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Abstract

This paper introduces a new detailed data set of high-frequency observations on inventory
investment by a U.S. steel wholesaler. Our analysis of these data leads to six main con-
clusions: orders and sales are made infrequently; orders are more volatile than sales; order
sizes vary considerably; there is substantial high-frequency variation in the �rm's sales prices;
inventory/sales ratios are unstable; and there are occasional stockouts. We model the �rm
generically as a durable commodity intermediary that engages in commodity price speculation.
We demonstrate that the �rm's inventory investment behavior at the product level is well
approximated by an optimal trading strategy from the solution to a nonlinear dynamic pro-
gramming problem with two continuous state variables and one continuous control variable
that is subject to frequently binding inequality constraints. We show that the optimal trading
strategy is a generalized (S; s) rule. That is, whenever the �rm's inventory level q falls below
the order threshold s(p) the �rm places an order of size S(p) � q in order to attain a target

inventory level S(p) satisfying S(p) � s(p), where p is the current spot price at which the
�rm can purchase unlimited amounts of the commodity after incurring a �xed order cost K.
We show that the (S; s) bands are decreasing functions of p, capturing the basic intuition of
commodity price speculation, namely, that it is optimal for the �rm to hold higher inventories
when the spot price is low than when it is high in order to pro�t from \buying low and selling
high." We simulate a calibrated version of this model and show that the simulated data exhibit
the key features of inventory investment we observe in the data.
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1 Introduction

This paper formulates and solves a dynamic model of optimal inventory investment by durable

commodity intermediaries. Commodity intermediaries are companies whose business is to stock-

pile quantities of homogeneous durable goods such as steel, lumber, coal, etc. These �rms do

minimal production processing, and make pro�ts via inter-temporal speculation, purchasing bulk

quantities of durable commodities at competitive world spot market prices and subsequently sell-

ing their inventories to customers at a mark-up.

We study a new database from one such intermediary, a U.S. steel wholesaler or, in industry

lingo, a steel service center. This �rm has o�ered us a unique opportunity to undertake detailed

observations of its operations on an ongoing basis by providing us with daily data on purchases

and sales of each of the 2,200+ separate products that it sells. We know the �rm's initial inventory

holdings starting in July 1, 1997, allowing us to calculate inventory holdings for each product on

a daily basis for 20 consecutive months. We also have highly con�dential data on the identities

of each of the �rm's customers, the prices they were charged, and the quantities they purchased.

Our analysis of these data yields six main conclusions:

1. Orders and sales are made infrequently.

2. Orders are more volatile than sales.

3. There is considerable variability in order levels.

4. There is no stable inventory/sales relationship.

5. Inventory stockouts and near stockouts occur regularly, especially during regimes of low

inventory holdings.

6. There is considerable high-frequency variation in sales prices.

We observe all six facts at the individual product level. We observe facts 2, 3, and 6 at the �rm

level. To explain these facts we solve a dynamic programming model which treats each product

as an independent \pro�t center". Using this model we ask whether the �rm's behavior can be

accurately approximated by the optimal trading strategy implied by the model's solution.

In the model, the spot price fptg of the commodity is assumed to evolve according to an

exogenously speci�ed �rst-order Markov process. At the start of each period the �rm decides how
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much new inventory qot to order at the spot price pt. There is a �xed transaction cost K for placing

any order, so the �rm will only place suÆciently large orders for which the incremental change in

expected pro�ts exceeds K. In all other respects we model the �rm as behaving passively. That

is, we assume that the �rm does not attempt to bargain with customers or price discriminate.

Instead the �rm quotes an exogenously speci�ed markup over the current spot price pt, and

receives a random realized demand qdt which is �lled on a \�rst come, �rst served" basis subject

to the constraint that quantity sold cannot exceed stock on hand qt + qot .

The �rm's optimal speculative investment strategy is the solution to an in�nite horizon dy-

namic programming problem. This problem is isomorphic to the problem of optimal inventory

management that has been extensively studied in the Operations Research literature. Although a

number of existing models in this literature allow the costs of \producing" new inventory to evolve

stochastically, we are not aware of a previous study that is directly relevant to the problem faced

by speculative investor or a durable commodity intermediary who has the ability to purchase

(versus produce) new inventory at a constant marginal cost pt which changes stochastically from

period to period according to a Markov transition density g(pt+1jpt).
The fact that our model involves a non-convex �xed transaction cost (adjustment cost) K

suggests that the most directly relevant predecessor to our work is the theory of optimal inventory

investment developed by Arrow, Harris and Marschak (1951) and Scarf (1960). Extending a classic

result by Scarf (1960) characterizing the optimal inventory investment strategy as an (S; s) rule,

Hall and Rust (1999) proved that the optimal inventory investment strategy continues to take

the (S; s) form when the spot price pt represents the marginal cost of production that evolves

stochastically. In this case the optimal solution takes the form of a generalized (S; s) rule in which

S and s are functions of p. The function s(p) is the order threshold and the function S(p) is the

target inventory level satisfying S(p) � s(p). Under an (S; s) rule, the optimal order size is zero

whenever the current inventory level q exceeds s(p). However when q falls below s(p) the �rm

places an order of size S(p)�q, restoring inventory levels to the target level S(p). The magnitude
of the gap between s and S depends on the magnitude of �xed costs of ordering new inventories:

if K = 0 then s(p) = S(p), otherwise s(p) < S(p).

In our example both s(p) and S(p) are decreasing functions of p, capturing the basic intuition

of commodity price speculation, namely, that it is optimal for the �rm to hold higher inventories

when the spot price is low than when it is high. In e�ect it is a prescription for how best to
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pro�t from \buying low and selling high." Under the optimal policy the �rm exploits low spot

order price opportunities by making large purchases. The �rm can make capital gains on its

inventory holdings once the price rises. However the �rm faces a risk that if prices remain low for

a protracted period, some or all of its expected speculative pro�ts will be dissipated by the interest

opportunity costs and physical costs of storing the commodity. Interest opportunity costs are an

increasing function of the spot price of steel. Further, demand tends to be lower when prices are

high. This implies that both S(p) and s(p) are small when p is high, reecting the �rm's desire

to maintain a relatively low level of inventories when demand is low and holding costs are high.

As a result when p is high, q is relatively small and stockouts occasionally occur. Via a numerical

simulation, we show that our simple model of optimal commodity price speculation implies the

key stylized facts of inventory investment that we observe in the steel data. In particular, we

�nd that in our simulated data set orders are infrequent, order quantities are more variable than

sales, inventory/sales ratios vary dramatically, stock-outs occur when spot prices are high, and

inventory holdings follow \saw-tooth" trajectories similar to those we observe for individual steel

products.

While the main focus of this paper is to explain the high-frequency behavior of a single �rm,

the issues addressed may be of interest to economists studying movements of aggregates at lower,

particularly business cycle, frequencies. In general, recessions can be characterized as periods

of inventory liquidations. While in the U.S. inventory investment averages less than one-half of

one percent of GDP, during a typical recession the reduction in inventory investment accounts

arithmetically for about 50 percent of the reduction in GDP (Ramey and West, 1997). So if we

want to understand business cycles, it is important to understand inventory investment behavior,

and as we show below, commodity intermediaries account for a large share of aggregate inventory

investment.

In the U.S., commodity intermediaries are classi�ed in the merchant wholesale trade sector of

the economy (SIC Major Groups 50 and 51). As a group, the wholesale trade sector comprises

between 6.5 and 7.0 percent of GDP, and this sector holds about 26% of the total outstanding

stock of inventories.1 The wholesale trade sector is decomposed into a durable goods sector (SIC

Major Group 50) and a nondurable goods sector (SIC Major Group 51). About 2/3 of the stock

of wholesale trade inventories are held by establishments within the durable goods sector, with

1The remaining stock of inventories is held by either manufacturers or retailers.
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the remaining 1/3 held by establishments in the nondurable goods sector.

Steel service centers are classi�ed within the durable goods sector of wholesale trade.2 There

are 5,000 such �rms located throughout the U.S. with a high concentration in the Great Lakes

region. These �rms currently hold between 7 and 8 million tons of steel in inventory. Out of the

127 million tons of steel consumed in the U.S. in 1998, about 29 million tons (23 percent) was

shipped through steel service centers. This makes steel service centers the largest single customer

group of the ultimate suppliers, the steel mills.

Section 2 provides a brief review of the existing literature on inventory investment. Section 3

presents the steel inventory data and summarizes the six main conclusions from our empirical

analysis that we will attempt to explain with a simple dynamic programming model of inventory

investment. Section 4 presents the model. Section 5 displays numerically computed solutions and

stochastic simulations of a calibrated example of the model. Section 6 compares our �rm level

data to more aggregated data. Section 7 summarizes our �ndings.

2 Background

There is an extensive literature on the role of commodity storage from an aggregate perspective

(see, e.g. Working, 1949 and Williams and Wright, 1991); however we are unaware of more

detailed micro-oriented studies of individual agents participating in these markets. Although the

main ideas behind the role of commodity storage have been around for many years, only relatively

recently have economists attempted to deduce the implications of this model for commodity prices.

A stylized version of the dynamic rational expectations commodity storage model, (e.g. Deaton

and Laroque, 1992 or Miranda and Rui, 1997) posits that the aggregate supply of a commodity is

produced inelastically, with the supply evolving according to some stochastic process fztg. There
is a stationary demand function D(p), so in the absence of storage, equilibrium prices evolve

according to the stochastic process fD�1(zt)g. However if we assume a storage technology exists

with a \convenience yield" ct = c(xt) (equal to the immediate bene�t from having one additional

unit of the commodity in storage net of the costs of storing it, where xt is a vector of state variables

a�ecting the costs and bene�ts of storage), then competition by commodity intermediaries and

2The four-digit SIC code for steel service centers is 5051; their NAICS code is 42151.
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speculators should cause prices to satisfy the equation

pt = max
h
D�1(zt); c(xt) + �Efpt+1jpt; xt; ztg

i
; (1)

where � = 1=(1 + r). This functional equation (1) de�nes pt = p(xt; zt) as the unique �xed

point to a contraction mapping. Deaton and Laroque, Miranda and Rui and others have solved

this functional equation numerically and have analyzed the implications of storage for the time

series behavior of commodity prices. This work has shown that many of the observed properties

of commodity prices, including skewness, occasional price spikes (i.e. sharp price increases as

opposed to price decreases), and high autocorrelations can be explained as a result of compet-

itive storage even if the fundamental \forcing process" fztg is assumed to be independent and

identically distributed IID. To our knowledge there is no \microfoundations" derivation for the

intertemporal equilibrium relationship (1). However the argument is that if prices did not satisfy

this relationship, speculators would buy or sell the commodity to equate current and expected

future prices net of storage/carrying costs. We attempt to cast some insight into this using out

micro model of commodity intermediaries. According to the functional equation, price spikes

occur during aggregate stockouts; otherwise speculators succeed in stabilizing prices, preventing

sharp increases or decreases in commodity prices during times of production surpluses or short-

ages. The theory suggests that sudden crashes in commodity prices should not occur, since this

would induce speculators to purchase and store the commodity for subsequent resale.

The steel service center we study is precisely one of the \speculators" implicit in the commodity

storage model. However the recent collapse in commodity prices in the aftermath of the 1997 Asian

�nancial crisis calls into question the power of inventory speculation in preventing the steep price

declines that occurred during 1998. The physical costs of storing commodities such as steel are

presumably very small and the rate of depreciation of steel is close to zero. However the interest

opportunity costs of storing these commodities can be substantial, a fact that seems to have been

overlooked in the commodity storage literature. It is reasonable to suppose that speculators will

not buy large quantities of a commodity in the aftermath of a price crash if they expect it to

be followed by a sustained recession that would limit their ability to resell the commodity at

attractive prices in the future. This observation underscores the importance of extending the

commodity storage model by building more detailed models of the speculators underlying these

models, including the commodity intermediaries we study here.
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There is also an extensive literature of macro-level models of inventories which assume short-

run increasing marginal costs to holding inventories. The workhorse model of this literature is

the linear quadratic (LQ) model introduced by Holt, Modigliani, Muth and Simon (1960). The

standard LQ model implies that production (orders) should be smoother than sales. Since this

implication is almost always rejected empirically, a variety modi�cations have been made. For ex-

ample many authors augment these models with an \accelerator term" in the pro�t function which

is essentially a quadratic penalty function from deviating from a �xed \target" inventory/sales

ratio. This target is treated as an unknown parameter to be estimated (e.g. Blanchard, 1983;

West, 1986; and Kashyap and Wilcox, 1993). Kahn (1987, 1992) justi�es an inventory/sales ratio

target by explicitly incorporating costly stock-outs. Bils and Kahn (1996) further justify targeting

such a ratio by modeling sales as an increasing function of the available inventories. A second

modi�cation is to assume that �rms operate on at or even decreasing regions of their short-run

marginal cost curves. Ramey (1991), Bresnahan and Ramey (1994), and Hall (1997) provide

evidence that �rms may often operate in such regions. Third, Blinder (1986b) and Miron and

Zeldes (1988) and others have added cost shocks in the form of input price shocks, while others

such as Eichenbaum (1984, 1989) have added cost shocks in the form of unobservable technology

shocks. In these cost-shock models inventories are used to smooth production costs rather than

the level of production. These modi�cations have improved the ability of the LQ model to explain

aggregate inventory time series, although as we will show in the next section it has some severe

handicaps in its ability to explain our product-level data.

Dynamic micro-level models of inventory investment incorporating a �xed cost to ordering

were pioneered by Arrow, Harris, and Marschak (1951) and Scarf (1959). Scarf was the �rst to

prove that the optimal policy is of the (S; s) form. In the simplest case, the �rm chooses an order

limit point s, and an upper inventory point S. The �rm place no orders until inventories fall to

s or below, whereupon the �rm places an order to reset the inventory level to S. Blinder (1981),

Caplin (1985), and Fisher and Hornstein (1998) argue that explicitly modeling �xed costs at the

�rm level helps explain inventory behavior at the aggregate level.

Despite extensive research in the area of inventory investment, a satisfactory model to explain

this important time series has not yet been written down and solved. Even models which appear

capable of explaining the basic features of the data have clear aws. For example attempts to

estimate macro models of inventory investment often yield parameter estimates of the wrong sign.
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Some of the problems may stem from a lack of high-quality data on production and inventories.

Fair (1989) suggests that the observation that production is more volatile than sales is just a

�gment of poorly constructed data. Miron and Zeldes (1989) demonstrate that there is substantial

measurement error in both the monthly manufacturing and inventory investment data. The

absence of high quality inventory data at the macro-level motivates us to study this issue at

the �rm level. In their survey of the inventory literature for the Handbook of Macroeconomics

Ramey and West (1997) \advocate more plant and �rm-level studies, although gathering such

data requires substantial work." (p. 47).

3 Data

A U.S. steel service center (referred to below as the \�rm") provided us detailed data on every

transaction it undertook between July 1, 1997 to February 26, 1999 (434 business days) for each of

the 2200+ individual products that it sells. For each transaction we observe the quantity (number

of units and/or weight in pounds) of steel bought or sold, the sales price, the shipping costs, and

the identity of the buyer or seller. The �rm's records provide data on the level of inventories for

each product at the beginning and end of each month. Using the inventory accumulation identity

we can track the �rm's inventory holdings for each day within the month. Also since we observe

the prices at which this �rm buys and sells steel, we also have a near-perfect measure of the

mark-ups charged to customers. Finally since we meet regularly with company executives, we are

able to eliminate any discrepancies in the transaction and inventory data. This is an exceptionally

clean dataset.

The �rm records transactions on the day the steel either enters or leaves one of its warehouses.

Although the �rm does receive some commitments for sales in advance, most of their sales are

delivered within 24 hours of the commitment, and 95 percent of their orders are �lled within �ve

days. Indeed, the primary service this wholesaler provides is having the goods on hand and being

able to deliver them to the customer on short notice. While back-orders do occasionally occur,

we study products which customers can assume the �rm will have on hand. We do not have data

on when the �rm makes an order to purchase steel. From discussion with company executives

we know that some of their orders are made weeks in advance (up to 12 weeks when purchasing

foreign steel), while some purchases are made with only a day or two notice. In this paper we
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assume the relevant time period is one business day.

Although this company o�ers over 2200 products, tables 1 and 2 provide summary statistics for

prices and quantities for eighteen of their most important products which are considered baseline

products within the industry. These products serve as key indicators from which the prices of

other products are calculated, and display the characteristic features that we see for many other

products. For reasons that will become clear subsequently, these products are also of interest

because none involve any actual production processing beyond storage and resale. Finally, we

chose relatively high volume products for which the �rm made at least four orders during the

sample period. Figure 1 plots an indicator of the �rm's aggregate inventory holdings, the sum (in

pounds) of the inventories for each of these eighteen products. Figure 2 plots the inventory/sales

ratio measured as \days supply" which we de�ne as the level of current inventories divided by

the average daily sales rate for the previous 30 business days.3 Figures 5 - 16 plot daily time

series for inventories, days-supply, and spot order and sales prices, for products 2, 4 and 13 in

tables 1 and 2. These �gures also contain three dimensional scatterplots of purchase quantities

as a function of current inventory and order prices.

Our analysis of these data can be summarized in six main conclusions:

1. Orders and sales are made infrequently. In the second column of table 1, we report the

number of days in which each product enters one of the �rm's warehouses. We have selected

some of the highest volume products this �rm deals in; nevertheless, orders are rarely made.

Sales are made more frequently as can be seen from column (5) of table 1 and from the

absence of long at segments in the inventory graphs. However even for product 2, the

product with the most frequent sales, sales are made less than 3/4 of the days in the

sample. Note also that the periodicity between successive orders is highly variable.

2. Orders are more volatile than sales. The last column in the bottom row of table 2 reports the

ratio of the standard deviation of aggregate orders to the standard deviation of aggregate

sales. This ratio is 9.2, which shows that for this �rm orders are substantially more volatile

than sales. Columns (2), (4), (6), and (8) of table 2 report the unconditional means and

standard deviation of orders and sales. But since sales and orders and made infrequently, we

3Computing days-supply using future sales instead of past sales does not change the qualitative features of any
of the graphs in this paper.
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also report in columns (3), (5), (7), and (9) the means and standard deviation conditional

on an order or sale occurring. Not surprisingly, since orders are made less frequently than

sales, the average order size is larger than the average sales size. As is found in many other

studies, the standard deviation of orders is larger than the standard deviation of sales. This

holds for all eighteen products; see column (10). Note that extremely large sales are rare

events as can be seen from the relatively small number of large discontinuous downward

jumps in inventory levels in the time series plots.

3. There is considerable variability in order levels. In table 2, we can see that for all but four

of the eighteen products, conditional on an order occurring, the standard deviation of order

size (column (5)) is larger than mean order size (column (3)). This fact can also be seen

graphically in our plots of the data for products 2, 4, and 13 in �gures 5 - 16. Figures 5, 9,

and 13 display the time path of the inventory holdings for these three products. These

�gures display a \saw-tooth" pattern for inventory holdings with intervals during which

inventory levels steadily decrease due to sales to customers punctuated by periodic large

orders that replenish inventory holdings. Thus, inventory holdings can be characterized as a

jump process with a negative drift due to numerous small sales, and periodic discontinuous

upward jumps due to a relatively small number of large orders.

However the �rm also makes many small orders. This is apparent in �gures 6, 10, and 14,

which display scatterplots of order size as a function of current inventory holding and the

order price. In general, these three graphs illustrate that the lower the price and the lower

the level of inventories, the larger the order. But a striking feature of these �gures is the

number of small orders { especially when inventories and the order price are high. Also

note that in �gure 6 most of the orders for product 2 lie in a band between 19.00 and 19.50.

The tendency for order size to increase rapidly as a function of order price suggests that

the �rm's demand for product 2 is highly elastic. This suggests that inventory holdings are

quite sensitive to the spot price of steel, a conclusion that is con�rmed from an inspection

of the time series for inventories and order prices in �gures 5 and 7, 9 and 11, and 13 and

15, respectively. Comparing these graphs vertically, we see that the biggest upward jumps

in inventories generally occur when the (interpolated) order price series hits historical lows.

However our ability to make clear inferences about this is hampered by the fact that we only
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observe spot prices for these products on the days the �rm places orders for steel. Thus we

cannot be sure that the actual spot price series may actually have been even lower between

the successive dates at which large purchases occurred. However we have indirect evidence

of the importance of price shocks from aggregate price indices such as the example displayed

in �gure 3. At least for the last three quarters of 1998, the steady decrease in steel prices are

matched by steady increases in inventory levels as we can see from �gure 4 which plots the

inventory/sales ratios for several independent measures of carbon plate (i.e our �rm level

data and aggregate industry holdings of carbon plate).

4. There is no stable inventory/sales relationship. Figures 8, 12, and 16 display the inven-

tory/sales ratio in terms of days-supply. As in the case of the aggregate days-supply series,

these three inventory/sales ratios uctuate widely and in the case of products 4 and 13

appear to have multiple "regimes" with high and low inventory/sales ratios.

This �nding is not inconsistent with the well-documented fact in the inventory literature

that there is considerable persistence in the deviations in the inventory-sales relationship

from its long-run mean (e.g. Feldstein and Auerbach, 1976; Blinder, 1986a; and Ramey

and West, 1997). The mean of the days-supply series of the �rm's aggregate inventory

holdings plotted in �gure 2 is 66 days. So for the �rst 240 business days of the sample

the �rm below its long-run mean, and for the second 200 business days the �rm is above

its long-run mean. This could be interpreted as considerable persistence in the inventory-

sales relationship; however for reasons we discuss below it does not appear that the �rm is

targeting a constant inventory-to-sales ratio and just slowly adjusting toward it.

5. Inventory stockouts and near stockouts occur regularly, especially during regimes of low

inventory holdings. From �gures 8, 12, and 16, we can see that the �rm often allows

inventories to fall to a level below 5 days worth of sales. Moreover, for product 13, the �rm

was completely stocked-out (i.e. had zero inventories) for 24 days during the time period.

6. There is considerable high-frequency variation in the sales price, with large changes in sales

prices on successive sale dates. This �rm is clearly charging some customers higher prices

than others, a fact readily acknowledged by company executives. While we do not attempt

to model the �rm's pricing decisions in this paper, this feature of the data motivates our
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desire to do future work analyzing dynamic models of endogenous price setting and price

discrimination. See Athreya (1999) for an exploratory empirical analysis of the determinants

of price variation among di�erent customers, products, and time periods.

We now consider whether any of the standard models of inventories outlined in section 2 are

capable of explaining the six main facts listed above.

1. (S; s) models. The saw-tooth pattern of the inventory series is clearly reminiscent of an

(S; s) policy, which also predicts intervals of steady declining inventories (due to sales to

customers) interspersed by occasional upward jumps in inventories (due to new orders by

the �rm). While the saw-tooth pattern of inventory holdings in �gure 1 is suggestive of an

(S; s) policy, closer analysis reveals that the �rm's behavior cannot possibly be described

by a standard (S; s) rule where S and s are �xed time-invariant constants. Under such a

policy the �rm places an order of size S � s when its current inventory q falls below the

lower order threshold s. This implies that whenever the �rm places an order we should see

inventories replenished to the same target level S. However it is clear from �gure 1 that

the amount of inventory the �rm holds after each order varies widely over time. Also, in

the absence of large discontinuous downward jumps in inventories resulting from large sales

(e.g. in limiting continuous-time versions of the (S; s) inventory model where sales follow

a di�usion process), all orders should be of the same size S � s. It is clear from �gure 1

that the size of the �rm's orders vary widely over time. Finally, the frequent number of

stockouts also casts doubt on the empirical validity of the continuous time di�usion version

of the (S; s) rule, which predicts that in the absence of jumps in the demand process that

with probability 1 inventories will remain in the interval (s; S). When there are positive

�xed costs of ordering, s > 0, and the only way inventories can fall below this level is if there

are discontinuous jumps in demand. On the other hand, if �xed costs of ordering inventories

were 0, then the �rm should place new orders each day to maintain the target inventory

level S. In either case stockouts should not occur under the standard (S; s) model. Thus,

we conclude that this �rm's behavior is inconsistent with the predictions of the standard

(S; s) inventory model.

2. Production smoothing models. Our �nding that orders are on average 9 times more

variable than sales shows that this �rm's behavior is inconsistent with the predictions of
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standard production-smoothing models. These models imply that the variance of production

should be lower than the variance of sales. Of course, one can question the relevance of the

production smoothing model for studying the behavior of this �rm since it does a minimal

amount of actual production processing. Although this �rm does have a small assembly line

that \levels" steel coil (i.e. it unwinds the coil and chops it into rectangular sheets), the

�rm's main \production" activity for many of its other products such as heavy steel plate

and pipe simply involves placing new orders to replace inventory at a time-varying \marginal

cost" pt, the spot price of steel on day t. There are no costs of stopping, idling, and restarting

the \assembly line" for these latter products, so that the theory predicts that there is far less

incentive to attempt to smooth production (which in this case simply amounts to placing

new orders for steel).4 Indeed, to the extent that there are �xed costs to placing orders, it

would appear that it is optimal for the �rm to do the opposite of production-smoothing,

namely to make relatively infrequent large orders rather than frequent small orders. We

conclude that the standard versions of the production-smoothing model cannot provide a

plausible empirical model for this �rm.

3. LQ models. A particularly popular type of production smoothing model is the LQ model,

which is the standard framework for modeling inventories in the macro literature. Unfor-

tunately our analysis suggests that the LQ model has severe de�ciencies at the micro level,

particularly for describing the product-level inventory holdings of this �rm. The LQ model

ignores the frequently binding constraint that orders must be non-negative and is therefore

unable to explain the observation that on most days orders are zero. Even if we were to

interpret the LQ model's predictions of negative orders as representing \desired orders" and

use Tobit-style censoring to map negative desired orders to the observed order of zero, we

believe that the linear laws of motion for the state variables in LQ models would have a hard

time approximating the mass point at zero that we observe in the distributions of quantity

ordered and sold.

4. LQ models with inventory/sales ratio targets. In order to explain the widely observed

fact that production is more volatile than sales, the standard LQ production smoothing mod-

4However Abel (1983) �nds in a model with a production lag, stock-outs, and endogenous pricing the variance
of sales exceeds the variance of production even if the cost of producing are linear.
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els have been augmented to include a target inventory/sales ratio and a quadratic penalty

for deviating from this target (e.g. Blanchard, 1983). Although the assumption that the

�rm has a �xed target inventory/sales ratio is not derived from �rst principles, under cer-

tain circumstances tacking on such a term to the �rm's cost function yields optimal policies

for which production is more variable than sales. However our data provide little support

for the hypothesis that the �rm has a �xed inventory/sales target. A simple inspection of

�gure 2 shows that the inventory/sales ratio is extremely variable, beginning with a \low

inventory regime" during which the �rm has only a month's supply on hand, followed by a

\high inventory regime" when it has more than 5 month's supply on hand. While some of

the rise in the days-supply series is due to a drop in sales during the last two months of the

sample period, much of this dramatic increase appears to be due to signi�cant declines in

the spot price of steel over the entire period. In simple terms, this �rm appears to be engag-

ing in commodity price speculation, attempting to \buy low and sell high". This strategy

implies that the �rm should buy large quantities of steel when prices are low, holding it for

subsequent resale when prices are higher. Such a strategy is inconsistent with maintaining

a �xed inventory/sales ratio.

Our discussions with company executives lead us to conclude that maintaining a stable

inventory-to-sales ratio is a rather low priority for the �rm. When we asked the general

manager whether the �rm targeted an inventory-to-sales ratio, he stated that he prefers

to carry under 60 days-supply worth of inventory. When we asked him why then he kept

making large purchases of steel even when his days-supply exceeded 100 days, he stated

that explicit adherence to this rule of thumb would keep him from exploiting good buying

opportunities. Perhaps more importantly the only times the general manager or the CEO

of the �rm discussed inventory-to-sales ratios with us was when we brought it up. It is not a

statistic they compute on a regular basis or have in front of them when making purchasing

decisions.

Our analysis of the �rm's product level data suggests that cost shocks | which in this case

are mainly changes in the spot price at which the �rm acquires steel inventories | could be the

key explanation for the observation that orders are more volatile than sales. A second explanation

is the fact that this �rm does not do any actual production processing for the products we have

14



studied, and a third explanation is the existence of positive �xed costs associated with placing new

orders for steel. We believe the �rst explanation is the key to understanding the large variation in

inventory holdings over our sample period. As we can appreciate from �gure 3 the spot price of

steel is likely to be one of the most volatile of the cost shocks facing this �rm, whereas the other

production and storage costs are unlikely to have varied much over this period. Conversations

with company executives do not give us any reason to believe that the �xed costs associated with

ordering steel are large, and no reason to suppose that they should have changed over our sample

period. Similarly, storage costs appear to have been nearly constant over our sample period.

The labor and depreciation costs associated with operating the warehouses in which the steel

inventories are stored are small in comparison to the main cost of storage, the opportunity cost

of capital as measured by the short term interest rate. The interest rate has been fairly constant

over our sample period, and there haven't been any changes in the physical production/storage

technology that we are aware of. On the other hand the �rm's major \cost of production", the

spot price of steel, has declined fairly dramatically for many of its products including carbon plate

products as we have seen in �gure 3. Many of these price declines are a consequence of reduced

world-wide steel demand following the Asian crisis together with possible \dumping" of steel by

foreign producers in Russia, Japan, Brazil, and other countries.

More sophisticated econometric and economic modeling is required in order to assess the

relative importance of the di�erent explanations of the observation that orders are more volatile

than sales. A major problem is created by the fact that we only observe spot prices for the

�rm's products on the days it placed orders, resulting in infrequent observations of spot prices at

irregular time intervals. Due to econometric problems arising from endogenous sampling of these

spot price processes, we have been careful not to draw any conclusions about the high frequency

behavior of steel prices by simply interpolating our endogenously sampled spot price series. In

future work we will develop estimators that correct for this endogenous sampling problem, but

in the meantime we have focused our analysis on characterizing the main facts about inventory

stocks, orders, and sales for which problems of endogenous sampling problems do not arise. Our

analysis has lead us to reject all of the main models that have been used to model inventory

behavior in the existing literature.

In the next section we formulate and solve a dynamic programming model of inventory in-

vestment by durable commodity intermediaries, in which the optimal policy is a generalization of
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the classic (S; s) rule with (S; s) bands that are declining functions of the current spot price of

steel. This suggests that many of the stylized facts we have observed for this �rm, particularly

the observation that orders are more variable than sales and the instability in inventory/sales

ratios, could be a consequence of an optimal inventory speculation strategy on the part of the

�rm. We con�rm this in section 5 by presenting simulations of a calibrated version of this model

that show that the predicted behavior of this model is strikingly similar to the behavior of this

�rm. In particular simulated data from the model exhibits 5 of the 6 main features that we have

observed in the product level data for this �rm.

4 The Model

Our model is in the tradition of the dynamic (S; s) model pioneered by Arrow et. al. (1951) and

Scarf (1959). We extend their models to allow the spot market price at which the �rm purchases

the commodity to follow a Markov process. The uncertainty and serial correlation in spot prices

imply that a simple (S; s) strategy with �xed S and s thresholds is generally no longer optimal.

The optimal inventory investment strategy in our extended model is a function of the spot market

price for the commodity p as well as inventory on hand q. However we �nd that a generalized

(S; s) rule is optimal. The �rm's optimal trading strategy consists of a pair of functions S(p)

and s(p) satisfying s(p) � S(p). The lower band s(p) is the �rm's order threshold, i.e. it is

optimal for the �rm to order inventory whenever q � s(p). The upper band S(p) is the �rm's

target inventory level, i.e. whenever the �rm places an order to replenish its inventory, it orders

an amount suÆcient to insure that inventory on hand (the sum of the current inventory plus new

orders) equals S(p).

Furthermore, the (S; s) bands are generally monotonically declining functions of p, reecting

the simple logic of commodity price speculation, namely to \buy low and sell high". Low spot

prices present an opportunity for the intermediary to make an expected pro�t by purchasing the

commodity when it is cheap, storing it, and subsequently selling it at a higher price. While we

assume that the �rm could sell the commodity immediately with a positive expected mark-up over

the current spot price, most of its pro�ts are obtained from selling the commodity in subsequent

periods when the gross of markup prices at which the intermediary sells to its customers have

\recovered". It follows that the �rm's desired holdings of the commodity are larger when spot
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prices are low than when spot prices are high.

Under certain circumstances the generalized (S; s) rule takes the form of a \bang-bang" strat-

egy with price \thresholds": whenever the spot price falls below a price threshold the �rm makes a

speculative \bet" by placing large orders for steel. This results in large, infrequent discontinuous

increases in inventory levels during periods of unusually low \bargain prices" in the spot market,

behavior. This behavior is consistent with the observed instabilities and \regime shifts" in the

inventory/sales ratio that we observed in our steel intermediary data. It is suboptimal for the

intermediary to set a �xed, time-invariant inventory/sales target as is typically assumed in LQ

models since this impedes the �rm's ability to pro�t from buying low and selling high. Indeed

when spot prices are suÆciently high the �rm's desired inventory holdings can fall to nearly zero

and the incidence of stockouts rises precipitously. The high sales revenues and high opportunity

costs of inventory holding during high price \regimes" make it optimal for the �rm to liquidate

rather than replenish its inventory holdings. Once fully liquidated, the �rm optimally chooses to

forego inventory investment until spot prices revert to lower levels, even though this comes at a

high cost in terms of sacri�ced sales revenue and a steep increase in the incidence of stockouts.

We derive these results from a relatively simple dynamic programming model of a generic

durable commodity intermediary. These intermediaries do not not undertake any physical pro-

duction processing: their main function is to buy the durable good at spot prices, store it, and

sell it subsequently at a markup. We make a number of strong simplifying assumptions about the

operations of these intermediaries that we hope to relax in future work. Our �rst simpli�cation is

a decentralization hypothesis that allows us to model the inventory investment decisions for each

product traded by the intermediary separately. This separation is formally justi�ed under the as-

sumption that there are no technological interdependencies (storage externalities or joint capacity

constraints) for the di�erent products the intermediary carries, and the strong assumption that

the price processes for the di�erent products are conditionally independent. Under these assump-

tions it is easy to show that the �rm's multi-product inventory investment problem decomposes

into independent subproblems: essentially each individual product becomes a separate sub-�rm

or \pro�t center" which can be modeled in isolation from the others.

We need this assumption to break the \curse of dimensionality" associated with the �rm's

dynamic programming problem. In the absence of decentralization, a \central planner" within the

�rm would have to solve a single 4400+ dimensional dynamic programming problem (since each of
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the �rm's 2200+ products requires a minimum of two continuous state variables, p and q). Since

the complexity of continuous-state and continuous-control DP problems increases exponentially

fast in the number of state and control variables, it is clear that such a problem would is far

too large to solve using current hardware and software. However under our decentralization

hypothesis, the �rm's problem decomposes into 2200+ lower dimensional DP problems, each of

which is tractable. Thus the decentralization hypothesis makes it feasible for us to model the

entire �rm by simply summing the optimal trading rules for each individual product. There are

interesting questions about how this �rm decentralizes its operations in practice (many of the

sales and pricing decisions for individual products are delegated to the �rm's sales agents), but

we do not have space here to o�er more in depth consideration of these issues.

We abstract from diÆcult issues connected with modeling endogenous price setting and price

discrimination and assume that the �rm charges a �xed markup over the current spot price of

the commodity. We also abstract from taxes and the details of the �rm's �nancial policy: these

issues will be discussed in more detail below. Finally, we abstract from delivery lags and assume

that the �rm cannot backlog un�lled orders. Thus, whenever demand exceeds quantity on hand,

the residual un�lled demand is lost. This fundamental \opportunity cost" motivates the �rm to

incur inventory holding costs, even in the absence of any stockout penalty capturing the \goodwill

costs" of lost future sales due to alienated customers.

We model the intermediary as making decisions about buying and selling a durable commodity

in discrete time. For concreteness, we consider a model with daily time intervals, matching the

intervals in our data set. The state variables for the �rm are (pt; qt) where qt denotes the inventory

on hand at the start of day t, and pt denotes the per unit spot price at which the intermediary

can purchase the commodity at day t. We assume fptg evolves according to an exogenous Markov

process with transition density g(pt+1jpt). At the start of day t the intermediary observes (pt; qt)
and places an order qot � 0 for immediate delivery of the commodity at the current spot price pt.

We assume that the intermediary sets a uniform sales price to its customers, pst , via an exogenously

speci�ed markup rule over the current spot price pt:

pst = f(pt) + �t; Ef�tjptg = 0: (2)

As a �rst approximation, we assume the �rm uses a linear markup rule, f(pt) = �0+�1pt, where

�0 and �1 are positive constants.
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After receiving qot and setting pst , the intermediary observes the quantity demanded, qdt . We

assume that the distribution of qdt depends on the spot price pt, reecting a stochastic form of

downward sloping demand. Let H(qdt jpt) denote the distribution of realized customer demand. We

assume that H has support on [0;1) with at most one mass point at qd = 0 and is regular in the

sense that for any continuous, bounded function G, the function EG(p; q) is a twice continuously

di�erentiable function of its arguments where EG is given by:

EG(p; q) =

Z
G(p; q; qd)H(dqdjp): (3)

We allow H to have a mass point at 0, reecting the event that the intermediary receives no

customer orders on a given day t. Let h(qdjp) be the conditional density of sales given that qd > 0.

This is a density with support on the interval (0;1). Let �(p) = H(0jp) be the probability that

qd = 0. Then we can write H as follows:

H(qdjp) = �(p) + [1� �(p)]

Z qd

0
h(q0jp)dq0: (4)

As noted above, we assume that there are no delivery lags and un�lled orders are not back-

logged. This eliminates the need to carry additional state variables describing the status of pending

deliveries and backlogged orders. We also assume that the �rm does not behave strategically with

regard to its sales to its customers. In addition to charging an exogenously speci�ed markup as

in equation (2), the �rm does not withhold any inventory for future sale when there is a current

demand for it. Thus, we assume that the intermediary meets the entire demand for its product

in day t subject to the constraint that it can not sell more that the quantity it has on hand, the

sum of beginning period inventory qt and new orders qot , qt+ qot . Thus the intermediary's realized

sales to customers in day t, qst , is given by

qst = min
h
qt + qot ; q

d
t

i
: (5)

We assume the commodity is completely durable and not subject to physical depreciation. There-

fore the law of motion for start of period inventory holdings fqtg is given by:

qt+1 = qt + qot � qst : (6)

Since the quantity demanded has support on the [0;1) interval, equation (5) implies that there is

always a positive probability of un�lled demand qst < qdt . We let Æ(p; q+qo) denote the probability

19



of this event:

Æ(p; q + qo) = 1�H(q + qojp): (7)

Whenever qdt > qst , equations (5) and (6) imply that a stockout occurs, i.e. qt+1 = 0. Of course,

the �rm can minimize the probability of a stockout by insuring that quantity on hand, q + qo,

is suÆciently high. It is interesting to ask whether it would ever be optimal for the �rm to set

q + qo = 0, which maximizes the probability of a stockout. This can be optimal in our model if

spot prices and holding costs are suÆciently high.

We de�ne the intermediary's expected sales revenue ES(p; q; qo) by:

ES(p; q; qo) = Efpsqsjp; q; qog
= EfpsjpgEfqsjp; q; qog (8)

where:

Efpsjpg = f(p) (9)

and:

Efqsjp; q; qog = [1� �(p)]

"Z q+qo

o
qdh(qdjp)dqd + Æ(p; q + qo)[q + qo]

#
: (10)

A key property to notice about the ES function is that it is symmetric in its q and qo arguments:

from the de�nitions given above we see that ES can be written as ES(p; q+ qo). Thus, expected

sales revenue depends only on the total quantity on hand q + qo, rather than upon the separate

values of q and qo. This symmetry is a key to the proof of the optimality of the generalized (S; s)

policy.

We turn now to specifying the per period pro�t function, which requires some additional

assumptions about taxes and the intermediary's �nancial policy. We appeal to the Modigliani-

Miller Theorem to argue that in the absence of taxes, borrowing constraints, and other capital

market imperfections, the intermediary's inventory investment policy should be una�ected by its

�nancial policy. This allows us to abstract from the details of how the intermediary actually

�nances its inventory holdings and allows us to conclude that regardless of whether its inventory

holdings are �nanced by debt or retained earnings, the intermediary incurs an interest opportunity

cost of inventory holdings equal to rtpt(qt + qot ) in day t where rt denotes the spot interest rate

at date t. However we model the intermediary as an entrepreneur whose personal intertemporal

discount factor is � 2 (0; 1) which may not equal the current market discount factor 1=(1 + rt).
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This implies that the owner would like to borrow when � is less than 1=(1+rt) and lend otherwise.

Thus, �nancial policy does a�ect the �rm's expected discounted pro�ts even in the absence of

taxes, borrowing constraints, and other capital market imperfections. Since the steel company

will not disclose information about their �nancial policy, we assume the intermediary �nances its

inventory holdings out of retained earnings, incurring an opportunity cost of maintaining inventory

level qt equal to rtptqt. Furthermore, we assume rt is �xed; rt = r for all t.5

We assume the intermediary incurs a cost of ordering inventory given by a function co(qo)

which may be discontinuous at qo = 0 but is twice continuously di�erentiable for qo > 0. The

discontinuity in co at qo = 0 reects possible �xed costs of placing orders. For concreteness, we

will assume a simple �xed order cost,

co(qo) =

(
F if qo > 0
0 otherwise

(11)

This speci�cation could be easily generalized to account for per unit shipping costs and quantity

discounts. However in order to derive the optimality of a generalized (S; s) policy we need to

assume that the derivative of co is constant for qo > 0. For simplicity we assume this derivative

is 0 in what follows below.

We assume that the intermediary incurs a physical storage cost ch(q) of holding inventory level

q, where ch is nondecreasing and twice continuously di�erentiable. The intermediary perceives a

\goodwill cost"  � 0, where  represents the present value of lost pro�ts from customers who

switch to alternative suppliers in the event that qd > q + qo. Finally the intermediary has a

maximum storage capacity equal to q � 1. Thus the intermediary's single-period pro�ts � is

given by:

�(pt; p
s
t ; q

s
t ; qt; q

o
t ) = pstq

s
t � rpt(qt + qot )� co(qot )� ch(qt + q0t )� ptq

o
t � Ifqst = qt + qot g: (12)

Notice that our assumptions imply that the pro�t function � is symmetrical in its qt and qot

arguments and can be written as �(pt; p
s
t ; q

s
t ; qt + qot ).

The intermediary's inventory investment behavior is governed by the decision rule:

qot = qo(pt; qt); (13)

5The assumption of constant interest rates can be easily relaxed as far as the theoretical presentation of the
model is concerned, however it does lead to an extra state variable that complicates the numerical solution of the
model. In future work we plan to include rt as a state variable to study the sensitivity of inventories to changes in
interest rates, a topic of interest in studies of the role of inventories in macroeconomic uctuations.
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where the function qo is the solution to:

V (pt; qt) = max
qo

E

8<
:

1X
j=t

�(j�t)�(pj ; p
s
j; q

s
j ; q

o
j + qsj )

���pt; qt
9=
; ; (14)

The value function V (p; q) is given by the unique solution to Bellman's equation:

V (p; q) = max
0�qo�q�q

h
W (p; q + qo)� pqo � co(qo)

i
; (15)

where:

W (p; q) �
h
ES(p; q)� rpq � ch(q)� Æ(p; q + qo) + �EV (p; q)

i
: (16)

and EV denotes the conditional expectation of V given by:

EV (p; q) = �(p)

Z
p0
V (p0; q)g(p0jp)dp0

+ [1� �(p)]Æ(p; q)

Z
p0
V (p0; 0)g(p0jp)dp0

+ [1� �(p)]

Z
p0

Z q

0
V (p0; q � q0)h(q0jp)g(p0jp)dq0dp0: (17)

The optimal decision rule qo(p; q) is given by:

qo(p; q) = argmax
0�qo�q�q

h
W (p; q + qo)� pqo � co(qo)

i
; (18)

Hall and Rust (1999) proved the following theorem, which includes Scarf's (1960) characteri-

zation of the optimality of (S; s) as a special case. The key to the proof is the same as in Scarf's

(1960) theorem, the property of K-concavity.

De�nition: A function f : R+ ! R is K-concave if and only if for all q 2 R+ and all z � 0 and

all b � 0 satisfying q � b � 0 we have:

f(q + z)�K � f(q) +
z

b
[f(q)� f(q � b)] : (19)

Intuitively, a (nonconcave) function is K-concave if the secant approximation to f(q+z) given

on the right hand side of equation (19) exceeds f(q + z) less the constant K. Clearly a concave

function is 0-concave, and thus K-concave for all K � 0. Hall and Rust (1999) prove that if

W (p; q + qo) � pqo is K-concave in qo, then the optimal inventory policy is an (S; s) rule. So it

suÆces to establish suÆcient conditions forW (p; q+qo)�pqo to be K-concave. There are two key

lemmas that are used to establish this result: 1) the Bellman operator maps K-concave functions
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into K-concave functions, and 2) pointwise limits of K-concave functions are K-concave. For

details of the proof of the following Theorem, see Hall and Rust (1999).

Theorem: Consider the function W (p; q + qo) de�ned in equation (16), where W is de�ned in

terms of the unique solution V to Bellman's equation (15). If W (p; q+qo) is a K-concave function

of qo for any p, then the �rm's optimal inventory investment policy qo(p; q) takes the form of a

generalized (S; s) rule. That is, there exist a pair of functions (S; s) satisfying S(p) � s(p) where

S(p) is the desired or target inventory level and s(p) is the inventory order threshold, i.e.

qo(p; q) =

(
0 if q � s(p)
S(p)� q otherwise

(20)

where S(p) is given by:

S(p) = argmax0�qo�q�q

h
W (p; qo)� pqo

i
(21)

and the lower inventory order limit, s(p) is the value of q that makes the �rm indi�erent between

ordering and not ordering more inventory:

s(p) = inf
q�0

fqjW (p; q)� pq �W (p; S(p))� pS(p)� Fg : (22)

We conclude this section by noting that if the decision rule take the form of a generalized

(S; s) policy, the value function is linear in q with slope equal to p when q < s(p). To see this, we

simply substitute the form of the generalized (S; s) policy (20) into the formula for V in Bellman's

equation (15) to obtain:

V (p; q) =

(
W (p; S(p))� p[S(p)� q]� F if q � s(p)
W (p; q) otherwise

(23)

Thus, V takes the form V (p; q) = (p)+pq for q � s(p), which shows that the \shadow price" of an

extra unit of inventory is p. The intuition for this simple result is straightforward: if the �rm has

an extra unit of q when q � s(p) then it needs to order one fewer unit in order to attain its target

inventory level S(p). The savings from ordering one fewer unit of inventory is simply the current

spot price of the commodity, p. When q > s(p) the shadow price of inventory is no longer equal to

p. We do know that since q = S(p) maximizes W (p; q)� pq, we must have @W (p; q)=@q = p when

q = S(p). IfW were strictly concave, @W (p; q)=@q > p when q 2 (s(p); S(p)] and @W (p; q)=@q < p

when q 2 (S(p); q]. Thus, there is a kink in V function at the inventory order threshold, q = s(p).

which is inconsistent with the assumption that W is strictly concave in q. However the result

does hold under the weaker condition that W is K-concave in q.
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5 A Calibrated Example

To illustrate the behavior implied by our model we solved a discrete approximation of (15) numer-

ically under the following assumptions. We assumed that the daily interest rate is time-invariant

and equal to r = :05=261.6 We assumed the �rm uses the sales price markup rule pst = 0:9+1:06pt

and spot prices fptg evolve according to a truncated lognormal AR(1) process:

log(pt+1) = �p + �p log(pt) + �t (24)

where �p = :06, �p = :98, and f�tg is an IID N(0; �2p) sequence, with �2p = 8:6510�5. The upper

and lower truncation bounds on this process were chosen to be (16; 25) which are beyond the

minimum and maximum spot purchase prices observed in our sample or in long run simulations

of the untruncated version of this process.

We choose the function form and parameters values for the price process to qualatativiely

match the histograms of the transaction prices generated by simulations from our model with the

histograms of the transaction prices observed in the data. Recall that we only observe prices on

days the �rm purchases steel so we have infrequently and irregularly sampled price series in which

the sampling is made by the �rm endogenously. Since estimators that correct for this endogenous

sampling problem do not exist, we �t the price process visually rather than employing a formal

econometric criterion. The current parameterization of equation (24) yields an order price process

with an invariant distribution with mean of 20:5 cents per pound and a standard deviation of

1:00 cents per pound. Given the markup rule, the mean and standard deviation of the sell price

process are 22:6 and 1:06, respectively. The means of these price processes are in the range of

means reported in table 1. The standard deviations are below those reported in table 1; but

again, we are silent on the issue of price discrimination.

We assumed that quantity demanded, qdt , is a mixed truncated lognormal distribution con-

ditional on pt. That is, with probability :5 qdt = 0, and with probability :5 qdt is a draw from a

truncated lognormal distribution with location parameter �q(p) = 4:43 � :7 log(pt) and standard

deviation parameter �q = 1:081.7 These parameters yield a stationary distribution for qdt (condi-

tional on qdt > 0) with conditional mean equal to 18:3 and conditional standard deviation equal

6We assumed there are 365 � (2� 52) business days in a year.
7This downward sloping demand curve in conjunction with the linear markup rule implies

ps
t

pt
decreases as pt

increases and qt decreases. So markups are procyclical. We have experimented with various forms of the markup
rule and have found that the basic results of the model do not depend on procyclical markups.
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to 28:2. The units of the quantity variables are in 1,000's of pounds. The �rst two moments of

the quantity demanded process are in the range of the moments reported in columns (7) and (9)

in table 2.

We assumed that goodwill costs of stockouts  and physical holding costs were zero, ch(qt) = 0,

and that the �xed order cost is equal to $50, i.e. co(0) = 0 and co(qo) = $50 if qo > 0. Finally, we

assumed that the �rm owner's personal subjective discount factor was given (on a daily basis) by

� = 1=(1 + :05=261); so � = 1=(1 + r).

We solved for the optimal inventory investment rule by the method of policy function iteration

which computes a discrete approximation to the value function V (p; q) as the unique �xed point

to the Bellman equation, (15). We used a uniform discretization of the (p; q) state space to

approximate the continuous DP problem by the solution to a �nite state problem with 750 grid

points (15 in the p dimension and 50 in the q dimension). The grid points are evenly spaced

along the p dimension. Along the q dimension, the distance between the grid points increases as q

increases. Thus the grid point are more densely spaced in the region where there is more curvature

in the decision rule. Although the state variables were discretized, we treated the control variable

qo as a continuous variable subject to the constraint that 0 � qo � �q � q. Policy iteration is

not guaranteed to converge in continuous choice problems such as this one; but for this example,

the algorithm converged in 39 iterations. Using the values computed at these 750 grid points

we produced continuous approximations to the value function and decision rule via multi-linear

interpolation.

As can be seen from Bellman's equation (15), the policy improvement step requires the solution

of a constrained optimization problem involving the two functions ES(p; q) and EV (p; q), each

of which is a conditional expectation of functions of two continuous variables (sales, psqs, and

the value function, V (p; q)). Since no analytic solutions to these conditional expectations exist,

we resorted to numerical integration. We experimented with two di�erent methods of numerical

integration, a \quadrature" approach that approximates EV by a probability weighted sum:

ÊV (p; q) =
1

Np

1

Nq

NpX
i=1

NqX
j=1

Ifqj � qgV̂ (pi; q � qj)h(pj jpi)g(pijp) (25)

where h(qjjpi) is a discretized approximation to the conditional probability density h(qjp; q) and
g(pijp) is a discretized approximation to the transition probability density g(p0jp). Further ad-

justments to this formula were made in order to allow ÊV (p; q) to account for mass points on
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stockouts and zero sales as in equation (17). A second method of approximating EV was a \quasi

monte carlo, probability integral transform method" (MC-PIT) given by

ÊV (p; q) =
1

N

NX
i=1

V̂ (~pi; q � ~qi) (26)

where f~pi; ~qig are draws from the density h(q0jp0; q)g(p0jp) computed from uniformly distributed

draws f~u1;i; ~u2;ig from the unit square, [0; 1]2 via the probability integral transform method.

Instead of using pseudo-random random draws for f~u1;i; ~u2;ig we obtained acceleration using

Generalized Faure sequences, also known as Tezuka sequences. Using number-theoretic methods

(see, e.g. Neiderreiter 1992, or Tezuka, 1995), one can prove that for certain classes of integrands,

the convergence of monte carlo methods based on deterministic low discrepancy sequences is

O(log(N)d=N) where d is the dimension of the integrand and N is the number of points. This rate

of convergence dominates the rate of convergence of carlo methods converge at rate Op(1=
p
N).

These favorable rates of convergence have been observed in practice, see e.g. Papageorgiou and

Traub (1997).8 The density h(q0jp; q) is the conditional density of q0 given that q0 � q,

h(q0jp; q) = h(q0jp)
1� Æ(p; q)

(27)

where Æ(p; q) = Prfq0 > qjpg = 1�H(qjp). As in the quadrature method, we adjusted the MC-PIT

formula (26) to account for mass points corresponding to stockouts and zero sales. We found that

the optimal order size qo was sensitive to the way the functions ES and EV are approximated.

It was critical to use methods that provide accurate approximations both their levels and their

derivatives, since the latter determine the �rst order conditions for a constrained optimum for qo.

In regions where EV (p; q) is nearly linear in q, small inaccuracies in the estimated derivatives can

create oscillations in the approximations to EV causing the approximate solution to have multiple

local maxima. Without very careful safeguarding of the uni-dimensional optimization algorithm

for computing optimal order size, the algorithm could get stuck on a local maximum, generating

large instabilities in the estimated value of qo. The solutions are also sensitive to the discretization

of the p and q axes, and the number of points used in the discretization. Through a fair amount

of experimentation we have developed numerical procedures that we trust. In particular the two

di�erent approximation methods for computing ÊS and ÊV discussed above produced nearly

identical results.
8We are grateful to Joseph Traub for providing the FINDER software co-authored with A.F. Papageorgiou that

generated the low discrepancy sequences used in this study.
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Figures 17-20 present the optimal decision rule qo as a function of p and q and the associated

expected sales, value functions, and (S; s) bands. Note that our solution technique does not

exploit our prior knowledge about the form of the decision rule. The computed value function

is nearly a linear function of q. At low inventory levels (in regions the �rm is expecting to buy

steel), V (p; q) is decreasing in p, whereas at high values of q, (in regions the �rm is expecting to

not buy but just sell steel) V is increasing in p. The kink at s(p) is not apparent at this level of

resolution. These results are consistent with the discussion in the previous section. The optimal

decision rule is decreasing in both p and q, although it generally decreases faster in p than in q.

In particular when qo(p; q) > 0, @qo(p; q)=@q = �1 which is consistent with the prediction of the

generalized (S; s) rule that qo(p; q) = S(p)� q.

Figure 19 shows the generalized (S(p); s(p)) bands implied by our model. The graph of the

function s is the curve on the (q; p) plane where the qo(p; q) surface intersects the plane at qo = 0.

The graph of S, is the curve on the (qo; p) plane where the q
o(q; p) surface intersects the plane

at q = 0. These bands are plotted in �gure 20 to make it easier to compare them. Due to the

�xed costs of ordering ($50), the S(p) band is strictly above the s(p) band although the di�erence

between the two bands decreases as the price increases. In other words, the order size at s is a

decreasing function of the price.

As can be seen in �gure 20, when the price is near the lower truncation price bound (16 cents

per pound), the constraint on maximum storage capacity q (5 million pounds) becomes binding.9

This makes sense because the �rm knows prices cannot go any lower. The �rm cannot make a

capital loss on any steel purchased at the lower bound. Nevertheless, this boundary issue is not

a major concern since the �rm very rarely ever observes prices in this region; this region is over

4 standard deviations away from the mean of the price process.

Figures 21- 24 present the results from a single stochastic simulation of the DP model for 434

periods. At �rst glance, the simulated series look quite similar to the actual data. Figure 21 shows

the time series for inventory levels, and there appears to be multiple regimes. During the �rst 275

days of the simulation, inventory levels are centered around 200,000 pounds. This average level

matches the average level of inventory holdings for product 13 and the �rst 200 days of product 4.

Starting around day 275, the �rm enters a \high inventory regime" with the simulated inventory

levels reaching a peak over 1,500,000 pounds. This peak is consistent with observed levels of

9In �gure 19 we plot the decision rule for prices between 17 and 24 to make the graph more easily readable.
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inventories for products 2 and 4. During this high inventory regime, days supply reaches almost

350. The transition from the low to high inventory regime occurs when the order price falls below

a threshold value. Later, as prices begin to rise (from day 360 to the end of the simulation) the

�rm lets its inventory holdings gradually fall.

The high- and low-regime property of the optimal inventory holdings can be seen from the

decision rule, qo(q; p). In �gure 19, qo(q; p) is sharply decreasing in p when qo(q; p) > 0. This

occurs for two reasons. First, the �rm takes advantage of low order prices to build up inventories

knowing that it is likely to capture a capital gain on its inventory holdings when prices rise.

Second, the �rm faces a downward sloping demand curve for its product; so when the price falls,

qd rises and the �rm will hold more inventories to accommodate the increase in demand.

The simulation results are consistent with this intuition. Figure 23 presents the censored and

uncensored order and sales price series. In this graph, the solid line is the \censored transaction

price process" analogous to the one we observe in our dataset. For convenience, we superimposed a

linear interpolation of the times and prices at which simulated orders took place on the underlying

uncensored \latent price process" fptg which is plotted as a dotted line in �gure 23. Under an

optimal ordering strategy, the �rm appears to have an uncanny ability to predict turning points

in spot prices, with most orders occurring at local minimum points of the realized trajectory for

fptg. When prices hit a record low around days 285 and 360, the �rm placed several very large

orders that ushered it into a \high inventory regime" between days 260 and 434.

In this simulation the �rm sold steel on 210 days at average price of 22.67 during the simulation

period and purchased steel on 26 days at an average price of 20:04. The average order size was

116; 000 pounds with a conditional standard deviation of 62:3. These implied moments from the

model are consistent with the moments we observe in the data. Finally the ratio of the standard

deviation of orders to the standard deviation of sales for this simulation is 2.4. So the model does

imply that orders are more volatile than sales. The particular realization we presented is typical,

and not designed to make our model look good. Longer simulations also generate similar results.

These results are qualitatively similar to the actual inventory time series for our �rm in �g-

ures 5-16. Our DP model display regime shifts in the inventory levels and days supply of inventory

with little evidence of a single �xed inventory/sales target; however, we have not systematically

searched over the parameter space to ensure that our DP model captures the full volatility and

magnitude in these regime shifts. In our individual product data, we also see very large increases
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inventory levels occurring when prices hit what appear to be record lows. But we do not see the

either very large or very small individual orders. In particular the large increase in inventories

around day 350 is spread across four orders. Moreover comparing �gures 6, 10, and 14 with

�gure 22, we see that the DP model generates fewer small size orders than we observe in the data.

This suggests that perhaps the �xed order cost is too large; however when we set the �xed cost to

zero, we get the counterfactual result that with prices are high, the �rm tightly matches orders to

sales, ordering almost every period an amount equal to last period's sales. Finally the model does

imply occasional stockouts. In the simulation, the �rm stocked out on day 108 when quantity

demanded was unusually large (over 1 million pounds) and current inventories were relatively low

(around 250,000 pounds).

We conclude that cost shocks in the form of serially correlated spot prices in the steel market

is the principal explanation for the observed volatility in inventory/sales ratios and the fact that

orders are more volatile than sales. We believe this simple model provides a promising starting

point for more rigorous estimation and testing using more advanced econometric methods.

6 Aggregation

It is natural to ask whether the �rm we study is representative of other durable commodity

intermediaries. We address this issue in �gure 3 which presents a monthly price index for carbon

plate constructed by Purchasing Magazine. The data are from January, 1987 to February, 1999.

We deated this index by the PPI-all commodities so the units are in 1982 cents per pound.10

Note that at the end of the sample the real price of carbon plate is at (at least) a twelve-year low.

Figure 4 plots the �rm's days-supply for product 2, a speci�c type of carbon plate. We also plot

the aggregate days-supply of carbon plate for member �rms of the Steel Service Center Institute

(SSCI).11 Finally we plot the days supply for establishments in the SIC 505 sector (wholesale

trade: metal and minerals, except petroleum). All three data series are monthly, and we plot

three-month centered-moving averages. Since the mean of the SIC 505 data is one half the mean

of SSCI and individual �rm data, the scale for the SSCI and �rm-level data is the left-hand side

axis, and the scale for the SIC 505 data is one the right-hand side axis.

10Deating this price index by the CPI would not change any of analysis presented below.
11The SSCI is an industry organization which among other things collects data on member �rms' shipments and

inventory holdings.
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For the sample period of our �rm-level dataset (July, 1997 to February, 1999) the more ag-

gregated data appear to be consistent with both our �rm level data and the implications of our

theory. During this period carbon plate prices fell to record lows and inventory levels at all three

levels of aggregation rose signi�cantly. This suggests that the �rm's strategy of placing speculative

bets is not atypical of metal wholesalers. We would observe similar results if we were to aggre-

gate the simulated inventory holdings of di�erent simulated �rms. While there are idiosyncratic

demand shocks that will be averaged out over �rms in the simulation, their behavior is a�ected in

a similar way by the common \cost shock" fptg. To the extent that these price series are a�ected
by macroeconomic factors such as the Asian crisis, we have a simple explanation for the role of

inventory investment as a propagating mechanism in the business cycle. It would not be diÆcult

to add other \macro shocks" to our model. For example, rather than allowing the interest to be

constant, we could allow frtg to evolve stochastically, say according to a Markov process. We

would then be able to study the impact of monetary policy on inventory investment, determining

features such as the interest elasticity of inventory investment. This is a topic for future work,

however.

We note that the aggregate data present several interesting challenges to try to explain using

the model developed in this paper. For example the large swings observed in price of carbon plate

seem super�cially at odds with the predictions of our model and the commodity storage literature

more generally. In particular the latter literature implies that the price process should satisfy the

arbitrage condition in equation (1). Our model implies a similar condition

p =
@ES

@q
(p; S(p)) � rp� @ch

@q
(S(p)) + �

@EV

@q
(p; S(p)): (28)

The �rst terms @ES(p; S(p))=@q � rp � @ch(S(p))=@q constitute the \convenience yield" net of

holding costs of adding an extra unit of inventory, the analog of the term c(xt) in the commodity

storage model in equation (1). In our case, the convenience yield equals the increase in expected

sales of having an extra unit of inventory and the holding costs are the sum of the interest

opportunity costs rp plus the marginal physical holding costs @ch(S(p))=@q. The second term,

�@EV (p; S(p))=@q, is the expected discounted shadow price of an extra unit of inventory. However

as we noted above, V is essentially linear in q with slope p, so �@EV (p; S(p))=@q is the analog of

the term �Efpt+1jpt; xt; ztg in equation (1). Large swings in prices in and of themselves do not

contradict either (1) or (28), but intermediaries such as the one we study should tend to dampen
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price swings by buying when prices are low and selling o� accumulated inventory when prices are

high.

It is striking to note that even with 5,000 steel service centers in the U.S., each one presumably

solving a dynamic programming problem similar to one presented above, the real price of carbon

plate rose 70 percent from early-1987 to mid-1988 only to fall 50 percent by mid-1992. A very

puzzling feature is that during the 1988-1989 period prices for carbon steel hit a record high {

but so did days-supply both at the steel service center industry level and at the three digit SIC

level. According to our model, if intermediaries viewed the prices during this period as being in

a temporary \high price regime", they should have been reducing rather than increasing their

inventory holdings. Furthermore during the early 1990s as price fell, so did days supply, a result

that is also hard to explain using our model. Of course there may have been demand shocks in

the steel market during this period that we are currently unaware of and that might need to be

incorporated in a more realistic model. We hope to address these issues more fully in future work.

7 Concluding Remarks

This paper has presented a new data set containing high quality, high frequency observations

on product-level inventory investment by a U.S. steel wholesaler. Our empirical analysis yielded

six conclusions about inventory investment and price setting by this �rm: 1) orders are more

volatile than sales, 2) orders are made infrequently, 3) there is considerable volatility in order

levels, 4) there is no stable inventory/sale relationship, 5) there is considerable volatility in sales

prices consistent with price discrimination, and 6) inventory stockouts occur relatively frequently,

especially during periods of high commodity prices when inventory holdings are low.

We argued that the standard versions of the (S; s) model, production smoothing models, and

LQ models with target inventory/sales ratios are incapable of explaining these facts. We intro-

duced a new model of optimal inventory speculation by durable commodity intermediaries and

showed that the optimal inventory investment strategy takes the form of a generalized (S; s) rule

where the S and s bands are declining functions of the spot price of the commodity. Simulations

of a calibrated version of our DP model suggest that the �rm's behavior at the product level can

be well approximated by an optimal trading strategy. We employed a continuous-state version of

Howard's policy iteration algorithm to solve a two-dimensional nonlinear in�nite horizon dynamic
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programming problem with continuous state and control variables that are subject to frequently

binding inequality constraints. The predicted behavior from the generalized (S; s) rule appears

to explain a number of di�erent aspects of inventory investment behavior by our steel wholesaler,

including highly variable inventory/sales ratios and occasional stockouts during low inventory

regimes when the spot price for steel is relatively high.

In future work we plan to undertake more rigorous econometric estimation and testing of our

generalized (S; s) model which will account for diÆcult problems of \dynamic selectivity bias"

arising from endogenous sampling of the prices at which the �rm purchases inventory. We also

plan to extend the model to allow for additional state and control variables such as the �rm's sales

price pt and the interest rate rt. The former will allow us to study endogenous price determination

and price discrimination, whereas the latter will allow us to study the impact of monetary policy

on inventory investment as a potential propagating mechanism for business cycles. In doing so,

we will need to address some diÆcult issues connected with the curse of dimensionality underlying

the solution of high dimensional DP problems such as the one considered in our paper. Recent

progress in this area by Rust (1997, 1998) and Rust, Traub, and Wo�zniakowski (1998) make us

optimistic about the prospect for solving these larger and more realistic models.

In future work we plan to develop more realistic models that relax the some of the strong

simplifying assumptions in our model. This includes our assumption that the current spot price

pt is a suÆcient statistic for the distribution of per period retail demand. We want to allow for

the impact of \macro demand shocks" and the possibility that the �rm's demand in period t, qdt

also depends on its realized value in previous periods. More ambitiously, we would like to model

equilibrium determination of prices in durable commodities markets with three di�erent types of

agents: producers, retail consumers, and intermediaries. We want determine whether the funda-

mental functional equation in the rational expectations commodity price model of Williams and

Wright, equation (1), can be derived from microfoundations in a market where informational fric-

tions and transactions costs lead to considerable price dispersion and potential market ineÆciency

despite the standard nature of the product.
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Figure 1: Aggregate inventory holdings for the eighteen products studied.
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Figure 2: Aggregate days-supply for the eighteen products studied (in business days).
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Figure 3: Price index of carbon plate steel from Purchasing Magazine deated by the PPI.
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Figure 4: Three-month moving average of days-supply for product 2 (dashed line), days-supply
for aggregate carbon plate of SSCI �rms (solid line), and days-supply for all �rms in the SIC
505 sector (dotted line). The units for the �rm's holding of product 2 and the SSCI companies
holdings are on the left-hand side axis; for the SIC 505 sector the units are on the right-hand side
axis.
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Figure 5: Times series plot of the inventory
for product 2.
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Figure 6: Size of purchases for product 2 as
a function current inventory holdings and the
buy price.
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Figure 7: Order prices (solid line) and sell
prices (dashed line) for product 2. For the
order price series, the size of the marker is
proportional to the size of the purchase.
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Figure 8: Days-supply of inventory for prod-
uct 2 (in business days).
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Figure 9: Times series plot of the inventory
for product 4.
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Figure 10: Size of purchases for product 4 as
a function current inventory holdings and the
buy price.
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Figure 11: Order prices (solid line) and sell
prices (dashed line) for product 4. For the
order price series, the size of the marker is
proportional to the size of the purchase.
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Figure 12: Days-supply of inventory for prod-
uct 4 (in business days).
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Figure 13: Times series plot of the inventory
for product 13.
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Figure 14: Size of purchases for product 13 as
a function current inventory holdings and the
buy price.
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Figure 15: Order prices (solid line) and sell
prices (dashed line) for product 13. For the
order price series, the size of the marker is
proportional to the size of the purchase.
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Figure 16: Days-supply of inventory for prod-
uct 13 (in business days).

43



Figure 17: Expected sales revenue, ES for
the calibrated example.

Figure 18: The value function, V (q; p) for
the calibrated example.

Figure 19: Decision rule, qo(q; p), for the
calibrated example. Figure 20: S(p) and s(p) for the calibrated

example.
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Figure 21: Simulated inventory holdings
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Figure 22: Simulated orders as a function cur-
rent inventory holdings and buy price.
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Figure 23: Censored (solid line) and Uncen-
sored (dotted line) order and sales prices from
the simulation.
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Figure 24: Simulated days-supply of inventory
(in business days).
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