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Abstract To extend the linear stochastically forced par-

adigm of tropical sea surface temperature (SST) variability

to the subsurface ocean, a linear inverse model (LIM) is

constructed from the simultaneous and 3-month lag

covariances of observed 3-month running mean anomalies

of SST, thermocline depth, and zonal wind stress. This

LIM is then used to identify the empirically-determined

linear dynamics with physical processes to gauge their

relative importance to ENSO evolution. Optimal growth of

SST anomalies over several months is triggered by both an

initial SST anomaly and a central equatorial Pacific ther-

mocline anomaly that propagates slowly eastward while

leading the amplifying SST anomaly. The initial SST and

thermocline anomalies each produce roughly half the SST

amplification. If interactions between the sea surface and

the thermocline are removed in the linear dynamical

operator, the SST anomaly undergoes less optimal growth

but is also more persistent, and its location shifts from the

eastern to central Pacific. Optimal growth is also found to

be essentially the result of two stable eigenmodes with

similar structure but differing 2- and 4-year periods

evolving from initial destructive to constructive interfer-

ence. Variations among ENSO events could then be a

consequence not of changing stability characteristics but of

random excitation of these two eigenmodes, which repre-

sent different balances between surface and subsurface

coupled dynamics. As found in previous studies, the impact

of the additional variables on LIM SST forecasts is rela-

tively small for short time scales. Over time intervals

greater than about 9 months, however, the additional

variables both significantly enhance forecast skill and

predict lag covariances and associated power spectra

whose closer agreement with observations enhances the

validation of the linear model. Moreover, a secondary type

of optimal growth exists that is not present in a LIM

constructed from SST alone, in which initial SST anoma-

lies in the southwest tropical Pacific and Indian ocean play

a larger role than on shorter time scales, apparently driving

sustained off-equatorial wind stress anomalies in the east-

ern Pacific that result in a more persistent equatorial ther-

mocline anomaly and a more protracted (and predictable)

ENSO event.
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1 Introduction

Penland and Sardeshmukh (1995; hereafter PS95) showed

that observed tropical SST variability may be viewed as

resulting from the linear stochastically-forced system

dTo

dt
¼ LTo þ Fs; ð1Þ

where To(t) are sea surface temperature (SST) anomalies

throughout the tropical domain, L is a stable linear

dynamical operator, and Fs is white noise (which can have

spatial coherence and seasonal dependence). PS95 derived

L empirically by constructing a Linear Inverse Model
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(LIM); a similar result has also been suggested by several

studies using intermediate coupled models (Flügel and

Chang 1996; Moore and Kleeman 1997, 1999; Penland

et al. 2000; Thompson and Battisti 2001). Equation 1 may

be thought of as a multivariate extension to the univariate

red noise null hypothesis for SST variability first proposed

by Frankignoul and Hasselman (1977), in which the slowly

evolving ocean integrates forcing by rapidly evolving

weather noise. The ‘‘effectively linear’’ stochastic

approximation (1) is similarly valid when nonlinear pro-

cesses decorrelate much more rapidly than linear processes

(e.g., Papanicolaou and Kohle 1974; Hasselmann 1976; see

also Penland 1996), so that nonlinear terms may be

parameterized as a (second) linear process plus unpredict-

able white noise. [This is in contrast to ‘‘linearization’’ of

the prevailing equations, where it is assumed that the

magnitude, rather than the time scale, of the nonlinear

terms is small.]

Equation 1 is a good approximation of the observed

statistics of ENSO evolution. For example, a LIM con-

structed from the zero- and one week lagged covariance

statistics of weekly atmospheric and SST data more faith-

fully reproduces the entire power spectrum on seasonal to

interannual time scales of monthly ENSO SST variability

than do the corresponding spectra from virtually all

ensemble members of the ‘‘twentieth-century’’ (20c3m)

IPCC AR4 coupled GCMs (Newman et al. 2009). Also,

forecasts made using the LIM are not only competitive with

operational GCMs such as NCEP’s coupled forecast system

(CFS) but, particularly for forecast leads of 6 months and

greater, generally have higher skill throughout most of

the Pacific Basin (not shown), indicating that (1) is also a

good approximation of the case-to-case evolution of SST

anomalies.

While (1) has proven highly useful as a dynamical

model for SSTs, it is not as satisfying as a dynamical model

of the full ocean. Equation 1 assumes that SST is a proxy

for the complete coupled atmosphere-ocean state vector,

which PS95 notes is a plausible scenario so long as

essentially instantaneous (on the seasonal time scale) SST-

induced changes in surface winds drive an immediate

thermocline response, and/or in the fast-wave limit (Neelin

1991; Neelin and Jin 1993) in which wave dynamics allow

the deeper ocean to rapidly adjust to changes in SSTs. In

this case, all other physically important ocean variables can

be effectively regressed onto SST; that is, X = B To ? r,

where X is the remaining ocean state vector, B is a

regression matrix and r is a white residual. (Note that this

regression is generally not local.) Consequently, L in (1)

includes all the implicit effects of X upon the evolution of

To. Clearly, this is at least partly true, evidenced both by a

strong observed relationship between thermocline depth

and SST (e.g., Zelle et al. 2004) and by the success of (1) as

a model. Also, studies that constructed a LIM by including

a variable corresponding to ocean heat content (Johnson

et al. 2000; Xue et al. 2000) did not find statistically sig-

nificant improvement in forecast skill up to a few seasons

ahead.

However, for longer time scales (and thus forecast leads)

we expect deeper ocean physics is too important for this

simple relationship to hold, if for no other reason than r is

unlikely to be white. For example, near-equatorial Kelvin

and Rossby waves are an integral part of the El Niño

phenomena, and within the delayed oscillator paradigm the

latter set the time scale for ENSO (Schopf and Suarez

1988; Battisti and Hirst 1989). In the subtropics, thermo-

cline variability clearly propagates west in accordance with

Rossby wave theory and appears to influence the upper

ocean along the equator via Kelvin waves along the wes-

tern boundary (Capotondi and Alexander 2001). In the

recharge-discharge paradigm for ENSO, zonally-averaged

export of heat to and from the equator is the critical process

for ENSO dynamics (Jin 1997). Indeed, heat content

anomalies at 5�N, important in either paradigm, contribute

to ENSO predictability at 6–12 month lead times (Latif and

Graham 1992).

Moreover, if the linear stochastically forced paradigm is

appropriate for tropical climate dynamics, then the LIM

must also appropriately represent the correct balance of

coupled air-sea physical processes, both linear and non-

linear. This makes LIM a potentially important diagnostic

tool that could be used to understand, for example, how

misrepresented physical processes might affect the simu-

lation of ENSO in coupled models, so a LIM based on SST

alone is necessarily insufficient and both atmospheric and

subsurface information must be included in its state vector.

As a first step, in this study we diagnose a LIM constructed

from an extended state vector that includes SST, thermo-

cline depth (as represented by the 20�C isotherm depth)

and surface zonal wind stress, a combination of variables

similar to that earlier employed by Johnson et al. (2000)

and Xue et al. (2000) using more limited datasets. The

resulting LIM, described in Sect. 2, improves both tropical

SST predictions at longer leads and the simulation of

power spectra and lag co-variance statistics relative to the

SST-only LIM (shown in the ‘‘Appendix’’), giving confi-

dence in its diagnostic usefulness. Initial analysis of the

different terms within the LIM and their effect upon the

statistics of SST variability is made in Sect. 3. A discussion

of how thermocline depth and surface wind stress vari-

ability interacts with the most rapidly amplifying SST

anomalies and how they together evolve into ENSO events

is then presented in Sect. 4, along with how two key

eigenmodes of L that represent different balances of

dynamical processes contribute to this evolution. Con-

cluding remarks are made in Sect. 5.
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2 Model details and data

LIM may be broadly defined as extracting the dynamical

evolution operator L of the system

dx

dt
¼ Lxþ n ð2Þ

from its observed statistics, as described for example in

PS95 (see also Penland 1989, 1996; Winkler et al. 2001;

Newman et al. 2003, 2009; Newman 2007; Alexander et al.

2008; Newman and Sardeshmukh 2008; Kallummal

and Kirtman 2008). The statistics of the noise forcing

Q ¼ nnT
� �

dt are then determined by the corresponding

Fluctuation–Dissipation relationship

dC 0ð Þ=dT ¼ LC 0ð Þ þ C 0ð ÞLT þQ; ð3Þ

given the observed seasonally-varying (where T is time of

year) data covariance matrix C 0ð Þ ¼ xxTh i. The procedure

and its strengths and pitfalls are discussed at length in the

above papers, and are summarized in the ‘‘Appendix’’.

For the LIM presented in this paper, we chose the model

state vector x

x ¼
TO

Z20

sx

2

4

3

5

where TO is anomalous SST, Z20 is anomalous 20�C iso-

therm depth, and sx is anomalous surface zonal wind stress,

determined from 42 years (1959–2000) of 3-month running

mean data. Monthly means of TO and Z20 can also be used

to construct LIMs, but this time average is problematic

when an atmospheric variable is included because of some

aliasing of the Madden–Julian oscillation (MJO) signal.

SST was obtained from the Hadley Sea Ice and Sea Surface

Temperature analysis (HadISST; Rayner et al. 2003), 20�C

isotherm depth from the SODA dataset (Carton and Giese

2008), and wind stress from the NCEP Reanalysis (Kalnay

et al. 1996). Data were averaged into 2� latitude 9 5�

longitude gridboxes. Anomalies, determined by removing

the long-term monthly mean, were projected onto their

leading Empirical Orthogonal Functions (EOFs) deter-

mined for the region 25�S–25�N. Prior to computing EOFs,

each field was normalized by its domain-averaged clima-

tological root-mean-square amplitude. The leading 13/7/3

EOFs of To/Z20/sx were retained, explaining about 83/36/

32 percent of the variability of their respective fields.

Locally, however, variance explained can be considerably

higher (or lower), as seen in Fig. 1, which shows the

(untruncated) variance of To, Z20, and sx, and the local frac-

tion of variance explained by the truncated EOF bases. The

time-varying coefficients of these EOFs, i.e., the principal

components (PCs), define the 23-component state vector x.

For purposes of comparison, corresponding SST-only

LIMs (or ‘‘SST-LIMs’’) were constructed by representing x

with only TO, using either 13 or 23 PCs (SST13-LIM and

SST23-LIM). Throughout the remainder of this paper,

(a)

(b)

(c)

Fig. 1 Variance (contours) and

fraction of local variance

explained by EOF truncation

(gray shading) for variables

used in the LIM. Top SST (TO);

contour interval 0.25 K2. 2nd

row 20�C isotherm depth (F20);

contour interval 100 m2. Bottom

zonal wind stress (sx); contour

interval 5 9 10-5 N2m-4.

Thicker contours indicate larger

values, starting at and

increasing from 1 K2, 300 m2,

and 20 9 10-5 N2m-4,

respectively
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‘‘ocean LIM’’ will denote the LIM constructed from the

extended To-Z20-sx state vector.

To use the LIM for diagnosis, we must first validate it by

determining whether the effectively linear approximation

of (2) holds, through a series of tests (PS95) that include a

comparison of the observed evolution of individual events

to their prediction by the LIM and a more general com-

parison of observed anomaly evolution statistics to those

linearly predicted by (2). The results of these tests (see

‘‘Appendix’’) basically agree with both PS95 and sub-

sequent studies that constructed linear empirical models

from more limited ocean datasets (Johnson et al. 2000; Xue

et al. 2000). The additional variables in the model state

vector result in a LIM that passes the above tests with even

greater fidelity than the SST-LIMs, although this

improvement is not significant until the time scale is longer

than a few seasons.

As an example, Fig. 2 shows that the SST23-LIM and

the ocean LIM, constructed from the same number of

degrees of freedom, have similar Niño 3.4 SST forecast

skill for leads up to about 8 months. That is, replacing

higher order SST PCs with subsurface information in the

LIM does not improve skill for shorter leads, also earlier

noted by C. Penland (personal communication) and John-

son et al. (2000). For longer leads, however, the ocean LIM

has higher skill than SST-LIMs of any EOF truncation. [In

fact, for forecast leads over 1 year, more than 13 EOFs

degrades SST-LIM skill.] As a result, if a ‘‘good’’ forecast

has anomaly correlation skill greater than or equal to 0.6,

then the ocean LIM improves Niño 3.4 forecast skill by

about 3–4 months. A similar result also obtains over the

Indian Ocean (not shown).

3 Processes within the dynamical operator

The dynamics of different tropical oceanic processes may

be investigated by rewriting (2) as

d

dt

To

Z20

sx

2

4

3

5 ¼
LTT LTZ LTs

LZT LZZ LZs

LsT LsZ Lss

2

4

3

5

To

Z20

sx

2

4

3

5þ
nT
nZ
ns

2

4

3

5: ð4Þ

Note that LTT is distinct from the SST-LIM linear operator,

which implicitly includes linear diagnostic relationships

between Z20 and sx and TO. By explicitly separating out the

effects of the other two variables on TO and vice versa, we

can use (4) to identify LTT with surface ocean processes,

LZZ with internal ocean processes, Lss with surface atmo-

spheric processes, and the off-diagonal submatrices with

coupling. Of course, these operators each implicitly retain

the influence of variables not included in x, especially

considering the more severe EOF truncation of Z20 and sx,

and to the extent that the terms are related to the same

unspecified variables they may not be entirely independent.

Also, processes with time scales much shorter than the

3-month averaging period used to construct x (notably,

Kelvin waves) are still represented by a diagnostic rela-

tionship plus some noise.

With these important caveats in mind, we ‘‘remove’’

effects of thermocline variability by constructing a new

operator Lnoz, where we set LZT = LTZ = LsZ = LZs = 0

in L. First, to evaluate the impact of thermocline anomalies

upon SST forecasts we repeated all forecasts using Lnoz as

the forecast operator, finding that while thermocline

interaction with SSTs has a small effect on SST skill for

forecast leads shorter than about 6 months, it has an

increasing impact for longer-lead forecasts, reaching the

.05 significance level for leads greater than a year (Fig. 2).

How thermocline interactions affect SST variability sta-

tistics can likewise be seen by determining a new covari-

ance Cnoz(0) from (3) using Lnoz and the original

noise covariance Q, and predicted s-lag covariance from

Cnoz(s) = exp(Lnozs)Cnoz(0). The results are compared to

the corresponding fields determined from the full LIM in

Fig. 3; note that SST variance from the LIM is correct by

construction (apart from a difference due to the EOF

truncation), and that the 9-month lag-covariance predicted

by the LIM is an excellent match to observations (see

Fig. 2 Cross-validated forecast skill (1959–2000) of Niño3.4, defined

as the area averaged SST in the region 5�S–5�N, 170�W–120�W,

for forecasts made by (black) the LIM, (blue) the version of the

LIM where thermocline interactions are removed (by setting LZT =

LTZ = LsF = LFs = 0 in L), Lnoz, (red) the SST13-LIM, and

(orange) the SST23-LIM
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Fig. 13). Removing the thermocline interactions leads to a

small increase of central equatorial PacificTO variability and

simultaneously a pronounced decrease of eastern Pacific

variability (cf. top panels of Fig. 3), while central Pacific

variability becomes more persistent over a 9-month period

(cf. bottom panels of Fig. 3). In essence, ENSO events have

characteristics more similar to ‘‘Modoki’’ or Central Pacific

type events (e.g., Ashok et al. 2007; Kao and Yu 2009) when

thermocline interactions are removed from L. Additionally,

overall decadal variability is reduced (not shown).

The covariance budget of 3-months running mean SST

anomalies, averaged over the annual cycle and derived

from (3) and (4) as

LTTCTT þ CTTL
T
TT

� �

SST

þ LTZCZT þ CTZL
T
TZ

� �

Thermocline interaction

þ LTsCsT þ CTsL
T
Ts

� �

Wind stress

þ QTT
Stochastic

¼ O; ð5Þ

where Cxy ¼ xyTh i, is another gauge of anomalous ther-

mocline and wind stress influences on SST variability. The

diagonal elements in each bracketed term in (5) may be

interpreted as their contribution to the local TO variance

tendency. Note that although these terms relate to the

maintenance of local variance, they contain non-local

effects: LTT and CTT are not diagonal matrices, and ther-

mocline and zonal wind stress variability contribute to SST

variability. In principle this ‘‘inverse’’ method of deter-

mining the interannual heat budget should agree with a

more traditional ‘‘forward’’ approach in which all terms in

the surface-layer heat budget are explicitly calculated (e.g.,

Wang and McPhaden 2000; Kang et al. 2001).

It is interesting to break down the bracketed SST term

further into ‘‘local’’ (Fig. 4a) and ‘‘non-local’’ (Fig. 4b)

contributions. The local contribution, twice the product of

the diagonal elements of LTT with the corresponding

diagonal elements of CTT, results in a dissipative term of

the form �2h TOð Þ2i
.

sd (where sd is a local decay time

scale) with stronger damping in the eastern and equatorial

central Pacific (sd * 6–7 months) than in the western and

subtropical central Pacific (sd * 10–15 months). This

regional variation of damping includes effects both of local

SST-related variations of radiative and surface heat fluxes

(e.g., Kessler and McPhaden 1995; Wang and McPhaden

2000) and of vertical mixing related to stronger mean

upwelling in the east. The non-local term is the difference

between the total term (not shown) and the local term,

representing how all other values of TO impact local TO

variability, such as through advection and/or wave propa-

gation. This term also generally acts to damp equatorial

SST variance as might be expected from the mean advec-

tion of thermal anomalies (Jin et al. 2006) and meridional

transport due to tropical instability waves (Wang and

McPhaden 2000; Jochum et al. 2007), except in the central

Pacific and around 5–10�N where it acts to generate SST

variance, consistent with the downgradient transport of

SST variance (cf. Fig. 1) by high frequency eddy fluxes

(Wang and McPhaden 2000) and mean equatorial zonal

and off-equatorial meridional currents (Kang et al. 2001).

The primary balance in Fig. 4 is between thermocline

interactions (Fig. 4c) and the SST dynamical terms. The

thermocline term, which is positive except in the central

Pacific, includes the net SST variance generation by local

thermocline and upwelling feedbacks, and also non-local

zonal advective feedback (Picaut et al. 1996; Jin and An

1999) due to the dependence of anomalous zonal current on

the anomalous equatorial thermocline gradient. TO noise

effects are very small (Fig. 4e) except in a narrow equa-

torial band where tropical instability waves are active

(Chelton et al. 2000); in fact, atmospheric noise forcing has

a greater but indirect effect upon SSTs primarily by

maintaining zonal wind stress variability (not shown),

Fig. 3 TO variance and lag-covariance determined from L (left

panels) and from Lnoz, where the thermocline interactions are

removed by setting LZT = LTZ = LsF = LFs = 0 in L (right panels).

Top variance; contour interval is 0.16 K2. Bottom 9-month lag-

covariance; contour interval is 0.04 K2
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which in turn forces thermocline variability. While there is

a weaker direct zonal wind stress forcing term (Fig. 4d), it

might also implicitly represent other anomalous surface

wind effects on latent and sensible heat fluxes, and even

radiative fluxes due to cloudiness. Note that advective

feedbacks in the east-central Pacific appear to mostly be

contained within the thermocline term and do not represent

direct effects from the wind stress forcing term as in the

‘‘wind stress feedback’’ (Burgers and van Oldenborgh

2003).

4 Optimal evolution of ENSO

4.1 Maximum amplification of SST anomalies in SST

and ocean LIMs

PS95 showed that the ‘‘optimal’’ initial condition for

maximum amplification of tropical SST anomalies,

obtained via a singular vector decomposition (SVD) of the

system propagator G(s) under the L2 norm (i.e., domain-

mean square amplitude) of TO (e.g., Farrell 1988; PS95), is

(a)

(b)

(c)

(d)

(e)

Fig. 4 The local variance

budget for SST (see text for

description of terms). Note that

the panels sum to zero. Contour

and shading interval is 0.04

K2 month-1; positive values are

red/yellow and negative values

are blue, with the zero contour

removed for clarity
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also the most relevant initial condition for ENSO devel-

opment. The SVD analysis yields a dominant pair u1,v1 of

normalized singular vectors and maximum singular value

k1, such that the initial condition v1 leads to the anomaly G

v1 = k1 u1 at time t = s. The maximum possible anomaly

growth factor k1
2(s), sometimes called a ‘‘maximum

amplification’’ (MA) curve (PS95), is displayed in Fig. 5a

for each LIM. For consistent comparison, the L2 norm is

defined in the space of the leading 13 EOFs of TO in all

three cases.

The shape and maximum (at s * 8–9 months) of the

MA curve for each SST-LIM is consistent with earlier

studies including PS95. Although in principle an optimal

initial condition for one value of s does not have to be

optimal for another value of s, in reality PS95 found rel-

atively little difference in the leading optimal structure for

a wide range of s. This result is also true for our SST-LIMs;

for example the pattern correlation of v1(9 months) with

v1(s) is greater than 0.9 for s ranging from about 4 to

14 months (Fig. 5b). That is, for all practical purposes the

SST-LIM has only one leading optimal initial structure.

The shape of the MA curve for the ocean LIM is quite

different, however,with a secondarymaximum at s * 17–18

months and a fairly flat curve between the two maxima.

Moreover, these two maxima represent different optimal

structures, with an 0.35 pattern correlation between

v1(9 months) and v1(18 months) (Fig. 5b). However,

although the initial states are different, the end results are

similar, with both optimal initial conditions evolving into a

large central and eastern Pacific SST anomaly (see below

discussion). The increased maximum amplification for the

ocean LIM implies increased predictability (Newman et al.

2003) for forecast leads greater than about nine months,

consistent with the improved skill in Fig. 2.

4.2 Evolution of 9- and 18-month leading optimal

structures

To explore the differences between these two leading

optimal structures, we integrate (2) forwards from either

initial condition v1(9), the optimal structure for growth

over a s = 9 month interval (Fig. 6a), or from initial

condition v1(18), the optimal structure for growth over a

s = 18 month interval (Fig. 7a). For ease of comparison,

both initial conditions are chosen with sign leading to a

warm event, but in this linear model all signs can be

reversed. The evolution from v1(9) [v1(18)] over the next

36 months is displayed in Figs. 6b–d [7b–d]. Forcing by

Z20 (sx) and nonlocal terms in the TO (Z20) tendency

[from (4)] are indicated in Figs. 6e, f and 7e, f by

shading (contours); these terms are evaluated at the

equator but can contain effects driven from other

latitudes.

The initial anomaly for the shorter 9-month optimization

time (Fig. 6a) has (1) SST that is broadly similar to the

corresponding SST-LIM optimal initial condition (not

shown, but see PS95) except in the central equatorial

Pacific where it has half the amplitude, (2) a positive basin-

wide thermocline anomaly centered in the east central

Pacific similar to that often viewed as an important ENSO

precursor (e.g., Wyrkti 1985; Jin 1997; Meinen and

McPhaden 2000; Clarke and Van Gorder 2003; McPhaden

et al. 2006), and (3) a westerly wind stress anomaly at

roughly the same longitude with off-equatorial maxima.

Optimal SST anomaly amplification over the next

9 months is consistent with Bjerknes (1969) feedback: the

thermocline term LTZZ20 (Fig. 6f, shading) forces rapid

amplification of anomalously warm SST in the east Pacific,

which in turn (along with the initial SST anomaly) drives

Fig. 5 a Comparison of maximum amplification (MA) curves,

defined as [k1(s)]
2 determined by the SVD of G(s) under the L2

norm of TO, for the LIM and the SST-LIMs. b Pattern correlation of

v1(9) with v1(s) for the ocean LIM and the SST-LIMs
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6 Evolution of the optimal initial condition for amplification of

SST anomalies in the LIM over a 9-month interval. a Initial state, and

the evolved states, b 9 and c 18 months later. d Time-longitude cross-

section of the LIM evolution averaged between 2�S–2�N. TO is

indicated by shading (contour interval 0.175 K), Z20 by contours

(contour interval 6 m), and sx by blue vectors (scaled by the reference

vector 0.02 N m-2, with values below 0.002 N m-2 removed for

clarity). e and f Time-longitude cross-section of selected forcing

terms in the tendency equations for TO (shading interval 0.05 K/

month) and Z20 (contours interval 0.5 m/month): e Nonlocal terms;

f Z20 forcing of TO tendency and sx forcing of Z20 tendency. Note that

sign in all panels can be flipped, but that black contours and red

shading are of one sign, and green contours and blue shading are the

other sign. Amplitudes are also arbitrary, but are scaled by a single

factor here to have representative values. Note that TO is doubled in

a to be more visible
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7 Same as Fig. 6 but for the evolution of the optimal initial condition for amplification of SST anomalies in the LIM over an 18-month

interval
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intensification and westward expansion of anomalous

equatorial westerly wind stress (not shown) that drives

(Fig. 6f, contours) the Z20 anomaly to intensify and move

eastward (Fig. 6d), and so on. Maximum LTZZ20 forcing of

SST occurs near the Z20 maximum at about 110�W; a

secondary LTZZ20 maximum near 140�W might represent

advective feedback since it is located near large zonal

gradients of both mean SST and anomalous Z20.

Optimal growth is broadly consistent with the ‘‘dis-

charge’’ (Jin 1997) of anomalous equatorial heat content (as

represented by equatorial Z20 integrated in the region 2�S–

2�N, 120�E–85�W),which after increasing the first 2 months

decreases to zero at the peak SST time of t = 9 months (not

shown, but cf. Fig. 6d). The initial increase of equatorial heat

content coincides with initial off-equatorial wind stress that

weakens after about 2 months, when the initial SST anomaly

has evolved into its ENSO pattern. Zonal wind stress forcing

of Z20 in the east Pacific and Z20 forcing of SST both peak

before the SST anomaly, at t = 7 months, at which time

zonal wind stress forcing of equatorial heat content also

becomes negative. SST anomaly amplification continues for

two more months, until the (negative) total SST term grows

to balance the thermocline term (e.g., Jin 1997).

Equatorial heat content decreases during anomalous SST

amplification since as the positive Z20 anomaly grows and

moves eastward, zonal wind stress forcing LZssx (Fig. 6f)

generates a negative Z20 anomaly in the west Pacific

(Fig. 6d), with minima both north and south of the equator

(Fig. 6b) consistent with Ekman pumping from the curl of

easterly wind stress anomalies centered at about 15�N and

15�S. The non-local portion ofLZZZ20 forcing also enhances

the west Pacific negativeZ20 anomaly, but is generally much

weaker (Fig. 6e) except near the secondary Z20 minimum

located around 130�E and 6�N (Fig. 6b). SST anomaly

decay accelerates when the negative western Pacific ther-

mocline anomaly finally expands eastwards along the

equator (Fig. 6d), reaching South America by about

t = 18 months (Fig. 6c) and causing equatorial SSTs to

become cool even as subtropical SSTs remain warm. This

implies that ocean wave propagation processes may be

secondary to direct wind forcing in discharging the heat

content during optimal growth, and is consistent with the

suggestion that wind forcing in the west Pacific was of pri-

mary importance in initiating the termination of the 1997/98

El Nino (McPhaden 1999; Boulanger and Menkes 2001).

Note also that while the growing negative thermocline

anomaly drives cooler SSTs via LTZZ20, it is offset in the

central equatorial Pacific by the non-local SST term

(Fig. 6e, shading). This is consistent with equatorial SST

tendencies during the 1997/98 El Niño just east of the

dateline, where negative vertical advection was offset by

positive advection by the mean zonal current (Boulanger

and Menkes 2001).

Repeating this integration by first setting the initial Z20

and sx anomalies to zero results in similar SST evolution

but with peak amplitude reduced by almost half (not

shown), demonstrating that the initial thermocline and SST

anomalies contribute roughly equally to SST amplification.

If the initial conditions in Fig. 6a evolve using Lnoz instead

(not shown), the peak anomaly is not only weaker but also

more localized, centered much closer to the dateline,

similar to the results shown in Fig. 3; also, as it grows the

SST anomaly propagates westward from its initial location

along the South American coast.

In contrast to v1(9), the initial SST portion of v1(18)

(Fig. 7a) is relatively much stronger than the initial ther-

mocline anomaly. Notably, the southwest Pacific and Indian

Ocean SST anomalies persist for several months (e.g.,

Fig. 7d) while off-equatorial westerly wind stress anoma-

lies rapidly intensify in both hemispheres of the eastern

Pacific (not shown) and deepen the equatorial thermocline

there (Fig. 7d, f). [Adding additional sx PCs to x to capture

more west Pacific variance does not change this picture.] As

the anomaly evolves, it never becomes similar to v1(9), with

perhaps the closest correspondence occurring at about

t = 6 months primarily for central and eastern Pacific SST

(cf. t = 0 in Fig. 6d with t = 6 months in Fig. 7d). Sub-

sequent anomaly evolution (t = 6–18 months) is only

broadly similar to that shown for the 9-month optimal and

moreover extends over a longer period consistent with more

persistent wind stress forcing of Z20 (Fig. 7f).

Most of the evolution from v1(18) is due to the initial

SST, in contrast to v1(9); a second integration with the

initial Z20 anomaly set to zero reduces peak SST by less

than 15% (not shown). However, the evolution of Z20

remains essential, since the thermocline term ultimately

drives most of the eastern Pacific SST amplification

(Fig. 7f). Alternatively, when v1(18) is evolved with the

Lnoz operator, there is very little SST growth.

When considering optimal structures, it is important

whether this potential growth is actually observed to occur

as predicted by the LIM. In addition, do the optimal

structures shown in Figs. 6 and 7 improve upon those from

the SST-LIM; that is, are they more relevant to the

observed system? To answer this, following PS95 and

others we compared the projection of observed anomalies

on the initial conditions shown in Figs. 6a and 7a to the

projection of observed SST anomalies upon the predicted

evolved structure 9 (Fig. 6b) and 18 (Fig. 7c) months later,

respectively, as shown in Fig. 8a (s = 9 months) and

Fig. 8c (s = 18 months). This analysis was repeated using

the corresponding SST13-LIM optimal structures (not

shown); results are shown in Fig. 8b (s = 9 months) and d

(s = 18 months). The increased linear correlation and

reduced scatter about the least squares lines in the panels

on the left relative to those on the right indicate that
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optimal SST growth is better captured by the ocean LIM.

Of course, some scatter about the least squares line is still

expected due to the noise Fs. The slopes of the dashed lines

should correspond to the amplification factors k1(s), and in

fact they are quite close. This also serves as additional

evidence that L is independent of s0, since these calcula-

tions have all been made for intervals s � s0 = 3 months.

Stratifying into pre- (blue) and post- (red) 1976/1977

periods shows no significant long-term change in the

relationship (i.e., change in slope) for the ocean LIM.

Observed decadal changes in variability could then be

represented by random variation of noise forcing projecting

differently upon the optimal initial conditions, as opposed

to a decadal change in underlying dynamics. Finally, while

the 1997/1998 El Niño event is somewhat better simulated

with the ocean LIM than the SST-LIM, it remains a

potential outlier and may represent an event for which we

cannot exclude a role for predictable nonlinearity.

4.3 Eigenmodes contributing to optimal structures

For the SST-LIM, the leading optimal structure can be well

approximated by just three nonnormal eigenmodes of L

(PS95; Penland and Matrosova 2006). We find this too for

v1(9) and its evolution into u1(9), where again all three are

propagating eigenmodes (that is, complex conjugate pairs

with complex eigenvalues each representing period and

e-folding time) with periods of about 4 years (‘4-year eigen-

mode’; Fig. 9), 1.9 years (‘2-year eigenmode’; Fig. 10), and

21 years (‘bidecadal eigenmode’; not shown). [The complete

set of 23 eigenmodes uj and corresponding complex eigen-

values rj are determined from the eigenanalysisLuj ¼ rjuj.]

While the SST components and periods are similar to the

corresponding SST-LIM eigenmodes (not shown, but see

Penland andMatrosova 2006), the e-folding times of both the

4-year and bidecadal eigenmodes are about double those of

their SST-LIM counterparts; the 2-year eigenmode e-folding

time is unchanged.

The 4- and 2-year eigenmodes are not orthogonal (with a

minimum 40� angle between them) as is evident in their

similar structures for SST minimum (Figs. 9a, 10a) and

Fig. 8 Projection of observations upon the optimal initial condition

for amplification of SST anomalies in the LIM over a 9-month

interval, versus the optimal evolved SST state 9 months later, in a the

ocean LIM and b the SST13-LIM. Projection of observations upon

the optimal initial condition for amplification of SST anomalies in the

LIM over a 18-month interval, versus the optimal evolved SST state

18 months later, in c the ocean LIM and d the SST13-LIM. The

dashed lines in all four panels represent the expected evolution, with

slopes k1(s). Blue circles represent the 1959–1976 period, and red

circles the 1977–2000 period. Red dots represent the 1997–1998 El

Niño event

Fig. 9 The third least damped eigenmode of L, with period of

4.0 years and e-folding time of 2.1 years. a Minimum and b Maxi-

mum SST phases, defined from the root-mean-squared domain SST

anomaly. c Time-space cross-section of the eigenmode evolution,

starting from the phase shown in Fig. 11a, along the transect indicated

by d. TO is indicated by shading (contour interval 0.175 K), Z20 by

contours (contour interval 6 m), and sx by blue vectors (scaled by the

reference vector 0.02 N m-2). Note that sign in all panels is arbitrary,

but that black contours and red shading are of one sign, and green

contours and blue shading are the other sign. Amplitudes are also

arbitrary, but are scaled by a single factor here to have representative

values
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SST maximum (Figs. 9b, 10b) phases. Consequently, an

initial state quite similar to v1(9) can be simply constructed

by taking the 4-year eigenmode in a phase about 9 months

prior to its SST maximum (Fig. 11a), and then mostly

‘‘covering it up’’ by adding the 2-year eigenmode with

amplitude and phase corresponding to Fig. 11c, resulting in

the anomaly shown in Fig. 11e (cf. Fig. 6a). [The statistics

of the noise determined by (3) show these two eigenmodes

on average are excited together and in opposite phases.]

Subsequently, the 2-year eigenmode undergoes relatively

more rapid propagation and decay (Fig. 10c), ‘‘revealing’’

the more slowly evolving and decaying 4-year eigenmode

(Fig. 9c) and even beginning to reinforce it by

t = 9 months (Fig. 11b,d,f). This simple transition from

destructive to constructive interference between these two

eigenmodes is the basis of optimal growth, with the

bidecadal and other eigenmodes playing important but

lesser roles.

Some features of these empirical eigenmodes appear

similar to theoretical eigenmodes determined from various

linearized versions of the Zebiak and Cane (ZC; 1987)

intermediate complexity coupled atmosphere-ocean model

(e.g., Jin and Neelin 1993; Dijkstra and Neelin 1999;

Fedorov and Philander 2001; An and Jin 2001; MacMy-

nowski and Tziperman 2008; Bejarano and Jin 2008). In

particular, the 4-year eigenmode resembles a damped

‘‘recharge-discharge oscillator’’ (Jin 1997; Burgers et al.

2005), evolving from minimum SST phase when anoma-

lous equatorial heat content is a maximum towards maxi-

mum SST phase (Fig. 9b) when anomalous equatorial heat

content has decreased to zero, during which time the east-

ward moving thermocline anomaly forces SST amplifica-

tion (through the LTZZ20 term, not shown). Subsequent off-

equatorial wind stress at and south of the equator, driven by

the SST anomaly, then partly ‘‘recharges’’ the equatorial

heat content anomaly (through the LZssx term, not shown)

with opposite sign. This eigenmode also appears to have

some features characteristic of a ‘‘delayed-oscillator’’

(Schopf and Suarez 1988; Battisti and Hirst 1989), with a

thermocline extremum in the far west equatorial Pacific (at

about 5�N, 135�E) driven largely by LZZZ20 that could be

consistent with equatorial Rossby waves (e.g., Battisti and

Hirst 1989), and a second thermocline anomaly at about

14�N that moves westward (Fig. 9c), curving slightly

southward as it crosses the Pacific, consistent with Rossby

wave propagation (e.g., Schopf et al. 1981). But these are

both fairly weak features, and most of the apparent evolu-

tion of the thermocline anomaly along the entire loop shown

in Fig. 9c and d can be reproduced without the nonlocal

portion of the LZZZ20 (not shown), except in the central

subtropical Pacific (transect points 45–55). Additionally,

the wind stress term LZssx drives amplification of the east–

west Z20 gradient on the equator, consistent with many

earlier studies dating back to Wyrtki. As a result, the ther-

mocline anomaly evolution does not appear as free Kelvin

or Rossby wave propagation.

A different balance of forcing terms related to dif-

ferent sx and SST structure drives the faster evolution of

the 2-year eigenmode. Along the equator, sx for the

4-year eigenmode extends from the dateline through the

SST maximum at about 120�W, whereas sx reverses sign

for the 2-year eigenmode at about 140�W, the location

of the eigenmode’s more westward SST maximum. SST

and zonal wind stress anomalies also have greater

meridional extent, particularly south of the equator, for

the slower eigenmode. On the other hand, the two

eigenmodes have only minor thermocline differences,

primarily of amplitude, and consequently have similar

thermocline forcing of SST evolution, including a dis-

charge of anomalous equatorial heat content as SST

evolves from minimum to maximum phase. However,

Fig. 10 The eighth least damped eigenmode of L with period of

1.9 years and e-folding time of 0.65 years. a Minimum and b max-

imum SST phases, defined from the root-mean-squared domain SST

anomaly. c Time-space cross-section of the eigenmode evolution,

starting from the phase shown in Fig. 11b, along the transect

indicated by d. Plotting conventions as in Fig. 9 except all values

in Fig. 10c are scaled by a factor of 3; note that the transect points

here are at the same longitudes as the transect points in Fig. 9
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while the thermocline forcing term is stronger than the

non-local SST term for the 4-year eigenmode, it is

weaker for the 2-year eigenmode (not shown). The

imbalance between the two terms is also relatively lar-

ger, allowing for a more rapid evolution of the 2-year

eigenmode in which the SST anomaly moves westward

along the equator from the South American coast to near

the dateline (Fig. 10c), where the SST anomaly becomes

almost exactly out of phase with the thermocline

anomaly below and so is weakened (consistent with the

overall SST variance sink in Fig. 4c).

The bidecadal eigenmode bears some resemblance to

‘‘decadal’’ ENSO variability (e.g., Zhang et al. 1997) and

its contribution to v1(9) is essential for capturing the dec-

adal tail of the TO/PC1 spectrum (Fig. 14). Its much longer

time scale is consistent with its more poleward subtropical

Z20 anomalies in both hemispheres, which after being

induced by anomalies moving from the equator in the east

central Pacific propagate more slowly toward the western

boundary as might be expected of subtropical Rossby

waves (Capotondi and Alexander 2001) at these higher

latitudes (e.g., Chelton and Schlax 1996).

For longer optimization periods, the optimal structure

projects more strongly upon other eigenmodes besides the

three eigenmodes discussed above, although the 4-year

eigenmode remains the largest component. In this case,

predictable ENSO evolution over periods of a year and

more may not be so clearly identified with a few

eigenmodes.

5 Concluding remarks

Including thermocline depth and wind stress in the PS95

SST-only LIM has provided a foundation for empirical

diagnosis of observed coupled atmosphere-ocean dynam-

ics. We find that the SST pattern leading to optimal ENSO

excitation, originally found by PS95, also corresponds to an

east-central Pacific thermocline anomaly similar to an

ENSO precursor found by many previous studies. Each

contributes roughly equally to subsequent ENSO evolution

and amplification, consistent with a large ENSO event

possibly requiring both surface and subsurface processes as

a trigger (e.g., McPhaden 1999; Vimont et al. 2003;

Anderson 2007; Chang et al. 2007). Also, since anomalous

thermocline evolution is primarily forced by wind stress,

free ocean wave dynamics are likely of secondary impor-

tance to ENSO evolution, although rapid adjustment of

the ocean on a time scale shorter than the 3 month data-

averaging period (such as through Kelvin waves) can be a

part of the wind stress forcing term.

Our results support the view of ENSO as an episodic and

not periodic (e.g., Kessler 2002) effectively linear process.

Essentially, a rapidly evolving westward-propagating

(a) (b)

(d)(c)

(e) (f)

Fig. 11 Evolution of the 4- and 2-year eigenmode components of

v1(9), with the initial state in the left panels and the evolved state in

the right panels. a 4-year eigenmode component at t = 0. b 4-year

eigenmode component at t = 9. c 2-year eigenmode component

at t = 0. d 2-year eigenmode component at t = 9. e 4-year plus 2-year

eigenmode components at t = 0. f 4-year plus 2-year eigenmode

components at t = 9. Plotting conventions as in Fig. 6
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eigenmode driven predominantly but not exclusively by

shallow SST-atmosphere dynamics first destructively

and then constructively interferes with a more slowly

evolving eastward-propagating eigenmode driven by mixed

SST/ocean dynamics. Since the slower mode has a damp-

ing time scale about half its period, it continues to pre-

dictably evolve for another quarter cycle; that is, an ENSO

episode involves anomaly growth, decay, and overshoot,

the last stage occurring only along the equator with a weak

sign reversal of anomalous SST and zonally-integrated

warm water volume. This picture is enriched but not fun-

damentally altered by the presence of the other eigen-

modes. Some previous observational studies have also

emphasized the combined contribution of similar tropical

Pacific structures with 4- and 2-year periods (e.g., Jiang

et al. 1995; White et al. 2003), although no decay time

scales were determined. Also, eigenanalysis using the full

ZC intermediate coupled model (Bejarano and Jin 2008)

results in two leading eigenmodes, again with 4- and 2-year

periods, that capture many but not all of the characteristics

noted above, including a relative difference in the balance

between processes forcing SST anomalies. Theoretical ei-

genanalyses focusing on the weakly unstable portion of a

large parameter space have led to the view that ENSO

variations (or ‘‘flavors’’) are a consequence of changes in

the background state altering stability characteristics of the

two leading eigenmodes (e.g., Fedorov and Philander 2001;

Bejarano and Jin 2008), and/or of nonlinear interaction

between them (e.g., Jin et al. 1994). Our empirical results

support the alternative view that both (stable) eigenmodes

are always relevant since rapid observed ENSO amplifi-

cation is a consequence of their modal interference. Hence,

events differ because noise variations differently excite

each eigenmode, although on average these two eigen-

modes are preferentially excited with an initial (mostly

opposing) relationship to each other. As a consequence, the

relative importance of key physical processes changes from

event to event, yet background state changes in stability

properties may have only minor impact. Moreover, the

leading optimal structure is the ‘‘best-case scenario’’; sub-

optimal ENSO events are also possible, including events

where anomalies develop less rapidly but in different

tropical regions (such as ‘‘Modoki’’ or central Pacific

ENSOs), depending on the particular noise realization.

While over short time intervals, the ocean LIM yields

minimal SST forecast improvement, over time intervals

greater than several months it improves upon the SST-LIM

in all measures, including long-lead tropical SST predic-

tions, simulation of power spectra and lag co-variance

statistics, and the observed relevance of leading optimal

structures (Fig. 8). Much of this improvement may be due

to a second optimal structure, allowing for significant SST

anomaly growth over time intervals longer than a year, not

present in the SST-LIM. Growth still occurs when initial

destructive interference with the 4-year mode evolves into

constructive interference, although this is now the result of

many rather than a few eigenmodes. While the initial

anomaly lies mostly within the SST field, subsequent

ENSO development cannot be captured by SST alone since

it is driven by persistent off-equatorial wind stress in the

eastern Pacific that deepens (shallows) the equatorial

thermocline to drive warm (cold) SST anomaly amplifi-

cation (e.g., Wang et al. 2003).

The improved validation of the ocean LIM gives further

support to the effectively linear, stochastically forced view

of tropical ocean variability. It is particularly encouraging

that, despite inherent limitations on ocean data assimila-

tion, Z20 has improved the LIM’s representation of ENSO

dynamics. While some remaining deficiencies of this LIM

may represent truly predictable (i.e., slowly-varying) non-

linear internal ocean dynamics representable only by a

high-dimensional fully nonlinear CGCM (Chen et al.

2004), we might hope for further improvement of the LIM

by explicit representation of additional processes within its

state vector, such as vertical stratification, currents, the

extratropics, and/or atmospheric variability. For example,

due to the dependence of current strength on thermocline

slope, one clear deficiency of this study is that not

explicitly including currents complicates distinguishing

advective feedback from other thermocline feedbacks.

One key issue that remains is determining the correct

seasonal dependence of both L and Q, given the seasonal

dependence of C(0) and C(s) as well as the tropical base

state. We have followed the approach of some previous

analyses (e.g., PS95, Penland 1996; Chang et al. 2007;

Newman et al. 2009) which found that ENSO seasonality,

including its phase locking, can be captured by a LIM

where L is fixed but Q is seasonally-varying. As noted in

the ‘‘Appendix’’, we have also investigated potential sea-

sonality of the dynamical operator but obtained results that

were actually slightly worse. Whether this is because even

42 years of data is too short to correctly capture the sea-

sonality of L, or because noise effects make the seasonality

of the effectively linear operator L weaker than a lineari-

zation of the physical equations would lead us to expect, or

because seasonality is better determined not piecewise by

season (e.g., Johnson et al. 2000; Xue et al. 2000) but

instead from the entire year in a cyclo-stationary LIM (e.g.,

Ortiz-Bevı́a 1997), remains to be determined.

‘‘Metrics’’ of important phenomena within coupled

GCMs generally do not directly measure dynamical pro-

cesses of interest but rather their resulting variability. For

example, Nino3 power spectra typically used to compare

ENSO SST variability (e.g., Guilyardi et al. 2009) do not

determine how, only whether, ENSO dynamics differ

between models. By constructing even a rudimentary air-
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SST-subsurface ocean LIM, we go beyond simpler metrics

to estimate the relative impact of different coupled feed-

back terms, and their importance both to the SST variance

budget and to the evolution of ENSO events. This can serve

as an important baseline for coupled dynamics as simulated

by coupled GCMs. In particular, since the 4- and 2-year

eigenmodes together provide a fairly compact representa-

tion of observed ENSO dynamics, it may prove useful to

compare corresponding eigenmodes determined from the

output of coupled GCM runs. Moreover, recall that in the

extreme case where thermocline interactions were entirely

decoupled from the surface in the LIM, SST spectra

became more sharply peaked with reduced decadal vari-

ability, and SST variability shifted towards the central

Pacific. Similarly, Newman et al. (2009) found that

removing air-sea coupling in their tropical LIM led to a

greatly weakened ENSO whose period was too short and

whose maximum amplitude was too far west. These are all

common CGCM failings, suggesting that climate LIMs

might also be useful for diagnosing feedbacks leading to

errors in comprehensive coupled climate models.
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Appendix: Construction and validation of the LIM

In any multidimensional statistically stationary system with

components xi, one may define a time lag covariance matrix

C(s) with elements Cij sð Þ ¼ xiðt þ sÞxðtÞh i, where angle

brackets denote a long term average. In linear inverse

modeling, one assumes that the system satisfies

C(s) = G(s)C(0), where importantly G(s) = exp(Ls) and

L is a constant matrix, which follows from (2). One then

uses this relationship to estimate L from observational

estimates of C(0) and C(s0) at some lag so. For the statistics

of this system to be stationary, L must be dissipative, i.e its

eigenvalues must have negative real parts. In a forecasting

context, G(s)x(t) represents the ‘‘best’’ forecast (in a least

squares sense) of x(t ? s) given x(t). Note that unlike

multiple linear regression, determination of G at one lag so
identically gives G at all other lags. Also, statistics of the

noise forcing, not just the error covariance, are determined

by LIM since the positive-definite noise covariance matrix

Q ¼ nnT
� �

dt is determined from a Fluctuation-Dissipation

relationship (3), given the observed C(0) and L.

A training lag of so = 3 months was used to determine

L. The EOF truncations (Sect. 2) and training lag were

chosen to maximize the LIM’s cross-validated forecast

skill for leads up to 18 months, while avoiding the Nyquist

problem for L (PS95) that inhibits analysis of interactions

amongst the model variables. In no other respect do these

choices qualitatively affect the points made in this paper.

Estimates of L and of forecast skill were cross-validated by

sub-sampling the data record by sequentially removing one

five-year period, computing L for the remaining years, and

then generating forecasts for the independent years. This

procedure was repeated for the entire period. Forecast skill

is then determined by comparing the local anomaly cor-

relation between the cross-validated model predictions and

gridded untruncated verifications.

Explicitly including both sx and Z20 in the LIM state

vector increases skill of 9 (Figs. 12a, b) and 18 (Fig. 12c, d)

month To forecasts. Skill improvement is mostly due to the

inclusion of Z20 rather than sx, confirming that the Z20 data

provides useful information. In addition, the LIM makes

Z20 forecasts whose skill is significantly better than per-

sistence (not shown). The difference in SST skill between

the ocean and SST-LIMs generally increases with forecast

lead because the ocean LIM captures the slower Z20

Fig. 12 Cross-validated forecast skill (1959–2000) of TO for forecast leads of 9 and 18 months, for the LIM (top) and the SST13-LIM (bottom)
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Fig. 13 Observed (top panels), LIM (middle panels) and SST13-LIM

(bottom panels) TO lag-covariance. (left) 9-month lag-covariance;

(center) 18-month lag-covariance; (right) 36-month lag-covariance.

Note that the observed lag-covariances are based on the full (that is,

not truncated in the EOF basis) gridded anomaly fields. Contour

interval is 0.04 K2

Fig. 14 Power spectra for the

three leading SST (TO) PCs (red

lines), compared to that

predicted by the LIM (blue

lines). Gray shading represents

the 95% confidence interval

determined from a 1,000-

member ensemble of 42 year

LIM model runs (see text for

further details). In these

log(frequency) versus power

times angular frequency (x)

plots, the area under any portion

of the curve is equal to the

variance within that frequency

band. Note that displaying

power times frequency slightly

shifts the power spectral density

peak centered at a period of

4.5 years to a variance peak

centered at a period of

3.5 years. Insets in each panel

show the corresponding EOF

and the variance explained by

that pattern
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evolution. For example, a second set of ‘‘fixed-Z20’’ ocean

LIM forecasts in which the initial Z20 anomaly is persisted

throughout the forecast period (i.e., Z20(t) = Z20(0); not

shown) has greatly reduced 18-month forecast skill.

We test the validity of the linear approximation with a

‘‘tau-test’’ (PS95). For example, since (2) implies that

C(s) = G(s) C(0), the LIM should be able to reproduce

observed lag-covariance statistics at much longer lags than

the 3 month lag on which the LIM was trained (e.g.,

C(18) = [G(3)]6 C(0)). Figure 13 compares the observed

and predicted lag-autocovariances of TO for lags of 9, 18,

and 36 months, using both the ocean LIM and the SST13-

LIM. The SST13-LIM does a reasonably good job cap-

turing the main aspects of the lag-autocovariance pattern,

but for lags less than about a year it tends to overestimate

persistence especially along the equator and for longer lags

it errs in the amplitude of the negative lag-autocovariance.

The ocean LIM improves upon these deficiencies, as well

as reproducing observed lag-covariance for Z20 over the

same lags (not shown).

A complementary test of linearity is to compare

observed and LIM-predicted power spectra, by integrating

(2) for 42,000 years using the method described in Penland

and Matrosova (1994) and Newman et al. (2009) and then

collecting statistics. The white noise forcing is determined

from the noise covariance matrix Q determined as a

residual from (3). Q should be positive-definite but deter-

mined this way it is only guaranteed to be symmetric.

Ensuring positive-definiteness in the manner of Penland

and Matrosova (1994), by rescaling the noise due to one

small negative eigenvalue of Q that accounted for less than

0.25% of the trace of Q, resulted in an almost negligible

impact on C(0). The resulting model ‘‘data’’ is separated

into 1,000 42-year time series. The observed spectra and

the ensemble mean of the model spectra for the three

leading PCs of TO and Z20 are shown in Figs. 14 and 15,

respectively. The corresponding EOF pattern for each

spectrum is shown in the inset panels. The gray shading

shows the 95% confidence intervals of these spectra, esti-

mated using the 1,000 model realizations.

Fig. 15 Same as Fig. 14 but for

the three leading 20�C isotherm

depth (Z20) PCs. Note that there

is no SST-LIM equivalent
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The LIM reproduces the main features of the observed

power spectra for the leading PCs of each variable

(including sx, not shown). Obviously, the mean LIM

spectra are much smoother than observed, due to the rel-

atively few degrees of freedom in the truncated EOF space.

On the other hand, the irregularity of the observed spectra

is at least partly due to sampling, as indicated by the

confidence intervals, which show how much variation in

the spectra could occur simply from different realizations

of noise.

Since C(0) and C(s) have seasonal dependence, both

Johnson et al. 2000 and Xue et al. 2000 suggested that

L should also be considered to be seasonally-varying. They

constructed ‘‘Markov models’’ in which they determined

G(so) for each season (but not L) so that forecasts are made

by an appropriate product of each G. On the other hand,

PS95 and Penland (1996) argued that the observed sea-

sonality of ENSO, including its phase locking, can be

captured with a fixed Lwith seasonally varyingQ. Newman

et al. (2009) found that a tropical atmosphere-SST LIM

constructed using weekly data had a poorer representation

of coupled ENSO dynamics when segregated by season,

although the internal subseasonal atmospheric dynamics

were slightly improved. They also found pronounced sea-

sonality of the noise, as did Penland (1996) and Chang et al.

(2007). Similar to Penland, we found that the seasonal

dependence of the tests above can be generally captured by

assuming fixed L but with seasonally varying Q. As in

Newman et al. (2009), we also found that seasonal LIMs did

poorer in these tests compared to those using a fixed L.
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