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Abstract— Field biologists use animal sounds to discover the presence
of individuals and to study their behavior. Collecting bio-acoustic data
has traditionally been a difficult and time-consuming process in which
individual researchers use portable microphones to record sounds while

taking notes of their own detailed observations. The recent development
of new deployable acoustic sensor platforms presents opportunities to
develop automated tools for bio-acoustic field research. In this work,
we implement an AML-based source localization algorithm, and use

it to localize marmot alarm-calls. We assess the performance of these
techniques based on results from two field experiments: (1) a controlled
test of direction-of-arrival (DOA) accuracy using a pre-recorded source
signal, and (2) an experiment to detect and localize actual animals

in their habitat, with a comparison to ground truth gathered from
human observations. Although small arrays yield ambiguities from spatial
aliasing of high frequency signals, we show that these ambiguities are

readily eliminated by proper bearing crossings of the DOAs from several
arrays. These results show that the AML source localization algorithm
can be used to localize actual animals in their natural habitat, using a
platform that is practical to deploy.

I. MOTIVATION

Field biologists use the vocalizations of animals to identify in-

dividuals, census species and to study the dynamics of acoustic

communication [1], [2]. However, even experienced field biologists

have difficulty accurately identifying and locating species acous-

tically, and most researchers are unable to identify more than a

few distinctive individuals. Some acoustic phenomena such as alarm

calling (where individuals produce specific vocalizations in response

to predators [3]) are relatively rare, and are thus difficult to study,

while others, such as duetting (where two individuals interdigitate

their vocalizations [4]) are extremely difficult to properly describe.

Thus, field research of natural populations will benefit from the use

of embedded sensor arrays that are constantly alert, and that are able

to detect acoustic events, localize the sound’s source, and identify the

individual or species producing the sound.

Alarm calls form an ideal system for motivating and testing our

technology because they are infrequent, they are loud, and they are

biologically important. The yellow-bellied marmots at the Rocky

Mountain Biological Laboratory (RMBL), in Gothic, Colorado, have

become a model system for studying alarm communication. Marmots

communicate the degree of risk by emitting a simple single note alarm

call and emit more calls and at a higher rate as risk increases [5].

However, the modal number of alarm calls produced is 1, and it is

remarkably difficult to identify the individual who produced the call

(we are able to localize and identify only about 30% of callers—

Blumstein, unpublished data). Calls are individually-specific and the

adaptive utility of this individuality has been the focus of considerable

study. We know that calls contain information about the age, sex and

exact identity of the caller [6], and we know that marmots are able

to discriminate individuals based solely on their calls [7].

Using the Acoustic ENSBox, a multi-node distributed recording

array, we evaluated the ability of an Approximate Maximum Like-

lihood (AML) source localization algorithm to correctly identify the

location of naturally alarm calling marmots as well as recorded and

re-broadcast alarm calls. Field tests allowed us to comprehensively

evaluate all the features (node time synchronization, self-localization,

event detection, and AML-based DOA bearing estimation) of the

Acoustic ENSBox. Tests under field conditions are essential because

animals move their heads while vocalizing, and because there is

often substantial background noise through which the signals must

be detected.

The main contributions of this paper are: (1) the implementation

of a deployable on-line marmot call detection system based on a

Constant False Alarm Rate (CFAR) algorithm, (2) a centralized

marmot call localization system based on AML bearing estimation,

and (3) a thorough evaluation of the effectiveness of these algorithms

based on a field study detecting real animals in their natural habitat.

II. OVERVIEW OF APPROACH

Distributed source localization is a broad and active research area,

and a diverse set of solutions have been proposed. These solutions

fall into three categories, in which the localization solution is based

on (1) differential signal amplitudes, (2) time-difference-of-arrivals

(TDOA), and (3) comparison of direction-of-arrival (DOA) estimates.

In general, characteristics of the application, the source signal, and

the environment will determine which of these solutions performs

best.

The characteristics of the environment and the nature of the

source signals rule out some of these solutions. The first alternative,

amplitude-based localization, is ruled out by foliage and terrain

complexity, which yields non-isotropic signal attenuation patterns.

Without discovering the complex model of the signal attenuation,

received amplitude values are difficult to map to propagated distances.

The second alternative, TDOA-based localization, requires precise

acquisition of the phases of the signals arriving at different nodes.
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Fig. 1. Block diagram of a DOA-based localization system. Note, for the
experimental results in this paper, the AML algorithm was run centrally.



Fig. 2. The Acoustic ENSBox Platform.

However, the features of animal calls that are most readily extracted

tend to be narrow-band, making precise phase acquisition difficult

in a noisy environment. Furthermore, techniques based on coherent

processing of data from different nodes (e.g., correlation) are limited

by the coherence properties of the acoustic environment and may not

work well when the nodes are separated over tens of meters.

Our approach has therefore focused primarily on the third alterna-

tive, in which the location estimate is computed by combining DOA

estimates assessed at a distributed set of locations. Our implemen-

tation employs a distributed set of small “sub-arrays”, each capable

of independently detecting the target signal and producing a DOA

bearing estimate. The crossing of these bearing estimates are then

combined to produce an estimate of the most likely source location.

In the next sections, we give a brief overview of this implemen-

tation, and highlight some key features of the platform. A detailed

discussion of the processing algorithms follows in Section III.

A. DOA-based localization using distributed sub-arrays

Fig. 1 shows a high level diagram of a DOA-based localization

system. To apply this method, we deploy a collection of sub-arrays

surrounding a target of interest. The sub-arrays are typically deployed

over a wide area relative to the size of each sub-array. In this paper,

we use the Acoustic ENSBox platform [8] shown in Fig. 2 and

described in more detail in Section II-C. Each node in the system

hosts a 11.31 cm tetrahedral microphone sub-array, rotated to form an

8 cm square when viewed from above. These sub-arrays are typically

deployed at least 10 m apart, and often much farther: in the three-

set of experiments presented in this paper, 6 sub-arrays are deployed

surrounding a 70x140 m area (see Fig. 14). This large inter-node

spacing means that any target source can be assumed to be in the far

field of all but perhaps one of the nodes.

After deployment, the sub-arrays are automatically calibrated to

determine the relative positions and orientations of the sub-arrays in

the system. Next, software on the nodes begins implementing the

detection and localization algorithms.

The detection software on each node performs a streaming analysis

of the acoustic data in real time, identifying likely animal call events.

Whenever any individual node’s call detector is triggered, a radio

message is sent to trigger all the nodes in the system to start recording

that event and queue it for further processing. This approach enables
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Fig. 3. The spatial aliasing problem. Sensors at position 0 and D observe
the same phase offset for signals S1 and S2. When measured phase offsets
are used to deduce direction of arrival, ambiguities result for signals with
λ < 2D.

optimization of the detection threshold such that only the nearest

node to a source need to be triggered.

Once identified, segments of audio containing calls are analyzed

using the Approximate-Maximum-Likelihood (AML) algorithm de-

scribed in Section III-B. Based on the relative phases of signals

recorded at the microphones in a given sub-array, this algorithm

determines a likelihood metric describing the likely bearing to the

source. These metrics are then collected centrally, placed on a map

according to the location and orientation of each sub-array, and

combined into a 2-D pseudo-likelihood map of the source location.

This map is formed by projecting each likelihood metric outwards

from each node to form the joint approximate likelihood of a source

at every point in the 2D space.

B. Performance impact of sub-array size

The performance of the AML bearing estimation algorithm de-

pends on characteristics of the source signal, and on the size and

geometry of the array.

The acoustic sources produced by different animals can vary

significantly. In general, we consider these signals as wideband

because the frequency ratio of the highest to the lowest is much larger

than one. However, when a source may contain only few closely-

spaced dominant frequencies, then the it may behave more like a

narrowband signal. This may presents a problem depending on the

selection of the spacings among the sensors in a sub-array. When a

narrowband source is present, there is a risk that the algorithm may

return ambiguous likelihood metric results. The reason for this is

shown in Fig. 3. Just as the Nyquist theorem states that to avoid

4KHz, 6cm Array 4KHz, 15cm Array4KHz, 6cm Array 4KHz, 15cm Array

Fig. 4. Simulated beam patterns for two arrays detecting marmot alarm calls.
Larger arrays yield narrower lobes, but more ambiguity.



aliasing, a signal must be sampled at least at 2x the maximum

frequency of the signal, an analogous property holds for spatial

sampling. In order to measure the phase of an incoming signal by

comparison from two points in space, those two points must lie in

the same half-wave. Energy in frequencies with wavelengths shorter

than 2x the sensor spacing will be aliased into lower frequencies.

This implies that for a sensor spacing of D and signal propagation

speed Vs, the maximum frequency detectable without aliasing is

Fc = Vs/(2D).

The likelihood metric of the bearing estimate is typically repre-

sented as a polar plot, where the likelihood value is plotted as a

function of the bearing angle. In such a plot, the most likely bearing

estimate is represented by the midpoint of the largest lobe of this

metric. Array size has a two-fold impact on these results.

As the array size increases, spatial aliasing can become a problem.

Whenever the frequency content of the source signal is higher than

the critical frequency Fc, spatial aliasing will produce grating lobes,

(i.e., false lobes) that point in directions other than the true source

bearing [9]. These grating lobes often have heights comparable to

the true main lobe due to various random imperfections. In the

presence of noise, reverberation, or competing sources, grating lobes

can severely complicate identification of the true DOA.

However, as array size decreases, the resolution achievable with the

array also decreases. This resolution is a function of many factors,

including the resolution of a sample and the accuracy of the array

calibration. Lower resolution increases the width of the main lobe,

increasing the uncertainty in the estimate. This tradeoff is depicted in

Fig. 4, which shows simulated beam patterns for two different size

arrays detecting a 4 KHz source; the larger array has narrower lobes,

but more potential ambiguity.

In the analysis of a single array, there is usually a “sweet spot” for

array size where the maximum value of the side lobes will be less

than a certain fraction of the main lobe and thus can be excluded.

However, for high frequency sources (e.g., 6 KHz and above for our

implemented array), the array size sweet spot becomes quite small,

producing a wide, low resolution, main lobe.

To avoid this problem, we ensure high resolution by using relatively

large arrays and address the ambiguity problem by other means.

When bearing data from multiple arrays is combined, some of the

false lobe DOAs are rejected because they are inconsistent with the

lobes from other nodes. While the “beam” projected from a false

lobe has some probability of intersecting with few other lobes, the

DOAs of the true lobes from all the sub-arrays have a much higher

likelihood of crossing near the true location of the source.

This approach has its limits; as the side lobes become increasingly

broad, this approach will eventually fail, hence the array size cannot

be made arbitrarily large. For our purposes, we chose a convenient

array size from a practical engineering implementation point of view,

suitable for a class of sources of interest. These arrays are hosted by

a deployable, general purpose sensing platform described in the next

section.

C. Implementation of the Sub-array Nodes

The deployment described in this paper comprised 6 nodes, each

an independent wireless processor hosting a sub-array. In undertaking

this work, we were fortunate to be able to build upon an existing

platform, the Acoustic ENSBox [8]. The ENSBox was specifically

designed to support this type of application, and it has numerous

features that make this type of deployment practical for the first time.

48KHz/16bit

16 tap FIR 

/2 decimation filter

32 point FFT

CNorm(F[4]+F[5]+

F[6]+F[7])

EWMA

Noise Estimator

Onset Detector

With Hysteresis

Ranges

Window(80,4*64)

Restrict(8,40)

48KHz/16bit

16 tap FIR 

/2 decimation filter

32 point FFT

CNorm(F[4]+F[5]+

F[6]+F[7])

EWMA

Noise Estimator

Onset Detector

With Hysteresis

Ranges

Window(80,4*64)

Restrict(8,40)

Fig. 5. Block diagram of a CFAR marmot detection algorithm. This
implementation is based on a similar algorithm for detecting bird calls [10].

a) Packaging: While packaging issues are far from novel, they

are quite important in practice. In prior attempts to record using

multiple arrays, our equipment was cobbled together from “off-the-

shelf” components and a surfeit of wires, plus heavy batteries to

support devices that were not tuned for low power consumption.

These solutions proved too cumbersome to be practical. In contrast,

the ENSBox is a wireless distributed sensor system. Each unit is

a self-contained processor and array, with an internal battery and a

lifetime of 10 hours. The unit is water-resistant and the array head

can be fitted to a tripod.1

b) Management: As the size of a deployment grows, manage-

ment rapidly becomes a critical concern. The larger the number of

nodes deployed, the greater the likelihood that one or more nodes is

faulty—and this is especially true for prototype systems. To facilitate

deployment, the ENSBox supports a web-based management tool

hosted on each node. By connecting to any one of the nodes and

setting it into “master mode”, the user can use that node as a gateway

to centrally manage the rest of the network. Diagnostics available

through this interface can identify problems with individual nodes

and thus ensure that all nodes are functioning properly. Once the

system is up, the web interface is also used to initiate and manage

the application.

c) Self-configuration: Another important factor in deployments

is self-configuration. The ENSBox system features a self-configuring

multi-hop wireless network, with network diagnostics available from

the management gateway. It also features a sophisticated array self-

calibration system that can establish precise positions and orientations

for all of the arrays in the system. This system, described in detail

in [8], [11], can compute relative array positions to within 10 cm

over an 50x80m field, and estimate array orientation to within

1.5 degrees. Extensive testing has proved that the system is easy to

operate, achieves detection ranges upwards of 100m, and is robust to

noise and intervening foliage, and provides a consistency metric that

immediately indicates whether the results are likely to be valid. By

attending to the consistency metric and performing simple sanity-

checks, we have yet to fail to get accurate self-localization results

from a field deployment. This feature of the ENSBox is an enormous

time-saver because it gives reliable results with low effort, and

eliminates the need to carefully survey the deployment positions.

d) Software API: The final advantage of the ENSBox has been

as an application development platform. The ENSBox provides a

synchronized sampling API that greatly simplifies the development

of collaborative sensing application software [12]. The detector

1We are currently developing version 2 of the ENSBox, which will be
smaller, lighter, completely free of wires, and easier to deploy.
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Fig. 6. Behavior of the CFAR-based marmot alarm call detector.

application described in this paper is 800 lines of C code and took

about 1 week to develop within the EmStar software framework [13];

it detects marmots and triggers synchronized processing on all nodes

in the system. Because the system is built on a 32-bit Linux processor,

it has the additional resources to support rapid prototyping and

minimize early optimization. In the next section, we describe some

algorithms we have implemented and tested using this hardware.

III. ALGORITHMS

The algorithms we describe herein are not wholly novel; in fact,

the basic algorithms have all been introduced in prior work. Rather,

the novelty in this work lies in the evaluation of these algorithms

in the context of a real deployment and a real scientific application,

and in the implementation details involved in tuning the algorithms

for this application. In this section we will discuss the details of our

marmot call detection algorithm and the AML bearing estimation and

localization algorithm.

A. CFAR Event Detection

The Constant False Alarm Rate (CFAR) detection algorithm is an

on-line statistical method for identifying the bursts of energy in a

streaming signal [10]. The CFAR algorithm is based on the assump-

tion that the ambient noise can be modeled as a Gaussian distribution

N(µ, σ2). Given this assumption, we can use a smoothing filter

to compute on-line estimates µ̄ and σ̄. Given these estimates, we

define a threshold value µ̄ + βσ̄, or β standard deviations above the

mean energy value. Thus, if our noise model holds, any energy value

exceeding this threshold is either part of the signal, or is noise with

probability 1 − erf(β/
√

2), which diminishes rapidly with β.

In practice, not all of the noise we would like to filter out

is Gaussian. While the Gaussian distribution is a good model for

ambient environmental noise, the noise caused by other animals and

events in the environment will not fit that model. We counter this

issue in two ways.

First, we apply a band pass filter that selects out only the frequency

range used by our target signal (in this case, marmot alarm calls),

and compute the energy metric over this band. Second, by adjusting

the parameters of the smoothing filters, we select the adaptation rate

for the noise estimator such that the model will adapt to signals that

have a less abrupt onset than our target signal.

Fig. 5 shows a block diagram of our marmot detection algorithm.

The first three stages of the data flow implement a decimation filter

and windowing operation, resulting in windows of 32 points sampled

at 24 KHz. To reduce the processing load, we only process every

fourth 32 point window. Because marmot calls are approximately

0.04 seconds long, even skipping 3/4 of the windows we are still

guaranteed to sample the marmot call. The next two stages sum

the energy over the band of interest, by computing the Discrete

Fourier Transform (DFT) and taking the magnitude of the sum of

the frequency bins corresponding to the range 2.25–3.75 KHz. Next,

this energy metric is fed into the CFAR algorithm.

The energy metric feeds into the noise estimator, gated by whether

the algorithm is currently “triggering”. Whenever the detector trig-

gers, new samples should not be added to the noise estimator until the

signal of interest has passed—otherwise, the noise estimator would

tend to adapt to the signal. In addition, there is typically a period

of reverberation after an alarm call, during which the signal levels

are higher than normal, but still below threshold. Thus, we define a

hysteresis period such that the detector will remain in the triggered

state for Kmin samples after the last above-threshold sample. The

sample ranges corresponding to periods of triggering are reported as

the output of the detector.

The noise estimator itself is based on two Exponentially Weighted

Moving Average (EWMA) smoothing filters, one estimating the mean

µ, and the other estimating the variance σ2. An EWMA is a simple

feedback function that implements a smoothing function with very

low computational complexity. The update function for a EWMA

estimate x̄ of x is



x̄t+1 = αxt + (1 − α)x̄t,

where α is the adaptation rate parameter. The detection threshold

is then computed from βσ̄; any sample above threshold is considered

a detection.

While this covers the “streaming” case, there are two additional

details of the algorithm: initialization and lockup detection. When

the detector starts, there is no initial noise estimate, so the threshold

cannot reliably be determined. Thus, we implement an initialization

phase in which triggering is withheld for the first Kinit samples

while the noise estimator builds a model. The second detail is

“lockup”, a condition that can occur in the event of a sudden but

permanent change in the noise level. If a permanent change in the

noise level causes the detector to trigger, the detector will never un-

trigger, because the noise estimates are not updated while triggering.

To address this, we apply a heuristic that re-initializes the detector

whenever triggering lasts for more than Kmax samples.

Fig. 6 shows the behavior of our on-line marmot call detector in

two cases. Fig. 6(a) represents a period of time in which the ambient

noise level is gradually increasing, and the mean and threshold adapt

to this change. Fig. 6(b) shows the case where a marmot call exists

and is detected. Note that other animal calls are present in the

data, but are attenuated by the band pass filter and easily rejected

by the detector. From our previous experience detecting birds, we

expected to set a much lower β parameter; however, after analyzing

initial recordings we found that the marmots were surprisingly loud—

and therefore readily detected using a high value for β. We expect

to continue to gain more experience with this algorithm in future

deployments. We anticipate that there are a range of animal detection

applications for which it is sufficient to simply select different

parameter values. The parameter values used in our implementation

are given in the following tables.

Parameter Value

Fs 24000 Hz
FFT points 32

Window Feed 128
Frequency Bins 3,4

Parameter Value

α 0.999
β 32

Kinit 300
Kmin 40
Kmax 120

B. AML

Approximate-Maximum-Likelihood (AML) is a likelihood-based

algorithm that searches the event space for the most likely feature of

the event [14]. When the source is in the far-field of the sub-array,

the event of interest reduces to a DOA bearing estimation because the

range estimate becomes unreliable. For simplicity, we assume both

the source and the sensor array lie in the same plane (i.e., a 2-D

space) as shown in Fig. 7, although the physical configuration of the

four microphones on each node allows for a 3-D operation (which

will not be considered in the paper).

Let there be M wideband sources, each at an angle θm from the

array with the reference direction pointing to the east. The sensor

array consists of P randomly distributed sensors, each at position

rp = [xp, yp]T . The sensors are assumed to be omni-directional and

have identical response. The array centroid position is given by rc =
1
P

∑P

p=1
rp = [xc, yc]

T . We use the array centroid as the reference

point and define a signal model based on the relative time-delays from

this position. The relative time-delay of the mth source is given by

t
(m)
cp = t

(m)
c − t

(m)
p = [(xc − xp) cos θm + (yc − yp) sin θm]/v, in

where t
(m)
c and t

(m)
p are the absolute time-delays from the mth source

Fig. 7. Far-field notations for sources, sensors, and sensor array centroid

to the centroid and the pth sensor, respectively, and v is the speed

of propagation. In a polar coordinate system, the above relative time

delay can also be expressed as t
(m)
cp = rp cos(θm −φp)/v, where rp

and φp are the range and angle of the p sensor with respect to the

array centroid. The data received by the pth sensor at time n is then

xp(n) = ΣM
m=1S

(m)(n − t(m)
cp ) + wp(n), (1)

for n = 0, ..., N − 1, p = 1, ..., P , and m = 1, ..., M , where N is

the length of the data vector, S(m) is the mth source signal arriving

at the array centroid position, t
(m)
cp is allowed to be any real-valued

number, and wp is the zero mean white Gaussian noise with variance

σ2.

For the ease of derivation and analysis, the received wideband

signal can be transformed into the frequency domain via the DFT,

where a narrowband model can be given for each frequency bin.

However, the circular shift property of the DFT has an edge effect

problem for the actual linear time shift. These finite effects become

negligible for a sufficient long data. Here, we assume the data length

N is large enough to ignore the artifact caused by the finite data

length. For N -point DFT transformation, the array data model in the

frequency domain is given by

X(ωk) = D(ωk)S(ωk) + η(ωk), (2)

for k = 0, ..., N − 1, where the array data spectrum is

X(ωk) = [X1(ωk), ..., XP (ωk)]T , the steering matrix D(ωk) =
[d(1)(ωk), ...,d(M)(ωk)], the steering vector is given by d

(m)(ωk) =

[d
(m)
1 (ωk), ..., d

(m)
P (ωk)]T , d

(m)
p = e−j2πkt

(m)
cp

/N , and the source

spectrum is given by S(ωk) = [S(1)(ωk), ..., S(m)(ωk)]T . The

noise spectrum vector η(k) is zero mean complex white Gaussian

distributed with variance Nσ2. Note, due to the transformation to the

frequency domain, η(ωk) asymptotically approaches a Gaussian dis-

tribution by the central limit theorem even if the actual time-domain

noise has an arbitrary i.i.d. distribution (with bounded variance). This

asymptotic property in the frequency-domain provides a more reliable

noise model than the time-domain model in some practical cases.

Throughout this paper, we denote superscript T as the transpose, and
H as the complex conjugate transpose.

The AML estimator performs the data processing in the frequency

domain. The maximum-likelihood estimation of the source DOA and
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Fig. 8. “Marmot Meadow” location at Rocky Mountain Biological Lab-
oratory, in Gothic, Colorado. The node locations correspond to the wide
deployment described in Section IV-D.

source signals is given by the following optimization criterion [14]

max
Θ,S

L(Θ,S) = min
Θ,S

N/2∑

k=1

||X(ωk) − D(ωk)S(ωk)||2, (3)

which is equivalent to a nonlinear least square problem. Using the

technique of separating variables [15], the AML DOA estimate can

be obtained by solving the following likelihood function

max
Θ

J(Θ) = max
Θ

N/2∑

k=1

tr(P(ωk,Θ)R(ωk)), (4)

where

P(ωk,Θ) = D(ωk)D†(ωk), D
† = (D(ωk)H

D(ωk))−1
D(ωk)H

is the pseudo-inverse of the steering matrix D(ωk) and R(ωk) =
X(ωk)X(ωk)H is the one snapshot covariance matrix. Once the

AML estimate of Θ is found, the estimated source spectrum can

be given by

Ŝ
ML(ωk) = D

†(ωk, Θ̂ML)X(ωk). (5)

The AML algorithm performs signal separation by utilizing the

physical separation of the sources, and for each source signal, the

Signal to Interference-plus-Noise Ratio (SINR) is maximized in the

ML sense. Note that no closed-form solution can be obtained in

eq. (4). In the multiple sources case, the computational complexity

of the AML algorithm requires multi-dimensional search, which is

much higher than the MUSIC type algorithm that requires only 1-

D search. Various numerical solutions were proposed to obtain the

AML estimate. These include the Alternating Projection (AP), Gauss-

Newton (GN) and Conjugate-Gradient (CG). For detail derivation of

these methods see [16].

IV. EXPERIMENTS

In this section we will describe a series of experiments we

performed July 15–20, 2006 at the Rocky Mountain Biological

Laboratory (RMBL), in Gothic, CO. In these tests, we deployed 6

nodes in several locations at RMBL where marmots are normally
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Fig. 9. Performance of the marmot detection algorithm from 20 minutes
of audio. The deployment laydown was similar to the compact deployment
described in Section IV-C. For each node, the bars show the number of correct
detections, missed detections, and false positives. Note that if any node detects,
all nodes will capture that call.

present. One of these, “Marmot Meadow”, is shown in Fig. 8. We

tested the performance of our CFAR-based marmot detector and

the AML-based source localization under realistic field conditions,

detecting real animals as sources. We also performed a controlled

test of the sensitivity of the AML estimator to distance and source

orientation, using pre-recorded audio in the same field environment.

A. Marmot Detector Performance

To test the performance of the marmot detector, we ran the detec-

tion software on a network of 5 nodes. This software implemented the

algorithm described in Section III-A, running in real time. Whenever

a detection range was determined, that range was broadcast to all

nodes in a packet. The ENSBox’s integrated synchronized sampling

API was used by this application to synchronously record snippets

of audio corresponding to the detection range on every node in

the system. These snippets were then stored to flash for further

processing.

After the test, the results were compared with field notes taken

during the experiment. Fig. 9 shows the result of this comparison.

Several nodes detected every call present, and a few nodes reported

false positives. Node 106 was not functioning properly and only

reported false positives. As we saw in Fig. 6(b), marmot calls are

very loud and the detector had very little trouble identifying them.

In fact, most of the false positives were introduced by researchers

walking through the field manipulating the nodes.

B. DOA Accuracy Testing

Real animals move their heads while vocalizing. To assess the

consistency of DOA estimates from a single sub-array in the field

when the source’s direction changes, we conducted a series of

playback tests. The source was a marmot call broadcast from a

powered speaker (Advent 570 Powered Partner) in the same meadow

site where live marmot experiments were conducted. This speaker

reproduces the calls faithfully, though at a significantly lower volume

than marmots naturally produce.

A single node was placed as it was for the live marmot experiments,

with the sub-array raised approximately 1.5 m above ground level.

The source was aligned by eye at a bearing of approximately

180 degrees relative to the coordinate system of the sub-array. The
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source marmot call was repeated 15 times during each playback

experiment.

The playback was repeated with the source at three different

distances from the sub-array: 12.5 m, 25 m, and 50 m. We also

rotated the direction the source speaker was facing to test any possible

effect that may have, since marmots often turn their heads between or

even during a call. Three speaker facings were done at each distance:

pointing directly at the sub-array, pointing perpendicular to the sub-

array, and pointing away from the sub-array.

We applied the AML algorithm to a 0.07 second section of each

marmot call, 135 trials in total. The algorithm was limited to a 1 kHz

band of frequencies centered on 3 kHz, which is a typical range

over which marmot calls have their maximum power. The results are

shown in figure 10, where each subplot shows the AML estimates at

each bearing for a different experimental condition. The side lobes

common in all the figures are due to the array geometry effects

explained in section II-B. The peculiar side lobes such as in trial

6 at 12.5 m are due to background noises, especially white-crowned

sparrows whose calls overlap marmot calls in frequency.

Figure 11 shows the statistical distribution of DOA estimates (the

bearing with the maximum AML value for each trial). For all the

data combined, the mean DOA estimate is 173.55 with a standard

deviation of 2.35 degrees. Distance from the source and the facing of

the source have a significant effect on precision. The dominant effect

appears to be the power of the signal arriving at the sub-array. As

distance increases, the power of the signal drops. In addition, there

is a large drop in power when the speaker faces perpendicular to or

away from the sub-array. In our experimental setup, speaker direction

caused a larger drop than distance (data not shown).

C. AML Localization in Compact Deployment

The goal of this experiment is to verify whether the system is

capable of performing source localization based on actual animal

calls in the field by performing properly all the features of node
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Fig. 11. Histograms of the maximum DOA estimates for the same data
shown in figure 10, grouped by distance and grouped by source facing. Each
plot shows mean µ ± the standard deviation and the median m.

time synchronization, self-localization of the nodes, event detection,

and AML-based DOA bearing estimation as considered above. The

combinations of these hardware and software operations are thus

applied to real-life applications.

The setup of the array was as follows. Six sub-array nodes were

spread over a region which surrounds the “Spruce Burrow”, a location

where marmots alarm-called. Fig. 12 shows the location of Spruce

Burrow relative the sensor nodes. To align the position and orientation

of the nodes relative to the true earth, we took GPS measurements

on three nodes. Although two was sufficient, three enhanced our

confidence. Fig. 12 was made by assuming node 110 position, and

the orientation from node 110 to 108 are accurate. The GPS positions

were then translated and oriented to fit the self localization positions

based on these assumptions. On each line the top numbers is the

distance based on GPS coordinate, and the bottom is based on self

localization. The difference is well within the GPS accuracy in the

open field, which are about 3 meters.

The position of the source is estimated using a pseudo-likelihood

map. Each node runs the AML algorithm on the marmot calls to

produce the bearing likelihood. Then, each position in a pseudo-

likelihood map is generated by summing the bearing log-likelihood

values that point to that position. The estimate was chosen based on

the most likely position. Fig. 13 displays the pseudo-likelihood map

with the bearing likelihood of each node in a polar coordinate.

In this experiment, error analysis is difficult to address. The

marmots rarely call at the same location, and their position when

making the calls is difficult to precisely record. In this case we only

know that a marmot was observed nearby the burrow. The least

precise localization of the points in this figure is that of Spruce

Burrow, because of difficulties getting good GPS locations in the

woods. Nonetheless, the estimate of location in Fig. 13 is near the

GPS measure we obtained at Spruce Burrow, and all the main lobes

are pointing at the same directions. This suggests that the GPS

measure we obtained actually is accurate. More analysis can only

be done if caller localization can be improved by ground truth, or

if the marmot doesn’t move while making several calls; this is what

happened next.



D. AML Localization, Wide Deployment

In this experiment, our goal was to investigate the limiting capa-

bility of the system by stretching the array as large as the wireless

link allows while performing the same task.

The array setup was similar to the compact deployment experiment

except the distance between nodes was much greater. The longest

distance was from node 104 to node 106 (143.6 meters). In order

to validate the self-localization results, we also used a tape measure

to record the distance from nodes 100-104, and four GPS readings:

node 100, 104, 108, and Spruce Burrow.

Fig. 14 displays the node positions according to both self-

localization and GPS coordinates, by aligning the corresponding

points for nodes 100 and 104. In this analysis we encountered an

interesting problem: as the graph clearly shows, the GPS and self-

localization results show a discrepancy in which the position of

node 108 differs by 10 meters. Unfortunately, this problem was not

discovered until we had packed up the equipment and left the field

location, so we could not collect additional GPS data. At first, this

might seem like a fatal error. However, because the self-localization

results are derived from an over-constrained system, we were able to

produce a convincing argument that the GPS value for node 108 was

flawed.

The graph in Fig. 14 shows the distances between the GPS points,

which can be compared to the distances between the points in the

self-calibration solution. From this we see that while the distances

100-104 and 104-108 are within 1 meter, the distance 100-108

reports 10 meters shorter in the GPS data compared with the range

measured from the acoustics. From this observation, we can form two

alternate hypotheses. The first hypothesis is that the acoustic range

measurement is long by 10 meters. This can happen in cases where

the line of sight path is blocked and a reflected path is acquired.

The alternate hypothesis is that the GPS position for either 108 or

100 is inaccurate, such that two legs of the triangle are relatively

accurate while the third is wrong. In this case, the most likely culprit

was 108, because of the presence of nearby trees which prevented

the GPS unit from detecting the maximum number of satellites and

possibly caused reflections.

To test these hypotheses, we analyzed the self-localization data

more carefully. First, we re-ran the original data set and examined
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the residual values from the constraint system solution. This system is

composed of 54 constraint equations, with a maximum range residual

of 6.75 cm and an average residual value of 3.2 cm. Next, supposing

that the GPS data is more accurate, we modified the source data by

editing the range for 100-108 to match the distance derived from GPS.

Re-running the system, we found that the modified system was highly

inconsistent. In the new solution, the maximum range residual was

235 cm, and the average residual was 111 cm, with 6/10 node pairs

registering large residuals. In addition, one of those high-residual

pairs was 100-104, for which our tape-measure data point already

corresponded well with the acoustic results. This result suggests that

one incorrect acoustic range would not be sufficient to explain the

discrepancy—more range errors and more nodes would need to be

involved. Given that the original dataset achieved such a high degree

of consistency, we determined that the GPS error was the more likely

hypothesis.

Based on this determination, we analyzed the rest of the data with

the assumption that 100 and 104 were accurate and dropped the GPS

data for 108. This analysis generated source estimates below and

to the right of Spruce Burrow, as shown in Fig. 14. These results

corresponded well with the reports from human observers at the site.

In this data set, the marmot was chirping in a rapid, cyclic mode,

called a bout, with one chirp every few seconds. In this type of

behavior the marmot stands still while vocalizing, although it may

move its head around to scan the surrounding area. This means we

can consider this set of data points to indicate the distribution of

errors we see from our algorithms.

To perform the estimation, we follow similar a procedure as before.

We generate the pseudo-likelihood map for each chirp and use 0.1

sec duration in processing. Each estimated position is then collected

and plotted in a scatter plot as seen in Fig. 15. The plots are arranged

in time from dark to light as shown in the colorbar on the right hand

side. The precision of the map is 0.1 meter, hence anything that falls

within the 0.1 x 0.1 square is treated as the same location. Larger

dot size indicates multiple estimates at that location. The mean and

standard deviation is shown as the square and cross hairs, and the

median is shown as triangle. The plot axis are set relative to node

104 and the mean (µ) and standard deviation (σ) are (82.1, 11.1)
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Fig. 15. Scatterplot of location estimates from the wide deployment, relative
to the position of the node 104 using all six nodes. µ = (82.1, 11.1), and σ
= (2.9, 5.6) meters.

meters and (2.9, 5.6) meters respectively.

The scatter plot has a “banana” shape that suggests the presence

of correlated errors. Examining the results from nodes 108 and 106,

we observed that the bearing likelihoods reported by these nodes

have broad, mis-shapen lobes that introduced error into the position

estimate. Fig. 16 shows time domain plots of one particular chirp

recorded at nodes 108 and 110. From these plots it is clear that the

data recorded at 110 is quite clean, whereas at 108 there was a great

deal of reverberation and cancellation. We believe that this distortion

is mainly caused by reflections from trees. Generally, nodes that are

closer to trees would be more susceptible to this problem. In addition,

nodes close to the source can contribute more dispersion because their

side-lobes are more likely to intersect near the true source location.

In Fig. 17a, we show the results of our localization after removing

data from 108 and 106. This results in a much tighter distribution,

with mean (µ) (82.6, 14.2) meters and standard deviation (σ) (1.4,

2.8) meters. Clearly there is much benefit in detecting the reverberant

conditions that yield poor results; we intend in future work to inves-
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Fig. 16. A time domain segment containing a single marmot chirp from two
nodes at different locations from the wide deployment.

tigate methods for automatically selecting the nodes that minimize

dispersion.

Fig. 17b shows a zoomed-in version of Fig. 17a. Here we see

there are two cluster of dots, one on the upper left and another on

the bottom right. Confirmations from notes revealed that there are

truly two call locations of the same marmot observed in this test

(nicknamed “Smiley Face”).

V. CONCLUSION

The ability to deploy an automated system to detect, localize,

and record animal vocalizations in the field enables a host of new

observations and approaches to biological questions. The successful

deployment of the Acoustic ENSBox based system at the Rocky

Mountain Biological Laboratory to study marmot alarm calls provides

a powerful proof of concept. Our results indicate that it is tractable

to localize marmot alarm calls to within at least a few meters, despite

a noisy and geographically rough environment.

The self-localization feature of the Acoustic ENSBox nodes is a

necessity for practical field deployment. This capability provides a

robust and high-accuracy alternative to reliance on GPS and simple

distance measurements. When combined with GPS and distance

measurements, the different measurement modes provide invaluable

error and consistency checking, as well as providing calibration to

the speed of sound and registration of the node map with respect

to global coordinates. Given the unexpected vagaries encountered in

the field and the difficulty of always checking values in real time,

independent redundant measurements are extremely valuable.

The tests of the on-line marmot detector demonstrated that

a streaming detector could be developed relatively quickly and

deployed on the ENSBox nodes without excessive optimization.

Demonstrating in-network data reduction, we showed that this de-

tector could pre-filter the data to meet the requirements of on-line

localization algorithms which cannot run streaming in real time.

Our experience also motivated the need for interactive development

in the field. We anticipate that in future deployments: (1) initially,

samples of raw data will need to be collected and analyzed, and (2)

parameters—and in some cases, algorithms—will need to be tuned

in the field in response to the particular conditions observed in the

deployment. We are currently pursuing an interactive, query-oriented

approach to these needs in the context of the WaveScope project [17].

Our controlled experiments with AML based bearing estimation

showed that pre-recorded playback tests under actual field conditions

produces results consistent to within a few degrees out to 50 m,

even though the volume of playback is significantly lower than a live

marmot call. This result is especially encouraging since in the most

extreme case with the source speaker facing away from the sub-array

50 m away, the call itself is nearly inaudible over the background

noise to the human ear.



(a) Relative to node 104. (b) Zoomed in.

Fig. 17. Scatterplot of location estimates from wide deployment after removing node 108 and 106. µ = (82.6, 14.2), and σ = (1.4, 2.8) meters.

Finally, source localization experiments of actual marmots in their

natural environment proved quite successful. Combining AML based

DOA likelihoods from multiple nodes effectively overcomes the

problem of ambiguity produced from a relatively large sub-array size.

As demonstrated by the wide deployment experiment, redundancy

provided by multiple nodes can be used to identify and exclude sub-

arrays which have especially poor data due to reverberations, multi-

path, or other practically unavoidable problems.

Continued development of this system will further reduce its size

and weight, make it more weather resistant, and increase its sensitivity

and accuracy. Upcoming field applications include further work with

marmots at RMBL to test hypotheses regarding selfishness and trust

when making and responding to alarm calls, as well as studying

tropical birds in the rainforests of Chajul, Mexico.
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