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Abstract

This paper presents an empirical evaluation of the role of

context in a contemporary, challenging object detection task

– the PASCAL VOC 2008. Previous experiments with con-

text have mostly been done on home-grown datasets, often

with non-standard baselines, making it difficult to isolate

the contribution of contextual information. In this work,

we present our analysis on a standard dataset, using top-

performing local appearance detectors as baseline. We

evaluate several different sources of context and ways to

utilize it. While we employ many contextual cues that have

been used before, we also propose a few novel ones includ-

ing the use of geographic context and a new approach for

using object spatial support.

1. Introduction

There is a broad agreement in the community about the

valuable role that context plays in any image understand-

ing task. Numerous psychophysics studies (see [29] for an

overview) have shown the importance of context for hu-

man object recognition. Several recent computer vision

approaches have demonstrated that the use of context im-

proves recognition performance [4, 11, 14, 17, 24, 26, 32,

35, 39, 41]. Yet, in practice, when a high-performance

recognition system is required (e.g., for commercial deploy-

ment or to enter a recognition competition), people almost

always revert to the tried-and-true local sliding window ap-

proaches [5, 7].

Why such a disconnect? We believe there are two rea-

sons. First, in all the previous work on context, every

approach reported results only on its own, home-grown

dataset. Because of this lack of standardization, it becomes

very difficult to compare the different approaches to each

other, and to the standard non-contextual baseline meth-

ods. Second, there is very little agreement in the literature

about what constitutes “context”, with poor differentiation

between very simple types of context (e.g., using a slightly

larger local window) and ones that are much more involved.

As a result, it is unclear which, if any, of the contextual ap-

proaches might be worthwhile for any given task, and how

much of an increase in performance are they likely to pro-

Figure 1. On the challenging PASCAL VOC dataset, even the best local-

window detectors [7] often have problems with false positives, poor local-

ization, and missed detections (left). In this paper, we enhance these detec-

tors using contextual information (right). Only detections above 0.5 preci-

sion are shown. (Red Dotted: Detector, Green Solid: Detector+Context)

duce.

In this work, our goal is to bring context into the main-

stream of object detection research by providing an empir-

ical study of the different types of contextual information

on a standard, highly regarded test set. This provides us a

basis for assessing the inherent limitations of the existing

paradigms and also the specific problems that remain un-

solved. Our main contributions are as follows: 1) Objective

evaluation of context in a standardized setting. We have

chosen to participate in the PASCAL VOC Detection Chal-

lenge [6] – by far the most difficult, of all object detection

datasets. As our baseline local detector, we choose from

amongst the top-performing detectors in this challenge. Our

results demonstrate that carefully used contextual cues can

not only make a very good local detector perform even bet-

ter but also change the typical error patterns of the local

detector to more meaningful and reasonable errors. 2) Eval-

uation of different types of context. In this study, we look at

several sources of contextual information, as well as differ-

ent ways of using this information to improve detection per-

formance. 3) Novel algorithms. While we employ several

contextual cues that have been used before, we also propose

a few new approaches, including the use of geographic con-

text and a new approach for using object spatial support.

1.1. Sources of Context

While the term “context” is frequently used in com-

puter vision, it lacks a clear definition. It is vaguely un-

derstood as “any and all information that may influence the
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way a scene and the objects within it are perceived” [38].

Many different sources of context have been discussed in

the literature [2, 29, 38] and others are proposed here (see

Table 1 for summary). The most common is what we

broadly term local pixel context, which captures the basic

notion that image pixels/patches around the region of inter-

est carry useful information. The classic trick of increasing

the size of a scanning-window detector to include surround-

ing pixels [5, 41] is one simple application, as are more

involved MRF/CRF-based methods, such as [4, 20, 35].

Image segmentation, object boundary extraction, and var-

ious object shape/contour models are also examples of lo-

cal pixel context, as they use the object’s surroundings to

define its shape/boundary [31]. 2D scene gist uses global

statistics of an image to capture the “gist” of the visual ex-

perience [28, 32]. Geometric context aims to capture the

coarse 3D geometric structure of a scene, or the “surface

layout” [16], which can be used to reason about support-

ing surfaces [17], occlusions [15], contact points, etc. Se-

mantic context might indicate the kind of event, activity,

or other scene category being depicted [1, 22, 28]. It also

may indicate the presence and location (spatial context) of

other objects and materials [10, 11, 12, 37]. Photogrammet-

ric context describes various aspects of the image captur-

ing process, such as intrinsic camera parameters i.e., focal

length, lens distortion, radiometric response [24], as well

as extrinsic i.e., camera height and orientation [17]. Illu-

mination context captures various parameters of scene illu-

mination, such as sun direction [21], cloud cover, shadow

contrast, whereas weather context would describe meteoro-

logical conditions such as current/recent precipitation, wind

speed/direction, temperature, season as well as conditions

of fog and haze [27]. Geographic context might indicate

the actual location of the image (e.g. GPS), or a more

generic terrain type (e.g., tundra, dessert, ocean), land use

category (e.g. urban, agricultural), elevation, population

density, etc. [13]. Temporal context would contain tem-

porally proximal information, such as time of capture [9],

nearby frames of a video (optical flow), images captured

right before/after the given image, or video data from sim-

ilar scenes [23]. Finally, there is what we broadly term the

cultural context, a largely neglected aspect of context mod-

eling. Its role is to utilize the multitude of biases embedded

in how we take pictures (framing [36], focus, subject mat-

ter), how we select datasets [30], how we gravitate towards

visual clichés [34], and even how we name our children [8]!

1.2. Use of Context for Object Detection

While in the previous section we cataloged the many

possible sources of context that could be available to a vi-

sion system, what we are primarily interested in this paper

is how context can be used for the task of object detection.

Let us now consider the different aspects of an object detec-

tion architecture to see how contextual information could be

useful in each.

Local Pixel Context window surround, image neighbor-

hoods, object boundary/shape

2D Scene Gist Context global image statistics

3D Geometric Context 3D scene layout, support sur-

face, surface orientations, occlu-

sions, contact points, etc.

Semantic Context event/activity depicted, scene cate-

gory, objects present in the scene

and their spatial extents, keywords

Photogrammetric Context camera height, orientation, focal

length, lens distortion, radiometric

response function

Illumination Context sun direction, sky color, cloud cover,

shadow contrast, etc

Weather Context current/recent precipitation, wind

speed/direction, temperature, sea-

son, etc.

Geographic Context GPS location, terrain type, land use

category, elevation, population den-

sity, etc.

Temporal Context nearby frames (if video), temporally

proximal images, videos of similar

scenes, time of capture

Cultural Context photographer bias, dataset selection

bias, visual clichés, etc

Table 1. Taxonomy of sources of contextual information.

Object Presence. Many objects have typical environ-

ments, such as toasters in kitchens or moose in woodlands.

The appearance of the scene (gist context), its layout (ge-

ometric context), scene or event category/the presence of

other objects (semantic context), previous scenes (tempo-

ral context) can all help in predicting the presence of an

object. Moreover, some objects tend to appear in certain

parts of the world (geographic context), and some objects

are more likely to be photographed than others (cultural

context). Object presence is roughly equivalent to the prob-

ability constraint proposed by Biederman [2].

Object Appearance. The color, brightness, and shading

of an object will depend on scene illumination (illumination

context) and weather (weather context). Camera parameters

such as exposure and focal length (photogrammetric con-

text) can help explain intensity and perspective effects.

Object Location. 3D physical constraints, such as ob-

jects requiring a ground plane or some other support sur-

face, help to determine likely locations of objects in the

scene (geometric context). Moreover, some objects are

likely to appear near others, such as people near other peo-

ple, or in particular relations to objects or materials, such

as cars on the road, squirrels in trees, grass below sky,

etc (semantic context). Presence of an object at a partic-

ular location in nearby scenes can help predict its location

in a future scene (temporal context). Photographer biases

(cultural context) often provide useful information, such as

an object being centered in the image due to photographer

framing and its bottom position to be towards the bottom

of the image due to roughly level imaging. Object location

is roughly equivalent to Biederman’s support and location



constraints [2].

Object Size. Given object presence and location, its size

in the image can be estimated. This requires knowing either

camera orientation and height above the supporting surface

(photogrammetric context), or relative sizes of other known

objects in the scene (semantic context) and their geometric

relationships (geometric context). Object size is roughly

equivalent to Biederman’s size constraint [2].

Object Spatial Support. Given object presence, loca-

tion and size in the image, its spatial support can be esti-

mated in order to: 1) better localize a bounding box; 2) per-

form more accurate non-max suppression and multiple ob-

ject separation (by using segment overlap instead of bound-

ing box overlap); 3) estimate a more precise object shape

and appearance model. Estimating the spatial support of an

object can be assisted by a number of contextual cues. Lo-

cal image evidence, such as contours/edges, areas of similar

color or texture, etc (local pixel context), occlusion bound-

aries and surface orientation discontinuities (geometric con-

text), as well as class-specific shape prior (semantic con-

text) can all provide valuable information. This use of con-

text is roughly equivalent to Biederman’s interposition con-

straint [2].

2. Approach

In the previous section, we generated a full wish list of

contextual cues and their uses that can potentially benefit

object detection. In designing our approach, we picked the

context cues which could not only be reliably learned given

the available data, but also fit the “plug-and-play” philoso-

phy of taking an off-the-shelf local detector and adding con-

textual information to it. Therefore, in this work, we have

used local pixel context, 2D scene gist, 3D geometric, se-

mantic, geographic, photogrammetric and, to a limited ex-

tent cultural context cues, while finding that we did not have

good training data for the others. Based on these available

context sources, we have implemented object presence, lo-

cation, size, and spatial support uses of context.

2.1. Local Appearance Detectors

To fairly evaluate the role of context, we need to start

with a good local detector. Amongst the top-performing

PASCAL [6] detectors, we use the UoCTTI [7] detector

which was the only publicly available one. Qualitatively,

we have observed that the detector achieves substantially

better results than that suggested by the raw performance

numbers. This is because, although the detector does a fair

job in detecting the presence of an object correctly, it often

makes mistakes in localizing it, partially due to the fixed as-

pect ratio of the bounding box and multiple firings on the

same object. Thus, some false positives are due to mistakes

in the appearance model but others are due to poor localiza-

tion. We attempt to overcome these problems by augment-

ing the detector with contextual information.

Figure 2. Geographic and Semantic (keyword) context: Geographic prop-

erties and keywords associated with the scene can help predict object pres-

ence in an image. The base detector finds a dining table in this input image

(see figure 6), while the context indicates that a dining table is unlikely.

In this work, we use the detector trained on the VOC’07

trainval set, and use the VOC’08 trainval set for learning

the context classifiers (described below). This ensures that

the baseline detector and context are trained on different

datasets to avoid overfitting. To help ensure that few true

detections are missed by the detector, we reduce the thresh-

old for detection such that there are at least 1000 detections

per image per object .

2.2. Object Presence

To predict the likelihood of observing an object o given

the image I i.e., P (o|I), we use the 2D scene gist, 3D ge-

ometric, semantic and geographic contexts. The 2D scene

gist of an image is computed in the standard way as de-

scribed in [28]. The geometric context for an image is com-

puted as a set of seven geometric class (ground, left, right,

center, sky, solid, porous) confidence maps as described

in [16]. These confidence maps are re-sized to 12×12 grids

and vectorized to serve as a coarse “geometric gist” de-

scriptor. We use logistic regression [19] to train two sep-

arate object presence classifiers based on each descriptor.

The use of these descriptors for scene classification has be-

come fairly standard in literature and has shown good re-

sults. However, our use of geographic and semantic infor-

mation is a novel contribution.

For the geographic context, we follow the approach

of [13], estimating geographic properties for a novel image

by finding matching scenes within a database of approxi-

mately 6 million geotagged Flickr photographs (excluding

images that overlap with the VOC dataset and photogra-

phers). We compute 15 geographic properties such as land

cover probability (e.g., ‘forest’, ‘cropland’, ‘barren’, or ‘sa-

vanna’), vegetation density, light pollution, and elevation

gradient magnitude. We train a logistic regression classifier

based on these geographic properties. Object class occur-

rence is correlated with geography (e.g., ‘boat’ is frequently



Location Size

Figure 3. Object properties such as bottom-center position and height are

used for modeling object location (see section 2.3) and object size (see

section 2.4) respectively.

found in water scenes, ‘person’ is more likely in high popu-

lation density scenes) but the relationship is often weak. For

instance, the ten indoor object classes in the VOC dataset

cannot be well distinguished by geography.

For semantic context, we use the keywords associated

with matching scenes in the im2gps dataset [13] to predict

object occurrence. The 500 most popular words appearing

in Flickr tags and titles were manually divided into cate-

gories corresponding to the 20 VOC classes and 30 addi-

tional semantic categories. For instance, ‘bottle’, ‘beer’,

and ‘wine’ all fall into one category, while ‘church’, ‘cathe-

dral’, and ‘temple’ fall into another category. For a novel

image we build a histogram of the keyword categories that

appear among the 80 nearest neighbor scenes. We use lo-

gistic regression to predict object class based on this his-

togram. Keywords from Internet images are very noisy and

sparse (the im2gps database averages just one relevant key-

word per image), but they are quite discriminative when

they do occur. All the above classifiers are trained on the

VOC’08 trainset.

2.3. Object Location

The goal is to predict where the object(s) are likely to

appear in an image given that there is at least one object oc-

curring in the image i.e., P (x|o, I). To train this location

predictor, we divide the image into n×n grids (n = 5) and

train for each grid, two separate logistic regression classi-

fiers [19], one each for the whole image scene gist and the

whole image 3D geometric context descriptors as described

earlier. The classifiers are trained using the VOC’08 train-

set. A grid is labeled as a positive example if the bottom

mid-point (
xleft+xright

2 , ybottom) of a bounding box falls

within it (See figure 3). We then combine the predictions of

the above two classifiers using another logistic regression

classifier trained on the VOC’08 validation set. For some

classes, a few grid cells end up having no (or very few) pos-

itive examples (e.g., dining tables never occur in the (1,1)

grid). No classifiers were trained for such grid cells and the

confidence of finding an object in this location was set to a

minimum value while testing.

2.4. Object Size

The idea here is to predict the size (as log pixel height)

of an object, given its location in the image i.e., P (h|x, o, I)

as illustrated in figure 3. This is learned using three types

of contextual cues: 1) photogrammetric context modeled

in terms of viewpoint estimates [17] (relative y-value) and

the object depth [15] (value at the bottom mid-point of an

object bounding box); 2) 2D scene gist; and 3) 3D geo-

metric contexts (the latter two modeled as whole image de-

scriptors). We train a separate logistic regression classifier

on the VOC’08 trainset for each of the above feature de-

scriptors. This regression task is reformulated as a series of

classification tasks [26], where we first cluster object sizes

(using K-means) into five clusters s1, s2, s3, s4, s5 and then

train a separate classifier for each size (i.e., size < s2, size

< s3, size < s4, size < s5). The object sizes for training

classifiers are calculated using the ground-truth annotations

provided in the VOC’08 dataset. The predictions from in-

dividual classifiers are combined using another logistic re-

gression classifier trained on the VOC’08 validation set. At

testing, we calculate P (size = k) as P (size < k+1)∗(1−
P (size < k)), with

∑
k P (size = k) = 1 and compute the

expected object size as
∑

k P (size = k) ∗ center(k).

2.5. Combining Contexts

The task here is to combine the object detection results

with the various context uses, so as to rescore those de-

tection hypotheses that do not agree with the object pres-

ence, location and size context predictions to a lower value.

Detections that occur at unusual poses should have signifi-

cantly high score from the base detector for them to be se-

lected in this scheme [26]. First we retrieve the top 100

detections (after non-max suppression) per image for all the

training images. For each detection, we retrieve: 1) ob-

ject presence estimates in terms of the scene gist, geometric

context, geographic and semantic context classifier confi-

dences; 2) object location estimates in terms of the confi-

dence of the grid in which the bottom center of the bounding

box occurs and also the max confidence in its neighborhood;

3) object size estimates in terms of the predicted height and

the negative absolute difference between the bounding box

height and the predicted height. We train a logistic regres-

sion [19] classifier using the above features on the VOC’08

validation set. We consider a detection hypothesis to be pos-

itive if there is at least 50% overlap with a true detection. If

any of the above context features are assigned a negative

weight during the training process, we retrain the classifier

again after setting those features to zero. While testing, we

retrieve the top 500 detections for every image (obtained us-

ing [7]) and rescore these detections using the above classi-

fier. These rescored detections are used by the object spatial

support context described in Section 2.6.

In all cases, we evaluate different classifiers for modeling

the various contexts and also for combining them - kNN,

SVM (linear and RBF) [18], logistic regression (L1 and L2).

We found L1-regularized logistic regression to perform at

least as well as other.



Figure 4. Modeling Object Support (see section 2.6).

2.6. Object Spatial Support

The task here is to compute the object’s spatial support

given an (often poorly localized) candidate detection and

its confidence. This is a much easier problem than the gen-

eral segmentation problem because the type of object and

its rough location in the image is known. We implement a

simple segmentation approach based on graph cuts.

Unary Potential: Our unary features model the object

class appearance, a position/shape prior, and the object in-

stance appearance. For class appearance, we compute K-

means clustered L*a*b* color (K=128) and texton [40]

(K=256) histograms, geometric context confidences [16]

and the probability of background confidences (trained us-

ing [16] on LabelMe [33] examples), quantized to ten val-

ues. The features are the class-conditional log-likelihood

ratios i.e., P(feature | object)/P(feature | background) given

the quantized value, as estimated on the segmentation

ground-truth in the VOC’08 trainset. The position/shape

prior is computed as the log-likelihood ratio for each pixel

given its location with respect to the location and scale

of the bounding box. The object instance appearance is

modeled by taking the log ratio of the histograms com-

puted within and outside the bounding box. Altogether, this

gives us thirteen features (class appearance: color, texture,

seven geometric classes, probability of background; loca-

tion/shape prior; instance appearance: color, texture), plus

a prior.

Pairwise Potential: The pairwise potentials are mod-

eled using probability of boundary (Pb) [25] and probabil-

ity of occlusion [15] confidences. They are set to be the

negative log-likelihood of boundary, and separate weights

are learned for horizontal, vertical, and diagonal neighbors

(eight-connected neighborhood).

Learning: Unary and pairwise potentials are learned

together using pseudo-likelihood, maximizing the likeli-

hood of a pixel given the ground truth values of its im-

mediate neighbors. After learning the potentials, we make

small adjustments to them (specifically the unary prior and

shape/position) for each object to give good results on the

validation set (as the automatically learned prior weight

tends to lead to under-segmentation).

Inference: Each candidate detection is segmented using

graph cuts [3], after resizing the image so that the object

length is 100 pixels. (The resizing is important to achieve

good segmentations for objects of different sizes). For

computational reasons, only post-context detections that are

above a threshold (corresponding to 0.025 precision in val-

idation) are processed. See Figure 4 for an illustration.

After segmenting an object, we represent its appearance

with histograms of K-means quantized color, texture and

HOG features [5, 7] (K=128, 256, 1000 respectively), and

a measure of segmentation quality (defined as the differ-

ence between the energy of the graph cut solution and the

energy of all pixels labeled as background, normalized by

the number of object pixels). A classifier on these segment-

based features is trained using a linear SVM [18] for each

object class. When testing, we reclassify the object based

on the features computed within the segment and assign the

final detection score as a linear combination of the original

score and this segment-based score. This is similar to the

segmentation-based verification strategy of Ramanan [31],

who instead uses the pixels of the segmentation mask as

features.

Beyond rescoring, we also use the computed spatial sup-

port to improve non-maximum suppression and localiza-

tion. If two candidate detections yield segmentations with

pixel overlap (intersection over union) of at least 0.5, the

candidate with the lower score is removed. A new bounding

box is estimated by taking a weighted average of the origi-

nal bounding box and a tight fitting box around the segment.

The box is then adjusted by a fixed percentage of width or

height to account for bias (e.g., consistently undersegment-

ing the legs of chairs). Parameters are learned on the valida-

tion set. For few classes (sofa, bicycles), the spatial support

cannot be reliably estimated, resulting in a decrease in per-

formance. To avoid this, a per-class parameter is learned on

the validation set to decide if the rescoring/improved local-

ization step is applied during the testing phase.

3. Experimental Results and Analysis

The PASCAL 2008 dataset [6] consists of roughly

10,000 images (50% test, 25% train, 25% validation) con-

taining more than 20,000 annotated objects from 20 classes.

The images span the full range of consumer photographs,

including indoor and outdoor scenes, close-ups and land-

scapes, and strange viewpoints. The dataset is extremely

challenging due to the wide variety of object appearances

and poses and the high frequency of major occlusions.

Per-Class Detection Results. Table 2 displays the detec-

tion results obtained on the VOC’08 test set with and with-

out using context. The results are reported using the average

precision (A.P.) metric, which is the standard mode of eval-

uation in the PASCAL VOC challenge. Our experiments

show the importance of reasoning about an object within

the context of the scene, as we are able to boost the aver-

age precision of the original UoCTTI’07 detector from 18.2

to 22.0. The table includes a comparison with the recently

released UoCTTI’08 to demonstrate the generalizability of



Objects
UoCTTI +Context UoCTTI +Context

2007 +Scene
+Scene

+Support
2008 +Scene

+Scene

+Support
plane 18.8 21.3 34.5 28.7 26.8 32.7

bike 33.5 31.7 32.7 44.6 42.9 42.9

bird 9.3 9.9 12.3 0.5 5.0 5.0

boat 10.4 10.6 11.0 12.6 13.1 13.1

bottle 22.9 23.2 22.4 28.8 27.8 27.8

bus 19.2 17.7 18.5 22.7 23.9 23.9

car 25.1 26.0 27.8 31.9 31.6 31.6

cat 6.7 15.8 21.6 14.4 18.1 19.8

chair 13.3 14.1 8.8 15.9 17.4 17.4

cow 16.6 14.7 14.1 14.4 12.3 12.3

dtable 15.0 18.4 15.2 12.0 21.4 21.4

dog 6.3 7.9 17.8 11.4 7.7 9.4

horse 24.6 26.6 27.4 34.3 35.7 35.7

mbike 32.7 34.0 40.9 37.7 37.1 37.1

person 26.4 28.7 37.4 36.6 39.5 39.5

pplant 11.2 10.8 11.2 8.6 12.6 12.6

sheep 10.9 12.0 7.0 12.1 13.5 13.2

sofa 11.6 13.7 13.5 15.0 15.8 15.8

train 16.0 17.6 28.2 30.1 31.4 32.2

tv 32.9 33.3 38.5 34.7 35.2 35.2

Mean 18.2 19.4 22.0 22.4 23.4 23.9

Table 2. Detection Results on PASCAL VOC 2008 testset. The first col-

umn is the average precision (A.P.) obtained using the base detector. The

second and third column show the A.P. obtained upon the addition of the

scene context (object presence, location and size) and the spatial support

context. Context aids in improving the detection results for many object

classes.

our results. We also display the relative improvement ob-

tained by the scene context (presence, location and size),

and the spatial support context. We observe that both pieces

of information contribute towards the increase in perfor-

mance (however they cannot be compared on an absolute

scale as the output of one process is the input to the other).

Notice that for many classes there is a large improvement

(e.g., airplane, cat, person, and train), while for some (e.g.,

bicycles, cows) there is a small drop in performance indi-

cating that the benefit of context varies per class. It must be

noted that our numbers cannot be directly compared to the

official PASCAL VOC 2008 challenge rankings as our ap-

proach involves the usage of external datasets (VOC 2007

and Flickr images). Comparing the results obtained using

the two different detectors reveals similar performance by

our contextual information in either case. Therefore the rest

of our analysis is conducted using the UoCTTI’07 detector

on the VOC’08 validation set.

Change in Confusion matrices. Figure 5 displays the

change in the types of mistakes that are made after adding

contextual cues. The confusion matrix is computed as usual,

except that we include three new classes: 1) ‘extraDet’ ad-

dresses the scenario in which the overlap of a box is greater

than 0.5 on an already detected object (extra detection); 2)

‘poorLoc’ includes scenarios in which overlap is between

0.25 and 0.5 (poor localization); and 3) ‘Bgnd’ denotes the

case when the overlap is under 0.25 (fired on the back-

ground). Observe that there are much fewer extra detections

(better non-max suppression), fewer localization errors, and

Type
Mean A.P.

Most Improved Least Improved
w/o w/

Small 6.7 12.0 planes (5.4 to 24.8) pplant (10.3 to 5.9)

Large 9.3 9.7 dtable (4.5 to 9.3) sheep (5.4 to 0.7)

Occluded 4.8 7.5 cat (3.1 to 13.8) mbike (18.7 to 16.5)
Non-

Occluded 10.4 11.5 dog (2.5 to 7.4) chair (12.5 to 5.1)

Difficult 0.2 0.3 dtable (0.3 to 2.9) chair (2.2 to 0.1)

Table 3. Average Precision w.r.t. two object types, Size and Occlusion.

For each type, we display the mean A.P. across all object instances without

(‘w/o’) and with (‘w/’) context along with most/least improved classes.

Context particularly helps when objects have impoverished appearance.

fewer detections on background upon adding contextual in-

formation. Further the remaining mistakes that occur after

adding context are more reasonable where the confusions

are between similar classes such as bicycles getting con-

fused with motorbikes, buses with cars, cows with horses

and sheep etc.

Analysis of sources and uses of context. We measured

the influence of each of the individual sources of context

for the tasks of object presence, location and size estima-

tion. For object presence (“Does the object appear in the

image?”), the mean A.P. across 20 classes using individ-

ual cues was as follows: Semantic (25.6%), Gist (23.9%),

Geometric (21.5%) and Geographic (15.1%), while using

all the cues gave 31.2%. For object location (“In which

of the 25 grids is the bottom of the object located?”), the

mean A.P. across 20 classes was: Gist (3%), and Geo-

metric (2.5%), while using both cues gave 6.5%. Finally

for object size estimation, the average prediction error i.e.,
P

|log(trueHeight/predictedHeight)|
#instances across 20 classes was:

Photogrammetric (1.08), Gist (1.16) and Geometric (1.18)

while using all the cues gave an error of 1.086. The baseline

error of simply predicting the mean object height is 1.22.

To analyze the importance of the uses of context i.e., ob-

ject presence, location and size, we run our detection ex-

periments in a leave-one-out methodology. The mean A.P.

across 20 classes for each of the case is as follows: 1) ex-

cluding object presence - 19.8%; 2) excluding object loca-

tion - 20.2%, 3) excluding object size - 19.2%, 4) excluding

all the three (i.e., simply running the base detector) - 18.5%,

and 5) including all the three - 20.5%. Thus we observe that

the object size context is the strongest, while object location

is our weakest context use.

Change in Accuracies with respect to size and occlusion.

We also analyzed the change in accuracies as a function of

two different object characteristics/types, namely occlusion

and size (Table 3). The type ‘occluded’, ‘non-occluded’

and ‘difficult’ are as defined in the PASCAL annotations.

The type ‘small’/‘large’ refers to the object instances that

were lesser/greater than the median object area in the im-

age. Context is particularly helpful when the objects have

impoverished appearance i.e., when they are small and oc-

cluded in the image.

We also analyzed at the results by segregating objects

into man-made vs. natural object categories. In this case,



(a) (b) (c)

Figure 5. Confusion matrices (a) Without Context (b) With Context (c) Change in confusions i.e., (b-a) quantized into three values - white indicates positive

change, black indicates negative change, and gray indicates negligible change (within +/- 0.05) . Observe that many fewer extra detections, localization

errors, and background detections occur upon the addition of contextual information. Further, the remaining errors made are more reasonable – cows getting

confused with horses, cats confused with dogs etc.

Bird Car Chair TV
Figure 7. Images in which addition of context had the largest decrease in

the top detection confidence. (Red Dotted: Detector, Green Solid: Detec-

tor+Context.) Performance is hurt mostly in cases when the objects occur

outside their typical context.

we observed that for natural objects (i.e. bird, cat, cow, dog,

horse, person, sheep) the improvement in A.P. is 2.1 (from

14.4 to 16.5), while for man-made objects (i.e. aeroplane,

bicycle, boat, bottle, bus, car, chair, diningtable, motorbike,

pottedplant, sofa, train, tvmonitor), it is 0.8 (from 20.2 to

21.0).

Qualitative Analysis. Figure 6 displays some of the qual-

itative results showing the largest increases and decreases

in detection confidences after adding contextual informa-

tion. Although context almost always helps in improving

the detector performance, there are certain scenarios where

it hurts. Figure 7 displays some cases where the addition

of context leads to some of the original highly confident

detections being discarded. Finally in Figure 8, we dis-

play the mistakes/errors that still occur despite augment-

ing a top-performing detector with several contextual cues.

Most errors are amongst classes that share similar contexts,

e.g., cats confused with dogs, airplanes confused with birds

etc. Such confusions are subtle and present a challenge to

the existing detection algorithms. We believe a more object

specific appearance model would be required to avoid such

errors.

4. Discussion

In this paper, we have presented an empirical analy-

sis of the role of context for the task of object detection.

Airplane Bus Cat Bottle
Figure 8. Mistakes/Errors made despite augmenting a top-performing ob-

ject detector with several contextual cues. Such scenarios present a chal-

lenge to existing detection algorithms.

By achieving substantial gains on the challenging PASCAL

VOC dataset, we have reaffirmed that contextual reasoning

is a critical piece of the object recognition puzzle. Con-

text not only reduces the overall detection errors, but, more

importantly, the remaining errors made by the detector are

more reasonable. Many sources of context provide a large

benefit for recognizing a small subset of objects, yielding

a modest average improvement. This highlights the impor-

tance of evaluation on many object types as well as the need

to include many types of contexts if good performance is

desired for a wide range of objects.

Several issues remain to be explored for making con-

text an integral part of object detectors. In this work, we

have performed simple implementations of different context

sources and uses. Each of these could be improved with

further study. Further we have used a naive combination

scheme to combine the various contexts. A more sophisti-

cated scheme would offer better gains. Finally, an iterative

feedback-based framework connecting the detector and the

various contexts together is worth exploring.
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Largest increase in confidence Largest decrease in confidence

Figure 6. Images for the bike, diningtable, and train classes for which the best detections had the largest increase and decrease in confidence with the

addition of context. In these cases the local appearance and global context disagree most strongly. When the addition of context increases confidence (left)

it is because a detection is in a reasonable setting for the object class, even if the local appearance does not match well (motorbikes on top row share context

with bicycles). When the addition of context decreases confidence (right) it is typically pruning away spurious detections that had high confidence scores

from the local detector. (Red Dotted: Detector, Green Solid: Detector+context)
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