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Abstract 

This research aims at studying the performance of 

k-nearest neighbor classification when applying different 

distance measurements. In this work, we comparatively 

study 11 distance metrics including Euclidean, 

Standardized Euclidean, Mahalanobis, City block, 

Minkowski, Chebychev, Cosine, Correlation, Hamming, 

Jaccard, and Spearman. A series of experimentations has 

been performed on eight synthetic datasets with various 

kinds of distribution. The distance computations that 

provide highly accurate prediction consist of City block, 

Chebychev, Euclidean, Mahalanobis, Minkowski, and 

Standardize Euclidean techniques.  

Keywords: Data Classification, Synthetic Data, Distance 

Metrics, k-Nearest Neighbors. 

1. Introduction 

Data mining is the extraction of knowledge hidden in 

the data. Data mining is often done with the large datasets. 

The knowledge from data mining has been used in various 

fields, such as prediction over future situation, assisting in 

medical diagnosis, forecasting relation of chronology. 

Current data mining methodology has been classified 

into several tasks, such as classification, clustering, and 

association mining. Data mining each for task will have a 

different purpose. Classification task will be trying to 

classify data with high accuracy for classifying future 

example, such as trying to distinguish between patients with 

heart disease and those who are healthy. Clustering task 

will try to categorize groups of data such that data in the 

same group look similar, whereas they are dissimilar to 

others in different groups. Association mining task will try 

to find rules that represent relation between data with some 

support and confident values. 

Classification task of data mining can be done with 

many algorithms such as k-nearest neighbor. Beyer(1) 

explained the significance and origin of the nearest 

neighbor. Cover(2) used k-nearest neighbor to classify data. 

Dudani(3) did research about weighting of distance matrix 

values with k-nearest neighbor. Fukunaga(4) developed 

techniques for running k-nearest neighbor faster. Keller(5) 

developed new algorithm named “Fuzzy K-Nearest 

Neighbor” based on k-nearest neighbor with the purpose to 

use it with fuzzy task. Köhn(6) used city-block distance 

matric to increase performance of k-nearest neighbor 

algorithm. 

This research also studies classification technique with 

a specific interest in the k-nearest algorithm. We aim to 

analyze the performance of different distance metrics to 

finally choose a proper metric that makes a good 

classification performance. In this research use 8 synthetic 

datasets with different distribution, and a dataset for each 

distribution has 2 classes but has different amount of data in 

each class. This is to test the impact about amount in each 

class on the performance of classification.   

The rest of this research is organized as follows: 

Section 2 gives details of the k-Nearest Neighbor and the 

computation of each distance metric. Section 3 gives details 

of our proposed method. The experimental results and 

analysis will be presented in Section 4. Finally, the research 

is concluded in Section 5. 
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2. Background 

2.1 k-Nearest Neighbor 

The k-nearest neighbor is a semi-supervised learning 

algorithm such that it requires training data and a 

predefined k value to find the k nearest data based on 

distance computation. If k data have different classes, the 

algorithm predicts class of the unknown data to be the same 

as the majority class. For example, to find the appropriate 

class of new datum using the k-nearest neighbor algorithm 

with a Euclidean distance metric, the concept can be shown  

in Fig. 1. 

Fig. 1 shows the classification of iris data. The point to 

be classified is (5, 1.45), which is shown with “X”. When 

applying k-nearest neighbor algorithm with k = 8 using 

Euclidean distance computation, the result is shown with a 

radius of dot line. It has two possible classes: virginica class 

with two instances and versicolor class with six instances. 

This algorithm will classify mark “X” to the class of 

versicolor because versicolor class is the majority of data 

within the radius. 

2.2 Distance Metrics 

Distance metrics are a method to find distance between 

a new data point and existing training dataset. In this 

research, we experiment with 11 distance metrics, which 

can be explained as follows.  

 

Fig. 1. The k-nearest neighbor prediction with k = 8. 

 

Given an mx-by-n data matrix X, which is treated 

as mx (1-by-n) row vectors x1, x2, ..., xmx, and my-by-n data 

matrix Y, which is treated as my(1-by-n) row 

vectors y1, y2,...,ymy, the various distances between the 

vectors xs and yt are defined as follows: 

1. Euclidean Distance 

The Euclidean distance is a measure to find 

distance between two points, defined by Eq. (1) 

 

𝑑𝑠𝑡
2 = (𝑥𝑠 − 𝑦𝑡)(𝑥𝑠 − 𝑦𝑡)′ (1) 

 

The Euclidean distance is a special case of the 

Minkowski metric, where p = 2. 

 

2. Standardized Euclidean Distance 

The standardized Euclidean distance is used to 

optimize the problem of finding the distance, defined 

by Eq. (2) 

 

𝑑𝑠𝑡
2 = (𝑥𝑠 − 𝑦𝑡)𝑉

−1(𝑥𝑠 − 𝑦𝑡)′ (2) 

 

where V is the n-by-n diagonal matrix whose jth 

diagonal element is S(j)2, S is the vector containing the 

inverse weights. 

 

3. Mahalanobis Distance 

The Mahalanobis distance is a measure between a 

point and a distribution of data, defined by Eq. (3) 

 

𝑑𝑠𝑡
2 = (𝑥𝑠 − 𝑦𝑡)𝐶

−1(𝑥𝑠 − 𝑦𝑡)′ (3) 

 

where C is the covariance matrix. 

 

4. City Block Distance 

The city block distance between two points is the 

sum of the absolute difference of Cartesian coordinates, 

defined by Eq. (4) 

 

𝑑𝑠𝑡 =∑|𝑥𝑠𝑗 − 𝑦𝑡𝑗|

𝑛

𝑗=1

 (4) 

 

The city block distance is a special case of the 

Minkowski metric, where p = 1. 
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5. Minkowski Distance 

The Minkowski distance is a method to find 

distance based on Euclidean space, defined by Eq. (5) 

 

𝑑𝑠𝑡 = √∑|𝑥𝑠𝑗 − 𝑦𝑡𝑗|
𝑝

𝑛

𝑗=1

𝑝

 (5) 

 

For the special case of Minkowski distance 

p = 1, the Minkowski metric gives the city block 

distance,  

p = 2, the Minkowski metric gives the Euclidean 

distance, and  

p = ∞, the Minkowski metric gives the Chebychev 

distance. 

6. Chebychev Distance 

The Chebychev distance is a measure to find 

distance between two vectors or points with standard 

coordinates, defined by Eq. (6) 

 

𝑑𝑠𝑡 = 𝑚𝑎𝑥𝑗{|𝑥𝑠𝑗 − 𝑦𝑡𝑗|} (6) 

 

The Chebychev distance is a special case of the 

Minkowski metric, where p = ∞. 

 

7. Cosine Distance 

The Cosine distance is computed from one minus 

the cosine of the included angle between points, 

defined by Eq. (7) 

 

𝑑𝑠𝑡 =

(

 1 −
𝑥𝑠𝑦

′
𝑡

√(𝑥𝑠𝑥
′
𝑠)(𝑦𝑡𝑦

′
𝑡
)
)

  (7) 

 

8. Correlation Distance 

Distance based on correlation is a measure of 

statistical dependence between two vectors, defined by 

Eq. (8) 

 

𝑑𝑠𝑡 = (1 −
(𝑥𝑠−𝑥̅𝑠)(𝑦𝑡−𝑦̅𝑡)

′

√(𝑥𝑠−𝑥̅𝑠)(𝑥𝑠−𝑥̅𝑠)
′ √(𝑦𝑡−𝑦̅𝑡)(𝑦𝑡−𝑦̅𝑡)

′
) 

(8) 

where 

 𝑥̅𝑠 =
1

𝑛
∑ 𝑥𝑠𝑗𝑗  

  𝑦̅𝑡 =
1

𝑛
∑ 𝑦𝑡𝑗𝑗  

9. Hamming Distance 

Hamming distance, which is the percentage of 

coordinates that differ, can be defined by Eq. (9) 

 

𝑑𝑠𝑡 = (
#(𝑥𝑠𝑗 ≠ 𝑦𝑡𝑗)

𝑛
) 

(9) 

10. Jaccard Distance 

Jaccard distance is computed from one minus the 

Jaccard coefficient, which is the percentage of nonzero 

coordinates that differ, defined by Eq. (10) 

 

𝑑𝑠𝑡 = (
# [(𝑥𝑠𝑗 ≠ 𝑦𝑡𝑗) ∩ ((𝑥𝑠𝑗 ≠ 0) ∪ (𝑦𝑡𝑗 ≠ 0))]

#[(𝑥𝑠𝑗 ≠ 0) ∪ (𝑦𝑡𝑗 ≠ 0)]
) 

 

(10) 

 

11. Spearman Distance 

Spearman distance is computed from one minus the 

sample Spearman's ranked correlation between 

observations, defined by Eq. (11) 

 

𝑑𝑠𝑡 = 1 −
(𝑟𝑠 − 𝑟̅𝑠)(𝑟𝑡 − 𝑟̅𝑡)

′

√(𝑟𝑠 − 𝑟̅𝑠)(𝑟𝑠 − 𝑟̅𝑠)
′ √(𝑟𝑡 − 𝑟̅𝑡)(𝑟𝑡 − 𝑟̅𝑡)

′
 (11) 

 

Where 

rsj is the rank of xsj taken over x1j, x2j, ...xmx,j. 

rtj is the rank of ytj taken over y1j, y2j, ...ymy,j. 

rs and rt are the coordinate-wise rank vectors 

of xs and yt,  

i.e., rs = (rs1, rs2, ... rsn) and rt = (rt1, rt2, ... rtn). 

 𝑟̅𝑠 =
1

𝑛
∑ 𝑟𝑠𝑗𝑗 =

(𝑛+1)

2
 

 𝑟̅𝑡 =
1

𝑛
∑ 𝑟𝑡𝑗𝑗 =

(𝑛+1)

2
 

3. Empirical Study Methodology 

In this section, we present our study framework using 

k-nearest neighbor algorithm with various distance metrics. 

The framework is shown in Fig. 2. 
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Fig. 2. The framework of our empirical study. 

 

From Fig. 2 the detail of each step can be explained as 

follows: 

Step 1: Generate binary data set with different 

distribution and different amount of data in each class. Then 

split data around 70% for training set and 30% for test set, 

which will be used for testing the performance of 

classification. 

Step 2: Use data from step 1 for data classification by 

applying the k-nearest neighbor algorithm with various 

distance metrics to compute the k-nearest data points for 

making classification. 

Step 3: Analyze the results and conclude about the 

performance of classification using various distance 

metrics. 

4. Experimental Results 

4.1 Datasets 

For our experiment, the proposed framework has been 

applied for classifying binary synthetic datasets. We 

generate eight synthetic datasets, each dataset has four 

different distributions, and each distribution has two of data 

in which class the amount of data in each class is varied. 

Each dataset has in total 5000 instances, and three features. 

We use MATLAB program to generate synthetic datasets. 

Details of the synthetic datasets are given in Table 1. Fig. 3 

illustrates an overview of synthetic datasets. 

 

Table 1. Details of synthetic datasets. 

Dataset Mean SD Class 1 Class 2 Total 

1 [0 0 0; 

3 0 0] 

[1 0 0;  

0 1 0;  

0 0 1] 

0022 0022 0222 

0 [0 0 0; 

3 0 0] 

[1 0 0;  

0 1 0;  

0 0 1] 

0502 002 0222 

3 [0 0 0; 

0 0 3] 

[0.2 0 0;  

0 0.2 0;  

0 0 1] 

0022 0022 0222 

0 [0 0 0; 

0 0 3] 

[0.2 0 0; 

 0 0.2 0;  

0 0 1] 

0502 002 0222 

0 [0 0 0; 

3 0 0] 

[1 0 0;  

0 0.2 0;  

0 0 0.2] 

0022 0022 0222 

6 [0 0 0; 

3 0 0] 

[1 0 0;  

0 0.2 0;  

0 0 0.2] 

0502 002 0222 

5 [0 0 0; 

3 3 0] 

[1 0.9 0; 

 0.9 1 0;  

0 0 1] 

0022 0022 0222 

8 [0 0 0; 

3 3 0] 

[1 0.9 0;  

0.9 1 0;  

0 0 1] 

0502 002 0222 

 

 

Generated Data 

Evaluate Classification 

Performance 

k-Nearest Neighbor 

Training set (52%) Test set (32%) 

Distance metrics 

 Euclidean 

 Standardized 

Euclidean 

 Mahalanobis 

 City block 

 Minkowski 

 Chebychev 

 Cosine 

 Correlation 

 Hamming 

 Jaccard 

 Spearman 
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4 

  

(e) Dataset 5 (f) Dataset 6 (g) Dataset 7 (h) Dataset 8 

Fig. 3. Distribution of the eight synthetic datasets, each one has four kinds of distribution. 

 

4.2 Experimental Results 

The results from the proposed study framework for 

eight synthetic datasets have been shown in Figs. 4 and 5. 

The data classification has been performed with the same 

algorithm (that is, k-Nearest Neighbor) and the same 

parameter setting. The only varied factor is a distance 

measurement. It turns out that the Hamming and Jaccard 

distance metrics perform badly on 4 out of 8 datasets. 

 

 

Fig. 4. Accuracy of synthetic datasets from no. 1 to no. 4. 
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Fig. 5. Accuracy of synthetic datasets from no. 5 to no. 8. 

5. Conclusions 

The results of this research showed accuracy of 

k-nearest neighbor classification algorithm with different 

distance metrics. Experiments had been performed on eight 

synthetic datasets generated by MATLAB. The synthetic 

datasets have four distributions and have been split 70% to 

training set and 30% to test set. The results of classification 

over datasets in which amount of data in each class is equal 

showed that the Hamming and Jaccard techniques are low 

accuracy, while the other distance computation techniques 

have similar accuracy. The synthetic datasets in which 

amount of data in each class is different such as dataset 2, 4, 

6 and 8 showed that the Hamming and Jaccard techniques 

are increasing in their classification accuracy. We can 

conclude that Hamming and Jaccard techniques are affected 

by the ratio of members in each class, while the other 

techniques are not affected by such phenomenon. The 

highest accuracy on classify data with k-Nearest Neighbor 

is obtained from the six distance metrics, that are 

City-block, Chebychev, Euclidean, Mahalanobis, 

Minkowski, and Standardized Euclidean techniques. 
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