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According to the forecast of stock price trends, investors trade stocks. In recent years, many researchers focus on adopting machine
learning (ML) algorithms to predict stock price trends. However, their studies were carried out on small stock datasets with
limited features, short backtesting period, and no consideration of transaction cost. And their experimental results lack statistical
significance test. In this paper, on large-scale stock datasets, we synthetically evaluate various ML algorithms and observe the
daily trading performance of stocks under transaction cost and no transaction cost. Particularly, we use two large datasets of 424
S&P 500 index component stocks (SPICS) and 185 CSI 300 index component stocks (CSICS) from 2010 to 2017 and compare
six traditional ML algorithms and six advanced deep neural network (DNN) models on these two datasets, respectively. The
experimental results demonstrate that traditional ML algorithms have a better performance in most of the directional evaluation
indicators. Unexpectedly, the performance of some traditional ML algorithms is not much worse than that of the best DNN models
without considering the transaction cost. Moreover, the trading performance of all ML algorithms is sensitive to the changes of
transaction cost. Compared with the traditional ML algorithms, DNN models have better performance considering transaction
cost. Meanwhile, the impact of transparent transaction cost and implicit transaction cost on trading performance are different. Our

conclusions are significant to choose the best algorithm for stock trading in different markets.

1. Introduction

The stock market plays a very important role in modern
economic and social life. Investors want to maintain or
increase the value of their assets by investing in the stock
of the listed company with higher expected earnings. As a
listed company, issuing stocks is an important tool to raise
funds from the public and expand the scale of the industry.
In general, investors make stock investment decisions by
predicting the future direction of stocks’ ups and downs. In
modern financial market, successful investors are good at
making use of high-quality information to make investment
decisions, and, more importantly, they can make quick and
effective decisions based on the information they have already
had. Therefore, the field of stock investment attracts the
attention not only of financial practitioner and ordinary
investors but also of researchers in academic [1].

In the past many years, researchers mainly constructed
statistical models to describe the time series of stock price and
trading volume to forecast the trends of future stock returns
[2-4]. It is worth noting that the intelligent computing meth-
ods represented by ML algorithms also present a vigorous
development momentum in stock market prediction with
the development of artificial intelligence technology. The
main reasons are as follows. (1) Multisource heterogeneous
financial data are easy to obtain, including high-frequency
trading data, rich and diverse technical indicators data,
macroeconomic data, industry policy and regulation data,
market news, and even social network data. (2) The research
of intelligent algorithms has been deepened. From the early
linear model, support vector machine, and shallow neural
network to DNN models and reinforcement learning algo-
rithms, intelligent computing methods have made significant
improvement. They have been effectively applied to the fields
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of image recognition and text analysis. In some papers, the
authors think that these advanced algorithms can capture the
dynamic changes of the financial market, simulate the trading
process of stock, and make automatic investment decisions.
(3) The rapid development of high-performance computing
hardware, such as Graphics Processing Units (GPUs), large
servers, and other devices, can provide powerful storage
space and computing power for the use of financial big data.
High-performance computer equipment, accurate and fast
intelligent algorithms, and financial big data together can
provide decision-making support for programmed and auto-
mated trading of stocks, which has gradually been accepted
by industry practitioners. Therefore, the power of financial
technology is reshaping the financial market and changing
the format of finance.

Over the years, traditional ML methods have shown
strong ability in trend prediction of stock prices [2-16].
In recent years, artificial intelligence computing methods
represented by DNN have made a series of major break-
throughs in the fields of Natural Language Processing, image
classification, voice translation, and so on. It is noteworthy
that some DNN algorithms have been applied for time series
prediction and quantitative trading [17-34]. However, most
of the previous studies focused on the prediction of the
stock index of major economies in the world ([2, 8, 11, 13,
15-17, 22, 29, 30, 32], etc.) or selecting a few stocks with
limited features according to their own preferences ([8-11, 14,
17, 20, 22, 26, 31], etc.) or not considering transaction cost
([10, 14, 17, 23], etc.), or the period of backtesting is very
short ([2, 8, 9, 11, 17, 20, 22, 27], etc.). Meanwhile, there is
no statistical significance test between different algorithms
which were used in stock trading ([8-11, 32], etc.). That is, the
comparison and evaluation of the various trading algorithms
lack large-scale stocks datasets, considering transaction cost
and statistical significance test. Therefore, the performance of
backtesting may tend to be overly optimistic. In this regard,
we need to clarify two concerns based on a large-scale stock
dataset: (1) whether the trading strategies based on the DNN
models can achieve statistically significant results compared
with the traditional ML algorithms without transaction cost;
(2) how do transaction costs affect trading performance
of the ML algorithm? These problems constitute the main
motivation of this research and they are very important
for quantitative investment practitioners and portfolio man-
agers. These solutions of these problems are of great value for
practitioners to do stock trading.

In this paper, we select 424 SPICS and 185 CSICS from
2010 to 2017 as research objects. The SPICS and CSICS
represent the industry development of the world’s top two
economies and are attractive to investors around the world.
The stock symbols are shown in the “Data Availability”. For
each stock in SPICS and CSICS, we construct 44 technical
indicators as shown in the “Data Availability”. The label
on the T-th trading day is the symbol for the yield of
the T + 1-th trading day relative to the T-th trading day.
That is, if the yield is positive, the label value is set to 1,
otherwise 0. For each stock, we choose 44 technical indicators
of 2000 trading days before December 31, 2017, to build
a stock dataset. After the dataset of a stock is built, we
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choose the walk-forward analysis (WFA) method to train
the ML models step by step. In each step of training, we
use 6 traditional ML methods which are support vector
machine (SVM), random forest (RF), logistic regression (LR),
naive Bayes model (NB), classification and regression tree
(CART), and eXtreme Gradient Boosting algorithm (XGB)
and 6 DNN models which are widely in the field of text
analysis and voice translation such as Multilayer Perceptron
(MLP), Deep Belief Network (DBN), Stacked Autoencoders
(SAE), Recurrent Neural Network (RNN), Long Short-Term
Memory (LSTM), and Gated Recurrent Unit (GRU) to
train and forecast the trends of stock price based on the
technical indicators. Finally, we use the directional evaluation
indicators such as accuracy rate (AR), precision rate (PR),
recall rate (RR), F1-Score (F1), Area Under Curve (AUC), and
the performance evaluation indicators such as winning rate
(WR), annualized return rate (ARR), annualized Sharpe ratio
(ASR), and maximum drawdown (MDD)) to evaluate the
trading performance of these various algorithms or strategies.

From the experiments, we can find that the traditional ML
algorithms have a better performance than DNN algorithms
in all directional evaluation indicators except for PR in
SPICS; in CSICS, DNN algorithms have a better performance
in AR, PR, and Fl expert for RR and AUC. (1) Trading
performance without transaction cost is as follows: the WR
of traditional ML algorithms have a better performance than
those of DNN algorithms in both SPICS and CSICS. The
ARR and ASR of all ML algorithms are significantly greater
than those of the benchmark index (S&P 500 index and
CSI 300 index) and BAH strategy; the MDD of all ML
algorithms are significantly greater than that of BAH strategy
and are significantly less than that of the benchmark index.
In all ML algorithms, there are always some traditional ML
algorithms whose trading performance (ARR, ASR, MDD)
can be comparable to the best DNN algorithms. Therefore,
DNN algorithms are not always the best choice, and the
performance of some traditional ML algorithms has no
significant difference from that of DNN algorithms; even
those traditional ML algorithms can perform well in ARR
and ASR. (2) Trading performance with transaction cost
is as follows: the trading performance (WR, ARR, ASR,
and MDD) of all machine learning algorithms is decreasing
with the increase of transaction cost as in actual trading
situation. Under the same transaction cost structure, the
performance reductions of DNN algorithms, especially MLP,
DBN, and SAE, are smaller than those of traditional ML
algorithms, which shows that DNN algorithms have stronger
tolerance and risk control ability to the changes of transaction
cost. Moreover, the impact of transparent transaction cost
on SPICS is greater than slippage, while the opposite is
true on CSICS. Through multiple comparative analysis of
the different transaction cost structures, the performance of
trading algorithms is significantly smaller than that without
transaction cost, which shows that trading performance is
sensitive to transaction cost. The contribution of this paper
is that we use nonparametric statistical test methods to
compare differences in trading performance for different
ML algorithms in both cases of transaction cost and no
transaction cost. Therefore, it is helpful for us to select the
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FIGURE I: The framework for predicting stock price trends based on ML algorithms.

most suitable algorithm from these ML algorithms for stock
trading both in the US stock market and the Chinese A-share
market.

The remainder of this paper is organized as follows:
Section 2 describes the architecture of this work. Section 3
gives the parameter settings of these ML models and the
algorithm for generating trading signals based on the ML
models mentioned in this paper. Section 4 gives the direc-
tional evaluation indicators, performance evaluation indi-
cators, and backtesting algorithms. Section 5 uses nonpa-
rameter statistical test methods to analyze and evaluate the
performance of these different algorithms in the two markets.
Section 6 gives the analysis of impact of transaction cost
on performance of ML algorithms for trading. Section 7
gives some discussions of differences in trading performance
among different algorithms from the perspective of data,
algorithms, transaction cost, and suggestions for algorithmic
trading. Section 8 provides a comprehensive conclusion and
future research directions.

2. Architecture of the Work

The general framework of predicting the future price trends
of stocks, trading process, and backtesting based on ML
algorithms is shown in Figure 1. This article is organized
from data acquisition, data preparation, intelligent learning
algorithm, and trading performance evaluation. In this study,
data acquisition is the first step. Where should we get data
and what software should we use to get data quickly and
accurately are something that we need to consider. In this
paper, we use R language to do all computational procedures.
Meanwhile, we obtain SPICS and CSICS from Yahoo finance
and Netease Finance, respectively. Secondly, the task of
data preparation includes ex-dividend/rights for the acquired
data, generating a large number of well-recognized technical
indicators as features, and using max-min normalization to
deal with the features, so that the preprocessed data can
be used as the input of ML algorithms [34]. Thirdly, the
trading signals of stocks are generated by the ML algorithms.
In this part, we train the DNN models and the traditional

ML algorithms by a WFA method; then the trained ML
models will predict the direction of the stocks in a future
time which is considered as the trading signal. Fourthly, we
give some widely used directional evaluation indicators and
performance evaluation indicators and adopt a backtesting
algorithm for calculating the indicators. Finally, we use the
trading signal to implement the backtesting algorithm of
stock daily trading strategy and then apply statistical test
method to evaluate whether there are statistical significant
differences among the performance of these trading algo-
rithms in both cases of transaction cost and no transaction
cost.

3. ML Algorithms

3.1. ML Algorithms and Their Parameter Settings. Given a
training dataset D, the task of ML algorithm is to classify
class labels correctly. In this paper, we will use six traditional
ML models (LR, SVM, CART, RF BN, and XGB) and six
DNN models (MLP, DBN, SAE, RNN, LSTM, and GRU) as
classifiers to predict the ups and downs of the stock prices
[34]. The main model parameters and training parameters of
these ML learning algorithms are shown in Tables 1 and 2.

In Tables 1 and 2, features and class labels are set according
to the input format of various ML algorithms in R language.
Matrix (m, n) represents a matrix with m rows and # columns;
Array (p, m, n) represents a tensor and each layer of the
tensor is Matrix (m, n) and the height of the tensor is p. ¢
(h1, h2, h3, ...) represents a vector, where the length of the
vector is the number of hidden layers and the i-th element
of ¢ is the number of neurons of the i-th hidden layer. In
the experiment, m = 250 represents that we use the data of
the past 250 trading days as training samples in each round
of WFA; n = 44 represents that the data of each day has 44
features. In Table 2, the parameters of DNN models such as
activation function, learning rate, batch size, and epoch are
all default values in the algorithms of R programs.

3.2. WFA Method. WFA [35] is arolling training method. We
use the latest data instead of all past data to train the model
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TABLE 1: Main parameter settings of traditional ML algorithms.

Input Features Label Main parameters

LR Matrix(250,44) Matrix(250,1) A specification for the model link function is logit.

SVM Matrix(250,44) Matrix(250,1) The kernel function used is Radial Basis kernel; Cost of constraints violation is 1.

CART Matrix(250,44) Matrix(250,1) The maximum depth of any node of the final tree is 20; The splitting index can be Gini coefficient.
RF Matrix(250,44) Matrix(250,1) The Number of trees is 500; Number of variables randomly sampled as candidates at each split is 7.
BN  Matrix(250,44) Matrix(250,1) the prior probabilities of class membership is the class proportions for the training set.

XGB Matrix(250,44) Matrix(250,1) The maximum depth of a tree is 10; the max number of iterations is 15; the learning rate is 0.3.

TABLE 2: Main parameter settings of DNN algorithms.

Input Features Label Learning rate  Dimensions of hidden layers ~ Activation function = Batchsize  Epoch
MLP  Matrix(250,44)  Matrix(250,1) 0.8 (25,15,10,5) sigmoid 100 3
DBN  Matrix(250,44)  Matrix(250,1) 0.8 ¢(25,15,10,5) sigmoid 100 3
SAE  Matrix(250,44)  Matrix(250,1) 0.8 ¢(20,10,5) sigmoid 100 3
RNN  Array(1,250,44)  Array(1,250,1) 0.01 c(10,5) sigmoid 1 1
LSTM  Array(1,250,44)  Array(1,250,1) 0.01 c(10,5) sigmoid 1 1
GRU  Array(1,250,44)  Array(1,250,1) 0.01 ¢(10,5) sigmoid 1 1

and then apply the trained model to implement the prediction
for the out-of-sample data (testing dataset) of the future time
period. After that, a new training set, which is the previous
training set walk one step forward, is carried out the training
of the next round. WFA can improve the robustness and the
confidence of the trading strategy in real-time trading.

In this paper, we use ML algorithms and the WFA method
to do stock price trend predictions as trading signals. In each
step, we use the data from the past 250 days (one year) as the
training set and the data for the next 5 days (one week) as
the test set. Each stock contains data of 2,000 trading days,
so it takes (2000-250)/5 = 350 training sessions to produce a
total of 1,750 predictions which are the trading signals of daily
trading strategy. The WFA method is as shown in Figure 2.

3.3. The Algorithm Design of Trading Signal. In this part, we
use ML algorithms as classifiers to predict the ups and downs
of the stock in SPICS and CSICS and then use the prediction
results as trading signals of daily trading. We use the WFA
method to train each ML algorithm. We give the generating
algorithm of trading signals according to Figure 2, which is
shown in Algorithm 1.

4, Evaluation Indicators and
Backtesting Algorithm

4.1. Directional Evaluation Indicators. In this paper, we use
ML algorithms to predict the direction of stock price, so
the main task of the ML algorithms is to classify returns.
Therefore, it is necessary for us to use directional evaluation
indicators to evaluate the classification ability of these algo-
rithms.

The actual label values of the dataset are sequences of
sets {DOWN, UP}. Therefore, there are four categories of
predicted label values and actual label values, which are
expressed as TU, FU, FD, and TD. TU denotes the number of
UP that the actual label values are UP and the predicted label

TaBLE 3: Confusion matrix of two classification results of ML
algorithm.

Predicted label values

UP DOWN
Actual label values Up TU FD
DOWN FU ™D

values are also UP; FU denotes the number of UP that the
actual label values are DOWN but the predicted label values
are UP; TD denotes the number of DOWN that the actual
label values are DOWN and the predicted label values are
DOWN; FD denotes the number of DOWN that the actual
label values are UP but the predicted label values are DOWN,
as shown in Table 3. Table 3 is a two-dimensional table called
confusion matrix. It classifies predicted label values according
to whether predicted label values match real label values. The
first dimension of the table represents all possible predicted
label values and the second dimension represents all real label
values. When predicted label values equal real label values,
they are correct classifications. The correct prediction label
values lie on the diagonal line of the confusion matrix. In
this paper, what we are concerned about is that when the
direction of stock price is predicted to be UP tomorrow, we
buy the stock at today’s closing price and sell it at tomorrow’s
closing price; when we predict the direction of stock price to
be DOWN tomorrow, we do nothing. So UP is a “positive”
label of our concern.

In most of classification tasks, AR is generally used
to evaluate performance of classifiers. AR is the ratio of
the number of correct predictions to the total number of
predictions. That is as follows.

3 (TU + TD)
" (TU + FD + FU + TD)

)
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FIGURE 2: The schematic diagram of WFA (training and testing).

Input: Stock Symbols

Output: Trading Signals

(1) N=Length of Stock Symbols

(2) L=Length of Trading Days

(3) P=Length of Features

(4) k= Length of Training Dataset for WFA
(5) n= Length of Sliding Window for WFA
(6) for (iinl: N) {

(7) Stock=Stock Symbols[i]

(8) M=(L-k)/n

9) Trading Signal=NULL

(10) for (j in 1:M) {

11) Dataset= Stock[(k+n(j-1)):(k+n+nx(j-1)), L:(P+1)]
12) Train=Dataset[1:k,1:(1+P)]

(13) Test= Dataset[(k+1):(k+n),1:P]

(14) Model=ML Algorithm(Train)

(15) Probability=Model(Test)

(16) if (Probability>=0.5) {

17) Trading Signal0=1

(18) }else {

(19) Trading Signal0=0

(20) }

(21) 1

(22) Trading Signal=c (Trading Signal, Trading Signal0)
(23)

(24) return (Trading Signal)

ALGoRrITHM l: Generating trading signal in R language.

Concatenate

1750-dim



In this paper, “UP” is the profit source of our trading
strategies. The classification ability of ML algorithm is to eval-
uate whether the algorithms can recognize “UP”. Therefore,
it is necessary to use PR and RR to evaluate classification
results. These two evaluation indicators are initially applied
in the field of information retrieval to evaluate the relevance
of retrieval results.

PR is a ratio of the number of correctly predicted UP to
all predicted UP. That is as follows.

R TU
- (TU + FU)

High PR means that ML algorithms can focus on “UP”
rather than “DOWN?”.

RR is the ratio of the number of correctly predicted “UP”
to the number of actually labeled “UP”. That is as follows.

r-_ TU
"~ (TU + FD)

High RR can capture a large number of “UP” and be
effectively identified. In fact, it is very difficult to present an
algorithm with high PR and RR at the same time. Therefore,
it is necessary to measure the classification ability of the
ML algorithm by using some evaluation indicators which
combine PR with RR. Fl-Score is the harmonic average of
PR and AR. Fl is a more comprehensive evaluation indicator.
That is as follows.

()

©)

F, =2 PR« L (4)
(PR + AR)

Here, itis assumed that the weights of PR and RR are equal
when calculating F1, but this assumption is not always correct.
It is feasible to calculate F1 with different weights for PR and
RR, but determining weights is a very difficult challenge.

AUC is the area under ROC (Receiver Operating Charac-
teristic) curve. ROC curve is often used to check the tradeoff
between finding TU and avoiding FU. Its horizontal axis
is FU rate and its vertical axis is TU rate. Each point on
the curve represents the proportion of TU under different
FU thresholds [36]. AUC reflects the classification ability of
classifier. The larger the value, the better the classification
ability. It is worth noting that two different ROC curves may
lead to the same AUC value, so qualitative analysis should be
carried out in combination with the ROC curve when using
AUC value. In this paper, we use R language package “ROCR”
to calculate AUC.

4.2. Performance Evaluation Indicator. Performance evalua-
tion indicator is used for evaluating the profitability and risk
control ability of trading algorithms. In this paper, we use
trading signals generated by ML algorithms to conduct the
backtesting and apply the WR, ARR, ASR, and MDD to do
the trading performance evaluation [34]. WR is a measure
of the accuracy of trading signals; ARR is a theoretical rate
of return of a trading strategy; ASR is a risk-adjusted return
which represents return from taking a unit risk [37] and the
risk-free return or benchmark is set to 0 in this paper; MDD
is the largest decline in the price or value of the investment
period, which is an important risk assessment indicator.
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4.3. Backtesting Algorithm. Using historical data to imple-
ment trading strategy is called backtesting. In research and
the development phase of trading model, the researchers
usually use a new set of historical data to do backtesting. Fur-
thermore, the backtesting period should be long enough,
because a large number of historical data can ensure that the
trading model can minimize the sampling bias of data. We
can get statistical performance of trading models theoretically
by backtesting. In this paper, we get 1750 trading signals for
each stock. If tomorrow’s trading signal is 1, we will buy the
stock at today’s closing price and then sell it at tomorrow’s
closing price; otherwise, we will not do stock trading. Finally,
we get AR, PR, RR, F1, AUC, WR, ARR, ASR, and MDD by
implementing backtesting algorithm based on these trading
signals.

5. Comparative Analysis of
Different Trading Algorithms

5.1. Nonparametric Statistical Test Method. In this part, we
use the backtesting algorithm(Algorithm 2) to calculate the
evaluation indicators of different trading algorithms. In order
to test whether there are significant differences between
the evaluation indicators of different ML algorithms, the
benchmark indexes, and the BAH strategies, it is necessary
to use analysis of variance and multiple comparisons to give
the answers. Therefore, we propose the following nine basic
hypotheses for significance test in which Hja (j =1, 2, 3, 4,
5, 6, 7, 8, 9) are the null hypothesis, and the corresponding
alternative assumptions are Hjb (j=1,2,3,4,5,6,78,9). The
level of significance is 0.05.

For any evaluation indicator j € {AR, PR, RR, F1, AUC,
WR, ARR, ASR, MDD} and any trading strategy i € {MLP,
DBN,SAE,RNN,LSTM,GRU, LR, SVM, NB,CART, RF,
XGB, BAH, Benchmark index}, the null hypothesis a is Hja,
alternative hypotheses b is Hjb (j =1, 2, 3, 4,5, 6,7 8, 9
represent AR, PR, RR, F1, AUC, WR, ARR, ASR, MDD,
respectively.).

Hija: the evaluation indicator j of all strategies are the
same

Hijb: the evaluation indicator j of all strategies are not
the same

It is worth noting that any evaluation indicator of all
trading algorithm or strategy does not conform to the basic
hypothesis of variance analysis. That is, it violates the assump-
tion that the variances of any two groups of samples are the
same and each group of samples obeys normal distribution.
Therefore, it is not appropriate to use t-test in the analysis
of variance, and we should take the nonparametric statistical
test method instead. In this paper, we use the Kruskal-Wallis
rank sum test [38] to carry out the analysis of variance. If the
alternative hypothesis is established, we will need to further
apply the Nemenyi test [39] to do the multiple comparisons
between trading strategies.

5.2. Comparative Analysis of Performance of Different Trading
Strategies in SPICS. Table 4 shows the average value of
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Input: TS #T§ is trading signals of a stock.

Output: AR, PR, RR, F1, AUC, WR, ARR, ASR, MDD

(1) N=length of Stock Code List #424 SPICS, and 185 CSICS.

(2) B,=Benchmark Index [“Closing Price”] # B is the closing price of benchmark index.
(3) WR=NULL; ARR=NULL; ASR=NULL; MDD=NULL

(4) for (iin1:N) {

(5) Stock Data=Stock Code List[i]

(6) P,=Stock_Data [“Closing Price”]

(7) Label,= Stock_Data [“Label”]

(8) BDRR=(B,-B, )/ B, # BDRR is the daily return rate of benchmark index.
9) DRR,= (P,-P,,)/P,, #DRR is daily return rate. That is daily return rate of BAH strategy.
(10) TDRR,=lag (TS,)*DRR, #TDRR is the daily return through trading.

(11) Table=Confusion_Matrix(TS, Label)

(12) AR[i]=sum(adj(Table))/sum(Table)

(13) PR[i]=Table[2, 2]/sum(Table[, 2])

(14) RR[i]=Table[2, 2]/sum(Table[2, ])

(15)  F1=2%PR[i]*RR[i]/(PR[i]+RR[i])

(16) Pred=prediction (TS, Label)

17) AUC[i]=performance (Pred, measure="“auc”)@y.values[[1]]

(18) WR[i]=sum (TDRR>0)/sum(TDRR+0)

19) ARR{[i]=Return.annualized (TDRR)# TDRR, BDRR, or DRR can be used.
(20) ASR[i]=SharpeRatio.annualized (TDRR)# TDRR, BDRR, or DRR can be used.
(21) MDD[i]=maxDrawDown (TDRR)# TDRR, BDRR, or DRR can be used.
(22) AR=c (AR, AR[i])

(23)  PR=c (PR, PR[i])

(24) RR=c (RR, RR[i])

(25)  Fl=c (F1, F1[i])

(26) AUC=c (AUC, AUCIi])

(27)  WR=c (WR, WR][i])

(28) ARR=c (ARR, ARR][i])

(29)  ASR=c (ASR, ASR[i])

(30)  MDD=c (MDD, MDD[i])

(31) }

(32) Performance=cbind (AR, PR, RR, F1, AUC, WR, ARR, ASR, MDD)

(33) return (Performance)

ALGORITHM 2: Backtesting algorithm of daily trading strategy in R language.

TABLE 4: Trading performance of different trading strategies in the SPICS. Best performance of all trading strategies is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB
AR — — 0.5205 0.5189 0.5201 0.5025 0.5013 0.4986 0.6309 0.5476 0.6431 0.6491 0.6235 0.6600
PR — — 0.7861 0.7764 0.7781 0.5427 0.5121 0.4911 0.6514 0.5270 0.6595 0.6474 0.6733 0.6738
RR — — 0.5274 0.5263 0.5273 0.5245 0.5253 0.5239 0.6472 0.5762 0.6599 0.6722 0.6325 0.6767
F1 — — 0.6258 0.6217 0.6229 0.5332 0.5183 0.5065 0.6491 0.5480 0.6595 0.6591 0.6517 0.6751
AUC — — 0.5003 0.5001 0.5002 0.4997 0.5005 0.4992 0.6295 0.5489 0.6418 0.6491 0.6199 0.6590
WR  0.5450 0.5235 0.5676 0.5680 0.5683 0.5843 0.5825 0.5844 0.5266 0.5930 0.5912 0.5859 0.5831  0.5891
ARR 0.1227 01603 0.3333 0.3298 0.3327 0.2945 0.2921 0.2935 0.3319 0.2976 0.3134 0.2944 0.3068 0.3042
ASR 0.8375 0.6553 15472 15415 15506 15768 15575 1.5832 13931 16241 1.6768 15822 16022 16302
MDD 0.1939 0.4233 0.3584 0.3585 0.3547 0.3403 0.3489 0.3381 0.3413 0.3428 0.3284 0.3447 0.3429 0.3338

various trading algorithms in AR, PR, RR, F1, AUC, WR,
ARR, ASR, and MDD. We can see that the AR, RR, F1, and
AUC of XGB are the greatest in all trading algorithms. The
WR of NB is the greatest in all trading strategies. The ARR
of MLP is the greatest in all trading strategies including the
benchmark index (S&P 500 index) and BAH strategy. The
ASR of RF is the greatest in all trading strategies. The MDD of
the benchmark index is the smallest in all trading strategies.

It is worth noting that the ARR and ASR of all ML algorithms
are greater than those of BAH strategy and the benchmark
index.

(1) Through the hypothesis test analysis of Hla and HIb,
we can obtain p value<2.2e-16.

Therefore, there are statistically significant differences
between the AR of all trading algorithms. Therefore, we need
to make multiple comparative analysis further, as shown in
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TABLE 5: Multiple comparison analysis between the AR of any two trading algorithms. The p value of the two trading strategies with significant

difference is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
DBN 1.0000
SAE 1.0000 1.0000
RNN 0.0000 0.0000 0.0000
LSTM  0.0000 0.0000 0.0000 1.0000
GRU 0.0000 0.0000 0.0000 0.8273 0.9811
CART  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0232 0.0000
LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7649
SVM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6057 0.0000 0.0000 0.0000
XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.2010 0.0000

TABLE 6: Multiple comparison analysis between the PR of any two trading algorithms. The p value of the two trading strategies with significant

difference is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
DBN 0.9999
SAE 1.0000 1.0000
RNN 0.0000 0.0000 0.0000
LSTM  0.0000 0.0000 0.0000 0.0034
GRU 0.0000 0.0000 0.0000 0.0000 0.1472
CART  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NB 0.0000 0.0000 0.0000 0.7869 0.5786 0.0000 0.0000
RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8056 0.0000
LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9997 0.0000 0.2626
SVM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 0.3104 0.0000
XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0491 0.0000 0.9999

Table 5. The number in the table is a p value of any two algo-
rithms of Nemenyi test. When p value<0.05, we think that
the two trading algorithms have a significant difference,
otherwise we cannot deny the null assumption that the mean
values of AR of the two algorithms are equal. From Tables 5
and 4, we can see that the AR of all DNN models are signif-
icantly lower than those of all traditional ML models. The AR
of MLP, DBN, and SAE are significantly greater than those of
RNN, LSTM, and GRU. There are no significant differences
among the AR of MLP, DBN, and SAE. There are no sig-
nificant differences among the AR of RNN, LSTM, and GRU.

(2) Through the hypothesis test analysis of H2a and H2b,
we can obtain p value<2.2e-16. So, there are statistically sig-
nificant differences between the PR of all trading algorithms.
Therefore, we need to make multiple comparative analysis
further, as shown in Table 6. The number in the table is a p
value of any two algorithms of Nemenyi test. From Tables 6
and 4, we can see that the PR of MLP, DBN, and SAE are
significantly greater than that of other trading algorithms.
The PR of LSTM is not significantly different from that of
GRU and NB. The PR of GRU is significantly lower than that
of all traditional ML algorithms. The PR of NB is significantly
lower than that of other traditional ML algorithms.

(3) Through the hypothesis test analysis of H3a and H3b,
we can obtain p value<2.2e-16. So, there are statistically

significant differences between the RR of all trading algo-
rithms Therefore, we need to make multiple comparative
analysis further, as shown in Table 7. The number in the
table is a p value of any two algorithms of Nemenyi test.
From Tables 7 and 4, we can see that there is no significant
difference among the RR of all DNN models, but the RR
of any DNN model is significantly lower than that of all
traditional ML models. The RR of NB is significantly lower
than that of other traditional ML algorithms. The RR of
CART is significantly lower than that of other traditional ML
algorithms except for NB.

(4) Through the hypothesis test analysis of H4a and H4b,
we can obtain p value<2.2e-16. So, there are statistically sig-
nificant differences between the F1 of all trading algorithms.
Therefore, we need to make multiple comparative analysis
further, as shown in Table 8. The number in the table is a p
value of any two algorithms of Nemenyi test. From Tables
8 and 4, we can see that there is no significant difference
among the F1 of MLP, DBN, and SAE. The F1 of MLP, DBN,
and SAE are significantly greater than that of RNN, LSTM,
GRU, and NB, but are significantly smaller than that of RF, LR,
SVM, and XGB. The F1 of GRU and LSTM have no significant
difference, but they are significantly smaller than that of all
traditional ML algorithms. The F1 of XGB is significantly
greater than that of all other trading algorithms.
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TABLE 7: Multiple comparison analysis between the RR of any two trading algorithms. The p value of the two trading strategies with significant
difference is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
DBN 1.0000
SAE 1.0000 1.0000
RNN 1.0000 1.0000 1.0000
LSTM 1.0000 1.0000 1.0000 1.0000
GRU 0.9999 1.0000 0.9999 1.0000 1.0000
CART  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

NB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0485 0.0000
LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0555

SVM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0197 0.0000 0.0000 0.0000
XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.9958 0.0000

TABLE 8: Multiple comparison analysis between the FI of any two trading algorithms. The p value of the two trading strategies with significant
difference is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
DBN 0.9998
SAE 1.0000 1.0000
RNN 0.0000 0.0000 0.0000
LSTM  0.0000 0.0000 0.0000 0.0810
GRU 0.0000 0.0000 0.0000 0.0000 0.3489
CART  0.0861 0.0061 0.0117 0.0000 0.0000 0.0000

NB 0.0000 0.0000 0.0000 0.4635 0.0000 0.0000 0.0000
RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0078 0.0000
LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0173 0.0000 1.0000

SVM 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.9797 0.0000 0.3336 0.4825
XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TABLE 9: Multiple comparison analysis between the AUC of any two trading algorithms. The p value of the two trading strategies with
significant difference is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
DBN 1.0000
SAE 1.0000 1.0000
RNN 1.0000 1.0000 1.0000
LSTM 1.0000 1.0000 1.0000 0.9999
GRU 1.0000 1.0000 1.0000 1.0000 0.9975
CART  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

NB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0270 0.0000
LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5428

SVM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3125 0.0000 0.0000 0.0000
XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.3954 0.0000

(5) Through the hypothesis test analysis of H5a and H5b,  all DNN models are significantly smaller than that of any
we can obtain p value<2.2e-16. So, there are statistically traditional ML model.
significant differences between the AUC of all trading algo- (6) Through the hypothesis test analysis of H6a and Héb,
rithms. Therefore, we need to make multiple comparative ~ we can obtain p value<2.2e-16. So, there are statistically sig-
analysis further, as shown in Table 9. The number in the  nificant differences between the WR of all trading algorithms.
table is a p value of any two algorithms of Nemenyi test. ~ Therefore, we need to make multiple comparative analysis
From Tables 9 and 4, we can see that there is no significant further, as shown in Table 10. The number in the table is p
difference among the AUC of all DNN models. The AUC of  value of any two algorithms of Nemenyi test. From Tables 4
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TaBLE 11: Multiple comparison analysis between the ARR of any two trading strategies. The p value of the two trading strategies with significant
difference is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
BAH 0.0000
MLP  0.0000 0.0000
DBN  0.0000 0.0000 1.0000
SAE  0.0000 0.0000 1.0000 1.0000
RNN 0.0000 0.0000 0.0001 0.0006 0.0001
LSTM 0.0000 0.0000 0.0000 0.0002 0.0000 1.0000
GRU  0.0000 0.0000 0.0001 0.0008 0.0001 10000 1.0000
CART 0.0000 0.0000 10000 1.0000 1.0000 0.0001 0.0000 0.0001
NB 0.0000 0.0000 0.0021 0.0094 0.0022 1.0000 0.9998 1.0000  0.0018
RF 0.0000 0.0000 0.7978 0.9524  0.8036  0.1685  0.0874  0.1962  0.7745  0.5861
LR 0.0000 0.0000 0.0002 0.0012 0.0002 1.0000 1.0000 1.0000 0.0002 1.0000 0.2408
SVM  0.0000 0.0000 0.2375 0.4806  0.2427 0.7029  0.5214 0.7457 0.2178 0.9778 0.9999  0.8015
XGB  0.0000 0.0000 0.0674 01856  0.0694 09423 0.8466 0.9576 0.0600 0.9996 0.9905 0.9739 1.0000

TABLE 12: Multiple comparison analysis between the ASR of any two trading strategies. The p value of the two trading strategies with significant
difference is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
BAH 0.9667
MLP  0.0000 0.0000
DBN  0.0000 0.0000 1.0000
SAE  0.0000 0.0000 1.0000 1.0000
RNN 0.0000 0.0000 0.8763  0.7617  0.8998
LSTM 0.0000 0.0000 09922 09701 0.9949 1.0000
GRU  0.0000 0.0000 0.6124 0.4563  0.6537 10000  0.9996
CART 0.0000 0.0000 0.0002 0.0005 0.0002 0.0000 0.0000 0.0000
NB 0.0000 0.0000 0.0467 0.0233 0.0557 0.9529 0.7037  0.9971 0.0000
RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0291 0.0042 0.1062 0.0000 0.8010
LR 0.0000 0.0000 0.7506 0.6025 0.7859  1.0000  1.0000  1.0000  0.0000 0.9872 0.0602
SVM  0.0000 0.0000 01759  0.1020  0.2010  0.9982  0.9399  1.0000 0.0000 1.0000 0.4671 0.9998
XGB  0.0000 0.0000 0.0099 0.0044 0.0122 0.7548 0.3776  0.9470 0.0000 1.0000 0.9681 0.8791 0.9997

and 10, we can see that the WR of MLP, DBN, and SAE have
no significant difference, but they are significantly higher
than that of BAH and benchmark index, and significantly
lower than that of other trading algorithms. The WR of RNN,
LSTM, and GRU have no significant difference, but they are
significantly higher than that of CART and significantly lower
than that of NB and RF. The WR of LR is not significantly
different from that of RF, SVM, and XGB.

(7) Through the analysis of the hypothesis test of H7a
and H7b, we obtain p value<2.2e-16. Therefore, there are
significant differences between the ARR of all trading strate-
gies including the benchmark index and BAH. We need
to do further multiple comparative analysis, as shown in
Table 11. From Tables 4 and 11, we can see that the ARR of
the benchmark index and BAH are significantly lower than
that of all ML algorithms. The ARR of MLP, DBN, and SAE
are significantly greater than that of RNN, LSTM, GRU, NB,
and LR, but not significantly different from that of CART,
RE SVM, and XGB; there is no significant difference between
the ARR of MLP, DBN, and SAE. The ARR of RNN, LSTM,

and GRU are significantly less than that of CART, but they
are not significantly different from that of other traditional
ML algorithms. In all traditional ML algorithms, the ARR of
CART is significantly greater than that of NB and LR, but,
otherwise, there is no significant difference between ARR of
any other two algorithms.

(8) Through the hypothesis test analysis of H8a and H8b,
we obtain p value<2.2e-16. Therefore, there are significant
differences between ASR of all trading strategies including
the benchmark index and BAH. The results of our multiple
comparative analysis are shown in Table 12. From Tables 4
and 12, we can see that the ASR of the benchmark index and
BAH are significantly smaller than that of all ML algorithms.
The ASR of MLP and DBN are significantly greater than that
of CART and are significantly smaller than that of NB, RF,
and XGB, but there is no significant difference between MLP,
DBN, and other algorithms. The ASR of SAE is significantly
greater than that of CART and significantly less than that of
RF and XGB, but there is no significant difference between
SAE and other algorithms. The ASR of RNN and LSTM
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TABLE 13: Multiple comparison analysis between the MDD of any two trading strategies. The p value of the two trading strategies with

significant difference is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
BAH 0.0000
MLP  0.0000 0.0052
DBN  0.0000 0.0031 1.0000
SAE 0.0000 0.0012 1.0000  1.0000
RNN 0.0000 0.0000 0.1645 0.2243  0.3556
LSTM 0.0000 0.0000 0.6236  0.7173 0.8511  1.0000
GRU  0.0000 0.0000 0.0245 0.0381 0.0760 1.0000 0.9860
CART 0.0000 0.0000 0.1496  0.2057  0.3309 1.0000 1.0000 1.0000
NB 0.0000 0.0000 0.0786 0.1136 0.1999 10000 0.9994 1.0000 1.0000
RF 0.0000 0.0000 0.0002 0.0004 0.0012 0.8964 0.4248 0.9980 0.9109 0.9713
LR 0.0000 0.0000 0.5451 0.6428 0.7935 10000 10000 0.9933 1.0000 0.9998  0.5015
SVM  0.0000 0.0000 0.2433 0.3194  0.4734 10000 1.0000 0.9999 1.0000 1.0000  0.8155 1.0000
XGB  0.0000 0.0000 0.0103 0.0167 0.0360 0.9998 0.9462 10000 0.9999 1.0000 0.9998 0.9685 0.9989

TABLE 14: Trading performance of different trading strategies in CSICS. Best performance of all trading strategies is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB
AR — — 0.5175 0.5167 0.5163 0.5030 0.4993 0.4993 0.5052 0.5084 0.5090 0.5084 0.5112 0.5087
PR — — 0.7548 0.7436 0.7439 0.5414 0.4964 0.4956 0.5022 0.5109 0.5128 0.4967 0.5695 0.5026
RR — — 0.5252  0.5250 0.5248 0.5234 0.5224 0.5223 0.5279 0.5307 0.5311  0.5318 0.5295 0.5315
F1 — — 0.6150 0.6108 0.6108 0.5320 0.5086 0.5082 0.5143 0.5192 0.5214 0.5132 0.5483 0.5164
AUC — — 0.5027 0.5024 0.5020 0.5006 0.4995 0.4996 0.5049 0.5078 0.5082 0.5086 0.5074 0.5085
WR 05222 0.5090 0.5559 0.5565 0.5564 0.5681 0.5720 0.5717 0.5153 0.5317 0.5785 0.5809 0.5716 0.5803
ARR 0.0633 0.2224 05731 0.5704 0.5678 0.5248 0.5165 0.5113 0.5534 0.6125 0.4842 0.5095 0.5004 0.4938
ASR  0.2625 0.4612 14031 14006 13935 14880 1.5422 15505 1.2232 11122 14379 15582 14231 14698
MDD 0.4808 0.6697 0.6082 0.6086 0.6130 0.5648 0.5456 0.5429 0.5694 0.7469 0.5695 0.5410 0.5775 0.5632

are significantly greater than that of CART and significantly
less than that of RE but there is no significant difference
between RNN, LSTM, and other algorithms. The ASR of GRU
is significantly greater than that of CART, but there is no
significant difference between GRU and other traditional ML
algorithms. In all traditional ML algorithms, the ASR of all
algorithms are significantly greater than that of CART, but
otherwise, there is no significant difference between ASR of
any other two algorithms.

(9) Through the hypothesis test analysis of H9a and H9b,
we obtain p value<2.2e-16. Therefore, there are significant
differences between MDD of trading strategies including
the benchmark index and the BAH. The results of multiple
comparative analysis are shown in Table 13. From Tables
4 and 13, we can see that MDD of any ML algorithm is
significantly greater than that of the benchmark index but
significantly smaller than that of BAH strategy. The MDD
of MLP and DBN are significantly smaller than those of
GRU, RE and XGB, but there is no significant difference
between MLP, DBN, and other algorithms. The MDD of
SAE is significantly smaller than that of XGB, but there is
no significant difference between SAE and other algorithms.
Otherwise, there is no significant difference between MDD of
any other two algorithms.

In a word, the traditional ML algorithms such as NB,
RE and XGB have good performance in most directional

evaluation indicators such as AR, PR, and Fl1. The DNN
algorithms such as MLP have good performance in PR and
ARR. In traditional ML algorithms, the ARR of CART, RE,
SVM, and XGB are not significantly different from that of
MLP, DBN, and SAE; the ARR of CART is significantly
greater than that of LSTM, GRU, and RNN, but otherwise
the ARR of all traditional ML algorithms are not significantly
worse than that of LSTM, GRU, and RNN. The ASR of all
traditional ML algorithms except CART are not significantly
worse than that of the six DNN models; even the ASR of NB,
RE and XGB are significantly greater than that of some DNN
algorithms. The MDD of RF and XGB are significantly less
that of MLP, DBN, and SAE; the MDD of all traditional ML
algorithms are not significantly different from that of LSTM,
GRU, and RNN. The ARR and ASR of all ML algorithms are
significantly greater than that of BAH and the benchmark
index; the MDD of any ML algorithm is significantly greater
than that of the benchmark index, but significantly less than
that of BAH strategy.

5.3. Comparative Analysis of Performance of Different Trading
Strategies in CSICS. The analysis methods of this part are
similar to Section 5.2. From Table 14, we can see that the AR,
PR, and FI of MLP are the greatest in all trading algorithms.
The RR, AUC, WR, and ASR of LR are the greatest in
all trading algorithms, respectively. The ARR of NB is the
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TaBLE 15: Multiple comparison analysis between the AR of any two trading algorithms. The p value of the two trading strategies with significant

difference is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
DBN 1.0000
SAE 1.0000 1.0000
RNN 0.0000 0.0000 0.0000
LSTM 0.0000 0.0000 0.0000 0.1857
GRU 0.0000 0.0000 0.0000 0.4439 1.0000
CART  0.0000 0.0000 0.0000 0.9765 0.0024 0.0131
NB 0.0000 0.0001 0.0002 0.0022 0.0000 0.0000 0.1810
RF 0.0000 0.0002 0.0005 0.0007 0.0000 0.0000 0.0941 1.0000
LR 0.0000 0.0000 0.0000 0.0076 0.0000 0.0000 0.3454 1.0000 1.0000
SVM 0.0217 0.0766 0.1309 0.0000 0.0000 0.0000 0.0003 0.8314 0.9352 0.6360
XGB 0.0000 0.0001 0.0001 0.0025 0.0000 0.0000 0.1930 1.0000 1.0000 1.0000 0.8168

TABLE 16: Multiple comparison analysis between the PR of any two trading algorithms. The p value of the two trading strategies with significant

difference is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
DBN 1.0000
SAE 1.0000 1.0000
RNN 0.0000 0.0000 0.0000
LSTM  0.0000 0.0000 0.0000 0.0000
GRU 0.0000 0.0000 0.0000 0.0000 1.0000
CART  0.0000 0.0000 0.0000 0.0000 0.9906 0.9781
NB 0.0000 0.0000 0.0000 0.0000 0.1716 0.1234 0.8940
RF 0.0000 0.0000 0.0000 0.0000 0.0319 0.0205 0.5271 1.0000
LR 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.9951 0.2099 0.0422
SVM 0.0000 0.0000 0.0000 0.1157 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
XGB 0.0000 0.0000 0.0000 0.0000 0.9922 0.9811 1.0000 0.8836 0.5086 0.9960 0.0000

highest in all trading strategies. The MDD of CSI 300 index
(benchmark index) is the smallest in all trading strategies.
The WR, ARR, and ASR of all ML algorithms are greater than
those of the benchmark index and BAH strategy.

(1) Through the hypothesis test analysis of Hla and HIb,
we can obtain p value<2.2e-16. Therefore, there are significant
differences between the AR of all trading algorithms. There-
fore, we need to do further multiple comparative analysis and
the results are shown in Table 15. The number in the table is a
p value of any two algorithms of Nemenyi test. From Tables 14
and 15, we can see that the AR of MLP, DBN, and SAE have no
significant difference, but they are significantly greater than
that of all other trading algorithms except for SVM. The AR
of GRU is significantly smaller than that of all traditional ML
algorithms. There is no significant difference between the AR
of any two traditional ML algorithms except for CART and
SVM.

(2) Through the hypothesis test analysis of H2a and H2b,
we can obtain p value<2.2e-16. Therefore, there are significant
differences between the PR of all trading algorithms. There-
fore, we need to do further multiple comparative analysis and
the results are shown in Table 16. The number in the table
is a p value of any two algorithms of Nemenyi test. From
Tables 14 and 16, we can see that the PR of MLP, DBN, and

SAE are significantly greater than that of all other trading
algorithms, and the PR of MLP, DBN, and SAE have no
significant difference. The PR of SVM is significantly greater
than that of all other traditional ML algorithms which have
no significant difference between any two algorithms except
for SVM. The PR of RNN is significantly greater than that
of all traditional ML algorithms except for SVM. The PR of
GRU and LSTM are not significantly different from that of all
traditional ML algorithms except for SVM and LR.

(3) Through the hypothesis test analysis of H3a and H3b,
we can obtain p value<2.2e-16. Therefore, there are significant
differences between the RR of all trading algorithms. There-
fore, we need to do further multiple comparative analysis and
the results are shown in Table 17. The number in the table is
a p value of any two algorithms of Nemenyi test. From Tables
14 and 17, we can see that the RR of all DNN models are
not significantly different. There is no significant difference
among the RR of all traditional ML algorithms. The RR of
RNN, GRU, and LSTM are significantly smaller than that of
any traditional ML algorithm except for CART.

(4) Through the hypothesis test analysis of H4a and H4b,
we can obtain p value<2.2e-16. Therefore, there are significant
differences between the F1 of all trading algorithms. There-
fore, we need to do further multiple comparative analysis and
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TABLE 17: Multiple comparison analysis between the RR of any two trading algorithms. The p value of the two trading strategies with significant
difference is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
DBN 1.0000
SAE 1.0000 1.0000
RNN 0.9996 0.9996 1.0000
LSTM 0.9309 0.9314 0.9781 0.9999
GRU 0.9660 0.9663 0.9916 1.0000 1.0000
CART 09744 0.9742 0.9225 0.5809 0.1509 0.2138
NB 0.1093 0.1088 0.0574 0.0075 0.0004 0.0007 0.8861
RF 0.0537 0.0534 0.0260 0.0028 0.0001 0.0002 0.7544 1.0000
LR 0.0330 0.0328 0.0152 0.0015 0.0001 0.0001 0.6498 1.0000 1.0000
SVM 0.3444 0.3434 0.2170 0.0434 0.0033 0.0059 0.9920 1.0000 0.9998 0.9991
XGB 0.0193 0.0192 0.0085 0.0007 0.0000 0.0000 0.5344 1.0000 1.0000 1.0000 0.9960

TaBLE 18: Multiple comparison analysis between the F1 of any two trading algorithms. The p value of the two trading strategies with significant
difference is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
DBN 1.0000
SAE 1.0000 1.0000
RNN 0.0000 0.0000 0.0000
LSTM  0.0000 0.0000 0.0000 0.0000
GRU 0.0000 0.0000 0.0000 0.0000 1.0000
CART  0.0000 0.0000 0.0000 0.0000 0.7211 0.6670
NB 0.0000 0.0000 0.0000 0.0136 0.0132 0.0099 0.8664
RF 0.0000 0.0000 0.0000 0.0786 0.0016 0.0011 0.5162 1.0000
LR 0.0000 0.0000 0.0000 0.0000 0.9440 0.9208 1.0000 0.5675 0.2181
SVM 0.0000 0.0000 0.0000 0.0178 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
XGB 0.0000 0.0000 0.0000 0.0001 0.3138 0.2679 1.0000 0.9937 0.8849 0.9964 0.0000

TABLE 19: Multiple comparison analysis between the AUC of any two trading algorithms. The p value of the two trading strategies with
significant difference is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
DBN 1.0000
SAE 0.9999 1.0000
RNN 0.9945 0.9985 1.0000
LSTM 0.5273 0.6382 0.9259 0.9937
GRU 0.8448 0.9102 0.9958 1.0000 1.0000
CART 0.6921 0.5835 0.2356 0.0801 0.0014 0.0096
NB 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.2616
RF 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.2002 1.0000
LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0930 1.0000 1.0000
SVM 0.0027 0.0014 0.0001 0.0000 0.0000 0.0000 0.6454 1.0000 0.9999 0.9980
XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1257 1.0000 1.0000 1.0000 0.9993

the results are shown in Table 18. The number in the table is a
p value of any two algorithms of Nemenyi test. From Tables 14
and 18, we can see that the F1 of MLP, DBN, and SAE have no
significant difference, but they are significantly greater than
that of all other trading algorithms. There is no significant
difference among traditional ML algorithms except SVM, and
the F1 of SVM is significantly greater than that of all other
traditional ML algorithms.

(5) Through the hypothesis test analysis of H5a and H5b,
we can obtain p value<2.2e-16. Therefore, there are significant
differences between the AUC of all trading algorithms. There-
fore, we need to do further multiple comparative analysis and
the results are shown in Table 19. The number in the table is
a p value of any two algorithms of Nemenyi test. From Tables
14 and 19, we can see that the AUC of all DNN models have
no significant difference. There is no significant difference
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TABLE 20: Multiple comparison analysis between the WR of any two trading algorithms. The p value of the two trading strategies with
significant difference is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
BAH  0.4117
MLP  0.0000 0.0000
DBN 0.0000 0.0000 1.0000
SAE  0.0000 0.0000 1.0000 1.0000
RNN 0.0000 0.0000 0.0002 0.0006 0.0000
LSTM 0.0000 0.0000 0.0000 0.0000 0.0000 0.9772
GRU  0.0000 0.0000 0.0000 0.0000 0.0000 0.9911 1.0000
CART 0.9931 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NB 0.0031 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0205 0.6437 0.5358 0.0000 0.0000
LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.1611 0.1105  0.0000 0.0000 1.0000
SVM  0.0000 0.0000 0.0000 0.0000 0.0000 0.9914 10000 10000 0.0000 0.0000 0.5322 0.1090
XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TABLE 21: Multiple comparison analysis between the ARR of any two trading strategies. The p value of the two trading strategies with significant
difference is in boldface.

Index BAH MLP DBN SAE RNN  LSTM GRU  CART NB RF LR SVM
BAH 0.0007
MLP  0.0000 0.0000
DBN  0.0000 0.0000 1.0000
SAE  0.0000 0.0000 10000 1.0000
RNN  0.0000 0.0000 0.4790  0.6355 0.7182
LSTM 0.0000 0.0000 0.2512 0.3806  0.4630 1.0000
GRU  0.0000 0.0000 0.2235 0.3454 0.4249 1.0000 1.0000
CART 0.0000 0.0000 0.8301 0.9217  0.9542 1.0000 0.9999 0.9998
NB 0.0000 0.0000 1.0000 10000 10000  0.2920 0.1295 0.1125  0.6517
RF 0.0000 0.0000 0.0020 0.0048 0.0076 0.8705 0.9735 0.9806 0.5393 0.0006
LR 0.0000 0.0000 0.2058  0.3222  0.3995 1.0000 10000 1.0000 0.9996  0.1019  0.9845
SVM  0.0000 0.0000 10000 0.0803 0.1114  0.9993 1.0000 10000 0.9659  0.0165 0.9999 1.0000
XGB  0.0000 0.0000 1.0000 0.0333 0.0484 0.9916 0.9997 0.9998 0.8789  0.0057 10000 0.9999 10000

between the AUC of all traditional ML algorithms. The
AUC of all traditional ML algorithms except for CART are
significantly greater than that of any DNN model. There is
no significant difference among the AUC of MLP, SAE, DBN,
RNN, and CART.

(6) Through the hypothesis test analysis of H6a and Héb,
we can obtain p value<2.2e-16. Therefore, there are significant
differences between the WR of all trading algorithms. There-
fore, we need to do further multiple comparative analysis and
the results are shown in Table 20. The number in the table is
a p value of any two algorithms of Nemenyi test. From Tables
14 and 20, we can see that the WR of BAH and benchmark
index have no significant difference, but they are significantly
smaller than that of any ML algorithm. The WR of MLP, DBN,
and SAE are significantly smaller than that of the other trad-
ing algorithms, but there is no significant difference between
the WR of MLP, DBN, and SAE. The WR of LSTM and
GRU have no significant difference, but they are significantly
smaller than that of XGB and significantly greater than that of

CART and NB. In traditional ML models, the WR of NB and
CART are significantly smaller than that of other algorithms.
The WR of XGB is significantly greater than that of all other
ML algorithms.

(7) Through the analysis of the hypothesis test of H7a and
H7b, we obtain p value<2.2e-16.

Therefore, there are significant differences between the
ARR of all trading strategies including the benchmark index
and BAH strategy. Therefore, we need to do further multiple
comparative analysis and the results are shown in Table 21.
From Tables 14 and 21, we can see that ARR of the benchmark
index and BAH are significantly smaller than that of all
trading algorithms. The ARR of MLP is significantly higher
than that of RE, but there is no significant difference between
MLP and other algorithms. The ARR of SAE and DBN are
significantly higher than that of RF and XGB, but they are
not significantly different from ARR of other algorithms. The
ARR of NB is significantly higher than that of RE SVM,
and XGB. But, otherwise, there is no significant difference
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TABLE 22: Multiple comparison analysis between the ASR of any two trading strategies. The p value of the two trading strategies with significant

difference is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
BAH 0.8877
MLP  0.0000 0.0000
DBN  0.0000 0.0000 1.0000
SAE  0.0000 0.0000 1.0000 1.0000
RNN 0.0000 0.0000 0.9099 0.8862  0.8114
LSTM 0.0000 0.0000 0.3460 0.3080 0.2239  0.9999
GRU  0.0000 0.0000 0.2132 0.1853 0.1270  0.9981  1.0000
CART 0.0000 0.0000 0.0158 0.0195 0.0327 0.0000 0.0000 0.0000
NB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7298
RF 0.0000 0.0000 1.0000 1.0000 1.0000 0.9968 0.7444 0.5789  0.0018 0.0000
LR 0.0000 0.0000 0.1181 0.1003  0.0650  0.9879  1.0000  1.0000  0.0000 0.0000 0.4044
SVM  0.0000 0.0000 1.0000 10000 10000 0.9849  0.5952  0.4238 0.0042 0.0000 1.0000 0.2704
XGB 0.0000 0.0000 0.9937 0.9902 0.9746 1.0000 0.9878  0.9532 0.0001 0.0000 1.0000 0.8723 0.9998

TABLE 23: Multiple comparison analysis between the MDD of any
significant difference is in boldface.

two trading strategies. The p value of the two trading strategies with

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM
BAH 0.0000
MLP  0.0000 0.0006
DBN  0.0000 0.0004 1.0000
SAE  0.0000 0.0023 1.0000 1.0000
RNN  0.0000 0.0000 0.0320 0.0421 0.0111
LSTM 0.0000 0.0000 0.0002 0.0003 0.0000 0.9947
GRU  0.0000 0.0000 0.0001 0.0001 0.0000 0.9767 1.0000
CART 0.0000 0.0000 0.1238  0.1538 0.0521 10000  0.9241  0.8305
NB 0.0000 0.1875  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RF 0.0000 0.0000 0.1180 0.1469  0.0493  1.0000 09298  0.8401 1.0000 0.0000
LR 0.0000 0.0000 0.0001 0.0002 0.0000 0.9881 1.0000 1.0000  0.8821 0.0000 0.8898
SVM  0.0000 0.0000 0.3285  0.3839 0.1701  0.9999 0.7011  0.5424 1.0000 0.0000 1.0000 0.6216
XGB 0.0000 0.0000 0.0308 0.0405 0.0106 1.0000 0.9951 0.9783  1.0000 0.0000 1.0000 0.9890 0.9998

between any other two algorithms. Therefore, the ARR of
most traditional ML models are not significantly worse than
that of the best DNN model.

(8) Through the hypothesis test analysis of H8a and H8b,
we obtain p value<2.2e-16. Therefore, There are significant
differences between ASR of all trading strategies including the
benchmark index and BAH strategy. The results of multiple
comparative analysis are shown in Table 22. From Tables 14
and 22, we can see that the ASR of the benchmark index
and BAH are significantly smaller than that of all trading
algorithms. The ASR of all ML algorithms are significantly
higher than that of CART and NB, but there is no significant
difference between the ASR of CART and NB. Beyond that,
there is no significant difference between any other two
algorithms. Therefore, the ASR of all traditional ML models
except NB and CART are not significantly worse than that of
any DNN model.

(9) Through the hypothesis test analysis of H9a and H9b,
we obtain p value<2.2e-16. Therefore, there are significant
differences between the MDD of these trading strategies

including the benchmark index and the BAH strategy.
The results of multiple comparative analysis are shown in
Table 23. From Tables 14 and 23, we can see that the MDD
of the benchmark index is significantly smaller than that of
other trading strategies including BAH strategy. The MDD of
BAH is significantly greater than that of all trading algorithms
except NB. The MDD of MLP, DBN, and SAE are significantly
lower than that of NB, but significantly higher than that
of RNN, LSTM, GRU, LR, and XGB. The MDD of NB is
significantly greater than that of all other trading algorithms.
Beyond that, there is no significant difference between any
other two algorithms. Therefore, all ML algorithms expect
NB, especially LSTM, RNN, GRU, LR, and XGB, can play a
role in controlling trading risk.

In a word, some DNN models such as MLP, DBN, and
SAE have good performance in AR, PR, and F1; traditional
ML algorithms such as LR and XGB have good performance
in AUC and WR. The ARR of some traditional ML algorithms
such as CART, NB, LR, and SVM are not significantly
different from that of the six DNN models. The ASR of the
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six DNN algorithms are not significantly different from all
traditional ML models except NB and CART. The MDD of
LR and XGB are significantly smaller than those of MLP,
DBN, and SAE, and are not significantly different from
that of LSTM, GRU, and RNN. The ARR and ASR of all
ML algorithms are significantly greater than those of BAH
and benchmark index; the MDD of all ML algorithms are
significantly smaller than that of the benchmark index but
significantly greater than that of BAH strategy.

From the above analysis and evaluation, we can see that
the directional evaluation indicators of some DNN models
are very competitive in CSICS, while the indicators of some
traditional ML algorithms have excellent performance in
SPICS. Whether in SPICS or CSICS, the ARR and ASR of
all ML algorithms are significantly greater than that of the
benchmark index and BAH strategy, respectively. In all ML
algorithms, there are always some traditional ML algorithms
which are not significantly worse than the best DNN model
for any performance evaluation indicator (ARR, ASR, and
MDD). Therefore, if we do not consider transaction cost and
other factors affecting trading, performance of DNN models
are alternative but not the best choice when they are applied
to stock trading.

In the same period, the ARR of any ML algorithm in
CSICS is significantly greater than that of the same algorithm
in SPICS (p value <0.001in the Nemenyi test). Meanwhile, the
MDD of any ML algorithm in CSICS is significantly greater
than that of the same algorithm in SPICS (p value <0.001
in the Nemenyi test). The results show that the quantitative
trading algorithms can more easily obtain excess returns in
the Chinese A-share market, but the volatility risk of trading
in Chinese A-share market is significantly higher than that of
the US stock market in the past 8 years.

6. The Impact of Transaction Cost on
Performance of ML Algorithms

Trading cost can affect the profitability of a stock trading
strategy. Transaction cost that can be ignored in long-term
strategies is significantly magnified in daily trading. However,
many algorithmic trading studies assume that transaction
cost does not exist ([10, 17], etc.). In practice, frictions such
as transaction cost can distort the market from the perfect
model in textbooks. The cost known prior to trading activity
is referred to as transparent such as commissions, exchange
fees, and taxes. The costs that has to be estimated are known
as implicit, including comprise bid-ask spread, latency or
slippage, and related market impact. This section focuses on
the transparent and implicit cost and how do they affect
trading performance in daily trading.

6.1. Experimental Settings and Backtesting Algorithm. In this
part, the transparent transaction cost is calculated by a certain
percentage of transaction turnover for convenience; the
implicit transaction cost is very complicated in calculation,
and it is necessary to make a reasonable estimate for the
random changes of market environment and stock prices.
Therefore, we only discuss the impact of slippage on trading
performance.
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The transaction cost structures of American stocks are
similar to that of Chinese A-shares. We assume that transpar-
ent transaction cost is calculated by a percentage of turnover
such as less than 0.5% [40, 41] and 0.2% and 0.5% in the
literature [42]. It is different for the estimation of slippage.

In some quantitative trading simulation software such as
JoinQuant [43] and Abuquant [44], the slippage is set to 0.02.
The transparent transaction cost and implicit transaction cost
are charged in both directions when buying and selling. It
is worth noting that the transparent transaction cost varies
with the different brokers, while the implicit transaction cost
is related to market liquidity, market information, network
status, trading software, etc.

We set slippages s = {s0=0, s1=0.01, s2=0.02, s3=0.03,
s4=0.04}; the transparent transaction cost ¢ = {c0=0, c1=0.001,
¢2=0.002, ¢3=0.003, c4=0.004, c5=0.005}. For different {s, c}
combinations, we study the impact of different transaction
cost structures on trading performance. We assume that
buying and selling positions are one unit, so the turnover is
the corresponding stock price. When buying stocks, we not
only need to pay a certain percentage cost of the purchase
price, but also need to pay an uncertain slippage cost. That
is, we need to pay a higher price than the real-time price
P,_, when we are buying. But, when selling stocks, we not
only need to pay a certain percentage cost of the selling
price, but also to pay an uncertain slippage cost. Generally
speaking, we need to sell at a price lower than the real-time
price P,. It is worth noting that our trading strategy is self-
financing. If ML algorithms predict the continuous occur-
rence of buying signals or selling signals, i.e., |TradeSignal, —
TradeSignal,_;| = 0, we will continue to hold or do nothing,
so the transaction cost at this time is 0. when |TradeSignal, -
TradeSignal,_;| = 1, it is indicated that the position may
be changed from holding to selling or from empty position
to buying. At this time, we would pay transaction cost
due to the trading operation. Finally, we get a real yield
is

ClosePrice, — ClosePrice,_,
Ret, < - .
ClosePrice,_,

P, = ClosePrice,
# (1 - c = |TradeSignal, — TradeSignal,_,|)
— s * |TradeSignal, — TradeSignal,_,|
P,_, = ClosePrice,_, ®

# (1 + ¢ = |TradeSignal,_, — TradeSignal,_,|)

+s * |TradeSignal,_, — TradeSignal,_,|

where ClosePrice, denotes the t-th closing price,
TradeSignal, denotes the t-th trading signal, P, denotes
the t-th executing price, and Ret, denotes the ¢-th return rate.
We propose a backtesting algorithm with transaction cost
based on the above analysis, as is shown in Algorithm 3.
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s # s is slippage.

Output: WR, ARR, ASR, MDD

(3) for (iin1:N) {

(14)  WR=c (WR, WR[i]);
(15  ARR=c (ARR, ARR][i]);
(16)  ASR=c (ASR, ASR[i]);

(18) }

Input: TS #TS is trading signals of a stock.
c # cis transparent transaction cost.

(1) N=length of Stock Code List #424 SPICS, and 185 CSICS.
(2) WR=NULL; ARR=NULL; ASR=NULL; MDD=NULL

(4) Stock Data=Stock Code List[i]

(5) ClosePrice,=Stock_Data [“Closing Price”]

(6) P, =ClosePrice, *(1-cxabs(TS,-TS,,)) - s*abs(TS,-TS,)

(7) P,, =ClosePrice, * (1+c#abs(TS,-TS, ;)) + s*abs(TS,-TS, ;)

(8) Ret,= (P,- P,_;)/ P, # Ret is the return rate series.

9) TDRR=lag (TS)*Ret #TDRR is the daily return through trading.
(10) WR[i]=sum (TDRR>0)/sum(TDRR+0)

11) ARR{[i]=Return.annualized (TDRR)

(12) ASR[i]=SharpeRatio.annualized (TDRR)

(13) MDD|i]=maxDrawDown (TDRR)

17) MDD=c (MDD, MDDi])

(19) return (WR, ARR, ASR, MDD)

ALGORITHM 3: Backtesting algorithm with transaction cost in R language.

6.2. Analysis of Impact of Transaction Cost on the Trading
Performance of SPICS. Transaction cost is one of the most
important factors affecting trading performance. In US stock
trading, transparent transaction cost can be charged accord-
ing to a fixed fee per order or month, or a floating fee based
on the volume and turnover of each transaction. Sometimes,
customers can also negotiate with broker to determine
transaction cost. The transaction cost charged by different
brokers varies greatly. Meanwhile, implicit transaction cost
is not known beforehand and the estimations of them are
very complex. Therefore, we assume that the percentage
of turnover is the transparent transaction cost for ease of
calculation. In the aspect of implicit transaction cost, we only
consider the impact of slippage on trading performance.

(1) Analysis of Impact of Transaction Cost on WR. As can be
seen from Table 24, WR is decreasing with the increase of
transaction cost for any trading algorithm, which is intuitive.
When the transaction cost is set to (s, ¢) = (0.04, 0.005), the
WR of each algorithm is the lowest. Compared with setting
(s, ¢) = (0, 0), the WR of MLP, DBN, SAE, RNN, LSTM,
GRU, CART, NB, RE, LR, and SVM to XGB are reduced by
5.80%, 5.97%, 5.91%, 15.83%, 18.04%, 13.95%, 21.71%, 16.04%,
22.16%, 18.54%, 18.50%, and 25.97%, respectively. Therefore,
MLP, DBN, and SAE are more tolerant to transaction cost.
Generally speaking, the DNN models have stronger capacity
to accommodate transaction cost than the traditional ML
models. From the single trading algorithm such as MLP, if
we do not consider slippage, i.e., s=0, the average WR of
MLP is 0.5510 under transaction cost structures {(s0, cl),
(s0, c2), (s0, c3), (s0, c4), (s0, c5)}; if we do not consider
transparent transaction cost, i.e., c=0, the average WR of MLP

is 0.5618 under transaction cost structures { (s1, c0), (s2, c0),
(83, c0), (s4, c0) }; so transparent transaction cost has greater
impact than slippage. Through multiple comparative analysis,
the WR under the transaction cost structure (sl, c0) is not
significantly different from the WR without transaction cost
for MLP, DBN, and SAE. The WR under all other transaction
cost structures are significantly smaller than the WR without
transaction cost. For all trading algorithms except for MLP,
DBN, and SAE, the WR under the transaction cost structure
{ (s1, c0), (s2, c0) } are not significantly different from the WR
without transaction cost; the WR under all other transaction
cost structures are significantly smaller than the WR without
transaction cost.

(2) Analysis of Impact of Transaction Cost on ARR. As can
be seen from Table 25, ARR is decreasing with the increase
of transaction cost for any trading algorithm. Undoubtedly,
when the transaction cost is set to (s, ¢) = (0.04, 0.005), the
ARR of each algorithm is the lowest. Compared with the
settings without transaction cost, the ARR of MLP, DBN,
and SAE reduce by 40.31%, 41.57%, and 40.93%, respectively,
while the ARR of other trading algorithms decrease by more
than 100% compared with those without transaction cost.
Therefore, excessive transaction cost can lead to serious losses
in accounts. For a general setting of s and ¢, i.e., (s, ¢) = (0.02,
0.003), ARR of MLP, DBN, and SAE decrease by 23.26%,
24.00%, and 23.61%, respectively, while the ARR of other
algorithms decrease by more than 50% and that of CART
and XGB decrease by more than 100%. Therefore, MLP, DBN,
and SAE are more tolerant to high transaction cost. From
single trading algorithm such as RNN, if we do not consider
slippage, i.e., s=0, the average ARR of RNN is 0.1434 under
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the transaction cost structures { (s0, cl), (s0, c2), (s0, c3), (s0,
c4), (s0, ¢5) }; if we do not consider transparent transaction
cost, i.e., c=0, the average ARR of RNN is 0.2531 under the
transaction cost structure {(sl, c0), (s2, c0), (s3, c0), (s4,
c0) }; so transparent transaction cost has greater impact than
slippage. Through multiple comparative analysis, the ARR
under the transaction cost structures { (s1, c0), (s2, c0), (s3,
c0), (s0, cl)} are not significantly different from the ARR
without transaction cost for MLP, DBN, and SAE; the ARR
under all other transaction cost structures are significantly
smaller than the ARR without transaction cost. For all trading
algorithms except for MLP, DBN, and SAE, the ARR under
the transaction cost structures {(sl, c0), (s2, c0)} are not
significantly different from the ARR without transaction
cost; the ARR under all other transaction cost structures are
significantly smaller than the ARR without transaction cost.

(3) Analysis of Impact of Transaction Cost on ASR. As can
be seen from Table 26, ASR is decreasing with the increase
of transaction cost for any trading algorithm. Undoubtedly,
when the transaction cost is set to (s, ¢) = (0.04, 0.005), the
ASR of each algorithm is the lowest. Compared with setting
without transaction cost, the ASR of MLP, DBN, and SAE
reduce by 39.97%, 41.23%, and 40.66%, respectively, while the
ASR of other trading algorithms reduce by more than 90%
compared with the case of no transaction cost. Therefore,
excessive transaction cost will significantly reduce ASR. For
a general setting of s and ¢, i.e., (s, ¢) = (0.02, 0.003), the
ASR of MLP, DBN, and SAE decrease by 22.62%, 23.36%
and 23.02% respectively. while the ASR of other algorithms
decrease by more than 50%; the ASR of CART and XGB
decrease by more than 100%. Therefore, MLP, DBN, and SAE
are more tolerant to transaction cost. From single trading
algorithm such as NB, if we do not consider slippage, i.e.,
s=0, the average ASR of NB is 0.8052 under the transaction
cost structure {(s0, cl), (s0, c2), (s0, c3), (s0, c4), (s0,c5)};
if we do not consider transparent transaction cost, i.e., ¢=0,
the average ASR of NB is 1.4182 under the transaction cost
structures {(s1, c0), (s2, c0), (s3, c0), (s4, c0) }; so transparent
transaction cost has greater impact than slippage. Through
multiple comparative analysis, the ASR under the transaction
cost structures {(s1,c0), (s2, c0), (s3, c0), (s0,cl)} are not
significantly different from the ASR without transaction cost
for MLP, DBN, and SAE; the ASR under all other transaction
cost structures are significantly smaller than the ASR without
transaction cost. For all trading algorithms except for MLP,
DBN, and SAE, the ASR under the transaction cost structures
{(s1,c0), (s2,c0)} are not significantly different from the ASR
without transaction cost; the ASR under all other transaction
cost structures are significantly smaller than the ASR without
transaction cost.

(4) Analysis of Impact of Transaction Cost on MDD. As can
be seen from Table 27, MDD increases with the increase
of transaction cost for any trading algorithm. Undoubtedly,
when the transaction cost is set to (s, ¢) = (0.04, 0.005), the
MDD of each algorithm increases to the highest level. In this
case, compared with the settings without transaction cost, the
MDD of MLP, DBN, and SAE increase by 9.32%, 11.08%, and
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10.32%, respectively. The MDD of other trading algorithms
increase by more than 80% compared with those without
considering transaction cost. Therefore, excessive transaction
cost can cause serious potential losses to the account. For a
general setting of s and ¢, i.e,, (s, ¢) = (0.02, 0.003), the MDD
of MLP, DBN, and SAE increase by 4.83%, 5.80%, and 5.33%,
respectively, while the MDD of other algorithms increase by
more than 35%, and the MDD of CART, RF, and XGB increase
by more than 100%. Therefore, MLP, DBN, and SAE are more
tolerant to transaction cost. As a whole, the DNN models have
stronger capacity to accommodate transaction cost than the
traditional ML models. From single trading algorithm such
as GRU, if we do not consider slippage, i.e., s=0, the average
MDD of GRU is 0.4459 under the transaction cost structures
{(s0,c1), (s0, c2), (s0, c3), (s0, c4), (s0,c5)}; if we do not
consider transparent transaction cost, i.e., c=0, the average
MDD of GRU is 0.3559 under the transaction cost structures
{(s1,¢0), (s2, c0), (s3, c0), (s4, c0)}; so transparent transaction
cost has greater impact than slippage. Through multiple
comparative analysis, the MDD under any the transaction
cost structure is not significantly different from the MDD
without transaction cost for MLP, DBN, and SAE. For all
trading algorithms except for MLP, DBN, and SAE such as
LR, the MDD under the transaction cost structures {(s0, c1),
(sL, c0), (s2, c0), (s3,c0)} are not significantly different from
the MDD without transaction cost; the MDD under all other
transaction cost structures are significantly greater than the
MDD without transaction cost.

Through the analysis of the Table 27 performance eval-
uation indicators, we find that trading performance after
considering transaction cost will be worse than that without
considering transaction cost as is in actual trading situation.
It is noteworthy that the performance changes of DNN
algorithms, especially MLP, DBN, and SAE, are very small
after considering transaction cost. This shows that the three
algorithms have good tolerance to changes of transaction
cost. Especially for the MDD of the three algorithms, there
is no significant difference with that with no transaction
cost. So, we can consider applying them in actual trading.
Meanwhile, we conclude that the transparent transaction
cost has greater impact on the trading performances than
the slippage for SPICS. This is because the prices of SPICS
are too high when the transparent transaction cost is set
to a certain percentage of turnover. In actual transactions,
special attention needs to be paid to the fact that the trans-
action performance under most transaction cost structures
is significantly lower than the trading performance without
considering transaction cost. It is worth noting that the
performance of traditional ML algorithm is not worse than
that of DNN algorithms without considering transaction cost,
while the performance of DNN algorithms is better than that
of traditional ML algorithms after considering transaction
cost.

6.3. Analysis of Impact of Transaction Cost on the Trading
Performance of CSICS. Similar to Section 6.2, we will discuss
the impact of transaction cost on trading performance of
CSICS in the followings. In the Chinese A-share market,
the transparent transaction cost is usually set to a certain
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TaBLE 27: The MDD of SPICS for daily trading with different transaction cost. The result that there is no significant difference between
performance without transaction cost and that with transaction cost is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB
(s0,c0) 0.3583 0.3584 0.3547 0.3403 0.3489 0.3381 0.3413 0.3428 0.3284 0.3447 0.3429 0.3338
(s0,cl) 0.3629 0.3638 0.3594  0.3779 0.3986 0.3636  0.4072  0.3712 0.3843 0.3963 0.3972  0.4203
(s0,c2) 03677 0.3695 0.3647  0.4302 0.4707 0.3968 0.5168 0.4127 0.4842 0.4729 0.4787 0.5735
(s0,c3) 0.3727  0.3756  0.3703  0.4990 0.5639 0.4376 0.6564 0.4709 0.6172 0.5682 0.5844 0.7335
(s0,c4) 0.3781 0.3821 0.3764  0.5767 0.6612 0.4873 0.7804 0.5424 0.7377 0.6653 0.6913 0.8447
(s0,c5) 0.3839 0.3890 0.3828  0.6529 0.746 0.5444 0.8730 0.6162 0.8272 0.7501 0.7808 0.9118
(sl,c0) 0.3596 0.3600 0.3560 0.3500 0.36130 0.3446  0.3574  0.3502 0.3414 0.3585 0.3569  0.3540
(sl,cl) 03642 0.3655 0.3609  0.3907 0.4156 0.3717 0.4320 0.3814  0.4067 0.4154 0.4170 0.4541
(s, c2) 0.3691 03712 0.3662  0.4466 0.4936 0.4066 0.5534 0.4270 0.5172 0.4971 0.5049 0.6168
(sl,c3) 0.3742 03774  0.3720 0.5183 0.5895 0.4495 0.6928 0.4885  0.6499 0.5937 0.6129 0.7662
(sl,c4) 0.3796  0.3839  0.3781 0.5961 0.6842 0.5013 0.8105 0.5610 0.7631 0.6884 0.7161 0.8649
(sl,c5) 0.3856  0.3909  0.3847 0.671 0.7646 0.5595 0.8946 0.6342 0.8451 0.7691 0.800 0.9235
(s2,c0) 0.3609  0.3615 0.3573  0.3607 0.3756 0.3517 0.3770  0.3586 0.3586 0.3739  0.3727  0.3787
(s2,cl) 03656 03671 0.3623  0.4047 0.4349 0.3805 0.4627  0.3929  0.4339 0.4365 0.4397 0.4929
(s2,c2) 03705 0.3729 0.3678  0.4642 0.5176 0.4171 0.5916 0.4424  0.5504 0.5218 0.5327 0.6577
(s2,¢3) 03756  0.3792  0.3736 0.5377 0.6143 0.4624 0.7277 0.5067  0.6805 0.6183 0.6402 0.7939
(s2,c4) 0.3812  0.3859  0.3799 0.6155 0.7056 0.5161 0.8380 0.5796 0.7856 0.7099 0.7388 0.8816
(s2,¢5) 0.3873  0.3930 0.3866  0.6887 0.7816 0.5751 0.9126 0.6517 0.8606  0.7864 0.8172 0.9331
(s3,c0) 0.3622 03631 0.3588  0.3729 0.3912 0.3594  0.4004 0.3685 0.3795 0.3909 0.3909  0.4081
(s3,cl) 0.3669 0.3687 0.3639  0.4200 0.4555 0.3901 0.4966 0.4062  0.4622 0.4587 0.4642 0.5334
(s3,c2) 03719 0.3746 03694  0.4826 0.5423 0.4286 0.6295 0.4589 0.5833 0.5465 0.5607 0.6936
(s3,¢c3) 03772 0.3811 0.3754 0.5572 0.6377 0.4762 0.7609 0.5248 0.7081 0.6420 0.6657 0.8175
(s3,c4) 0.3829 0.3879  0.3818 0.6341 0.7254 0.5314 0.8620 0.5980 0.8054 0.7300 0.7593 0.8956
(s3,c5) 0.3894 0.3954 0.3888  0.7056 0.7972 0.5909 0.9275 0.6689  0.8740 0.8022 0.8325 0.9412
(s4,c0) 03635 0.3647 0.3602  0.3861 0.4082 0.3678 0.4274  0.3798 0.4015 0.4096 0.4114 0.4396
(s4,cl) 03683 0.3704 0.3654  0.4362 0.4774 0.4005 0.5325 0.4211 0.4908 0.4814 0.4894 0.5730
(s4,c2) 03734  0.3765 0.3712 0.5013 0.5664 0.4410 0.6667 0.4758 0.6142 0.5707 0.5875 0.7253
(s4,c3) 03790 0.3833  0.3775 0.5765 0.6600 0.4905 0.7906 0.5429 0.7330  0.6644  0.6894 0.8375
(s4,c4) 03851 0.3904 0.3841 0.6521 0.7439 0.5470 0.8824 0.6162 0.8230 0.7485 0.7782 0.9074
(s4,¢5) 0.3917 0.3981 0.3913 0.7218 0.8115 0.6067 0.9395 0.6857 0.8858 0.8165 0.8463  0.9480

percentage of turnover, and it is the same as the assumption
in the experimental settings. As in the US stock market, the
smallest unit of price change is 0.01 (one tick). It is reasonable
to set slippage to be 0.01-0.05. Of course, it should be noted
that the prices fluctuation may be more intense when closing
than that in the middle of a trading day.

(1) Analysis of Impact of Transaction Cost on WR. As can be
seen from Table 28, the WR is decreasing with the increase
of transaction cost for any trading algorithm. When the
transaction cost is set to (s, ¢) = (0.04, 0.005), the WR of each
algorithm is the smallest. Compared with the settings without
transaction cost, the WR of MLP, DBN, SAE, RNN, LSTM,
GRU, CART, NB, RE LR, SVM, and XGB are reduced by
6.71%, 6.88%, 6.97%, 22.69%, 17.26%, 15.48%, 24.30%, 14.91%,
24.84%, 21.12%, 21.12%, and 29.19%, respectively. For a general
setting of s and ¢, i.e., (s, ¢) = (0.02, 0.003), the WR of
MLP, DBN, and SAE decrease by 4.10%, 4.20%, and 4.30%,
respectively, while the WR of other algorithms decrease by
more than 9%; the WR of CART, RF, and XGB decrease by

more than 15%. Therefore, MLP, DBN, and SAE are more
tolerant to transaction cost. From single trading algorithm
such as LSTM, if we do not consider slippage, i.e., s=0, the
average WR of DBN is 0.5417 under the transaction cost
structures { (s0, cl), (s0, c2), (s0, c3), (s0, c4), (s0, c5) }; if we
do not consider transparent transaction cost, i.e., c=0, the
average WR of LSTM is 0.5304 under the transaction cost
structures { (s1, c0), (s2, c0), (s3, c0), (s4, c0) }; so transparent
transaction cost has smaller impact than slippage. Through
multiple comparative analysis, the WR under the transaction
cost structures { (s0, c1), (s0, c2), (sl, c0) } are not significantly
different from the WR without transaction cost for MLP,
DBN, SAE, and NB; the WR under all other transaction
cost structures are significantly smaller than the WR without
transaction cost. For all trading algorithms except for MLP,
DBN, SAE, and NB, the WR under the transaction cost
structure (s0, c1) is not significantly different from the WR
without transaction cost; the WR under all other transaction
cost structures are significantly smaller than the WR without
transaction cost.
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TaBLE 28: The WR of CSICS for daily trading with different transaction cost. The result that there is no significant difference between
performance without transaction cost and that with transaction cost is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB
(s0,c0)  0.5559 0.5565 0.5564 0.5681 0.5720 0.5717 0.5153 0.5317 0.5785 0.5809 0.5716 0.5803
(s0,cl)  0.5523 0.5527 0.5525  0.5525 0.5608 0.5620 0.5009  0.5227 0.5612 0.5665  0.5571  0.5595
(s0,c2) 0.5488 0.5492 0.5489  0.5389 0.5512 0.5535 0.4879 0.5149  0.5460 0.5542 0.5445 0.5411
(s0,c3)  0.5453 0.5456 0.5452 0.5258 0.5414 0.5451 0.4747 0.5068 0.5313 0.5418 0.5320 0.5234
(s0,c4) 0.5417 0.5419 0.5414 0.5127 0.5320 0.5368 0.4622 0.4991 0.5172 0.5297 0.5202 0.5067
(s0,c5) 0.5383 0.5383 0.5379 0.5004 0.5230 0.5286 0.4504 0.4917 0.5036 0.5180 0.5088  0.4905
(sl,c0) 0.5494 0.5499 05497  0.5444 0.5541 0.5558 0.4925 0.5170 0.5520 0.5584 0.5492  0.5488
(sl cl)  0.5456 0.5459 0.5456 0.5286 0.5424 0.5456 0.4775 0.5080 0.5342 0.5437 0.5345 0.5275
(sl, c2)  0.5421 0.5423 0.5420 0.5161 0.5335 0.5377 0.4654 0.5007 0.5207 0.5320 0.5231 0.5110
(sl, ¢3)  0.5386 0.5388 0.5383 0.5036 0.5246 0.5296 0.4530 0.4931 0.5065 0.5205 0.5116 0.4946
(sl,c4)  0.5353 0.5354 0.5349 0.4915 0.5156 0.5218 0.4419 0.4861 0.4937 0.5095 0.5007 0.4795
(sl,c5)  0.5323 0.5323 0.5317 0.4808 0.5076 0.5148 0.4315 0.4796 0.4817 0.4995 0.4905 0.4652
(s2,c0)  0.5431 0.5434 0.5431 0.5219 0.5368 0.5403 0.4707 0.5036 0.5269 0.5374 0.5286 0.5189
(s2,cl)  0.5395 0.5397 0.5393 0.5078 0.5266 0.5314 0.4573 0.4956 0.5115 0.5242 0.5154 0.5005
(s2,c2) 0.5360 0.5361 0.5357 0.4960 0.5181 0.5237 0.4458 0.4886 0.4985 0.5134 0.5046  0.4853
(s2,¢3)  0.5331 0.5331 0.5326 0.4850 0.5100 0.5167 0.4352 0.4818 0.4864 0.5031 0.4945 0.4711
(s2,c4) 0.5300 0.5300 0.5293 0.4743 0.5018 0.5093 0.4252 0.4752 0.4746 0.4931 0.4846  0.4572
(s2,¢5)  0.5273 0.5271 0.5266 0.4648 0.4946 0.5029 0.4159 0.4692  0.4639 0.4838 0.4755 0.4445
(s3,c0) 0.5373 0.5374 0.5371 0.5019 0.5216 0.5265 0.4514 0.4917 0.5049 0.5186 0.5098 0.4932
(s3,cl) 05341 0.5341 0.5336 0.4902 0.5128 0.5188 0.4399 0.4846 0.4917 0.5074 0.4990  0.4775
(s3,¢c2) 05312 0.5312 0.5306 0.4798 0.5052 0.5122 0.4303 0.4782  0.4804 0.4977 0.4896  0.4644
(s3,¢3)  0.5281 0.5281 0.5275 0.4696 0.4976 0.5049 0.4206 0.4718 0.4689 0.4879 0.4799  0.4509
(s3,c4) 0.5252 0.5251 0.5245 0.4598 0.4901 0.4984 0.4110 0.4657 0.4581 0.4785 0.4707 0.4378
(s3,¢5)  0.5226 0.5223 0.5218 0.4510 0.4833 0.4924 0.4023 0.4602 0.4481 0.4701 0.4621 0.4264
(s4,c0) 0.5325 0.5325 0.5321 0.4860 0.5089 0.5150 0.4360 0.4816 0.4870 0.5030 0.4949 0.4723
(s4,cl)  0.5294 0.5294 0.5289 0.4753 0.5010 0.5079 0.4258 0.4750 0.4752 0.4928 0.4849  0.4588
(s4,c2) 0.5266 0.5265 0.5259 0.4653 0.4937 0.5013 0.4164 0.4690  0.4642 0.4838 0.4761 0.4458
(s4,¢3) 0.5238 0.5236 0.5230 0.4562 0.4864 0.4948 0.4073 0.4632 0.4541 0.4747 0.4672 0.4336
(s4,c4) 05211 0.5208 0.5203 0.4475 0.4798 0.4891 0.3985 0.4577  0.4440  0.4662 0.4586 0.4218
(s4,¢5) 0.5186 0.5182 0.5176 0.4392 0.4733 0.4832 0.3901 0.4524  0.4348 0.4582 0.4509 0.4109

(2) Analysis of Impact of Transaction Cost on ARR. As can
be seen from Table 29, ARR is decreasing with the increase
of transaction cost for any trading algorithm. Undoubtedly,
when the transaction cost is set to (s, ¢) = (0.04, 0.005), the
ARR of each algorithm is the smallest. Compared with the
settings without transaction cost, the ARR of MLP, DBN,
and SAE reduce by 50.73%, 51.75%, and 52.25%, respectively.
While the ARR of other trading algorithms decrease by
more than 100% compared with those algorithms without
transaction cost. Therefore, excessive transaction cost can
lead to serious losses in the accounts. For a general setting
of s and ¢, i.e., (s, ¢) = (0.02, 0.003), ARR of MLP, DBN,
and SAE decrease by 27.41%, 27.97%, and 28.25% respectively,
while the ARR other algorithms decrease by more than 50%
and that of CART, NB, RF, and XGB decrease by more than
100%. Therefore, MLP, DBN, and SAE are more tolerant to
transaction cost. From single trading algorithm such as SAE,
if we do not consider slippage, i.e., s=0, the average ARR of
SAE is 0.5040 under the transaction cost structure { (s0, cl),
(s0, ¢2), (s0, c3), (s0, c4), (s0, c5)}; if we do not consider

transparent transaction cost, i.e., c=0, the average ARR of SAE
is 0.4468 under the transaction cost structures { (s, c0), (s2,
c0), (s3, c0), (s4, c0) }; so transparent transaction cost has
smaller impact than slippage. Through multiple comparative
analysis, the ARR under the transaction cost structures { (s0,
cl), (s0, ¢2), (s0, c3), (s0, c1), (sl, cl) } are not significantly
different from the ARR without transaction cost for MLP,
DBN, and SAE; the ARR under all other transaction cost
structures are significantly smaller than the ARR without
transaction cost. For RNN, LSTM, GRU, CART, RF, LR, and
SVM, the ARR under the transaction cost structures { (s0,
cl), (s0, ¢2), (s1, c0)} are not significantly different from
the ARR without transaction cost; the ARR under all other
transaction cost structures are significantly smaller than the
ARR without transaction cost. For NB and XGB, the ARR
under the transaction cost structures { (s0, cl), (sl, c0) } are
not significantly different from the ARR without transaction
cost; the ARR under all other transaction cost structures
are significantly smaller than the ARR without transaction
cost.
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TaBLE 29: The ARR of CSICS for daily trading with different transaction cost. The result that there is no significant difference between
performance without transaction cost and that with transaction cost is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB
(s0,c0) 05728  0.5702  0.5675 0.5246 0.5162 0.5110 0.5531 0.6122 0.484 0.5092 0.5001 0.4935
(s0,cl) 0.5521 0.549  0.5463 0.4522 0.4697 0.4707 0.4490 0.5072  0.4095  0.4494 0.4331 0.4044
(s0,c2) 0.5314 0.5279 0.5251  0.3799 0.4232  0.4305  0.3450 0.4023 0.3351 0.3896  0.3662 0.3154
(s0,c3) 0.5107 0.5068 0.5039  0.3077 0.3767 0.3904 0.2411 0.2976 0.2608 0.3299 0.2994 0.2266
(s0,c4) 0.4901  0.4858  0.4828 0.2356 0.3303 0.3503 0.1374 0.1930 0.1866 0.2703 0.2327 0.1379
(s0,c5) 0.4695 0.4648  0.4617 0.1636 0.2840 0.3102 0.0339 0.0886 0.1125 0.2108 0.1661 0.0493
(sl,c0) 0.5248 0.5216 0.5186  0.3917  0.4250  0.4302  0.3437 0.4210 0.3463  0.3963 0.3746 0.3318
(sl,cl) 0.5042 0.5005 0.4975 0.3195 0.3785 0.3900 0.2399 0.3162 0.2720 0.3366 0.3078 0.2429
(sl,c2) 0.4835  0.4795 0.4764 0.2474 0.3321 0.3499 0.1362 0.2116 0.1978 0.2770 0.2411 0.1542
(s, c3) 0.463 0.4585 0.4553 0.1754 0.2858 0.3099 0.0327 0.1072 0.1237 0.2174 0.1745 0.0656
(sl,c4) 0.4424 0.4375 0.4342 0.1035 0.2396 0.2699  -0.0707  0.0029 0.0497  0.15800 0.1079 -0.0229
(sl,c5) 0.4219 0.4165 0.4132 0.0317 0.1934 0.2299 -0.174 -0.1013  -0.0242  0.0986 0.0415 -0.1113
(s2,c0) 04774 0.4736  0.4704  0.2599 0.3344 0.3501 0.1363 0.2310 0.2095 0.2842 0.2500 0.1711
(s2,cl) 0.4568  0.4526  0.4493 0.1879 0.2881 0.3100 0.0328 0.1265 0.1354 0.2247 0.1834 0.0825
(s2,c2) 0.4363 0.4316 0.4282 0.1159 0.2419 0.2700  -0.0706  0.0222 0.0614 0.1652 0.1168 -0.006
(s2,¢3) 0.4158 0.4107 0.4072 0.0441 0.1957 0.2301 -0.1739  -0.0820  -0.0125 0.1058 0.0504  -0.0944
(s2,c4) 03953 03898  0.3862  -0.0276 0.1495 0.1902  -0.2770  -0.1861  -0.0863  0.0465 -0.0160  -0.1827
(s2,¢5) 03748 03689  0.3653  -0.0992  0.1034 0.1503 -0.3799  -0.2900  -0.1600  -0.0127  -0.0823  -0.2708
(s3,¢c0) 0.4305 0.4261  0.4226 0.1289 0.2446 0.2706  -0.0694  0.0421 0.0737 0.1729 0.1263 0.0115
(s3,cl) 0.4100  0.4052  0.4016 0.0570 0.1984 0.2306  -0.1726  -0.0621  -0.0003 0.1135 0.0598 -0.0769
(s3,c2) 03895  0.3843  0.3806  -0.0147 0.1522 0.1907 -0.2757  -0.1662  -0.0741 0.0542  -0.0066  -0.1652
(s3,¢3) 0.3691 0.3634  0.3597  -0.0863  0.1062 0.1509 -0.3787  -0.2701  -0.1478  -0.0050 -0.0729  -0.2533
(s3,c4) 03487 03426  0.3388  -0.1578 0.0601 0.1111 -0.4815  -0.3739  -0.2214  -0.0642  -0.1391 -0.3414
(s3,¢5) 0.3283 0.3217 03179  -0.2293 0.0142 0.0713  -0.5842  -0.4775 -0.2949  -0.1233  -0.2052  -0.4293
(s4,c0) 0.3841 0.3791 0.3754  -0.0013 0.1554 0.1917 -0.2734  -0.1457  -0.0614  0.0623 0.0033 -0.1471
(s4,cl) 03637 0.3582  0.3544 -0.0729  0.1093 0.1518 -0.3764  -0.2497  -0.1351 0.0031 -0.0630  -0.2353
(s4,c2) 0.3433 0.3374 0.3335  -0.1445 0.0633 0.1120 -0.4792  -0.3535  -0.2087  -0.0561 -0.1292  -0.3233
(s4,¢c3) 0.3229 0.3166 0.3126 -0.2159 0.0173 0.0723 -0.5819  -0.4572 -0.2823 -0.1152 -0.1953 -0.4113
(s4,c4) 03025  0.2958 0.2918  -0.2873  -0.0286  0.0326  -0.6844 -0.5607 -0.3557 -0.1742  -0.2613  -0.4991
(s4,¢5) 0.2822 0.2751 0.2710  -0.3585 -0.0744 -0.0071 -0.7868  -0.6641 -0.4290 -0.2331  -0.3273  -0.5868

(3) Analysis of Impact of Transaction Cost on ASR. As can
be seen from Table 30, ASR is decreasing with the increase
of transaction cost for any trading algorithm. Undoubtedly,
when the transaction cost is set to (s, ¢) = (0.04, 0.005),
the ASR of each algorithm is the smallest. Compared with
the settings without transaction cost, the ASR of MLP, DBN,
and SAE reduce by 48.99%, 50.11%, and 50.70%, respectively,
while the ASR of other trading algorithms decrease by more
than 100% compared with those without transaction cost.
Therefore, excessive transaction cost can lead to serious losses
in the accounts. For a general setting of s and ¢, i.e., (s, ¢)
= (0.02, 0.003), ASR of MLP, DBN, and SAE decrease by
26.01%, 26.61%, and 26.94%, respectively, while the ASR other
algorithms decrease by more than 50% and that of CART,
NB, RE, and XGB decrease by more than 100%. Therefore,
MLP, DBN, and SAE are more tolerant to transaction cost.
From single trading algorithm such as LSTM, if we do not
consider slippage, i.e., s=0, the average ASR of LSTM is 1.1129
under the transaction cost structures { (s0, cl), (s0, c2), (s0,
c3), (s0, c4), (s0, c5)}; if we do not consider transparent

transaction cost, i.e., c=0, the average ASR of LSTM is 0.8837
under the transaction cost structures { (s1, c0), (s2, c0), (s3,
c0), (s4, c0)}; so transparent transaction cost has smaller
impact than slippage. Through multiple comparative analysis,
the ASR under the transaction cost structures { (s0, cl1), (s0,
c2), (s0, ¢3), (s0, cl), (s1, c1) } are not significantly different
from the ASR without transaction cost for MLP, DBN, and
SAE; the ASR under all other transaction cost structures are
significantly smaller than the ASR without transaction cost.
For LSTM and GRU, the ASR under the transaction cost
structures { (s0, cl), (s0, c2), (sl, c0)} are not significantly
different from the ASR without transaction cost; the ASR
under all other transaction cost structures are significantly
smaller than the ASR without transaction cost. For RNN,
NB, RE LR, and SVM, the ASR under the transaction cost
structures {(s0, c1), (s, c0) } are not significantly different
from the ASR without transaction cost; the ASR under all
other transaction cost structures are significantly smaller
than the ASR without transaction cost. For CART and XGB,
the ASR under the transaction cost structure (s0, cl) are
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TaBLE 30: The ASR of CSICS for daily trading with different transaction cost. The result that there is no significant difference between
performance without transaction cost and that with transaction cost is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB
(s0,c0) 14027 14003 1.3931 1.4876 1.5418 1.5501 1.2229 1.1119 1.4375 1.5578 1.4227 1.4694
(s0,cl) 13525 1.3488 1.3413 1.2736 1.4005 1.4268 0.9763 0.9356 1.2078 1.3697 1.2253 1.1938
(s0,c2) 13019 1.2969 1.2890 1.0579 1.2578 1.3023 0.7263 0.7584 0.9763 1.1796 1.0263 0.9161
(s0,c3) 1.2509 1.2445 1.2364 0.8411 1.1139 1.1765 0.4736 0.5804 0.7436 0.9882 0.8263 0.6372
(s0,c4) 11996 1.1918 1.1834 0.6237 0.9690 1.0499 0.2191 0.4021 0.5104 0.7958 0.6255 0.3581
(s0,c5) 11479 1.1388 1.1301 0.4063 0.8235 0.9224  -0.0364  0.2236 0.2773 0.6029 0.4244 0.0795
(sl,c0) 12996 12953 1.2872 1.1103 1.2817 1.3133 0.7570 0.7905 1.0278 1.2127 1.0676 0.9843
(sl,cl) 12486 1.2430 1.2346  0.8938 1.1379 1.1876 0.5050 0.6126 0.7955 1.0215 0.8678 0.7058
(s, c2) 11972 1.1903 1.1816 0.6766 0.9932 1.0610 0.2511 0.4343 0.5625 0.8293 0.6672 0.4269
(s, c3) 11455 1.1373 1.1282 0.4591 0.8477 0.9336  -0.0040  0.2558 0.3294 0.6365 0.4662 0.1483
(sl,c4) 10935 1.0839 1.0746 0.2420 0.7016 0.8056  -0.2594 0.0775 0.0968 0.4436 0.2654 -0.1291
(sl,c5) 1.0413 1.0303  1.0206 0.0257 0.5554 0.6771 -0.5143 -0.1003  -0.1346 0.2510 0.0651 -0.4045
(s2,c0) 1.1936 1.1875 1.1785 0.7293 1.0157 1.0710 0.2851 0.4662 0.6145 0.8624 0.7084 0.4971
(s2,cl) 1142 1.1345 1.1252 0.5128 0.8708 0.9441 0.0321 0.2883 0.3826 0.6707 0.5083 0.2199
(s2,c2) 1.0901 1.0812 1.0717 0.2964 0.7253 0.8166 -0.2213 0.1105 0.1510 0.4787 0.3083 -0.0564
(s2,¢3) 10379 1.0277 1.0178 0.0807 0.5794 0.6887  -0.4745 -0.067 -0.0797  0.2870 0.1086 -0.3310
(s2,c4) 0.9854 09739 09637  -0.1339 0.4335 0.5605  -0.7267 -0.2437 -0.3088  0.0958  -0.0902 -0.6030
(s2,¢5) 09328  0.9199 09094 -0.3469  0.2878 0.4323 -0.9771  -0.4195  -0.5359  -0.0942  -0.2878  -0.8719
(s3,c0) 1.0862 1.0781 1.0683 0.3537 0.7496 0.8304 -0.1751 0.1456 0.2086 0.5184 0.3534 0.0217
(s3,cl) 1.0342 1.0247 1.0147 0.1393 0.6047 0.7033 -0.4254  -0.0309 -0.0204  0.3282 0.1550 -0.2509
(s3,c2) 0.9819 09711 09607  -0.0742  0.4596 0.5760 -0.6751  -0.2068  -0.2481 0.1384 -0.0426  -0.5214
(s3,¢3) 0.9294 09172  0.9066 -0.2862 0.3146 0.4485 -0.9232  -0.3818  -0.4741  -0.0504 -0.2392  -0.7891
(s3,c4) 0.8767 0.8632  0.8522  -0.4965 0.1700 0.3211 -1.1693 -0.5558  -0.6978  -0.2380  -0.4343  -1.0534
(s3,¢5) 0.8239 0.809 0.7977  -0.7045  0.0258 0.1940 -1.4125 -0.7283  -0.9188  -0.4240  -0.6276 -1.3135
(s4,c0) 09785 0.9684 0.9580 -0.0099  0.4878 0.5943 -0.6140  -0.1663 -0.1821 0.1862 0.0089 -0.4325
(s4,cl) 09263 0.9148 0.9040  -0.2205 0.3439 0.4679  -0.8592  -0.3403 -0.4063 -0.0010 -0.1862  -0.6982
(s4,c2) 0.8738 0.8609 0.8499 -0.4296  0.2003 0.3415 -1.1027 -0.5132 -0.6285  -0.1871  -0.3800  -0.9608
(s4,c3) 0.8212 0.8070 0.7957  -0.6366 0.0571 0.2153 -1.3437  -0.6849  -0.8482  -0.3718  -0.5722  -1.2198
(s4,c4) 0.7684  0.7528  0.7413 -0.8412  -0.0854  0.0894 -1.5818 -0.8551  -1.0652  -0.5547  -0.7625  -1.4747
(s4,¢5) 0.7155  0.6986  0.6868  -1.0431 -0.2271  -0.0359  -1.8162 -1.0236  -1.2788  -0.7356  -0.9505  -1.7248

not significantly different from the ASR without transaction
cost; the ASR under all other transaction cost structures
are significantly smaller than the ASR without transaction
cost.

(4) Analysis of Impact of Transaction Cost on MDD. As can
be seen from Table 31, MDD increases with the increase of
transaction cost for any transaction algorithm. Undoubtedly,
when the transaction cost is set to (s, ¢) = (0.04, 0.005), the
MDD of each algorithm increases to the highest level. In this
case, compared with the setting without transaction cost, the
MDD of MLP, DBN, and SAE increase by 10.31%, 11.35%,
and 10.83%, respectively. The MDD of the other transaction
algorithms increases by more than 30% compared with those
without transaction cost. Therefore, excessive transaction
cost can cause serious potential losses to the account. For a
general setting of s and ¢, i.e., (s, ¢) = (0.02, 0.003), the MDD
of MLP, DBN, and SAE increase by 4.31%, 4.81%, and 4.80%,
respectively. While the MDD of the other algorithms increase
by more than 20%, the MDD of CART, RE, and XGB increase

by more than 60%. Therefore, MLP, DBN, and SAE are more
tolerant to transaction cost. From a single trading algorithm
such as RNN, if we do not consider slippage, i.e., s=0, the
average MDD of RNN is 0.7402 under the transaction cost
structures { (s0, cl), (s0, c2), (s0, c3), (s0, c4), (s0, c5) }; if we
do not consider transparent transaction cost, i.e., c=0, the
average MDD of RNN is 0.7754 under the transaction cost
structures { (s1, c0), (s2, c0), (s3, c0), (s4, c0) }; so transparent
transaction cost has smaller impact than slippage. Through
multiple comparative analysis, the MDD under most of the
transaction cost structures are not significantly different from
the MDD without transaction cost for MLP, DBN, and SAE.
It shows that the three algorithms have higher tolerance
for transaction cost. For all trading algorithms except for
MLP, DBN, and SAE, the MDD under the transaction cost
structures { (s0, cl), (s0, c2), (sl, c0)} are not significantly
different from the MDD without transaction cost; the MDD
under all other transaction cost structures are significantly
greater than the MDD without transaction cost. It is worth
noting that the MDD of GRU under the transaction cost
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TaBLE 31: The MDD of CSICS for daily trading with different transaction cost. The result that there is no significant difference between
performance without transaction cost and that with transaction cost is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB
(s0,c0) 0.6082 0.6086 0.6130 0.5648 0.5456 0.5429 0.5694 0.7469 0.5695 0.5410 0.5775 0.5632
(s0,cl)  0.6115 0.6122 0.6168 0.6133 0.5759  0.5665 0.6272  0.7765 0.6317 0.5843  0.6249  0.6419
(s0,c2) 0.6150 0.6163  0.6207  0.6731 0.6098 0.5922 0.6966 0.8088 0.7041 0.6353 0.6820 0.7296
(s0,c3) 0.6188  0.6208  0.6247 0.7426 0.6468 0.6194 0.7674 0.8418 0.7777 0.6901 0.7435 0.8158
(s0,c4) 0.6229 0.6256  0.6289  0.8083 0.6844 0.6471 0.8338 0.8728 0.8426 0.7453 0.8045 0.8858
(s0,c5) 0.6273  0.6305  0.6333 0.8637 0.7200 0.6763 0.8887 0.8986 0.8934 0.7979 0.8563 0.9324
(s, c0)  0.6137 0.6145 0.6191 0.6577  0.6033  0.5870 0.6847 0.8049 0.6893 0.6265 0.6725 0.7088
(sl,cl)  0.6174 0.6187  0.6230 0.7181 0.6384 0.6135 0.7485 0.8350 0.7556 0.6766 0.7304 0.7848
(s, c2) 0.6213 0.6234  0.6270 0.7818 0.6746 0.6408 0.8115 0.8641 0.8180 0.7292 0.7859 0.8542
(s, c3) 0.6255  0.6282 0.6313 0.8413 0.7107 0.6680 0.8670 0.8890 0.8721 0.7797 0.8387 0.9087
(sl, c4) 0.6298 0.6331 0.6359  0.8884 0.7451 0.6964 0.9104 0.9099 0.9134 0.8267 0.8828 0.9455
(sl,c5) 0.6343  0.6382  0.6406  0.9237 0.7776 0.7254 0.9432 0.9269 0.9426 0.8674 0.9169 0.9684
(s2,c0) 0.6214 0.6230  0.6269  0.7549 0.6700 0.6369 0.7815 0.8546 0.7857 0.7131 0.7661 0.8131
(s2,cl) 0.6256  0.6277  0.6312 0.8084 0.7032 0.6627 0.8327 0.8785 0.8387 0.7597 0.8138 0.8688
(s2,c2) 0.6299  0.6327  0.6357 0.8579 0.7350 0.6887 0.8793 0.8998 0.8851 0.8037 0.8576 0.9142
(s2,¢3) 0.6344  0.6379  0.6406 0.8991 0.7664 0.7163 0.9174 0.9179 0.9207 0.8449 0.8955 0.9473
(s2,c4) 0.6391 0.6431 0.6456  0.9305 0.7963 0.7444 0.9467 0.9335 0.9468 0.8802 0.9250 0.9690
(s2,¢5) 0.6443  0.6487 0.6511 0.9528 0.8230 0.7721 0.9667 0.9457 0.9650 0.9091 0.9471 0.9820
(s3,c0) 0.6299  0.6320  0.6357 0.8218 0.7242 0.6808 0.8419 0.8857 0.8488 0.7794 0.8291 0.8725
(s3,cl) 0.6345 0.6373  0.6406  0.8645 0.7528 0.7063 0.8839 0.9047 0.8891 0.8181 0.8667 0.9131
(s3,c2) 0.6394 0.6427  0.6459 0.9018 0.7812 0.7325 0.9188 0.9216 0.9217 0.8538 0.8998 0.9442
(s3,c3) 0.6446  0.6481 0.6514 0.9313 0.8084 0.7591 0.9461 0.9361 0.9463 0.8857 0.9271 0.9661
(s3,c4) 0.6500 0.6542 0.6572 0.9529 0.8329 0.7859 0.9656 0.9481 0.9642 0.9122 0.9481 0.9801
(s3,¢5)  0.6561 0.6610 0.6634 0.9681 0.8555 0.8113 0.9789 0.9576 0.9764 0.9338 0.9633 0.9885
(s4,c0) 0.6399  0.6432 0.6460  0.8670 0.7666 0.7240 0.8832 0.9079 0.8893 0.8270 0.8710 0.9087
(s4,cl) 0.6453  0.6496 0.6519 0.9005 0.7926 0.7490 0.9165 0.9242 0.9197 0.8585 0.9005 0.9388
(s4,c2)  0.6511 0.6561 0.6583 0.9290 0.8169 0.7741 0.9433 0.9382 0.9435 0.8877 0.9262 0.9611
(s4,¢3) 0.6573 0.6630 0.6649 0.9508 0.8399 0.7989 0.9629 0.9497 0.9615 0.9128 0.9467 0.9766
(s4,c4) 0.6640 0.6704 0.6719 0.9664 0.8611 0.8225 0.9768 0.9591 0.9744 0.9331 0.9619 0.9863
(s4,¢5) 0.6709 0.6777 0.6794 0.9774 0.8804 0.8445 0.9862 0.9665 0.9831 0.9498 0.9730 0.9921

structure (s, c1) is not significantly different from the MDD
without transaction cost.

Through the Table 31 analysis, we find that trading per-
formance will become worse and worse with the increase
of transaction cost. Moreover, excessive transaction cost
may cause huge losses. Especially, for some traditional ML
algorithm, the ARR and ASR of those algorithms will become
negative. MDD of the algorithms will become close to 100%
when transaction cost is increasing. DNN models, especially
MLP, DBN, and SAE, are more tolerant to the changes of
transaction cost and are more suitable for actual trading
activities. Meanwhile, the experimental results indicate that
the impact of slippage on trading performance is greater
than the transparent transaction cost because the prices
of CSICS are generally small. We conclude that a certain
percentage of turnover will generate smaller transaction cost.
Through multiple comparative analysis, we find that the
performance of these algorithms under most of transaction
cost structures may be significantly worse than those without
considering transaction cost. The finding shows that the

trading performance of these algorithms is very sensitive to
transaction cost, which needs to be paid enough attention to
in actual trading activities.

7. Discussion

Forecasting the future ups and downs of stock prices and
making trading decisions are always challenging tasks. How-
ever, more and more investors are attracted to participate in
trading activities by high return of stock market, and high risk
promotes investors to try their best to construct profitable
trading strategies. Meanwhile, the fast changing of financial
markets, the explosive growth of big financial data, the
increasing complexity of financial investment instruments,
and the rapid capture of trading opportunities provide more
and more research topics for academic circles. In this paper,
we apply some popular and widely used ML algorithms to do
stock trading. Our purpose is to explore whether there are
significant differences in stock trading performance among
different ML algorithms. Moreover, we study whether we can
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find highly profitable trading algorithms in the presence of
transaction cost.

Financial data, which is generated in changing financial
market, are characterized by randomness, low signal-to-noise
ratio, nonlinearity, and high dimensionality. Therefore, it is
difficult to find inherent patterns in financial big data by using
algorithms. In this paper, we also prove this point.

When using ML algorithms to predict stock prices, the
directional evaluation indicators are not as good as expected.
For example, the AR, PR, and RR of LSTM and RNN are
about 50%-55%, which are only slightly better than random
guess. On the contrary, some traditional ML algorithms such
as XGB have stronger ability in directional predictions of
stock prices. Therefore, those simple models are less likely
to cause overfitting when capturing intrinsic patterns of
financial data and can make better predictions about the
directions of stock price changes. Actually, we assume that
sample data are independent and identically distributed when
using ML algorithm to classify tasks. DNN algorithms such
as LSTM and RNN make full use of autocorrelation of
financial time series data, which is doubtful because of the
characteristics of financial data. Therefore, the prediction
ability of these algorithms may be weakened because of the
noise of historical lag data.

From the perspective of trading algorithms, traditional
ML models map the feature space to the target space. The
parameters of the learning model are quite few. Therefore,
the learning goal can be better accomplished in the case of
fewer data. The DNN models mainly connect some neurons
into multiple layers to form a complex DNN structure.
Through the complex structure, the mapping relationships
between input and output are established. As the number
of neural network layers increases, the weight parameters
can be automatically adjusted to extract advanced features.
Compared with the traditional ML models, DNN models
have more parameters. So their performance tends to increase
as the amount of data grows. Complex DNN models need a
lot of data to avoid underfitting and overfitting. However, we
only use the data for 250 trading days (one year) as training
set to construct trading model, and then we predict stock
prices in the next week. So, too few data may lead to poor
performance in the directional and performance predictions.

In the aspect of transaction cost, it is unexpected that
DNN models, especially MLP, DBN, and SAE, have stronger
adaptability to transaction cost than traditional ML models.
In fact, the higher PR of MLP, DBN, and SAE indicate that
they can identify more trading opportunities with higher
positive return. At the same time, DNN model can adapt
to the changes of transaction cost structures well. That is,
compared with traditional ML models, the reduction of ARR
and ASR of DNN models are very small when transaction
cost increases. There especially is no significant difference
between the MDD of DNN models under most of transaction
cost structures and that without considering transaction cost.
This is further proof that DNN models can effectively control
downside risk. Therefore, DNN algorithms are better choices
than traditional ML algorithm in actual transactions. In this
paper, we divide transaction cost into transparent transaction
cost and implicit transaction cost. In different markets,
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the impact of the two transaction cost on performance is
different. We can see that transparent transaction cost is a
larger impact than implicit transaction cost in SPICS while
they are just the opposite in CSICS, because the prices of
SPICS are higher than that of CSICS. While we have taken full
account of the actual situation in real trading, the assumption
of transaction cost in this paper is relatively simple. Therefore,
we can consider the impact of opportunity cost and market
impact cost on trading performance in future research work.

This paper makes a multiple comparative analysis of
trading performance for different ML algorithms by means of
nonparameter statistical testing. We comprehensively discuss
whether there are significant differences among the algo-
rithms under different evaluation indicators in both cases
of transaction cost and no transaction cost. We show that
the DNN algorithms have better performance in terms of
profitability and risk control ability in the actual environment
with transaction cost. Therefore, DNN algorithms can be
used as choices for algorithmic trading and quantitative
trading.

8. Conclusion

In this paper, we apply 424 SPICS in the US market and
185 CSICS in the Chinese market as research objects, select
data of 2000 trading days before December 31, 2017, and
build 44 technical indicators as the input features for the ML
algorithms, and then predict the trend of each stock price as
trading signal. Further, we formulate trading strategies based
on these trading signals, and we do backtesting. Finally, we
analyze and evaluate the trading performance of these algo-
rithms in both cases of transaction cost and no transaction
cost.

Our contribution is to compare the significant differences
between the trading performance of the DNN algorithms and
the traditional ML algorithms in the Chinese stock market
and the American stock market. The experimental results in
SPICS and CSICS show that some traditional ML algorithms
have a better performance than DNN algorithms in most of
the directional evaluation indicators. DNN algorithms which
have the best performance indicators (WR, ARR, ASR, and
MDD) among all ML algorithms are not significantly better
than those traditional ML algorithms without considering
transaction cost. With the increase of transaction cost, the
transaction performance of all ML algorithms will become
worse and worse. Under the same transaction cost structure,
the DNN algorithms, especially the MLP, DBN, and SAE,
have lower performance degradation than the traditional ML
algorithm, indicating that the DNN algorithms have a strong
tolerance to the changes of transaction cost. Meanwhile, the
transparent transaction cost and implicit transaction cost are
different impact for the SPICS and CSICS. The experimental
results also reveal that the transaction performance of all ML
algorithms is sensitive to transaction cost, and more attention
is needed in actual transactions. Therefore, it is essential to
select the competitive algorithms for stock trading according
to the trading performance, adaptability to transaction cost,
and the risk control ability of the algorithms both in the
American stock market and Chinese A-share market.
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With the rapid development of ML technology and the
convenient access to financial big data, future research work
can be carried out from the following aspects: (1) using
ML algorithms to implement dynamic optimal portfolio
among different stocks; (2) using ML algorithms to do high-
frequency trading and statistical arbitrage; (3) considering
the impact of more complex implicit transaction cost such
as opportunity cost and market impact cost on stock trading
performance. The solutions of these problems will help to
develop an advanced and profitable automated trading sys-
tem based on financial big data, including dynamic portfolio
construction, transaction execution, cost control, and risk
management according to the changes of market conditions
and even the changes of investor’s risk preferences of over
time.
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