998).

Finally, the map will also help guide public health

research managers in identifying appropriate study envi-

ronments for intervention trials as well as assist with the

identi®cation of populations potentially bene®ting from

new interventions.

The data we used represent a very large, albeit

imperfectly, sampled population of children in West

Africa. This study is a ®rst attempt to produce a malaria

risk map of the West African region, based entirely on

malariometric data. We anticipate that it will provide

useful additional guidance to control programme manag-

ers, and that it can be re®ned once suf®cient additional

data become available.
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