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ABSTRACT

In previous work the authors demonstrated an empirical relation, in the form of an index, between U.S.

monthly tornado activity andmonthly averaged environmental parameters.Here a detailed comparison ismade

between the index and reported tornado activity. The index is a function of two environmental parameters taken

from the North American Regional Reanalysis: convective precipitation (cPrcp) and storm relative helicity

(SRH).Additional environmental parameters are considered for inclusion in the index, among them convective

available potential energy, but their inclusion does not significantly improve the overall climatological per-

formance of the index. The aggregate climatological dependence of reportedmonthly U.S. tornado numbers on

cPrcp and SRH is well described by the index, although it fails to capture nonsupercell and cool season tor-

nadoes. The contributions of the two environmental parameters to the index annual cycle and spatial distri-

bution are examined with the seasonality of cPrcp (maximum during summer) relative to SRH (maximum in

winter) accounting for the index peak value inMay. The spatial distribution of SRH establishes the central U.S.

‘‘tornado alley’’ of the index, while the spatial distribution of cPrcp enhances index values in the South and

Southeast and suppresses them west of the Rockies and over elevation. At the scale of the NOAA climate

regions, the largest deficiency of the index climatology occurs over the central region where the index peak in

spring is too low and where the late summer drop-off in the reported number of tornadoes is poorly captured.

This index deficiency is related to its sensitivity to SRH, and increasing the index sensitivity to SRH improves

the representation of the annual cycle in this region. The ability of the index to represent the interannual

variability of themonthly number ofU.S. tornadoes can be ascribed duringmost times of the year to interannual

variations of cPrcp rather than of SRH.However, both factors are important during the peak spring period. The

index shows some skill in representing the interannual variability of monthly tornado numbers at the scale of

NOAA climate regions.

1. Introduction

The question of how climate signals such as the

Madden–Julian oscillation (MJO), the El Ni~no–Southern

Oscillation (ENSO), and changes in radiative forcing in-

fluence tornado activity is an important one and has been
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the subject of a number of recent studies (Trapp et al. 2007;

Cook and Schaefer 2008; Trapp et al. 2009; Lee et al. 2013;

Weaver et al. 2012; Thompson and Roundy 2013; Barrett

and Gensini 2013; Diffenbaugh et al. 2013). Direct treat-

ment of this question theoretically, statistically, or nu-

merically is highly challenging for the following reasons:

d the dynamics of tornadogenesis is highly complex and

incompletely understood;
d a long-term, high-quality homogeneous tornado re-

port record is unavailable; and
d numerical models that resolve climate signals do not

currently resolve tornadoes.

On weather time scales, information about the envi-

ronmental ‘‘ingredients’’ associated with severe weather

and tornadic storms has proved useful to forecasters in

interpreting observed soundings and short-range fore-

casts, and many studies have examined the question of

which local environmental quantities aremost informative

regarding the likelihood of tornado formation (Maddox

1976; Brooks et al. 1994; Rasmussen and Blanchard 1998;

Brooks et al. 2003; Grams et al. 2012). These studies have

used environmental quantities from soundings in the

proximity of severe thunderstorms and subdaily reanalysis

data. Overall, measures of vertical wind shear and po-

tential updraft strength have been found to be effective

in characterizing environments that are conducive to

tornado occurrence. However, tornadogenesis depends

on multiple small-scale processes in addition to the am-

bient environment, and even when the environment is

favorable and a thunderstorm has formed, the occurrence

or nonoccurrence of a tornado remains highly uncertain

(Wurman et al. 2012).

A similar ingredient-based approach has been used to

study the connection between climate and tropical cy-

clones (TCs), beginning with the development by Gray

(1979) of an empirical TC genesis ‘‘index’’ that charac-

terizes the suitability of the local environment for TC

genesis. Prior to any TC genesis index, Gray (1968) used

climatological values of key environmental parameters

such as vertical wind shear and relative vorticity to explain

much of the global distribution and seasonal cycle of ob-

served TC occurrence. Extensions and generalizations of

Gray’s TC genesis index (e.g., Emanuel and Nolan 2004;

Tippett et al. 2011) have been used to study the modula-

tion of TC genesis frequency in observations and models

by climate signals including the MJO, ENSO, and climate

change (e.g., Camargo et al. 2007a,b; Vecchi and Soden

2007; Nolan et al. 2007; Camargo et al. 2009; Lyon and

Camargo 2009; Yokoi et al. 2009; Yokoi and Takayabu

2009). Prediction of the environments favorable to TC

formation is onemethod for producing seasonal hurricane

activity forecasts (Vecchi et al. 2011).

A key distinction between the development and ap-

plication of environmental indices in the tornado and TC

studies listed above, in addition to the disparate phe-

nomena under consideration, is the time and space scales

of interest. Prediction of severe weather events is

a prominent goal in the tornado context, and the use of

high-spatial resolution and subdaily data is key in order to

characterize as accurately as possible where and when

tornadoes will occur. On the other hand, the aim of TC

ingredient indices is often to describe the basin-scale

modulation of TC activity by large-scale climate vari-

ability on time scales of weeks to decades. Consequently,

TC environment indices are often based on data with

temporal and spatial scales that are large compared to

those of any single TC genesis event. The aim of the

present work is to develop and assess the utility of tor-

nado environment indices for capturing the variability of

tornado activity related to climate variability, rather than

for prediction of specific events, and this aim is the reason

for our use ofmonthly averaged environmental quantities

on a fairly coarse spatial grid.

An empirical relationship, expressed in the form of an

environmental index, has recently been demonstrated

betweenmonthly averaged environmental quantities and

tornado activity over the contiguous United States

(CONUS; Tippett et al. 2012). As previously mentioned,

the use of monthly averages is a significant distinction

from previous work (e.g., Brooks et al. 2003, and others

cited above), which has used environmental quantities on

shorter (typically 6-hourly) time scales. The degree to

which the monthly index covaries with reported tornado

activity provides evidence for a connection between

quantities varying on climate time scales and tornado

activity. Such a connection is noteworthy since the life-

time of a tornadic event is no more than a few hours and

often only a few minutes. Changes in the frequency of

extreme subdaily environments associated with tornado

occurrence correspond to changes in the tail of the dis-

tribution of environments occurring in the course of

a month. At least conceptually, such changes can be

caused by either changes in themean or by changes in the

spread of the distribution of environments. This idea is

illustrated in Fig. 1, which shows two distributions with

enhanced probability of exceeding the 90th percentile—

in one case due to increased spread and in the other due

to a shift in mean. The success of the monthly index

suggests that changes in the frequency of extreme envi-

ronments are to some extent accompanied by changes in

the monthly average of those environments.

Tippett et al. (2012) investigated some general prop-

erties of the monthly tornado index including the cli-

matological number of CONUS tornadoes per month

predicted by the index, the annually averaged spatial
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pattern of the index, and the interannual variability of

the number of CONUS tornadoes predicted by the in-

dex. However, more detailed analysis is required if the

index is be used with any confidence as a tool to diagnose

the impact of climate signals on tornadic activity. Here

we examine the properties of the index in more depth,

including aspects of the environmental parameter se-

lection, systematic deficiencies, and regional behavior.

The paper is organized as follows. Tornado and envi-

ronmental data are described in section 2. Index con-

struction and parameter selection are discussed in

section 3. The annual cycle of the index is described in

section 4, and its interannual variability is described

in section 5. A summary and future prospects are given

in section 6.

2. Data

a. Tornado data

U.S. tornado data covering the period 1950–2010 is

provided by the National Centers for Environmental

Prediction (NCEP) Storm Prediction Center (SPC) tor-

nado, hail, and wind database in the form of reports

(Schaefer and Edwards 1999). As has been discussed

extensively by other authors, substantial variability in the

tornado report record is unrelated to tornado activity and

is due to changes in reporting practices, introduction of

Doppler radar, and other changes in technology

(Verbout et al. 2006; Doswell et al. 2009). The annual

number of reported weak (F0) tornadoes has increased

dramatically, roughly doubling over the last 60 years

(Fig. 2a), consistent with the findings of Brooks and

Doswell (2001). The annual numbers of reported F1 (Fig.

2b) and F2–F5 (Fig. 2c) tornadoes do not show such strong

trends, but there are some indications of changes occurring

in the late 1970s and 1980s, especially in the F2–F5 reports.

Reported annual totals from the last 20 years seem rela-

tively homogeneous across each of the intensity levels.

Ideally, the nonphysical variations in the observational

record could be removed from the tornado record, and the

SPC does compute an ‘‘inflation adjusted’’ annual number

of U.S. tornadoes using a trend line for the period 1954–

2007 and taking 2007 as a baseline. [The inflation-adjusted

FIG. 1. Conceptual illustration of comparable increases in the

probability of exceeding the 90th percentile of the climatological

distribution (gray) of extreme environments due primarily to in-

creased spread (blue) and to changes in the mean (red).

FIG. 2. Annual number of reported (a) F0, (b) F1, and (c) F2–F5 tornadoes for the period

1950–2010.
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tornado count was developed by Harold Brooks of the

National Severe Storms Laboratory (NSSL) and Greg

Carbin of the SPC and is described at http://www.spc.

noaa.gov/wcm/adj.html.] However, there is no rigorous

justification for the use of a linear correction to tornado

frequency. Spatially varying features of the observa-

tional records are even more difficult to quantify.

Limiting our attention to reports of more intense tor-

nadoes or to more recent periods (last two decades) has

the disadvantage of substantially reducing the sample

size, which may be a problem, especially for charac-

terizing the spatial dependence.

The temporal inhomogeneities associated with the

tornado record are a primary reason for taking the spa-

tially varying, monthly averaged tornado report clima-

tology as the target of the index fitting procedure (Tippett

et al. 2012). Doing so avoids the possibility of the statis-

tical analysis spuriously associating nonphysical changes

(trends and shifts) in the tornado recordwith coincidental

physical variations. This choice also leaves the interann-

ually varying record as an independent dataset for further

verification. Disadvantages of this approach are that the

range of covariability of tornado occurrence with envi-

ronmental parameters in the climatology data is greatly

reduced, the joint distribution of parameters is only cli-

matological, and there is no association of particular

tornadic events with the physical environment. The

monthly tornado data (F0 and greater) are put onto a

18 3 18 latitude–longitude grid (258–508N, 1308–608W) for

the 32-yr period 1979–2010. The upward trend in the

number of reported tornadoes results in the gridded

monthly tornado climatology being negatively biased

with respect to the most recent period.

b. North American Regional Reanalysis

Monthly averaged environmental parameters are

taken from the North American Regional Reanalysis

(NARR; Mesinger et al. 2006). NARR is produced

though the assimilation of observations into the 32-km

NCEP Eta Model Black (1994). A distinguishing feature

of the NARR is its assimilation of precipitation obser-

vations as latent heating profiles and may account for

NARR precipitation products being superior to those of

a number of global reanalyses (Bukovsky and Karoly

2007). Becker et al. (2009) found that NARR seasonal

precipitation totals throughout the year were very close

to those observed, although in the context of daily pre-

cipitation there is a tendency to underestimate extremes

and overestimate lighter events, especially during sum-

mer in the eastern half of the United States.

The Betts–Miller–Janji�c convective parameterization

scheme. (Betts 1986; Janji�c 1994) found in NARR uses

a convective adjustment following activation, determining

appropriate temperature and moisture mean reference

profiles, which it then nudges the model toward at each

grid point. Activation is dependent on the stability of

the parcel with the highest equivalent potential tem-

perature in the lowest 200 hPa of the atmosphere.

Based on the lifting of this parcel, parameterized cloud

depth is determined, and depending if it is greater or less

than 200hPa, the deep precipitating (or shallow non-

precipitating) convection activates [for further details,

see Baldwin et al. (2002)]. The scheme does not have an

explicit triggering condition and thus convective in-

hibition is handled implicitly by the profile. The adjust-

ments following activation of the scheme are based on

mean thermodynamic reference postconvective profiles

from a number of global locations that are applied in such

a way to satisfy enthalpy conservation through cloud

depth. This has a net result of lower-tropospheric drying

and warming in the mid to upper levels. However the

activation of the precipitating scheme is very sensitive to

the subcloud moisture. The presence of deep convection

activation within the scheme is identified based on the

presence or nonpresence of convective precipitation in

model output. The shallow part of the scheme can result

in anomalous drying of the 820–920-hPa layer, potentially

leading to unrealistic distortion of convective inhibition

(and thereby activation of the deep convective scheme)

or both positive or negative modification of the thermo-

dynamic environment. This occurs because both shallow

and deep convective adjustments modify the profile to be

monotonic convectively mixed, which can obscure small-

scale vertical structures.

NARR data are provided on a 32-km Lambert con-

formal grid, which we interpolate to a 18 3 18 latitude–

longitude grid over the CONUS (258–508N, 1308–608W).

Only data over land points are used. We consider

monthly averages of the following NARR variables:

surface convective available potential energy (CAPE),

surface convective inhibition (CIN), best (four layer)

lifted index (4LFTX), the difference in temperature at

the 700- and 500-hPa levels divided by the corresponding

difference in geopotential height (lapse rate), the average

specific humidity between 1000 and 900hPa (mixing ra-

tio), 3000–0-m storm relative helicity (SRH), the magni-

tude of the vector difference of the 500- and 1000-hPa

winds (vertical shear), precipitation, convective pre-

cipitation (cPrcp), and elevation. Lapse rate and vertical

shear are computed using monthly averages of the con-

stituent variables. We take the natural logarithm of

CAPE, SRH, vertical shear, precipitation, and cPrcp,

consistent with previous analysis of environmental fac-

tors impacting severe weather on synoptic time scales

(e.g., Brooks et al. 2003).
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3. Poisson regression and parameter selection

Tippett et al. (2012) related the climatological monthly

number of U.S. tornadoes to climatological monthly av-

erages of collocated NARR atmospheric parameters

using Poisson regression. The monthly number of torna-

does summed over T years in a grid box is assumed to be

a Poisson distributed random variable with expected

value m. The expected value m is the monthly tornado

activity index and is assumed to have a log-linear de-

pendence on the environmental parameters modeled by

m(x)5 exp[bTx1 c1 log(DxDyT cosf)] , (1)

where x is a vector of environmental parameters, b is

a vector of regression coefficients, c is an intercept term,f

is the latitude, Dx and Dy are the longitude and latitude

spacings in degrees, respectively, and T is the number of

years. The last term accounts for the differing area of

each grid box and the number of years used in the cli-

matology and removes the dependence of the coefficients

on grid resolution and climatology length. The regression

model (1) with the same coefficients is used at all loca-

tions and all times of the year. In addition to relating

tornado activity with environmental parameters, the re-

gression can correct spatially and seasonally uniform

systematic errors in the NARR environmental parame-

ters. The regression coefficients are estimated by maxi-

mum likelihood, and a commonly used goodness of fit

measure, deviance, is also determined (McCullagh and

Nelder 1989).

A key issue is the choice of environmental parameters

included in the index. Including too few environmental

parameters gives a model that poorly fits the data, while

including too many leads to overfitting and poor perfor-

mance on independent data. Tippett et al. (2012) took the

previously listed set of 10 monthly averaged parameters

associated with tornado occurrence and used a forward

selection procedure to find the best set of parameters for

a given number of parameters. This approach reduces the

parameter selection problem to one of selecting the

number of parameters. Increasing the number of pa-

rameter always improves the (in-sample) fit of the index

to the data. However, evaluation of the fit on out-of-

sample data using cross-validation showed that including

more than two parameters did not produce a significant

increase in the overall fit. This finding does not rule out

that additional parameters might result in significant

improvements in fit for particular regions or months, nor

does it say anything about the utility of additional pa-

rameters outside the climatological setting.

In the simplest sense, potential updraft strength and

vertical wind shear are the two basic environmental factors

considered favorable for tornado activity. However, there

are many related parameters that measure these condi-

tions. The deviance-based R-squared (Cameron and

Windmeijer 1996) values of the six best (in the sense of

minimizingmean cross-validated deviance) two-parameter

models are shown in Fig. 3 and range from 0.53 to 0.67.

The best one-parameter model uses cPrcp and has a

deviance-based R-squared value of 0.46, giving an in-

dication of the benefit of including an additional pre-

dictor. The uncertainty of the estimates, shown as plus

andminus one standard deviation error bars, is computed

from 10 repetitions of tenfold cross-validation.1 These six

statistical models include one parameter associated with

convective instability (CAPE or cPrcp) and one associ-

ated with vertical shear (SRH, mixing ratio, or vertical

shear). The model with smallest deviance uses cPrcp and

SRH, and replacing SRHwith vertical shear does not give

a significantly different fit. This result indicates that, as in

the subdaily setting, there are multiple possibilities for

combinations of environmental ingredients with useful

information related to tornado frequency on monthly

time scales.

The energy–helicity index (EHI), the product of SRH

and CAPE, is often used on synoptic time scales as

a forecast parameter (Davies-Jones 1993; Rasmussen and

Blanchard 1998). A related quantity is the significant

severe parameter, which is the product of CAPE and

vertical shear (Davies and Johns 1993). Both of these

quantities are included in the Poisson regression model

framework and correspond to choosing the entries of b

to be unity for the appropriate choice of parameters.

FIG. 3. Deviance-based R-squared values of the two-parameter

models based on (A) cPrcp and SRH, (B) cPrcp and vertical shear,

(C) cPrcp and mixing ratio, (D) CAPE and vertical shear, (E)

CAPE and mixing ratio, and (F) CAPE and SRH.

1Tenfold cross-validation consists of splitting the data into 10

randomly selected sets, estimating the coefficients from 9 of those

sets, and validating on the tenth.
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Interestingly, the fit of the Poisson regression model with

CAPE and SRH as parameters is significantly worse than

that of the best two-parameter model, and the model with

CAPE and shear is close to being significantly worse as

well. Given the widespread use of the EHI and other

CAPE-based measures on synoptic time scales, the poor

performance of its constituent parameters in a monthly

index deserves further investigation.

First, using either CAPE or inhibition on monthly time

scales may be inappropriate because of their high-

frequency fluctuations and tight coupling to convection.

High CAPE often is present before major convective

weather events, but CAPE is typically sharply reduced by

the occurrence of deep convection. It is not clear that the

time average of CAPE and the time average of deep

convective activity need be related over land, though

there is some relation over the tropical ocean (Bhat et al.

1996). Monthly averaged CAPE may simply fail to cap-

ture the relation with tornado activity that is observed in

high-frequency data. Another possibility is that the re-

lation between monthly averaged CAPE and tornado

activity is not well fit by the functional formof the Poisson

regression model. The coefficients of the Poisson re-

gression model can be interpreted as the sensitivity of the

expected monthly number of tornadoes to changes in the

environmental parameters. Specifically, for a small

change dx in the environmental variables, the change dm

in the expected number of tornadoes is given by

dm

m
’ bTdx5 b1dx11 b2dx2 . (2)

That is, for a 0.01 unit change in one of the environmental

parameters, the value of its coefficient is the corresponding

FIG. 4. The Poisson regression coefficients of (a) CAPE and (b) log(SRH). Error bars show 95% bootstrap esti-

mated intervals for parameter values restricted to the 10th–30th, 30th–50th, 50th–70th, and 70th–90th percentile

ranges. The dashed lines show the Poisson regression coefficient estimated from the complete data.

FIG. 5. As in Fig. 4, but for (a) cPrcp and (b) log(SRH).
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percent change in the expected value m. Equivalently, the

Poisson regression coefficients are the partial logarithmic

derivatives of the expected monthly number of tornadoes

with respect to the environmental variables since

›

›x
i

logm5bi . (3)

As the coefficients are constant, the Poisson regression

model assumes that the sensitivity of the number of

tornadoes to the environmental parameters is constant,

and, in particular, does not depend on the values of the

environmental parameters.

The extent to which the tornado data and environ-

mental parameters satisfy the Poisson regression func-

tional form was investigated using the approach of

Tippett et al. (2011). For each parameter, we compute its

Poisson regression coefficient for different ranges of that

parameter while allowing the other parameters to vary.

Essentially we are computing the partial logarithmic de-

rivative for different values of the parameters and

checking if that derivative is constant. Note that the

above procedure is different from computing the average

number of tornadoes as a function of one of the variables

and checking for a linear relation, which would be

equivalent to taking the ordinary derivative and would give

rather different results in the case of correlated quantities.

Specifically, here we compute the Poisson regression co-

efficient of each parameter over four ranges defined by the

10th–30th, 30th–50th, 50th–70th, and 70th–90th percentiles

of the parameter. Error bars for the coefficient estimate are

defined as twice the standard deviation of 100 bootstrap

estimates of the coefficients. Figure 4a shows clearly that

the coefficient of log(CAPE) is not constant. There is en-

hanced sensitivity of climatological tornado occurrence to

CAPE in the 10th–30th percentile range that decreases

until log(CAPE) ’ 4, at which point the coefficient is

roughly the same as that obtained when the complete data

are used. In the subdaily data setting, Brooks (2009) noted

variations in the gradient of the probability of occurrence as

a function of the CAPE/shear product.

We hypothesize that this mismatch between the ob-

served sensitivity to monthly CAPE and that imposed by

the Poisson regression functional form is the reason for

the relatively poor performance of the CAPE-based

models. More sophisticated models may be better able

to accommodate the variable sensitivity of climatological

monthly tornado activity to monthly averaged CAPE

(Mestre and Hallegatte 2009; Villarini et al. 2010), or the

behavior might be ameliorated with the inclusion of ad-

ditional parameters. The choice of which strategy to

pursue, non-log-linear dependence or additional param-

eters, would essentially depend on whether the behavior

in Fig. 4a reflects a physical property or is an artifact of

FIG. 6. Logarithm of the average number of tornadoes as a function of log(cPrcp) and log(SRH) in (a) observations and (b) the index

and (c) the difference observations minus index. Black lines indicate isolines of the index in (a) and (b). White regions in (a) indicate no

reported tornadoes. The gray boxes in (c) marked B1 and B2 are described in text.
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the analysis. On the other hand, Fig. 5 shows that the

coefficient of cPrcp is approximately constant over the

range of values and consistent with the value estimated

from the complete data.

The sensitivity of the expected number of monthly

tornadoes to SRH is similar whether SRH is used in

conjunction with either cPrcp or CAPE. In both cases,

the SRH coefficient confidence intervals over the 30th–

50th percentile range fail to include the value estimated

from the complete data, and there is some indication of

greater sensitivity to SRH, especially in combination

with CAPE (Fig. 4b). We return to this finding in later

sections.

4. Climatological features

a. Dependence on cPrcp and SRH

We first compare the index dependence on cPrcp and

SRH with that of the observations. The index m(cPrcp,

SRH) expresses the expected number of tornadoes for

given values of cPrcp and SRH. The corresponding ob-

served quantity is the average number of tornadoes at all

locations and months of the year with the given values of

cPrcp and SRH. The observed climatological numbers of

tornadoes are binned according to the corresponding

values of cPrcp and SRH. Bin boundaries of cPrcp and

SRH are chosen to correspond to percentiles and range

from the 5th to the 95th percentile with a width of 5%.

Figure 6 shows the average number of observed torna-

does and the index as functions of cPrcp and SRH. The

log-linear form of the index means that its isolines as

a function of log(cPrcp) and log(SRH) are straight lines.

The index isolines are overlaid on the observed distri-

bution to aid in comparison, and, for the most part, the

FIG. 7. The spatial and temporal distribution of the data in boxes B1 and B2 of Fig. 6, showing the number of

months per year that the parameter values of each grid box fall in boxes (a) B1 and (b) B2. The color red corresponds

to 9 months and blue to one month. (c) The number of reported tornadoes per year in box B1 and (d) the corre-

sponding index quantity for box B2, by calendar month.

FIG. 8. (a) Annual cycle of the reported number of tornadoes and

corresponding index values. (b) Annual cycle of the index factor

with monthly varying SRH (gray), the factor with monthly varying

cPrcp (white), and the product of the annual cycles of the three

factors defined in (5).
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observations and the index appear to have similar func-

tional dependence on the parameters, especially for the

parameter ranges associated with the largest number of

tornadoes. The isolines of the observed distribution are

not precisely straight and indicate greater sensitivity to

larger values of SRH, consistent with the results of the

previous section (Figs. 4b and 5b). The difference of the

observations and index shows little indication of sys-

tematic bias over the parameter ranges associated with

the majority of tornadoes. The largest discrepancies be-

tween the observations and the index are seen for si-

multaneously low values of cPrcp and SRH (the gray box

markedB1 in Fig. 6c), corresponding to parameter values

for which there are more observed tornadoes than pre-

dicted by the index. Conversely, for intermediate values

of SRH and low values of cPrcp (the gray boxmarked B2

in Fig. 6c) there are no observed tornadoes while the

index predicts small numbers.

The index biases associated with the parameter ranges

in B1 and B2 correspond to fairly well-defined geo-

graphical regions and calendar months. Figure 7 shows

the spatial distributions and annual cycles of the data with

parameters in boxes B1 and B2. The negative bias in box

B1 is seen to be due to the failure of the index to produce

observed April–November tornadoes occurring west of

the Rockies, concentrated in Southern California and

corresponding to about 2.4 tornadoes per year. These

tornadoes are likely associated with different environ-

mental conditions than the index is able to detect and

mainly comprise lowCAPEand high shear environments

(Hanstrum et al. 2002; Monteverdi et al. 2003; Kounkou

et al. 2009). The positive bias in box B2 is due to the index

indicating tornado activity mainly west of 1008W during

October through April and corresponds to about 7.4

tornadoes per year. Both observations and index (by

construction) have 999 tornadoes per year; Poisson re-

gression, like linear regression, matches the mean of the

data to which it is fit.

b. Contribution of cPrcp and SRH to annual cycle

and spatial pattern

The annual cycle of the total number of reported tor-

nadoes and the annual cycle of the index are shown in

Fig. 8a. The index captures the general phasing with

maximum values in May and minimum values in winter.

Overall the index shows less variability through the sea-

sonal cycle than do the observations. The index shows

a positive bias in August and September, a feature that

we will examine inmore detail later. The simplicity of the

tornado index makes it possible to diagnose the contri-

bution of the two environmental factors to the annual

cycle. We compute the index with the annual cycle of

FIG. 9. Spatial distribution of the annual average number of (a) reported tornadoes, (b) the corresponding index

values, and the index factors with spatially varying (c) cPrcp and (d) SRH, respectively.
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SRH suppressed and with the annual cycle of cPrcp

suppressed. In the first case only cPrcp contributes to the

annual cycle and in the second case only SRH. The an-

nual cycles of these single-factor indices are shown in Fig.

8b. The contribution of SRH to the annual cycle has

maximum values in winter and minimum values in late

summer. Nearly out of phase, the contribution of cPrcp to

the annual cycle has maximum values in June and July

when the contribution from SRH is nearly minimum.

The index can be written as the normalized product of

the two single-factor indices

m(x1, x2)5
m(x1, x2)m(x1, x2)

m(x1, x2)
, (4)

where ( ) denotes annual average. At each location, the

annual cycle is exactly the product of the two single-factor

indices normalized by m(x1, x2), which has no annual

cycle. The normalized product of the spatially summed

single-factor indices,

hm(x1, x2)ihm(x1, x2)i

hm(x1, x2)i
, (5)

may differ from the index annual cycle hm(x1, x2)i; the

notation h�i denotes the spatial sum. However, Fig. 8b

shows that this product does have its maximum in May

like the complete index and the observations; the two

factors are nearly but not quite out of phase. The mini-

mum of the SRH factor is in August, while the maximum

of the cPrcp factor is in June. This difference in phasing is

the reason that the product of the annual cycles of the two

factors has its maximum in late spring when the contri-

bution from cPrcp is already large and that from SRH is

FIG. 10. Annual cycle of the observations (gray) and index (black) for the nine NOAA climate regions. The values in parenthesis are the

Pearson and rank correlations between the observations and index.
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still fairly large. This result indicates that the May maxi-

mum of the index can be explained by the phasing of the

annual cycles of the cPrcp and SRH contributions.

A similar approach can be used to determine how the

two factors contribute to the annually summed spatial

distribution of tornado occurrence. The annual distri-

bution of reported (3 3 3 box-averaged smoothing)

tornadoes and index values shown in Figs. 9a and 9b,

respectively, have similar overall patterns. The index is

missing the observed maximum in the northeast corner

of Colorado where nonsupercell tornadoes are common

and local effects contribute to the low-layer shear in this

area (Wakimoto and Wilson 1989). The index values do

not extend far enough into the northern high plains and

extend too far south into Texas. To quantify the impact

of the two environmental parameters on the spatial

distribution, we compute the index with the spatial

variability of SRH suppressed and the index with the

spatial variability of cPrcp suppressed. In the first case

only cPrcp contributes to the spatial variability and in

the second case only SRH. cPrcp enhances tornado in-

dex activity in the South and Southeast, and limits it

elsewhere (Fig. 9c). The SRH factor enhances the index

in the ‘‘tornado alley’’ region and suppresses activity in

the Southeast (Fig. 9d).

c. Regional features of the annual cycle

We compute the annual cycle of the index and the

tornado reports in the nine National Oceanic and At-

mospheric Administration (NOAA) climate regions

(Karl and Koss 1984; Fig. 10); boundary grid boxes are

weighted according to the fraction of area within the

region. The Pearson (rank) correlation between the

observation and index regional annual cycles exceeds

0.85 (0.83) in all regions except for the Northwest and

West, where the correlation is 0.38 and 0.68 (0.24 and

0.58), respectively. Positive biases are seen for the

months of August through October in the South, Cen-

tral, upperMidwest, and Plains regions, a feature we will

examine in some detail. The index shows a substantial

negative bias in the Southeast during September that

may be related to tornadoes associated with tropical

cyclones, which are observed to have a different relation

with environmental parameters on synoptic time scales

(Schultz and Cecil 2009; Edwards et al. 2012). The index

has substantially fewer tornadoes than reported in the

Southwest during the periodMay–July and indicates too

many tornadoes in the Northwest especially during the

months November–June. The index has roughly the

correct phasing in the West but with positive biases in

winter and early spring.

An overall measure of the similarity between the ob-

served and index climatological spatial patterns is given

by their monthly pattern correlation shown in Fig. 11. The

lowest pattern correlation values occur in late summer

and early fall, with the minimum occurring in September

irrespective ofwhether the pattern correlation is centered

(map average is removed) or uncentered (map average is

not removed). The reason for the low pattern correlation

values is seen in the spatial distributions of the July–

September monthly index and tornado report climatol-

ogies (Fig. 12). Both the index and report climatologies

show the northward shift of values in July. In August and

September, the index weakens somewhat and shifts

slightly southward. The behavior of the report climatol-

ogy is rather different showing substantially less tornado

activity than does the index over the central United

States. This discrepancy is especially striking in September

when the index hasmaximumvalues in the upperMidwest

while the maximum report values are in the eastern and

southern seaboard states. This behavior of the index is

precisely accounts for the positive bias in the annual cycle

noted earlier.

The erroneous spatial structure of the index in August

and September concentrated in the northern central

United States reflects that of the SRH, suggesting that the

index response to SRH may be responsible. To un-

derstand better the positive bias of the index in this region

during the late summer and early fall, we fit the index

using data restricted to the box 338–428N and 1008–908E.

Figure 13a shows the annual cycle of tornado reports and

the annual cycles of two indices: the index using co-

efficients estimated from all the data (‘‘US coef.’’) and an

index using coefficients estimated from the box data

(‘‘box coef.’’). The report annual cycle shows a much

sharper decline in tornado activity in August than does

theU.S. index.On the other hand, the behavior of the box

index is more similar to that of the report data. The box

FIG. 11. Pattern correlation between index and observation

climatology as a function of calendar month. Gray and black

bars indicate uncentered and centered pattern correlations,

respectively.
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index coefficients of cPrcp and SRH are 1.41 and 4.36,

respectively, indicating that while the regional sensitivity

to cPrcp is similar to its all-U.S. value, the regional sen-

sitivity to SRH is more than double its all-U.S. value.

Figure 13b shows the seasonal cycle of box-averaged

cPrcp and SRH. Solid lines show the isolines of the all-

U.S. index and dashed lines those of the box index. The

isolines show that the index value in July using the all-U.S.

coefficients is between that of April and May. Increasing

the sensitivity of the index has the effect of increasing the

slope of the isolines. The isolines of the index with box

coefficients show that the value of the index in July is close

to that of March, which is a more realistic result. Roughly

speaking, the increased sensitivity to SRH results in

a more vigorous annual cycle with enhanced maximum

spring values and a more abrupt decline in late summer.

This differing sensitivity to SRH may be due to time av-

eraging, neglected factors, or deficiencies in NARR

products.We do not believe that the sensitivity of tornado

occurrence to subdaily values of SRH varies by location,

all other factors being the same; in other words, we do not

believe that the physics of the atmosphere varies by lo-

cation (Brooks 2009).

5. Interannual variability

The CONUS-summed index values computed with

interannually varying NARR data were shown to corre-

late well with total numbers of CONUS reported torna-

does on a monthly as well as on annual basis (Tippett

FIG. 12. (a),(c),(e) Logarithm of monthly climatology of tornado reports and (b),(d),(f) the index for the months July

through September.
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et al. 2012). We assess the relative importance of the two

environmental parameters for characterizing interannual

variability by computing the index using climatological

values of one of the parameters and interannually varying

values of the other parameter, and then computing the

correlation between the resulting single-factor index and

reported tornado numbers. Table 1 shows the Pearson

and rank correlations between CONUS sums of index

values and reported numbers of tornadoes by calendar

month. During most months of the year, the index com-

puted with climatological SRH and interannually varying

cPrcp has nearly the same correlationwithCONUS totals

as does the full index. On the other hand, when only an-

nually varying SRH is included in the index, the resulting

correlation is insignificant in the majority of months.

Similar to the climatological setting where the best one-

parameter model was the one based on cPrcp, the in-

terannual variability of cPrcp alone explains much of the

interannual variability. Only in May and June does the

inclusion of interannually varying SRH lead to a marked

increase in the correlation. This finding suggests that

during the peak activity period both factors contribute to

interannual variability, a result with important implica-

tions for prediction. First, Tippett et al. (2012) showed

TABLE 1. Pearson and rank correlation (Spearman’s rho) between reported number of tornadoes and North American Regional

Reanalysis (NARR) Poisson regression estimates for the period 1979–2010. Correlations significant at the 95% level are indicated by

boldface font. The rows labeled cPrcp : SRH and cPrcp : SRH indicate the use of the climatological values of cPrcp and SRH, respectively,

in the index. The row CAPE:SRH indicates the results for the index based on CAPE and SRH.

Pearson correlation

Parameters Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

cPrcp:SRH 0.75 0.64 0.54 0.50 0.60 0.67 0.75 0.40 0.15 0.25 0.48 0.74

cPrcp : SRH 0.24 0.12 0.14 0.32 0.41 0.39 0.52 0.32 20.16 0.12 0.21 0.37

cPrcp : SRH 0.76 0.59 0.62 0.47 0.30 0.48 0.64 0.34 0.15 0.25 0.53 0.73

CAPE:SRH 0.66 0.42 0.44 0.27 0.50 0.50 0.62 0.11 20.15 0.38 0.32 0.50

Rank correlation

Parameters Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

cPrcp:SRH 0.73 0.55 0.56 0.55 0.69 0.72 0.63 0.50 0.25 0.44 0.57 0.58

cPrcp : SRH 0.42 0.04 0.23 0.33 0.36 0.35 0.55 0.33 20.13 0.18 0.37 0.40

cPrcp : SRH 0.74 0.61 0.59 0.47 0.40 0.52 0.50 0.36 0.34 0.36 0.58 0.56

CAPE:SRH 0.69 0.40 0.43 0.31 0.61 0.49 0.59 0.20 20.08 0.48 0.47 0.43

FIG. 13. (a) The annual cycles of reported tornadoes (dark gray), all-U.S. index (black), and local index in the box

338–428N, 1008–908E. (b) The box-averaged values of log(cPrcp) and log(SRH) for each calendar month with the

letters J, F, M, etc. indicating the month. The solid (dashed) lines are the isolines of the all-U.S. (local) index.
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that, on average, monthly predictions of cPrcp had lower

skill than those of SRH in initialized coupled GCM

forecasts. Second, accurate prediction of peak season

variability requires accurate forecasts of both cPrcp and

SRH. Table 1 also shows the corresponding correlation

when the index is constructed using CAPE rather than

cPrcp; the values are somewhat lower, especially inApril.

To assess the ability of the index to represent regional

tornado activity, we computed the monthly and annual

number of tornadoes for each of the nine NOAA climate

regions and compared the resulting time series with the

corresponding index values. Regional Pearson and rank

correlations on a monthly and annual basis are given in

Tables 2 and 3, respectively. Regions and months aver-

aging less than 1 tornado per year are omitted. The South,

Southeast, and Central regions average more than one

tornado per month throughout the year, and significant

skill is seen inmost months withAugust–October tending

to have poor skill depending on region and skill measure.

Deficiencies in explaining the annual cycle are apparently

reflected in the representation of interannual variability.

Regional correlations are generally lower than CONUS

ones, reflecting increased noise due to reduced averaging.

Correlation of annual values is generally less than for

monthly values since the correlation of the annual total is

negatively impacted by temporally varying biases inmean

and amplitude. Even in the Central and upper Midwest

regions, where there is a mean bias, the correlation is still

fairly good. The correlation values for the index com-

puted with observed parameters is presumably an upper

bound for the skill of forecasts based on this index, since

forecast skill is limited by the imperfect relation between

index and tornado reports, as well as the ability to predict

the parameters.

6. Summary and conclusions

We have examined the properties of a recently de-

veloped empirical index (Tippett et al. 2012) designed to

represent the expected monthly number of U.S. torna-

does as a function of monthly averaged convective pre-

cipitation (cPrcp) and storm relative helicity (SRH) taken

from the North American Regional Reanalysis. Here we

have examined its construction and characteristics in

more detail, including aspects of the environmental pa-

rameter selection, systematic deficiencies, and regional

behavior.While the convective available potential energy

(CAPE) appears as a factor in many tornado indices, we

find here that CAPE does not fit the log-linear functional

form of the Poisson regression, and cPrcp takes its place

as an indicator of potential updraft strength. Model cPrcp

has been previously used to account for thunderstorm

initiation in conjunction with CAPE and vertical shear

(Trapp et al. 2009) but introduces the complication that

TABLE 2. Correlation between the index and reported number of tornadoes by U.S. climate region and month for the period 1979–2010.

Significant correlations are in boldface font. Regions and months with less than 32 reported tornadoes during the period are omitted.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

South 0.66 0.51 0.52 0.69 0.50 0.47 0.57 0.31 0.12 0.46 0.60 0.71 0.53

Southeast 0.53 0.54 0.36 0.47 0.68 0.46 0.54 0.42 0.67 0.41 0.57 0.69 0.30

Central 0.68 0.69 0.65 0.53 0.56 0.73 0.65 0.35 0.42 0.26 0.28 0.73 0.51

Upper Midwest — — 0.60 0.55 0.71 0.57 0.56 0.14 0.54 0.56 — — 0.45

Plains — — 0.63 0.58 0.80 0.53 0.81 0.49 0.55 0.23 — — 0.51

Northeast — — — 0.38 0.13 0.61 0.50 0.41 0.37 0.71 0.29 — 0.36

Southwest — — — 0.21 0.13 0.37 0.32 0.40 0.02 0.31 — — 0.22

Northwest — — — 0.03 0.44 0.36 — 0.07 — — — — 0.15

West — 0.49 0.60 — — — — — — — — — 0.34

TABLE 3. As in Table 2, but for rank correlation.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

South 0.55 0.50 0.50 0.63 0.59 0.46 0.48 0.35 0.36 0.63 0.62 0.69 0.43

Southeast 0.68 0.39 0.46 0.61 0.64 0.45 0.38 0.21 0.44 0.42 0.57 0.72 0.35

Central 0.72 0.59 0.61 0.48 0.78 0.56 0.41 0.47 0.57 0.50 0.55 0.61 0.54

Upper Midwest — — 0.70 0.51 0.56 0.64 0.68 0.37 0.55 0.51 — — 0.47

Plains — — 0.37 0.50 0.64 0.67 0.63 0.49 0.56 0.31 — — 0.55

Northeast — — — 0.50 0.42 0.55 0.38 0.57 0.32 0.34 0.57 — 0.34

Southwest — — — 0.51 0.18 0.32 0.28 0.24 0.17 0.41 — — 0.23

Northwest — — — 20.10 0.53 0.35 — 0.13 — — — — 0.22

West — 0.42 0.64 — — — — — — — — — 0.36
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the detailed features of cPrcp are expected to be sensitive

to model convective parameterization schemes.

Pooling all locations and months of the calendar year,

we find that the index favorably represents the climato-

logical dependence of monthly tornado numbers on

cPrcp and SRH. The index does fail to account for sig-

nificant number of presumably nonsupercell tornadoes in

Colorado and Florida. The index also does not represent

modest numbers of cool-season tornadoes reported in

Southern California that occur when the values of cPrcp,

and implicitly instability, are too low for tornado occur-

rence to be likely according to the index. The index also

indicates that SRH values are adequate for small num-

bers of tornadoes to occur west of the Rockies when few

or none are reported.

The contributions of the two environmental parame-

ters to the index are mostly independent, both with re-

spect to annual cycle and spatial distribution. The annual

cycle of the index and of the reported tornado numbers

show similar phasing, although the index fails to capture

the peak magnitude in May. The May peak of the index

can be inferred from the relative phases of the annual

cycles of SRH and cPrcp considered separately. In May,

cPrcp is increasing and already fairly large, and SRH,

although declining from its winter peak, is still large. In

terms of the climatological spatial distribution, cPrcp

serves to favor the southern part of the United States and

suppresses the index west of the Rockies and over ele-

vation. SRH strongly enhances the central United States

and counteracts the role of cPrcp in the Southeast. These

findings only apply to the monthly climatology and may

be less relevant for day to day variability.

The largest deficiency in the annual cycle of the index

occurs in late summer over the central United States,

where it indicates a greater number of tornadoes than are

reported.We found that this behavior can be explained in

terms of the sensitivity of the index to SRH. When the

index was fit using only data from this region, the sensi-

tivity to SRH more than doubled. Increasing the sensi-

tivity of the index to SRH resulted in the index having

a more vigorous annual cycle with a larger spring peak

value and a more rapid decline in late summer.

The index demonstrates some ability to represent the

interannual variability of the number of U.S. tornadoes

per month. During most months, cPrcp explains more of

this variability than does SRH. However, both factors are

important during the peak spring period. The regional

variability of the index at the scale of the NOAA climate

regions captures aspects of both annual cycle and in-

terannual variability.
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