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According to the forecast of stock price trends, investors trade stocks. In recent years, many researchers focus on adopting machine
learning (ML) algorithms to predict stock price trends. However, their studies were carried out on small stock datasets with
limited features, short backtesting period, and no consideration of transaction cost. And their experimental results lack statistical
signi
cance test. In this paper, on large-scale stock datasets, we synthetically evaluate various ML algorithms and observe the
daily trading performance of stocks under transaction cost and no transaction cost. Particularly, we use two large datasets of 424
S&P 500 index component stocks (SPICS) and 185 CSI 300 index component stocks (CSICS) from 2010 to 2017 and compare
six traditional ML algorithms and six advanced deep neural network (DNN) models on these two datasets, respectively. 	e
experimental results demonstrate that traditional ML algorithms have a better performance in most of the directional evaluation
indicators. Unexpectedly, the performance of some traditional ML algorithms is not muchworse than that of the best DNNmodels
without considering the transaction cost. Moreover, the trading performance of all ML algorithms is sensitive to the changes of
transaction cost. Compared with the traditional ML algorithms, DNN models have better performance considering transaction
cost. Meanwhile, the impact of transparent transaction cost and implicit transaction cost on trading performance are dierent. Our
conclusions are signi
cant to choose the best algorithm for stock trading in dierent markets.

1. Introduction

	e stock market plays a very important role in modern
economic and social life. Investors want to maintain or
increase the value of their assets by investing in the stock
of the listed company with higher expected earnings. As a
listed company, issuing stocks is an important tool to raise
funds from the public and expand the scale of the industry.
In general, investors make stock investment decisions by
predicting the future direction of stocks’ ups and downs. In
modern 
nancial market, successful investors are good at
making use of high-quality information to make investment
decisions, and, more importantly, they can make quick and
eective decisions based on the information they have already
had. 	erefore, the 
eld of stock investment attracts the
attention not only of 
nancial practitioner and ordinary
investors but also of researchers in academic [1].

In the past many years, researchers mainly constructed
statisticalmodels to describe the time series of stock price and
trading volume to forecast the trends of future stock returns
[2–4]. It is worth noting that the intelligent computing meth-
ods represented by ML algorithms also present a vigorous
development momentum in stock market prediction with
the development of arti
cial intelligence technology. 	e
main reasons are as follows. (1) Multisource heterogeneous

nancial data are easy to obtain, including high-frequency
trading data, rich and diverse technical indicators data,
macroeconomic data, industry policy and regulation data,
market news, and even social network data. (2) 	e research
of intelligent algorithms has been deepened. From the early
linear model, support vector machine, and shallow neural
network to DNN models and reinforcement learning algo-
rithms, intelligent computing methods have made signi
cant
improvement. 	ey have been eectively applied to the 
elds
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of image recognition and text analysis. In some papers, the
authors think that these advanced algorithms can capture the
dynamic changes of the 
nancial market, simulate the trading
process of stock, and make automatic investment decisions.
(3) 	e rapid development of high-performance computing
hardware, such as Graphics Processing Units (GPUs), large
servers, and other devices, can provide powerful storage
space and computing power for the use of 
nancial big data.
High-performance computer equipment, accurate and fast
intelligent algorithms, and 
nancial big data together can
provide decision-making support for programmed and auto-
mated trading of stocks, which has gradually been accepted
by industry practitioners. 	erefore, the power of 
nancial
technology is reshaping the 
nancial market and changing
the format of 
nance.

Over the years, traditional ML methods have shown
strong ability in trend prediction of stock prices [2–16].
In recent years, arti
cial intelligence computing methods
represented by DNN have made a series of major break-
throughs in the 
elds of Natural Language Processing, image
classi
cation, voice translation, and so on. It is noteworthy
that some DNN algorithms have been applied for time series
prediction and quantitative trading [17–34]. However, most
of the previous studies focused on the prediction of the
stock index of major economies in the world ([2, 8, 11, 13,
15–17, 22, 29, 30, 32], etc.) or selecting a few stocks with
limited features according to their own preferences ([8–11, 14,
17, 20, 22, 26, 31], etc.) or not considering transaction cost
([10, 14, 17, 23], etc.), or the period of backtesting is very
short ([2, 8, 9, 11, 17, 20, 22, 27], etc.). Meanwhile, there is
no statistical signi
cance test between dierent algorithms
which were used in stock trading ([8–11, 32], etc.).	at is, the
comparison and evaluation of the various trading algorithms
lack large-scale stocks datasets, considering transaction cost
and statistical signi
cance test.	erefore, the performance of
backtesting may tend to be overly optimistic. In this regard,
we need to clarify two concerns based on a large-scale stock
dataset: (1) whether the trading strategies based on the DNN
models can achieve statistically signi
cant results compared
with the traditional ML algorithms without transaction cost;
(2) how do transaction costs aect trading performance
of the ML algorithm? 	ese problems constitute the main
motivation of this research and they are very important
for quantitative investment practitioners and portfolio man-
agers.	ese solutions of these problems are of great value for
practitioners to do stock trading.

In this paper, we select 424 SPICS and 185 CSICS from
2010 to 2017 as research objects. 	e SPICS and CSICS
represent the industry development of the world’s top two
economies and are attractive to investors around the world.
	e stock symbols are shown in the “Data Availability”. For
each stock in SPICS and CSICS, we construct 44 technical
indicators as shown in the “Data Availability”. 	e label
on the �-th trading day is the symbol for the yield of
the � + 1-th trading day relative to the �-th trading day.
	at is, if the yield is positive, the label value is set to 1,
otherwise 0. For each stock, we choose 44 technical indicators
of 2000 trading days before December 31, 2017, to build
a stock dataset. A�er the dataset of a stock is built, we

choose the walk-forward analysis (WFA) method to train
the ML models step by step. In each step of training, we
use 6 traditional ML methods which are support vector
machine (SVM), random forest (RF), logistic regression (LR),
näıve Bayes model (NB), classi
cation and regression tree
(CART), and eXtreme Gradient Boosting algorithm (XGB)
and 6 DNN models which are widely in the 
eld of text
analysis and voice translation such as Multilayer Perceptron
(MLP), Deep Belief Network (DBN), Stacked Autoencoders
(SAE), Recurrent Neural Network (RNN), Long Short-Term
Memory (LSTM), and Gated Recurrent Unit (GRU) to
train and forecast the trends of stock price based on the
technical indicators. Finally, we use the directional evaluation
indicators such as accuracy rate (AR), precision rate (PR),
recall rate (RR), F1-Score (F1), Area Under Curve (AUC), and
the performance evaluation indicators such as winning rate
(WR), annualized return rate (ARR), annualized Sharpe ratio
(ASR), and maximum drawdown (MDD)) to evaluate the
trading performance of these various algorithms or strategies.

From the experiments, we can
nd that the traditionalML
algorithms have a better performance than DNN algorithms
in all directional evaluation indicators except for PR in
SPICS; in CSICS, DNN algorithms have a better performance
in AR, PR, and F1 expert for RR and AUC. (1) Trading
performance without transaction cost is as follows: the WR
of traditional ML algorithms have a better performance than
those of DNN algorithms in both SPICS and CSICS. 	e
ARR and ASR of all ML algorithms are signi
cantly greater
than those of the benchmark index (S&P 500 index and
CSI 300 index) and BAH strategy; the MDD of all ML
algorithms are signi
cantly greater than that of BAH strategy
and are signi
cantly less than that of the benchmark index.
In all ML algorithms, there are always some traditional ML
algorithms whose trading performance (ARR, ASR, MDD)
can be comparable to the best DNN algorithms. 	erefore,
DNN algorithms are not always the best choice, and the
performance of some traditional ML algorithms has no
signi
cant dierence from that of DNN algorithms; even
those traditional ML algorithms can perform well in ARR
and ASR. (2) Trading performance with transaction cost
is as follows: the trading performance (WR, ARR, ASR,
and MDD) of all machine learning algorithms is decreasing
with the increase of transaction cost as in actual trading
situation. Under the same transaction cost structure, the
performance reductions of DNN algorithms, especially MLP,
DBN, and SAE, are smaller than those of traditional ML
algorithms, which shows that DNN algorithms have stronger
tolerance and risk control ability to the changes of transaction
cost. Moreover, the impact of transparent transaction cost
on SPICS is greater than slippage, while the opposite is
true on CSICS. 	rough multiple comparative analysis of
the dierent transaction cost structures, the performance of
trading algorithms is signi
cantly smaller than that without
transaction cost, which shows that trading performance is
sensitive to transaction cost. 	e contribution of this paper
is that we use nonparametric statistical test methods to
compare dierences in trading performance for dierent
ML algorithms in both cases of transaction cost and no
transaction cost. 	erefore, it is helpful for us to select the
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Figure 1: 	e framework for predicting stock price trends based on ML algorithms.

most suitable algorithm from these ML algorithms for stock
trading both in the US stock market and the Chinese A-share
market.

	e remainder of this paper is organized as follows:
Section 2 describes the architecture of this work. Section 3
gives the parameter settings of these ML models and the
algorithm for generating trading signals based on the ML
models mentioned in this paper. Section 4 gives the direc-
tional evaluation indicators, performance evaluation indi-
cators, and backtesting algorithms. Section 5 uses nonpa-
rameter statistical test methods to analyze and evaluate the
performance of these dierent algorithms in the twomarkets.
Section 6 gives the analysis of impact of transaction cost
on performance of ML algorithms for trading. Section 7
gives some discussions of dierences in trading performance
among dierent algorithms from the perspective of data,
algorithms, transaction cost, and suggestions for algorithmic
trading. Section 8 provides a comprehensive conclusion and
future research directions.

2. Architecture of the Work

	e general framework of predicting the future price trends
of stocks, trading process, and backtesting based on ML
algorithms is shown in Figure 1. 	is article is organized
from data acquisition, data preparation, intelligent learning
algorithm, and trading performance evaluation. In this study,
data acquisition is the 
rst step. Where should we get data
and what so�ware should we use to get data quickly and
accurately are something that we need to consider. In this
paper, we use R language to do all computational procedures.
Meanwhile, we obtain SPICS and CSICS from Yahoo 
nance
and Netease Finance, respectively. Secondly, the task of
data preparation includes ex-dividend/rights for the acquired
data, generating a large number of well-recognized technical
indicators as features, and using max-min normalization to
deal with the features, so that the preprocessed data can
be used as the input of ML algorithms [34]. 	irdly, the
trading signals of stocks are generated by the ML algorithms.
In this part, we train the DNN models and the traditional

ML algorithms by a WFA method; then the trained ML
models will predict the direction of the stocks in a future
time which is considered as the trading signal. Fourthly, we
give some widely used directional evaluation indicators and
performance evaluation indicators and adopt a backtesting
algorithm for calculating the indicators. Finally, we use the
trading signal to implement the backtesting algorithm of
stock daily trading strategy and then apply statistical test
method to evaluate whether there are statistical signi
cant
dierences among the performance of these trading algo-
rithms in both cases of transaction cost and no transaction
cost.

3. ML Algorithms

3.1. ML Algorithms and 	eir Parameter Settings. Given a
training dataset D, the task of ML algorithm is to classify
class labels correctly. In this paper, we will use six traditional
ML models (LR, SVM, CART, RF, BN, and XGB) and six
DNN models (MLP, DBN, SAE, RNN, LSTM, and GRU) as
classi
ers to predict the ups and downs of the stock prices
[34]. 	emain model parameters and training parameters of
these ML learning algorithms are shown in Tables 1 and 2.

InTables 1 and 2, features and class labels are set according
to the input format of various ML algorithms in R language.
Matrix (m, n) represents amatrix withm rows and n columns;
Array (p, m, n) represents a tensor and each layer of the
tensor is Matrix (m, n) and the height of the tensor is p. c
(h1, h2, h3, . . .) represents a vector, where the length of the
vector is the number of hidden layers and the �-th element
of c is the number of neurons of the �-th hidden layer. In
the experiment, � = 250 represents that we use the data of
the past 250 trading days as training samples in each round
of WFA; � = 44 represents that the data of each day has 44
features. In Table 2, the parameters of DNN models such as
activation function, learning rate, batch size, and epoch are
all default values in the algorithms of R programs.

3.2.WFAMethod. WFA [35] is a rolling training method.We
use the latest data instead of all past data to train the model
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Table 1: Main parameter settings of traditional ML algorithms.

Input Features Label Main parameters

LR Matrix(250,44) Matrix(250,1) A speci
cation for the model link function is logit.

SVM Matrix(250,44) Matrix(250,1) 	e kernel function used is Radial Basis kernel; Cost of constraints violation is 1.

CART Matrix(250,44) Matrix(250,1) 	e maximum depth of any node of the 
nal tree is 20; 	e splitting index can be Gini coe�cient.

RF Matrix(250,44) Matrix(250,1) 	e Number of trees is 500; Number of variables randomly sampled as candidates at each split is 7.

BN Matrix(250,44) Matrix(250,1) the prior probabilities of class membership is the class proportions for the training set.

XGB Matrix(250,44) Matrix(250,1) 	e maximum depth of a tree is 10; the max number of iterations is 15; the learning rate is 0.3.

Table 2: Main parameter settings of DNN algorithms.

Input Features Label Learning rate Dimensions of hidden layers Activation function Batch size Epoch

MLP Matrix(250,44) Matrix(250,1) 0.8 c(25,15,10,5) sigmoid 100 3

DBN Matrix(250,44) Matrix(250,1) 0.8 c(25,15,10,5) sigmoid 100 3

SAE Matrix(250,44) Matrix(250,1) 0.8 c(20,10,5) sigmoid 100 3

RNN Array(1,250,44) Array(1,250,1) 0.01 c(10,5) sigmoid 1 1

LSTM Array(1,250,44) Array(1,250,1) 0.01 c(10,5) sigmoid 1 1

GRU Array(1,250,44) Array(1,250,1) 0.01 c(10,5) sigmoid 1 1

and then apply the trainedmodel to implement the prediction
for the out-of-sample data (testing dataset) of the future time
period. A�er that, a new training set, which is the previous
training set walk one step forward, is carried out the training
of the next round. WFA can improve the robustness and the
con
dence of the trading strategy in real-time trading.

In this paper, we useML algorithms and theWFAmethod
to do stock price trend predictions as trading signals. In each
step, we use the data from the past 250 days (one year) as the
training set and the data for the next 5 days (one week) as
the test set. Each stock contains data of 2,000 trading days,
so it takes (2000-250)/5 = 350 training sessions to produce a
total of 1,750 predictions which are the trading signals of daily
trading strategy. 	eWFAmethod is as shown in Figure 2.

3.3. 	e Algorithm Design of Trading Signal. In this part, we
useML algorithms as classi
ers to predict the ups and downs
of the stock in SPICS and CSICS and then use the prediction
results as trading signals of daily trading. We use the WFA
method to train each ML algorithm. We give the generating
algorithm of trading signals according to Figure 2, which is
shown in Algorithm 1.

4. Evaluation Indicators and
Backtesting Algorithm

4.1. Directional Evaluation Indicators. In this paper, we use
ML algorithms to predict the direction of stock price, so
the main task of the ML algorithms is to classify returns.
	erefore, it is necessary for us to use directional evaluation
indicators to evaluate the classi
cation ability of these algo-
rithms.

	e actual label values of the dataset are sequences of
sets {DOWN, UP}. 	erefore, there are four categories of
predicted label values and actual label values, which are
expressed as TU, FU, FD, and TD. TU denotes the number of
UP that the actual label values are UP and the predicted label

Table 3: Confusion matrix of two classi
cation results of ML
algorithm.

Predicted label values

UP DOWN

Actual label values
UP TU FD

DOWN FU TD

values are also UP; FU denotes the number of UP that the
actual label values are DOWN but the predicted label values
are UP; TD denotes the number of DOWN that the actual
label values are DOWN and the predicted label values are
DOWN; FD denotes the number of DOWN that the actual
label values are UP but the predicted label values are DOWN,
as shown in Table 3. Table 3 is a two-dimensional table called
confusionmatrix. It classi
es predicted label values according
to whether predicted label values match real label values. 	e

rst dimension of the table represents all possible predicted
label values and the second dimension represents all real label
values. When predicted label values equal real label values,
they are correct classi
cations. 	e correct prediction label
values lie on the diagonal line of the confusion matrix. In
this paper, what we are concerned about is that when the
direction of stock price is predicted to be UP tomorrow, we
buy the stock at today’s closing price and sell it at tomorrow’s
closing price; when we predict the direction of stock price to
be DOWN tomorrow, we do nothing. So UP is a “positive”
label of our concern.

In most of classi
cation tasks, AR is generally used
to evaluate performance of classi
ers. AR is the ratio of
the number of correct predictions to the total number of
predictions. 	at is as follows.

�� = (�� + �	)
(�� + 
	 + 
� + �	) (1)
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Figure 2:	e schematic diagram of WFA (training and testing).

Input: Stock Symbols
Output: Trading Signals
(1) N=Length of Stock Symbols
(2) L=Length of Trading Days
(3) P=Length of Features
(4) k= Length of Training Dataset for WFA
(5) n= Length of Sliding Window for WFA
(6) for (i in 1: N) {
(7) Stock=Stock Symbols[i]
(8) M=(L-k)/n
(9) Trading Signal=NULL
(10) for (j in 1:M) {
(11) Dataset= Stock[(k+n∗(j-1)):(k+n+n∗(j-1)), 1:(P+1)]
(12) Train=Dataset[1:k,1:(1+P)]
(13) Test= Dataset[(k+1):(k+n),1:P]
(14) Model=ML Algorithm(Train)
(15) Probability=Model(Test)
(16) if (Probability>=0.5) {
(17) Trading Signal0=1
(18) } else {
(19) Trading Signal0=0
(20) }
(21) }
(22) Trading Signal=c (Trading Signal, Trading Signal0)
(23) }
(24) return (Trading Signal)

Algorithm 1: Generating trading signal in R language.
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In this paper, “UP” is the pro
t source of our trading
strategies.	e classi
cation ability ofML algorithm is to eval-
uate whether the algorithms can recognize “UP”. 	erefore,
it is necessary to use PR and RR to evaluate classi
cation
results. 	ese two evaluation indicators are initially applied
in the 
eld of information retrieval to evaluate the relevance
of retrieval results.

PR is a ratio of the number of correctly predicted UP to
all predicted UP. 	at is as follows.

�� = ��
(�� + 
�) (2)

High PR means that ML algorithms can focus on “UP”
rather than “DOWN”.

RR is the ratio of the number of correctly predicted “UP”
to the number of actually labeled “UP”. 	at is as follows.

�� = ��
(�� + 
	) (3)

High RR can capture a large number of “UP” and be
eectively identi
ed. In fact, it is very di�cult to present an
algorithm with high PR and RR at the same time. 	erefore,
it is necessary to measure the classi
cation ability of the
ML algorithm by using some evaluation indicators which
combine PR with RR. F1-Score is the harmonic average of
PR and AR. F1 is a more comprehensive evaluation indicator.
	at is as follows.


1 = 2 ∗ �� ∗ ��
(�� + ��) (4)

Here, it is assumed that theweights of PR andRR are equal
when calculating F1, but this assumption is not always correct.
It is feasible to calculate F1 with dierent weights for PR and
RR, but determining weights is a very di�cult challenge.

AUC is the area under ROC (Receiver Operating Charac-
teristic) curve. ROC curve is o�en used to check the tradeo
between 
nding TU and avoiding FU. Its horizontal axis
is FU rate and its vertical axis is TU rate. Each point on
the curve represents the proportion of TU under dierent
FU thresholds [36]. AUC re�ects the classi
cation ability of
classi
er. 	e larger the value, the better the classi
cation
ability. It is worth noting that two dierent ROC curves may
lead to the same AUC value, so qualitative analysis should be
carried out in combination with the ROC curve when using
AUCvalue. In this paper, we use R language package “ROCR”
to calculate AUC.

4.2. Performance Evaluation Indicator. Performance evalua-
tion indicator is used for evaluating the pro
tability and risk
control ability of trading algorithms. In this paper, we use
trading signals generated by ML algorithms to conduct the
backtesting and apply the WR, ARR, ASR, and MDD to do
the trading performance evaluation [34]. WR is a measure
of the accuracy of trading signals; ARR is a theoretical rate
of return of a trading strategy; ASR is a risk-adjusted return
which represents return from taking a unit risk [37] and the
risk-free return or benchmark is set to 0 in this paper; MDD
is the largest decline in the price or value of the investment
period, which is an important risk assessment indicator.

4.3. Backtesting Algorithm. Using historical data to imple-
ment trading strategy is called backtesting. In research and
the development phase of trading model, the researchers
usually use a new set of historical data to do backtesting. Fur-
thermore, the backtesting period should be long enough,
because a large number of historical data can ensure that the
trading model can minimize the sampling bias of data. We
can get statistical performance of tradingmodels theoretically
by backtesting. In this paper, we get 1750 trading signals for
each stock. If tomorrow’s trading signal is 1, we will buy the
stock at today’s closing price and then sell it at tomorrow’s
closing price; otherwise, we will not do stock trading. Finally,
we get AR, PR, RR, F1, AUC, WR, ARR, ASR, and MDD by
implementing backtesting algorithm based on these trading
signals.

5. Comparative Analysis of
Different Trading Algorithms

5.1. Nonparametric Statistical Test Method. In this part, we
use the backtesting algorithm(Algorithm 2) to calculate the
evaluation indicators of dierent trading algorithms. In order
to test whether there are signi
cant dierences between
the evaluation indicators of dierent ML algorithms, the
benchmark indexes, and the BAH strategies, it is necessary
to use analysis of variance and multiple comparisons to give
the answers. 	erefore, we propose the following nine basic
hypotheses for signi
cance test in which Hja ( = 1, 2, 3, 4,
5, 6, 7, 8, 9) are the null hypothesis, and the corresponding
alternative assumptions areHjb ( = 1, 2, 3, 4, 5, 6, 7, 8, 9).	e
level of signi
cance is 0.05.

For any evaluation indicator  ∈ {��, ��, ��, 
1, ���,
��,���, ���,�		} and any trading strategy � ∈ {���,
	��, ���, ���, ����, ���, ��, ���, ��,����, �
,
���,���, ����ℎ��� ��!�"}, the null hypothesis a is Hja,
alternative hypotheses b is Hjb ( = 1, 2, 3, 4, 5, 6, 7, 8, 9
represent AR, PR, RR, F1, AUC, WR, ARR, ASR, MDD,
respectively.).

Hja: the evaluation indicator j of all strategies are the
same

Hjb: the evaluation indicator j of all strategies are not
the same

It is worth noting that any evaluation indicator of all
trading algorithm or strategy does not conform to the basic
hypothesis of variance analysis.	at is, it violates the assump-
tion that the variances of any two groups of samples are the
same and each group of samples obeys normal distribution.
	erefore, it is not appropriate to use t-test in the analysis
of variance, and we should take the nonparametric statistical
test method instead. In this paper, we use the Kruskal-Wallis
rank sum test [38] to carry out the analysis of variance. If the
alternative hypothesis is established, we will need to further
apply the Nemenyi test [39] to do the multiple comparisons
between trading strategies.

5.2. Comparative Analysis of Performance of Di�erent Trading
Strategies in SPICS. Table 4 shows the average value of
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Input: TS #TS is trading signals of a stock.
Output: AR, PR, RR, F1, AUC, WR, ARR, ASR, MDD
(1) N=length of Stock Code List #424 SPICS, and 185 CSICS.
(2) B

t
=Benchmark Index [“Closing Price”] # B is the closing price of benchmark index.

(3) WR=NULL; ARR=NULL; ASR=NULL; MDD=NULL
(4) for (i in 1: N) {
(5) Stock Data=Stock Code List[i]
(6) P

t
=Stock Data [“Closing Price”]

(7) Label
t
= Stock Data [“Label”]

(8) BDRR
t
=(B

t
-B

t-1)/ Bt-1 # BDRR is the daily return rate of benchmark index.
(9) DRR

t
= (P

t
-P

t-1)/Pt-1 #DRR is daily return rate.	at is daily return rate of BAH strategy.
(10) TDRR

t
=lag (TS

t
)∗DRR

t
#TDRR is the daily return through trading.

(11) Table=Confusion Matrix(TS, Label)
(12) AR[i]=sum(adj(Table))/sum(Table)
(13) PR[i]=Table[2, 2]/sum(Table[, 2])
(14) RR[i]=Table[2, 2]/sum(Table[2, ])
(15) F1=2∗PR[i]∗RR[i]/(PR[i]+RR[i])
(16) Pred=prediction (TS, Label)
(17) AUC[i]=performance (Pred, measure=“auc”)@y.values[[1]]
(18) WR[i]=sum (TDRR>0)/sum(TDRR ̸=0)
(19) ARR[i]=Return.annualized (TDRR)# TDRR, BDRR, or DRR can be used.
(20) ASR[i]=SharpeRatio.annualized (TDRR)# TDRR, BDRR, or DRR can be used.
(21) MDD[i]=maxDrawDown (TDRR)# TDRR, BDRR, or DRR can be used.
(22) AR=c (AR, AR[i])
(23) PR=c (PR, PR[i])
(24) RR=c (RR, RR[i])
(25) F1=c (F1, F1[i])
(26) AUC=c (AUC, AUC[i])
(27) WR=c (WR, WR[i])
(28) ARR=c (ARR, ARR[i])
(29) ASR=c (ASR, ASR[i])
(30) MDD=c (MDD, MDD[i])
(31) }
(32) Performance=cbind (AR, PR, RR, F1, AUC, WR, ARR, ASR, MDD)
(33) return (Performance)

Algorithm 2: Backtesting algorithm of daily trading strategy in R language.

Table 4: Trading performance of dierent trading strategies in the SPICS. Best performance of all trading strategies is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB

AR — — 0.5205 0.5189 0.5201 0.5025 0.5013 0.4986 0.6309 0.5476 0.6431 0.6491 0.6235 0.6600

PR — — 0.7861 0.7764 0.7781 0.5427 0.5121 0.4911 0.6514 0.5270 0.6595 0.6474 0.6733 0.6738

RR — — 0.5274 0.5263 0.5273 0.5245 0.5253 0.5239 0.6472 0.5762 0.6599 0.6722 0.6325 0.6767

F1 — — 0.6258 0.6217 0.6229 0.5332 0.5183 0.5065 0.6491 0.5480 0.6595 0.6591 0.6517 0.6751

AUC — — 0.5003 0.5001 0.5002 0.4997 0.5005 0.4992 0.6295 0.5489 0.6418 0.6491 0.6199 0.6590

WR 0.5450 0.5235 0.5676 0.5680 0.5683 0.5843 0.5825 0.5844 0.5266 0.5930 0.5912 0.5859 0.5831 0.5891

ARR 0.1227 0.1603 0.3333 0.3298 0.3327 0.2945 0.2921 0.2935 0.3319 0.2976 0.3134 0.2944 0.3068 0.3042

ASR 0.8375 0.6553 1.5472 1.5415 1.5506 1.5768 1.5575 1.5832 1.3931 1.6241 1.6768 1.5822 1.6022 1.6302

MDD 0.1939 0.4233 0.3584 0.3585 0.3547 0.3403 0.3489 0.3381 0.3413 0.3428 0.3284 0.3447 0.3429 0.3338

various trading algorithms in AR, PR, RR, F1, AUC, WR,
ARR, ASR, and MDD. We can see that the AR, RR, F1, and
AUC of XGB are the greatest in all trading algorithms. 	e
WR of NB is the greatest in all trading strategies. 	e ARR
of MLP is the greatest in all trading strategies including the
benchmark index (S&P 500 index) and BAH strategy. 	e
ASR of RF is the greatest in all trading strategies. 	eMDDof
the benchmark index is the smallest in all trading strategies.

It is worth noting that the ARR and ASR of all ML algorithms
are greater than those of BAH strategy and the benchmark
index.

(1) 	rough the hypothesis test analysis of H1a and H1b,
we can obtain p value<2.2e-16.

	erefore, there are statistically signi
cant dierences
between the AR of all trading algorithms. 	erefore, we need
to make multiple comparative analysis further, as shown in
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Table 5:Multiple comparison analysis between theAR of any two trading algorithms.	ep value of the two trading strategieswith signi
cant
dierence is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

DBN 1.0000

SAE 1.0000 1.0000

RNN 0.0000 0.0000 0.0000

LSTM 0.0000 0.0000 0.0000 1.0000

GRU 0.0000 0.0000 0.0000 0.8273 0.9811

CART 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

NB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0232 0.0000

LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7649

SVM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6057 0.0000 0.0000 0.0000

XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.2010 0.0000

Table 6:Multiple comparison analysis between the PR of any two trading algorithms.	ep value of the two trading strategieswith signi
cant
dierence is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

DBN 0.9999

SAE 1.0000 1.0000

RNN 0.0000 0.0000 0.0000

LSTM 0.0000 0.0000 0.0000 0.0034

GRU 0.0000 0.0000 0.0000 0.0000 0.1472

CART 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

NB 0.0000 0.0000 0.0000 0.7869 0.5786 0.0000 0.0000

RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8056 0.0000

LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9997 0.0000 0.2626

SVM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 0.3104 0.0000

XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0491 0.0000 0.9999

Table 5. 	e number in the table is a p value of any two algo-
rithms of Nemenyi test. When p value<0.05, we think that
the two trading algorithms have a signi
cant dierence,
otherwise we cannot deny the null assumption that the mean
values of AR of the two algorithms are equal. From Tables 5
and 4, we can see that the AR of all DNN models are signif-
icantly lower than those of all traditional MLmodels.	eAR
of MLP, DBN, and SAE are signi
cantly greater than those of
RNN, LSTM, and GRU. 	ere are no signi
cant dierences
among the AR of MLP, DBN, and SAE. 	ere are no sig-
nificant dierences among the AR of RNN, LSTM, and GRU.

(2) 	rough the hypothesis test analysis of H2a and H2b,
we can obtain p value<2.2e-16. So, there are statistically sig-
ni
cant dierences between the PR of all trading algorithms.
	erefore, we need to make multiple comparative analysis
further, as shown in Table 6. 	e number in the table is a p
value of any two algorithms of Nemenyi test. From Tables 6
and 4, we can see that the PR of MLP, DBN, and SAE are
signi
cantly greater than that of other trading algorithms.
	e PR of LSTM is not signi
cantly dierent from that of
GRU and NB.	e PR of GRU is signi
cantly lower than that
of all traditional ML algorithms. 	e PR of NB is signi
cantly
lower than that of other traditional ML algorithms.

(3) 	rough the hypothesis test analysis of H3a and H3b,
we can obtain p value<2.2e-16. So, there are statistically

signi
cant dierences between the RR of all trading algo-
rithms 	erefore, we need to make multiple comparative
analysis further, as shown in Table 7. 	e number in the
table is a p value of any two algorithms of Nemenyi test.
From Tables 7 and 4, we can see that there is no signi
cant
dierence among the RR of all DNN models, but the RR
of any DNN model is signi
cantly lower than that of all
traditional ML models. 	e RR of NB is signi
cantly lower
than that of other traditional ML algorithms. 	e RR of
CART is signi
cantly lower than that of other traditional ML
algorithms except for NB.

(4) 	rough the hypothesis test analysis of H4a and H4b,
we can obtain p value<2.2e-16. So, there are statistically sig-
ni
cant dierences between the F1 of all trading algorithms.
	erefore, we need to make multiple comparative analysis
further, as shown in Table 8. 	e number in the table is a p
value of any two algorithms of Nemenyi test. From Tables
8 and 4, we can see that there is no signi
cant dierence
among the F1 of MLP, DBN, and SAE. 	e F1 of MLP, DBN,
and SAE are signi
cantly greater than that of RNN, LSTM,
GRU, andNB, but are signi
cantly smaller than that of RF, LR,
SVM, and XGB.	e F1 of GRU and LSTMhave no signi
cant
dierence, but they are signi
cantly smaller than that of all
traditional ML algorithms. 	e F1 of XGB is signi
cantly
greater than that of all other trading algorithms.
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Table 7:Multiple comparison analysis between the RR of any two trading algorithms.	ep value of the two trading strategieswith signi
cant
dierence is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

DBN 1.0000

SAE 1.0000 1.0000

RNN 1.0000 1.0000 1.0000

LSTM 1.0000 1.0000 1.0000 1.0000

GRU 0.9999 1.0000 0.9999 1.0000 1.0000

CART 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

NB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0485 0.0000

LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0555

SVM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0197 0.0000 0.0000 0.0000

XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.9958 0.0000

Table 8:Multiple comparison analysis between the F1 of any two trading algorithms. 	e p value of the two trading strategies with signi
cant
dierence is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

DBN 0.9998

SAE 1.0000 1.0000

RNN 0.0000 0.0000 0.0000

LSTM 0.0000 0.0000 0.0000 0.0810

GRU 0.0000 0.0000 0.0000 0.0000 0.3489

CART 0.0861 0.0061 0.0117 0.0000 0.0000 0.0000

NB 0.0000 0.0000 0.0000 0.4635 0.0000 0.0000 0.0000

RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0078 0.0000

LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0173 0.0000 1.0000

SVM 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.9797 0.0000 0.3336 0.4825

XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 9: Multiple comparison analysis between the AUC of any two trading algorithms. 	e p value of the two trading strategies with
signi
cant dierence is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

DBN 1.0000

SAE 1.0000 1.0000

RNN 1.0000 1.0000 1.0000

LSTM 1.0000 1.0000 1.0000 0.9999

GRU 1.0000 1.0000 1.0000 1.0000 0.9975

CART 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

NB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0270 0.0000

LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5428

SVM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3125 0.0000 0.0000 0.0000

XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.3954 0.0000

(5) 	rough the hypothesis test analysis of H5a and H5b,
we can obtain p value<2.2e-16. So, there are statistically
signi
cant dierences between the AUC of all trading algo-
rithms. 	erefore, we need to make multiple comparative
analysis further, as shown in Table 9. 	e number in the
table is a p value of any two algorithms of Nemenyi test.
From Tables 9 and 4, we can see that there is no signi
cant
dierence among the AUC of all DNN models. 	e AUC of

all DNN models are signi
cantly smaller than that of any
traditional ML model.

(6) 	rough the hypothesis test analysis of H6a and H6b,
we can obtain p value<2.2e-16. So, there are statistically sig-
ni
cant dierences between theWRof all trading algorithms.
	erefore, we need to make multiple comparative analysis
further, as shown in Table 10. 	e number in the table is p
value of any two algorithms of Nemenyi test. From Tables 4
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Table 11:Multiple comparison analysis between theARRof any two trading strategies.	e p value of the two trading strategieswith signi
cant
dierence is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

BAH 0.0000

MLP 0.0000 0.0000

DBN 0.0000 0.0000 1.0000

SAE 0.0000 0.0000 1.0000 1.0000

RNN 0.0000 0.0000 0.0001 0.0006 0.0001

LSTM 0.0000 0.0000 0.0000 0.0002 0.0000 1.0000

GRU 0.0000 0.0000 0.0001 0.0008 0.0001 1.0000 1.0000

CART 0.0000 0.0000 1.0000 1.0000 1.0000 0.0001 0.0000 0.0001

NB 0.0000 0.0000 0.0021 0.0094 0.0022 1.0000 0.9998 1.0000 0.0018

RF 0.0000 0.0000 0.7978 0.9524 0.8036 0.1685 0.0874 0.1962 0.7745 0.5861

LR 0.0000 0.0000 0.0002 0.0012 0.0002 1.0000 1.0000 1.0000 0.0002 1.0000 0.2408

SVM 0.0000 0.0000 0.2375 0.4806 0.2427 0.7029 0.5214 0.7457 0.2178 0.9778 0.9999 0.8015

XGB 0.0000 0.0000 0.0674 0.1856 0.0694 0.9423 0.8466 0.9576 0.0600 0.9996 0.9905 0.9739 1.0000

Table 12:Multiple comparison analysis between theASRof any two trading strategies.	e p value of the two trading strategieswith signi
cant
dierence is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

BAH 0.9667

MLP 0.0000 0.0000

DBN 0.0000 0.0000 1.0000

SAE 0.0000 0.0000 1.0000 1.0000

RNN 0.0000 0.0000 0.8763 0.7617 0.8998

LSTM 0.0000 0.0000 0.9922 0.9701 0.9949 1.0000

GRU 0.0000 0.0000 0.6124 0.4563 0.6537 1.0000 0.9996

CART 0.0000 0.0000 0.0002 0.0005 0.0002 0.0000 0.0000 0.0000

NB 0.0000 0.0000 0.0467 0.0233 0.0557 0.9529 0.7037 0.9971 0.0000

RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0291 0.0042 0.1062 0.0000 0.8010

LR 0.0000 0.0000 0.7506 0.6025 0.7859 1.0000 1.0000 1.0000 0.0000 0.9872 0.0602

SVM 0.0000 0.0000 0.1759 0.1020 0.2010 0.9982 0.9399 1.0000 0.0000 1.0000 0.4671 0.9998

XGB 0.0000 0.0000 0.0099 0.0044 0.0122 0.7548 0.3776 0.9470 0.0000 1.0000 0.9681 0.8791 0.9997

and 10, we can see that the WR of MLP, DBN, and SAE have
no signi
cant dierence, but they are signi
cantly higher
than that of BAH and benchmark index, and signi
cantly
lower than that of other trading algorithms. 	eWR of RNN,
LSTM, and GRU have no signi
cant dierence, but they are
signi
cantly higher than that of CART and signi
cantly lower
than that of NB and RF. 	e WR of LR is not signi
cantly
dierent from that of RF, SVM, and XGB.

(7) 	rough the analysis of the hypothesis test of H7a
and H7b, we obtain p value<2.2e-16. 	erefore, there are
signi
cant dierences between the ARR of all trading strate-
gies including the benchmark index and BAH. We need
to do further multiple comparative analysis, as shown in
Table 11. From Tables 4 and 11, we can see that the ARR of
the benchmark index and BAH are signi
cantly lower than
that of all ML algorithms. 	e ARR of MLP, DBN, and SAE
are signi
cantly greater than that of RNN, LSTM, GRU, NB,
and LR, but not signi
cantly dierent from that of CART,
RF, SVM, and XGB; there is no signi
cant dierence between
the ARR of MLP, DBN, and SAE. 	e ARR of RNN, LSTM,

and GRU are signi
cantly less than that of CART, but they
are not signi
cantly dierent from that of other traditional
ML algorithms. In all traditional ML algorithms, the ARR of
CART is signi
cantly greater than that of NB and LR, but,
otherwise, there is no signi
cant dierence between ARR of
any other two algorithms.

(8) 	rough the hypothesis test analysis of H8a and H8b,
we obtain p value<2.2e-16. 	erefore, there are signi
cant
dierences between ASR of all trading strategies including
the benchmark index and BAH. 	e results of our multiple
comparative analysis are shown in Table 12. From Tables 4
and 12, we can see that the ASR of the benchmark index and
BAH are signi
cantly smaller than that of all ML algorithms.
	e ASR of MLP and DBN are signi
cantly greater than that
of CART and are signi
cantly smaller than that of NB, RF,
and XGB, but there is no signi
cant dierence between MLP,
DBN, and other algorithms. 	e ASR of SAE is signi
cantly
greater than that of CART and signi
cantly less than that of
RF and XGB, but there is no signi
cant dierence between
SAE and other algorithms. 	e ASR of RNN and LSTM
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Table 13: Multiple comparison analysis between the MDD of any two trading strategies. 	e p value of the two trading strategies with
signi
cant dierence is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

BAH 0.0000

MLP 0.0000 0.0052

DBN 0.0000 0.0031 1.0000

SAE 0.0000 0.0012 1.0000 1.0000

RNN 0.0000 0.0000 0.1645 0.2243 0.3556

LSTM 0.0000 0.0000 0.6236 0.7173 0.8511 1.0000

GRU 0.0000 0.0000 0.0245 0.0381 0.0760 1.0000 0.9860

CART 0.0000 0.0000 0.1496 0.2057 0.3309 1.0000 1.0000 1.0000

NB 0.0000 0.0000 0.0786 0.1136 0.1999 1.0000 0.9994 1.0000 1.0000

RF 0.0000 0.0000 0.0002 0.0004 0.0012 0.8964 0.4248 0.9980 0.9109 0.9713

LR 0.0000 0.0000 0.5451 0.6428 0.7935 1.0000 1.0000 0.9933 1.0000 0.9998 0.5015

SVM 0.0000 0.0000 0.2433 0.3194 0.4734 1.0000 1.0000 0.9999 1.0000 1.0000 0.8155 1.0000

XGB 0.0000 0.0000 0.0103 0.0167 0.0360 0.9998 0.9462 1.0000 0.9999 1.0000 0.9998 0.9685 0.9989

Table 14: Trading performance of dierent trading strategies in CSICS. Best performance of all trading strategies is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB

AR — — 0.5175 0.5167 0.5163 0.5030 0.4993 0.4993 0.5052 0.5084 0.5090 0.5084 0.5112 0.5087

PR — — 0.7548 0.7436 0.7439 0.5414 0.4964 0.4956 0.5022 0.5109 0.5128 0.4967 0.5695 0.5026

RR — — 0.5252 0.5250 0.5248 0.5234 0.5224 0.5223 0.5279 0.5307 0.5311 0.5318 0.5295 0.5315

F1 — — 0.6150 0.6108 0.6108 0.5320 0.5086 0.5082 0.5143 0.5192 0.5214 0.5132 0.5483 0.5164

AUC — — 0.5027 0.5024 0.5020 0.5006 0.4995 0.4996 0.5049 0.5078 0.5082 0.5086 0.5074 0.5085

WR 0.5222 0.5090 0.5559 0.5565 0.5564 0.5681 0.5720 0.5717 0.5153 0.5317 0.5785 0.5809 0.5716 0.5803

ARR 0.0633 0.2224 0.5731 0.5704 0.5678 0.5248 0.5165 0.5113 0.5534 0.6125 0.4842 0.5095 0.5004 0.4938

ASR 0.2625 0.4612 1.4031 1.4006 1.3935 1.4880 1.5422 1.5505 1.2232 1.1122 1.4379 1.5582 1.4231 1.4698

MDD 0.4808 0.6697 0.6082 0.6086 0.6130 0.5648 0.5456 0.5429 0.5694 0.7469 0.5695 0.5410 0.5775 0.5632

are signi
cantly greater than that of CART and signi
cantly
less than that of RF, but there is no signi
cant dierence
betweenRNN, LSTM, and other algorithms.	eASRofGRU
is signi
cantly greater than that of CART, but there is no
signi
cant dierence between GRU and other traditional ML
algorithms. In all traditional ML algorithms, the ASR of all
algorithms are signi
cantly greater than that of CART, but
otherwise, there is no signi
cant dierence between ASR of
any other two algorithms.

(9)	rough the hypothesis test analysis of H9a and H9b,
we obtain p value<2.2e-16. 	erefore, there are signi
cant
dierences between MDD of trading strategies including
the benchmark index and the BAH. 	e results of multiple
comparative analysis are shown in Table 13. From Tables
4 and 13, we can see that MDD of any ML algorithm is
signi
cantly greater than that of the benchmark index but
signi
cantly smaller than that of BAH strategy. 	e MDD
of MLP and DBN are signi
cantly smaller than those of
GRU, RF, and XGB, but there is no signi
cant dierence
between MLP, DBN, and other algorithms. 	e MDD of
SAE is signi
cantly smaller than that of XGB, but there is
no signi
cant dierence between SAE and other algorithms.
Otherwise, there is no signi
cant dierence betweenMDDof
any other two algorithms.

In a word, the traditional ML algorithms such as NB,
RF, and XGB have good performance in most directional

evaluation indicators such as AR, PR, and F1. 	e DNN
algorithms such as MLP have good performance in PR and
ARR. In traditional ML algorithms, the ARR of CART, RF,
SVM, and XGB are not signi
cantly dierent from that of
MLP, DBN, and SAE; the ARR of CART is signi
cantly
greater than that of LSTM, GRU, and RNN, but otherwise
the ARR of all traditional ML algorithms are not signi
cantly
worse than that of LSTM, GRU, and RNN. 	e ASR of all
traditional ML algorithms except CART are not signi
cantly
worse than that of the six DNNmodels; even the ASR of NB,
RF, and XGB are signi
cantly greater than that of some DNN
algorithms. 	e MDD of RF and XGB are signi
cantly less
that of MLP, DBN, and SAE; the MDD of all traditional ML
algorithms are not signi
cantly dierent from that of LSTM,
GRU, and RNN.	e ARR and ASR of all ML algorithms are
signi
cantly greater than that of BAH and the benchmark
index; the MDD of any ML algorithm is signi
cantly greater
than that of the benchmark index, but signi
cantly less than
that of BAH strategy.

5.3. Comparative Analysis of Performance of Di�erent Trading
Strategies in CSICS. 	e analysis methods of this part are
similar to Section 5.2. From Table 14, we can see that the AR,
PR, and F1 of MLP are the greatest in all trading algorithms.
	e RR, AUC, WR, and ASR of LR are the greatest in
all trading algorithms, respectively. 	e ARR of NB is the
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Table 15:Multiple comparison analysis between theARof any two trading algorithms.	ep value of the two trading strategieswith signi
cant
dierence is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

DBN 1.0000

SAE 1.0000 1.0000

RNN 0.0000 0.0000 0.0000

LSTM 0.0000 0.0000 0.0000 0.1857

GRU 0.0000 0.0000 0.0000 0.4439 1.0000

CART 0.0000 0.0000 0.0000 0.9765 0.0024 0.0131

NB 0.0000 0.0001 0.0002 0.0022 0.0000 0.0000 0.1810

RF 0.0000 0.0002 0.0005 0.0007 0.0000 0.0000 0.0941 1.0000

LR 0.0000 0.0000 0.0000 0.0076 0.0000 0.0000 0.3454 1.0000 1.0000

SVM 0.0217 0.0766 0.1309 0.0000 0.0000 0.0000 0.0003 0.8314 0.9352 0.6360

XGB 0.0000 0.0001 0.0001 0.0025 0.0000 0.0000 0.1930 1.0000 1.0000 1.0000 0.8168

Table 16:Multiple comparison analysis between the PRof any two trading algorithms.	ep value of the two trading strategieswith signi
cant
dierence is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

DBN 1.0000

SAE 1.0000 1.0000

RNN 0.0000 0.0000 0.0000

LSTM 0.0000 0.0000 0.0000 0.0000

GRU 0.0000 0.0000 0.0000 0.0000 1.0000

CART 0.0000 0.0000 0.0000 0.0000 0.9906 0.9781

NB 0.0000 0.0000 0.0000 0.0000 0.1716 0.1234 0.8940

RF 0.0000 0.0000 0.0000 0.0000 0.0319 0.0205 0.5271 1.0000

LR 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.9951 0.2099 0.0422

SVM 0.0000 0.0000 0.0000 0.1157 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

XGB 0.0000 0.0000 0.0000 0.0000 0.9922 0.9811 1.0000 0.8836 0.5086 0.9960 0.0000

highest in all trading strategies. 	e MDD of CSI 300 index
(benchmark index) is the smallest in all trading strategies.
	eWR,ARR, and ASR of all ML algorithms are greater than
those of the benchmark index and BAH strategy.

(1) 	rough the hypothesis test analysis of H1a and H1b,
we can obtain p value<2.2e-16.	erefore, there are signi
cant
dierences between the AR of all trading algorithms. 	ere-
fore, we need to do further multiple comparative analysis and
the results are shown in Table 15.	e number in the table is a
p value of any two algorithms of Nemenyi test. FromTables 14
and 15, we can see that the AR ofMLP,DBN, and SAE have no
signi
cant dierence, but they are signi
cantly greater than
that of all other trading algorithms except for SVM. 	e AR
of GRU is signi
cantly smaller than that of all traditional ML
algorithms. 	ere is no signi
cant dierence between the AR
of any two traditional ML algorithms except for CART and
SVM.

(2) 	rough the hypothesis test analysis of H2a and H2b,
we can obtain p value<2.2e-16.	erefore, there are signi
cant
dierences between the PR of all trading algorithms. 	ere-
fore, we need to do further multiple comparative analysis and
the results are shown in Table 16. 	e number in the table
is a p value of any two algorithms of Nemenyi test. From
Tables 14 and 16, we can see that the PR of MLP, DBN, and

SAE are signi
cantly greater than that of all other trading
algorithms, and the PR of MLP, DBN, and SAE have no
signi
cant dierence. 	e PR of SVM is signi
cantly greater
than that of all other traditional ML algorithms which have
no signi
cant dierence between any two algorithms except
for SVM. 	e PR of RNN is signi
cantly greater than that
of all traditional ML algorithms except for SVM. 	e PR of
GRU and LSTM are not signi
cantly dierent from that of all
traditional ML algorithms except for SVM and LR.

(3) 	rough the hypothesis test analysis of H3a and H3b,
we can obtain p value<2.2e-16.	erefore, there are signi
cant
dierences between the RR of all trading algorithms. 	ere-
fore, we need to do further multiple comparative analysis and
the results are shown in Table 17. 	e number in the table is
a p value of any two algorithms of Nemenyi test. From Tables
14 and 17, we can see that the RR of all DNN models are
not signi
cantly dierent. 	ere is no signi
cant dierence
among the RR of all traditional ML algorithms. 	e RR of
RNN, GRU, and LSTM are signi
cantly smaller than that of
any traditional ML algorithm except for CART.

(4) 	rough the hypothesis test analysis of H4a and H4b,
we can obtain p value<2.2e-16.	erefore, there are signi
cant
dierences between the F1 of all trading algorithms. 	ere-
fore, we need to do further multiple comparative analysis and
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Table 17:Multiple comparison analysis between the RRof any two trading algorithms.	ep value of the two trading strategieswith signi
cant
dierence is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

DBN 1.0000

SAE 1.0000 1.0000

RNN 0.9996 0.9996 1.0000

LSTM 0.9309 0.9314 0.9781 0.9999

GRU 0.9660 0.9663 0.9916 1.0000 1.0000

CART 0.9744 0.9742 0.9225 0.5809 0.1509 0.2138

NB 0.1093 0.1088 0.0574 0.0075 0.0004 0.0007 0.8861

RF 0.0537 0.0534 0.0260 0.0028 0.0001 0.0002 0.7544 1.0000

LR 0.0330 0.0328 0.0152 0.0015 0.0001 0.0001 0.6498 1.0000 1.0000

SVM 0.3444 0.3434 0.2170 0.0434 0.0033 0.0059 0.9920 1.0000 0.9998 0.9991

XGB 0.0193 0.0192 0.0085 0.0007 0.0000 0.0000 0.5344 1.0000 1.0000 1.0000 0.9960

Table 18: Multiple comparison analysis between the F1 of any two trading algorithms.	ep value of the two trading strategieswith signi
cant
dierence is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

DBN 1.0000

SAE 1.0000 1.0000

RNN 0.0000 0.0000 0.0000

LSTM 0.0000 0.0000 0.0000 0.0000

GRU 0.0000 0.0000 0.0000 0.0000 1.0000

CART 0.0000 0.0000 0.0000 0.0000 0.7211 0.6670

NB 0.0000 0.0000 0.0000 0.0136 0.0132 0.0099 0.8664

RF 0.0000 0.0000 0.0000 0.0786 0.0016 0.0011 0.5162 1.0000

LR 0.0000 0.0000 0.0000 0.0000 0.9440 0.9208 1.0000 0.5675 0.2181

SVM 0.0000 0.0000 0.0000 0.0178 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

XGB 0.0000 0.0000 0.0000 0.0001 0.3138 0.2679 1.0000 0.9937 0.8849 0.9964 0.0000

Table 19: Multiple comparison analysis between the AUC of any two trading algorithms. 	e p value of the two trading strategies with
signi
cant dierence is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

DBN 1.0000

SAE 0.9999 1.0000

RNN 0.9945 0.9985 1.0000

LSTM 0.5273 0.6382 0.9259 0.9937

GRU 0.8448 0.9102 0.9958 1.0000 1.0000

CART 0.6921 0.5835 0.2356 0.0801 0.0014 0.0096

NB 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.2616

RF 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.2002 1.0000

LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0930 1.0000 1.0000

SVM 0.0027 0.0014 0.0001 0.0000 0.0000 0.0000 0.6454 1.0000 0.9999 0.9980

XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1257 1.0000 1.0000 1.0000 0.9993

the results are shown in Table 18.	e number in the table is a
p value of any two algorithms of Nemenyi test. FromTables 14
and 18, we can see that the F1 of MLP, DBN, and SAE have no
signi
cant dierence, but they are signi
cantly greater than
that of all other trading algorithms. 	ere is no signi
cant
dierence among traditionalML algorithms except SVM, and
the F1 of SVM is signi
cantly greater than that of all other
traditional ML algorithms.

(5) 	rough the hypothesis test analysis of H5a and H5b,
we can obtain p value<2.2e-16.	erefore, there are signi
cant
dierences between theAUCof all trading algorithms.	ere-
fore, we need to do further multiple comparative analysis and
the results are shown in Table 19. 	e number in the table is
a p value of any two algorithms of Nemenyi test. From Tables
14 and 19, we can see that the AUC of all DNN models have
no signi
cant dierence. 	ere is no signi
cant dierence
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Table 20: Multiple comparison analysis between the WR of any two trading algorithms. 	e p value of the two trading strategies with
signi
cant dierence is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

BAH 0.4117

MLP 0.0000 0.0000

DBN 0.0000 0.0000 1.0000

SAE 0.0000 0.0000 1.0000 1.0000

RNN 0.0000 0.0000 0.0002 0.0006 0.0000

LSTM 0.0000 0.0000 0.0000 0.0000 0.0000 0.9772

GRU 0.0000 0.0000 0.0000 0.0000 0.0000 0.9911 1.0000

CART 0.9931 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

NB 0.0031 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0205 0.6437 0.5358 0.0000 0.0000

LR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.1611 0.1105 0.0000 0.0000 1.0000

SVM 0.0000 0.0000 0.0000 0.0000 0.0000 0.9914 1.0000 1.0000 0.0000 0.0000 0.5322 0.1090

XGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 21:Multiple comparison analysis between theARRof any two trading strategies.	epvalue of the two trading strategieswith signi
cant
dierence is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

BAH 0.0007

MLP 0.0000 0.0000

DBN 0.0000 0.0000 1.0000

SAE 0.0000 0.0000 1.0000 1.0000

RNN 0.0000 0.0000 0.4790 0.6355 0.7182

LSTM 0.0000 0.0000 0.2512 0.3806 0.4630 1.0000

GRU 0.0000 0.0000 0.2235 0.3454 0.4249 1.0000 1.0000

CART 0.0000 0.0000 0.8301 0.9217 0.9542 1.0000 0.9999 0.9998

NB 0.0000 0.0000 1.0000 1.0000 1.0000 0.2920 0.1295 0.1125 0.6517

RF 0.0000 0.0000 0.0020 0.0048 0.0076 0.8705 0.9735 0.9806 0.5393 0.0006

LR 0.0000 0.0000 0.2058 0.3222 0.3995 1.0000 1.0000 1.0000 0.9996 0.1019 0.9845

SVM 0.0000 0.0000 1.0000 0.0803 0.1114 0.9993 1.0000 1.0000 0.9659 0.0165 0.9999 1.0000

XGB 0.0000 0.0000 1.0000 0.0333 0.0484 0.9916 0.9997 0.9998 0.8789 0.0057 1.0000 0.9999 1.0000

between the AUC of all traditional ML algorithms. 	e
AUC of all traditional ML algorithms except for CART are
signi
cantly greater than that of any DNN model. 	ere is
no signi
cant dierence among the AUC ofMLP, SAE, DBN,
RNN, and CART.

(6)	rough the hypothesis test analysis of H6a and H6b,
we can obtain p value<2.2e-16.	erefore, there are signi
cant
dierences between the WR of all trading algorithms. 	ere-
fore, we need to do further multiple comparative analysis and
the results are shown in Table 20. 	e number in the table is
a p value of any two algorithms of Nemenyi test. From Tables
14 and 20, we can see that the WR of BAH and benchmark
index have no signi
cant dierence, but they are signi
cantly
smaller than that of anyML algorithm.	eWRofMLP,DBN,
and SAE are signi
cantly smaller than that of the other trad-
ing algorithms, but there is no signi
cant dierence between
the WR of MLP, DBN, and SAE. 	e WR of LSTM and
GRU have no signi
cant dierence, but they are signi
cantly
smaller than that of XGB and signi
cantly greater than that of

CART and NB. In traditional MLmodels, the WR of NB and
CART are signi
cantly smaller than that of other algorithms.
	e WR of XGB is signi
cantly greater than that of all other
ML algorithms.

(7)	rough the analysis of the hypothesis test of H7a and
H7b, we obtain p value<2.2e-16.

	erefore, there are signi
cant dierences between the
ARR of all trading strategies including the benchmark index
and BAH strategy. 	erefore, we need to do further multiple
comparative analysis and the results are shown in Table 21.
FromTables 14 and 21, we can see that ARR of the benchmark
index and BAH are signi
cantly smaller than that of all
trading algorithms. 	e ARR of MLP is signi
cantly higher
than that of RF, but there is no signi
cant dierence between
MLP and other algorithms. 	e ARR of SAE and DBN are
signi
cantly higher than that of RF and XGB, but they are
not signi
cantly dierent fromARR of other algorithms. 	e
ARR of NB is signi
cantly higher than that of RF, SVM,
and XGB. But, otherwise, there is no signi
cant dierence
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Table 22:Multiple comparison analysis between theASRof any two trading strategies.	e p value of the two trading strategieswith signi
cant
dierence is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

BAH 0.8877

MLP 0.0000 0.0000

DBN 0.0000 0.0000 1.0000

SAE 0.0000 0.0000 1.0000 1.0000

RNN 0.0000 0.0000 0.9099 0.8862 0.8114

LSTM 0.0000 0.0000 0.3460 0.3080 0.2239 0.9999

GRU 0.0000 0.0000 0.2132 0.1853 0.1270 0.9981 1.0000

CART 0.0000 0.0000 0.0158 0.0195 0.0327 0.0000 0.0000 0.0000

NB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7298

RF 0.0000 0.0000 1.0000 1.0000 1.0000 0.9968 0.7444 0.5789 0.0018 0.0000

LR 0.0000 0.0000 0.1181 0.1003 0.0650 0.9879 1.0000 1.0000 0.0000 0.0000 0.4044

SVM 0.0000 0.0000 1.0000 1.0000 1.0000 0.9849 0.5952 0.4238 0.0042 0.0000 1.0000 0.2704

XGB 0.0000 0.0000 0.9937 0.9902 0.9746 1.0000 0.9878 0.9532 0.0001 0.0000 1.0000 0.8723 0.9998

Table 23: Multiple comparison analysis between the MDD of any two trading strategies. 	e p value of the two trading strategies with
signi
cant dierence is in boldface.

Index BAH MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM

BAH 0.0000

MLP 0.0000 0.0006

DBN 0.0000 0.0004 1.0000

SAE 0.0000 0.0023 1.0000 1.0000

RNN 0.0000 0.0000 0.0320 0.0421 0.0111

LSTM 0.0000 0.0000 0.0002 0.0003 0.0000 0.9947

GRU 0.0000 0.0000 0.0001 0.0001 0.0000 0.9767 1.0000

CART 0.0000 0.0000 0.1238 0.1538 0.0521 1.0000 0.9241 0.8305

NB 0.0000 0.1875 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RF 0.0000 0.0000 0.1180 0.1469 0.0493 1.0000 0.9298 0.8401 1.0000 0.0000

LR 0.0000 0.0000 0.0001 0.0002 0.0000 0.9881 1.0000 1.0000 0.8821 0.0000 0.8898

SVM 0.0000 0.0000 0.3285 0.3839 0.1701 0.9999 0.7011 0.5424 1.0000 0.0000 1.0000 0.6216

XGB 0.0000 0.0000 0.0308 0.0405 0.0106 1.0000 0.9951 0.9783 1.0000 0.0000 1.0000 0.9890 0.9998

between any other two algorithms. 	erefore, the ARR of
most traditional ML models are not signi
cantly worse than
that of the best DNNmodel.

(8) 	rough the hypothesis test analysis of H8a and H8b,
we obtain p value<2.2e-16. 	erefore, 	ere are signi
cant
dierences betweenASRof all trading strategies including the
benchmark index and BAH strategy. 	e results of multiple
comparative analysis are shown in Table 22. From Tables 14
and 22, we can see that the ASR of the benchmark index
and BAH are signi
cantly smaller than that of all trading
algorithms. 	e ASR of all ML algorithms are signi
cantly
higher than that of CART and NB, but there is no signi
cant
dierence between the ASR of CART and NB. Beyond that,
there is no signi
cant dierence between any other two
algorithms. 	erefore, the ASR of all traditional ML models
except NB and CART are not signi
cantly worse than that of
any DNNmodel.

(9)	rough the hypothesis test analysis of H9a and H9b,
we obtain p value<2.2e-16. 	erefore, there are signi
cant
dierences between the MDD of these trading strategies

including the benchmark index and the BAH strategy.
	e results of multiple comparative analysis are shown in
Table 23. From Tables 14 and 23, we can see that the MDD
of the benchmark index is signi
cantly smaller than that of
other trading strategies including BAH strategy. 	eMDD of
BAH is signi
cantly greater than that of all trading algorithms
except NB.	eMDDofMLP,DBN, and SAE are signi
cantly
lower than that of NB, but signi
cantly higher than that
of RNN, LSTM, GRU, LR, and XGB. 	e MDD of NB is
signi
cantly greater than that of all other trading algorithms.
Beyond that, there is no signi
cant dierence between any
other two algorithms. 	erefore, all ML algorithms expect
NB, especially LSTM, RNN, GRU, LR, and XGB, can play a
role in controlling trading risk.

In a word, some DNN models such as MLP, DBN, and
SAE have good performance in AR, PR, and F1; traditional
ML algorithms such as LR and XGB have good performance
inAUCandWR.	eARRof some traditionalML algorithms
such as CART, NB, LR, and SVM are not signi
cantly
dierent from that of the six DNN models. 	e ASR of the
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six DNN algorithms are not signi
cantly dierent from all
traditional ML models except NB and CART. 	e MDD of
LR and XGB are signi
cantly smaller than those of MLP,
DBN, and SAE, and are not signi
cantly dierent from
that of LSTM, GRU, and RNN. 	e ARR and ASR of all
ML algorithms are signi
cantly greater than those of BAH
and benchmark index; the MDD of all ML algorithms are
signi
cantly smaller than that of the benchmark index but
signi
cantly greater than that of BAH strategy.

From the above analysis and evaluation, we can see that
the directional evaluation indicators of some DNN models
are very competitive in CSICS, while the indicators of some
traditional ML algorithms have excellent performance in
SPICS. Whether in SPICS or CSICS, the ARR and ASR of
all ML algorithms are signi
cantly greater than that of the
benchmark index and BAH strategy, respectively. In all ML
algorithms, there are always some traditional ML algorithms
which are not signi
cantly worse than the best DNN model
for any performance evaluation indicator (ARR, ASR, and
MDD).	erefore, if we do not consider transaction cost and
other factors aecting trading, performance of DNN models
are alternative but not the best choice when they are applied
to stock trading.

In the same period, the ARR of any ML algorithm in
CSICS is signi
cantly greater than that of the same algorithm
in SPICS (p value<0.001 in theNemenyi test).Meanwhile, the
MDD of any ML algorithm in CSICS is signi
cantly greater
than that of the same algorithm in SPICS (p value <0.001
in the Nemenyi test). 	e results show that the quantitative
trading algorithms can more easily obtain excess returns in
the Chinese A-share market, but the volatility risk of trading
in Chinese A-share market is signi
cantly higher than that of
the US stock market in the past 8 years.

6. The Impact of Transaction Cost on
Performance of ML Algorithms

Trading cost can aect the pro
tability of a stock trading
strategy. Transaction cost that can be ignored in long-term
strategies is signi
cantly magni
ed in daily trading. However,
many algorithmic trading studies assume that transaction
cost does not exist ([10, 17], etc.). In practice, frictions such
as transaction cost can distort the market from the perfect
model in textbooks. 	e cost known prior to trading activity
is referred to as transparent such as commissions, exchange
fees, and taxes. 	e costs that has to be estimated are known
as implicit, including comprise bid-ask spread, latency or
slippage, and related market impact. 	is section focuses on
the transparent and implicit cost and how do they aect
trading performance in daily trading.

6.1. Experimental Settings and Backtesting Algorithm. In this
part, the transparent transaction cost is calculated by a certain
percentage of transaction turnover for convenience; the
implicit transaction cost is very complicated in calculation,
and it is necessary to make a reasonable estimate for the
random changes of market environment and stock prices.
	erefore, we only discuss the impact of slippage on trading
performance.

	e transaction cost structures of American stocks are
similar to that of Chinese A-shares. We assume that transpar-
ent transaction cost is calculated by a percentage of turnover
such as less than 0.5% [40, 41] and 0.2% and 0.5% in the
literature [42]. It is dierent for the estimation of slippage.

In some quantitative trading simulation so�ware such as
JoinQuant [43] and Abuquant [44], the slippage is set to 0.02.
	e transparent transaction cost and implicit transaction cost
are charged in both directions when buying and selling. It
is worth noting that the transparent transaction cost varies
with the dierent brokers, while the implicit transaction cost
is related to market liquidity, market information, network
status, trading so�ware, etc.

We set slippages s = {s0=0, s1=0.01, s2=0.02, s3=0.03,
s4=0.04}; the transparent transaction cost c = {c0=0, c1=0.001,
c2=0.002, c3=0.003, c4=0.004, c5=0.005}. For dierent {s, c}
combinations, we study the impact of dierent transaction
cost structures on trading performance. We assume that
buying and selling positions are one unit, so the turnover is
the corresponding stock price. When buying stocks, we not
only need to pay a certain percentage cost of the purchase
price, but also need to pay an uncertain slippage cost. 	at
is, we need to pay a higher price than the real-time price
��−1 when we are buying. But, when selling stocks, we not
only need to pay a certain percentage cost of the selling
price, but also to pay an uncertain slippage cost. Generally
speaking, we need to sell at a price lower than the real-time
price ��. It is worth noting that our trading strategy is self-

nancing. If ML algorithms predict the continuous occur-
rence of buying signals or selling signals, i.e., |���!���$��%�−
���!���$��%�−1| = 0, we will continue to hold or do nothing,
so the transaction cost at this time is 0. when |���!���$��%�−
���!���$��%�−1| = 1, it is indicated that the position may
be changed from holding to selling or from empty position
to buying. At this time, we would pay transaction cost
due to the trading operation. Finally, we get a real yield
is

��&� ≤
�%*-������� − �%*-�������−1

�%*-�������−1
.

�� = �%*-�������
∗ (1 − � ∗ 3333���!���$��%� − ���!���$��%�−1

3333)

− - ∗ 3333���!���$��%� − ���!���$��%�−1
3333

��−1 = �%*-�������−1
∗ (1 + � ∗ 3333���!���$��%�−1 − ���!���$��%�−23333)

+ - ∗ 3333���!���$��%�−1 − ���!���$��%�−23333

��&� =
�� − ��−1
��−1

(5)

where �%*-������� denotes the &-th closing price,
���!���$��%� denotes the &-th trading signal, �� denotes
the &-th executing price, and ��&� denotes the &-th return rate.

We propose a backtesting algorithm with transaction cost
based on the above analysis, as is shown in Algorithm 3.
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Input: TS #TS is trading signals of a stock.
s # s is slippage.
c # c is transparent transaction cost.

Output: WR, ARR, ASR, MDD
(1) N=length of Stock Code List #424 SPICS, and 185 CSICS.
(2) WR=NULL; ARR=NULL; ASR=NULL; MDD=NULL
(3) for (i in 1: N) {
(4) Stock Data=Stock Code List[i]
(5) ClosePrice

t
=Stock Data [“Closing Price”]

(6) P
t
=ClosePrice

t
∗(1-c∗abs(TS

t
-TS

t-1)) - s∗abs(TSt-TSt-1)
(7) P

t-1 =ClosePricet∗(1+c∗abs(TSt-TSt-1)) + s∗abs(TS
t
-TS

t-1)
(8) Ret

t
= (P

t
- P

t-1)/ Pt
# Ret is the return rate series.

(9) TDRR=lag (TS)∗Ret #TDRR is the daily return through trading.
(10) WR[i]=sum (TDRR>0)/sum(TDRR ̸=0)
(11) ARR[i]=Return.annualized (TDRR)
(12) ASR[i]=SharpeRatio.annualized (TDRR)
(13) MDD[i]=maxDrawDown (TDRR)
(14) WR=c (WR, WR[i]);
(15) ARR=c (ARR, ARR[i]);
(16) ASR=c (ASR, ASR[i]);
(17) MDD=c (MDD, MDD[i])
(18) }
(19) return (WR, ARR, ASR, MDD)

Algorithm 3: Backtesting algorithm with transaction cost in R language.

6.2. Analysis of Impact of Transaction Cost on the Trading
Performance of SPICS. Transaction cost is one of the most
important factors aecting trading performance. In US stock
trading, transparent transaction cost can be charged accord-
ing to a 
xed fee per order or month, or a �oating fee based
on the volume and turnover of each transaction. Sometimes,
customers can also negotiate with broker to determine
transaction cost. 	e transaction cost charged by dierent
brokers varies greatly. Meanwhile, implicit transaction cost
is not known beforehand and the estimations of them are
very complex. 	erefore, we assume that the percentage
of turnover is the transparent transaction cost for ease of
calculation. In the aspect of implicit transaction cost, we only
consider the impact of slippage on trading performance.

(1) Analysis of Impact of Transaction Cost on WR. As can be
seen from Table 24, WR is decreasing with the increase of
transaction cost for any trading algorithm, which is intuitive.
When the transaction cost is set to (s, c) = (0.04, 0.005), the
WR of each algorithm is the lowest. Compared with setting
(s, c) = (0, 0), the WR of MLP, DBN, SAE, RNN, LSTM,
GRU, CART, NB, RF, LR, and SVM to XGB are reduced by
5.80%, 5.97%, 5.91%, 15.83%, 18.04%, 13.95%, 21.71%, 16.04%,
22.16%, 18.54%, 18.50%, and 25.97%, respectively. 	erefore,
MLP, DBN, and SAE are more tolerant to transaction cost.
Generally speaking, the DNN models have stronger capacity
to accommodate transaction cost than the traditional ML
models. From the single trading algorithm such as MLP, if
we do not consider slippage, i.e., s=0, the average WR of
MLP is 0.5510 under transaction cost structures { (s0, c1),
(s0, c2), (s0, c3), (s0, c4), (s0, c5) }; if we do not consider
transparent transaction cost, i.e., c=0, the averageWRofMLP

is 0.5618 under transaction cost structures { (s1, c0), (s2, c0),
(s3, c0), (s4, c0) }; so transparent transaction cost has greater
impact than slippage.	roughmultiple comparative analysis,
the WR under the transaction cost structure (s1, c0) is not
signi
cantly dierent from the WR without transaction cost
for MLP, DBN, and SAE.	eWR under all other transaction
cost structures are signi
cantly smaller than the WR without
transaction cost. For all trading algorithms except for MLP,
DBN, and SAE, the WR under the transaction cost structure
{ (s1, c0), (s2, c0) } are not signi
cantly dierent from theWR
without transaction cost; the WR under all other transaction
cost structures are signi
cantly smaller than the WR without
transaction cost.

(2) Analysis of Impact of Transaction Cost on ARR. As can
be seen from Table 25, ARR is decreasing with the increase
of transaction cost for any trading algorithm. Undoubtedly,
when the transaction cost is set to (s, c) = (0.04, 0.005), the
ARR of each algorithm is the lowest. Compared with the
settings without transaction cost, the ARR of MLP, DBN,
and SAE reduce by 40.31%, 41.57%, and 40.93%, respectively,
while the ARR of other trading algorithms decrease by more
than 100% compared with those without transaction cost.
	erefore, excessive transaction cost can lead to serious losses
in accounts. For a general setting of s and c, i.e., (s, c) = (0.02,
0.003), ARR of MLP, DBN, and SAE decrease by 23.26%,
24.00%, and 23.61%, respectively, while the ARR of other
algorithms decrease by more than 50% and that of CART
and XGB decrease bymore than 100%.	erefore,MLP, DBN,
and SAE are more tolerant to high transaction cost. From
single trading algorithm such as RNN, if we do not consider
slippage, i.e., s=0, the average ARR of RNN is 0.1434 under
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the transaction cost structures { (s0, c1), (s0, c2), (s0, c3), (s0,
c4), (s0, c5) }; if we do not consider transparent transaction
cost, i.e., c=0, the average ARR of RNN is 0.2531 under the
transaction cost structure { (s1, c0), (s2, c0), (s3, c0), (s4,
c0) }; so transparent transaction cost has greater impact than
slippage. 	rough multiple comparative analysis, the ARR
under the transaction cost structures { (s1, c0), (s2, c0), (s3,
c0), (s0, c1) } are not signi
cantly dierent from the ARR
without transaction cost for MLP, DBN, and SAE; the ARR
under all other transaction cost structures are signi
cantly
smaller than theARRwithout transaction cost. For all trading
algorithms except for MLP, DBN, and SAE, the ARR under
the transaction cost structures { (s1, c0), (s2, c0) } are not
signi
cantly dierent from the ARR without transaction
cost; the ARR under all other transaction cost structures are
signi
cantly smaller than the ARR without transaction cost.

(3) Analysis of Impact of Transaction Cost on ASR. As can
be seen from Table 26, ASR is decreasing with the increase
of transaction cost for any trading algorithm. Undoubtedly,
when the transaction cost is set to (s, c) = (0.04, 0.005), the
ASR of each algorithm is the lowest. Compared with setting
without transaction cost, the ASR of MLP, DBN, and SAE
reduce by 39.97%, 41.23%, and 40.66%, respectively, while the
ASR of other trading algorithms reduce by more than 90%
compared with the case of no transaction cost. 	erefore,
excessive transaction cost will signi
cantly reduce ASR. For
a general setting of s and c, i.e., (s, c) = (0.02, 0.003), the
ASR of MLP, DBN, and SAE decrease by 22.62%, 23.36%
and 23.02% respectively. while the ASR of other algorithms
decrease by more than 50%; the ASR of CART and XGB
decrease by more than 100%.	erefore, MLP, DBN, and SAE
are more tolerant to transaction cost. From single trading
algorithm such as NB, if we do not consider slippage, i.e.,
s=0, the average ASR of NB is 0.8052 under the transaction
cost structure {(s0, c1), (s0, c2), (s0, c3), (s0, c4), (s0, c5)};
if we do not consider transparent transaction cost, i.e., c=0,
the average ASR of NB is 1.4182 under the transaction cost
structures {(s1, c0), (s2, c0), (s3, c0), (s4, c0) }; so transparent
transaction cost has greater impact than slippage. 	rough
multiple comparative analysis, the ASR under the transaction
cost structures {(s1, c0), (s2, c0), (s3, c0), (s0, c1)} are not
signi
cantly dierent from the ASR without transaction cost
for MLP, DBN, and SAE; the ASR under all other transaction
cost structures are signi
cantly smaller than the ASR without
transaction cost. For all trading algorithms except for MLP,
DBN, and SAE, the ASR under the transaction cost structures
{(s1, c0), (s2, c0)} are not signi
cantly dierent from the ASR
without transaction cost; the ASR under all other transaction
cost structures are signi
cantly smaller than the ASR without
transaction cost.

(4) Analysis of Impact of Transaction Cost on MDD. As can
be seen from Table 27, MDD increases with the increase
of transaction cost for any trading algorithm. Undoubtedly,
when the transaction cost is set to (s, c) = (0.04, 0.005), the
MDD of each algorithm increases to the highest level. In this
case, compared with the settings without transaction cost, the
MDD of MLP, DBN, and SAE increase by 9.32%, 11.08%, and

10.32%, respectively. 	e MDD of other trading algorithms
increase by more than 80% compared with those without
considering transaction cost.	erefore, excessive transaction
cost can cause serious potential losses to the account. For a
general setting of s and c, i.e., (s, c) = (0.02, 0.003), the MDD
of MLP, DBN, and SAE increase by 4.83%, 5.80%, and 5.33%,
respectively, while the MDD of other algorithms increase by
more than 35%, and theMDDofCART, RF, andXGB increase
bymore than 100%.	erefore, MLP, DBN, and SAE are more
tolerant to transaction cost. As awhole, theDNNmodels have
stronger capacity to accommodate transaction cost than the
traditional ML models. From single trading algorithm such
as GRU, if we do not consider slippage, i.e., s=0, the average
MDD of GRU is 0.4459 under the transaction cost structures
{(s0, c1), (s0, c2), (s0, c3), (s0, c4), (s0, c5)}; if we do not
consider transparent transaction cost, i.e., c=0, the average
MDD of GRU is 0.3559 under the transaction cost structures
{(s1, c0), (s2, c0), (s3, c0), (s4, c0)}; so transparent transaction
cost has greater impact than slippage. 	rough multiple
comparative analysis, the MDD under any the transaction
cost structure is not signi
cantly dierent from the MDD
without transaction cost for MLP, DBN, and SAE. For all
trading algorithms except for MLP, DBN, and SAE such as
LR, the MDD under the transaction cost structures {(s0, c1),
(s1, c0), (s2, c0), (s3, c0)} are not signi
cantly dierent from
the MDD without transaction cost; the MDD under all other
transaction cost structures are signi
cantly greater than the
MDD without transaction cost.

	rough the analysis of the Table 27 performance eval-
uation indicators, we 
nd that trading performance a�er
considering transaction cost will be worse than that without
considering transaction cost as is in actual trading situation.
It is noteworthy that the performance changes of DNN
algorithms, especially MLP, DBN, and SAE, are very small
a�er considering transaction cost. 	is shows that the three
algorithms have good tolerance to changes of transaction
cost. Especially for the MDD of the three algorithms, there
is no signi
cant dierence with that with no transaction
cost. So, we can consider applying them in actual trading.
Meanwhile, we conclude that the transparent transaction
cost has greater impact on the trading performances than
the slippage for SPICS. 	is is because the prices of SPICS
are too high when the transparent transaction cost is set
to a certain percentage of turnover. In actual transactions,
special attention needs to be paid to the fact that the trans-
action performance under most transaction cost structures
is signi
cantly lower than the trading performance without
considering transaction cost. It is worth noting that the
performance of traditional ML algorithm is not worse than
that ofDNNalgorithmswithout considering transaction cost,
while the performance of DNN algorithms is better than that
of traditional ML algorithms a�er considering transaction
cost.

6.3. Analysis of Impact of Transaction Cost on the Trading
Performance of CSICS. Similar to Section 6.2, we will discuss
the impact of transaction cost on trading performance of
CSICS in the followings. In the Chinese A-share market,
the transparent transaction cost is usually set to a certain
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Table 27: 	e MDD of SPICS for daily trading with dierent transaction cost. 	e result that there is no signi
cant dierence between
performance without transaction cost and that with transaction cost is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB

(s0, c0) 0.3583 0.3584 0.3547 0.3403 0.3489 0.3381 0.3413 0.3428 0.3284 0.3447 0.3429 0.3338

(s0, c1) 0.3629 0.3638 0.3594 0.3779 0.3986 0.3636 0.4072 0.3712 0.3843 0.3963 0.3972 0.4203

(s0, c2) 0.3677 0.3695 0.3647 0.4302 0.4707 0.3968 0.5168 0.4127 0.4842 0.4729 0.4787 0.5735

(s0, c3) 0.3727 0.3756 0.3703 0.4990 0.5639 0.4376 0.6564 0.4709 0.6172 0.5682 0.5844 0.7335

(s0, c4) 0.3781 0.3821 0.3764 0.5767 0.6612 0.4873 0.7804 0.5424 0.7377 0.6653 0.6913 0.8447

(s0, c5) 0.3839 0.3890 0.3828 0.6529 0.746 0.5444 0.8730 0.6162 0.8272 0.7501 0.7808 0.9118

(s1, c0) 0.3596 0.3600 0.3560 0.3500 0.36130 0.3446 0.3574 0.3502 0.3414 0.3585 0.3569 0.3540

(s1, c1) 0.3642 0.3655 0.3609 0.3907 0.4156 0.3717 0.4320 0.3814 0.4067 0.4154 0.4170 0.4541

(s1, c2) 0.3691 0.3712 0.3662 0.4466 0.4936 0.4066 0.5534 0.4270 0.5172 0.4971 0.5049 0.6168

(s1, c3) 0.3742 0.3774 0.3720 0.5183 0.5895 0.4495 0.6928 0.4885 0.6499 0.5937 0.6129 0.7662

(s1, c4) 0.3796 0.3839 0.3781 0.5961 0.6842 0.5013 0.8105 0.5610 0.7631 0.6884 0.7161 0.8649

(s1, c5) 0.3856 0.3909 0.3847 0.671 0.7646 0.5595 0.8946 0.6342 0.8451 0.7691 0.800 0.9235

(s2, c0) 0.3609 0.3615 0.3573 0.3607 0.3756 0.3517 0.3770 0.3586 0.3586 0.3739 0.3727 0.3787

(s2, c1) 0.3656 0.3671 0.3623 0.4047 0.4349 0.3805 0.4627 0.3929 0.4339 0.4365 0.4397 0.4929

(s2, c2) 0.3705 0.3729 0.3678 0.4642 0.5176 0.4171 0.5916 0.4424 0.5504 0.5218 0.5327 0.6577

(s2, c3) 0.3756 0.3792 0.3736 0.5377 0.6143 0.4624 0.7277 0.5067 0.6805 0.6183 0.6402 0.7939

(s2, c4) 0.3812 0.3859 0.3799 0.6155 0.7056 0.5161 0.8380 0.5796 0.7856 0.7099 0.7388 0.8816

(s2, c5) 0.3873 0.3930 0.3866 0.6887 0.7816 0.5751 0.9126 0.6517 0.8606 0.7864 0.8172 0.9331

(s3, c0) 0.3622 0.3631 0.3588 0.3729 0.3912 0.3594 0.4004 0.3685 0.3795 0.3909 0.3909 0.4081

(s3, c1) 0.3669 0.3687 0.3639 0.4200 0.4555 0.3901 0.4966 0.4062 0.4622 0.4587 0.4642 0.5334

(s3, c2) 0.3719 0.3746 0.3694 0.4826 0.5423 0.4286 0.6295 0.4589 0.5833 0.5465 0.5607 0.6936

(s3, c3) 0.3772 0.3811 0.3754 0.5572 0.6377 0.4762 0.7609 0.5248 0.7081 0.6420 0.6657 0.8175

(s3, c4) 0.3829 0.3879 0.3818 0.6341 0.7254 0.5314 0.8620 0.5980 0.8054 0.7300 0.7593 0.8956

(s3, c5) 0.3894 0.3954 0.3888 0.7056 0.7972 0.5909 0.9275 0.6689 0.8740 0.8022 0.8325 0.9412

(s4, c0) 0.3635 0.3647 0.3602 0.3861 0.4082 0.3678 0.4274 0.3798 0.4015 0.4096 0.4114 0.4396

(s4, c1) 0.3683 0.3704 0.3654 0.4362 0.4774 0.4005 0.5325 0.4211 0.4908 0.4814 0.4894 0.5730

(s4, c2) 0.3734 0.3765 0.3712 0.5013 0.5664 0.4410 0.6667 0.4758 0.6142 0.5707 0.5875 0.7253

(s4, c3) 0.3790 0.3833 0.3775 0.5765 0.6600 0.4905 0.7906 0.5429 0.7330 0.6644 0.6894 0.8375

(s4, c4) 0.3851 0.3904 0.3841 0.6521 0.7439 0.5470 0.8824 0.6162 0.8230 0.7485 0.7782 0.9074

(s4, c5) 0.3917 0.3981 0.3913 0.7218 0.8115 0.6067 0.9395 0.6857 0.8858 0.8165 0.8463 0.9480

percentage of turnover, and it is the same as the assumption
in the experimental settings. As in the US stock market, the
smallest unit of price change is 0.01 (one tick). It is reasonable
to set slippage to be 0.01-0.05. Of course, it should be noted
that the prices �uctuation may be more intense when closing
than that in the middle of a trading day.

(1) Analysis of Impact of Transaction Cost on WR. As can be
seen from Table 28, the WR is decreasing with the increase
of transaction cost for any trading algorithm. When the
transaction cost is set to (s, c) = (0.04, 0.005), the WR of each
algorithm is the smallest. Comparedwith the settings without
transaction cost, the WR of MLP, DBN, SAE, RNN, LSTM,
GRU, CART, NB, RF, LR, SVM, and XGB are reduced by
6.71%, 6.88%, 6.97%, 22.69%, 17.26%, 15.48%, 24.30%, 14.91%,
24.84%, 21.12%, 21.12%, and 29.19%, respectively. For a general
setting of s and c, i.e., (s, c) = (0.02, 0.003), the WR of
MLP, DBN, and SAE decrease by 4.10%, 4.20%, and 4.30%,
respectively, while the WR of other algorithms decrease by
more than 9%; the WR of CART, RF, and XGB decrease by

more than 15%. 	erefore, MLP, DBN, and SAE are more
tolerant to transaction cost. From single trading algorithm
such as LSTM, if we do not consider slippage, i.e., s=0, the
average WR of DBN is 0.5417 under the transaction cost
structures { (s0, c1), (s0, c2), (s0, c3), (s0, c4), (s0, c5) }; if we
do not consider transparent transaction cost, i.e., c=0, the
average WR of LSTM is 0.5304 under the transaction cost
structures { (s1, c0), (s2, c0), (s3, c0), (s4, c0) }; so transparent
transaction cost has smaller impact than slippage. 	rough
multiple comparative analysis, the WR under the transaction
cost structures { (s0, c1), (s0, c2), (s1, c0) } are not signi
cantly
dierent from the WR without transaction cost for MLP,
DBN, SAE, and NB; the WR under all other transaction
cost structures are signi
cantly smaller than the WR without
transaction cost. For all trading algorithms except for MLP,
DBN, SAE, and NB, the WR under the transaction cost
structure (s0, c1) is not signi
cantly dierent from the WR
without transaction cost; the WR under all other transaction
cost structures are signi
cantly smaller than the WR without
transaction cost.
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Table 28: 	e WR of CSICS for daily trading with dierent transaction cost. 	e result that there is no signi
cant dierence between
performance without transaction cost and that with transaction cost is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB

(s0, c0) 0.5559 0.5565 0.5564 0.5681 0.5720 0.5717 0.5153 0.5317 0.5785 0.5809 0.5716 0.5803

(s0, c1) 0.5523 0.5527 0.5525 0.5525 0.5608 0.5620 0.5009 0.5227 0.5612 0.5665 0.5571 0.5595

(s0, c2) 0.5488 0.5492 0.5489 0.5389 0.5512 0.5535 0.4879 0.5149 0.5460 0.5542 0.5445 0.5411

(s0, c3) 0.5453 0.5456 0.5452 0.5258 0.5414 0.5451 0.4747 0.5068 0.5313 0.5418 0.5320 0.5234

(s0, c4) 0.5417 0.5419 0.5414 0.5127 0.5320 0.5368 0.4622 0.4991 0.5172 0.5297 0.5202 0.5067

(s0, c5) 0.5383 0.5383 0.5379 0.5004 0.5230 0.5286 0.4504 0.4917 0.5036 0.5180 0.5088 0.4905

(s1, c0) 0.5494 0.5499 0.5497 0.5444 0.5541 0.5558 0.4925 0.5170 0.5520 0.5584 0.5492 0.5488

(s1, c1) 0.5456 0.5459 0.5456 0.5286 0.5424 0.5456 0.4775 0.5080 0.5342 0.5437 0.5345 0.5275

(s1, c2) 0.5421 0.5423 0.5420 0.5161 0.5335 0.5377 0.4654 0.5007 0.5207 0.5320 0.5231 0.5110

(s1, c3) 0.5386 0.5388 0.5383 0.5036 0.5246 0.5296 0.4530 0.4931 0.5065 0.5205 0.5116 0.4946

(s1, c4) 0.5353 0.5354 0.5349 0.4915 0.5156 0.5218 0.4419 0.4861 0.4937 0.5095 0.5007 0.4795

(s1, c5) 0.5323 0.5323 0.5317 0.4808 0.5076 0.5148 0.4315 0.4796 0.4817 0.4995 0.4905 0.4652

(s2, c0) 0.5431 0.5434 0.5431 0.5219 0.5368 0.5403 0.4707 0.5036 0.5269 0.5374 0.5286 0.5189

(s2, c1) 0.5395 0.5397 0.5393 0.5078 0.5266 0.5314 0.4573 0.4956 0.5115 0.5242 0.5154 0.5005

(s2, c2) 0.5360 0.5361 0.5357 0.4960 0.5181 0.5237 0.4458 0.4886 0.4985 0.5134 0.5046 0.4853

(s2, c3) 0.5331 0.5331 0.5326 0.4850 0.5100 0.5167 0.4352 0.4818 0.4864 0.5031 0.4945 0.4711

(s2, c4) 0.5300 0.5300 0.5293 0.4743 0.5018 0.5093 0.4252 0.4752 0.4746 0.4931 0.4846 0.4572

(s2, c5) 0.5273 0.5271 0.5266 0.4648 0.4946 0.5029 0.4159 0.4692 0.4639 0.4838 0.4755 0.4445

(s3, c0) 0.5373 0.5374 0.5371 0.5019 0.5216 0.5265 0.4514 0.4917 0.5049 0.5186 0.5098 0.4932

(s3, c1) 0.5341 0.5341 0.5336 0.4902 0.5128 0.5188 0.4399 0.4846 0.4917 0.5074 0.4990 0.4775

(s3, c2) 0.5312 0.5312 0.5306 0.4798 0.5052 0.5122 0.4303 0.4782 0.4804 0.4977 0.4896 0.4644

(s3, c3) 0.5281 0.5281 0.5275 0.4696 0.4976 0.5049 0.4206 0.4718 0.4689 0.4879 0.4799 0.4509

(s3, c4) 0.5252 0.5251 0.5245 0.4598 0.4901 0.4984 0.4110 0.4657 0.4581 0.4785 0.4707 0.4378

(s3, c5) 0.5226 0.5223 0.5218 0.4510 0.4833 0.4924 0.4023 0.4602 0.4481 0.4701 0.4621 0.4264

(s4, c0) 0.5325 0.5325 0.5321 0.4860 0.5089 0.5150 0.4360 0.4816 0.4870 0.5030 0.4949 0.4723

(s4, c1) 0.5294 0.5294 0.5289 0.4753 0.5010 0.5079 0.4258 0.4750 0.4752 0.4928 0.4849 0.4588

(s4, c2) 0.5266 0.5265 0.5259 0.4653 0.4937 0.5013 0.4164 0.4690 0.4642 0.4838 0.4761 0.4458

(s4, c3) 0.5238 0.5236 0.5230 0.4562 0.4864 0.4948 0.4073 0.4632 0.4541 0.4747 0.4672 0.4336

(s4, c4) 0.5211 0.5208 0.5203 0.4475 0.4798 0.4891 0.3985 0.4577 0.4440 0.4662 0.4586 0.4218

(s4, c5) 0.5186 0.5182 0.5176 0.4392 0.4733 0.4832 0.3901 0.4524 0.4348 0.4582 0.4509 0.4109

(2) Analysis of Impact of Transaction Cost on ARR. As can
be seen from Table 29, ARR is decreasing with the increase
of transaction cost for any trading algorithm. Undoubtedly,
when the transaction cost is set to (s, c) = (0.04, 0.005), the
ARR of each algorithm is the smallest. Compared with the
settings without transaction cost, the ARR of MLP, DBN,
and SAE reduce by 50.73%, 51.75%, and 52.25%, respectively.
While the ARR of other trading algorithms decrease by
more than 100% compared with those algorithms without
transaction cost. 	erefore, excessive transaction cost can
lead to serious losses in the accounts. For a general setting
of s and c, i.e., (s, c) = (0.02, 0.003), ARR of MLP, DBN,
and SAE decrease by 27.41%, 27.97%, and 28.25% respectively,
while the ARR other algorithms decrease by more than 50%
and that of CART, NB, RF, and XGB decrease by more than
100%. 	erefore, MLP, DBN, and SAE are more tolerant to
transaction cost. From single trading algorithm such as SAE,
if we do not consider slippage, i.e., s=0, the average ARR of
SAE is 0.5040 under the transaction cost structure { (s0, c1),
(s0, c2), (s0, c3), (s0, c4), (s0, c5) }; if we do not consider

transparent transaction cost, i.e., c=0, the averageARRof SAE
is 0.4468 under the transaction cost structures { (s1, c0), (s2,
c0), (s3, c0), (s4, c0) }; so transparent transaction cost has
smaller impact than slippage. 	rough multiple comparative
analysis, the ARR under the transaction cost structures { (s0,
c1), (s0, c2), (s0, c3), (s0, c1), (s1, c1) } are not signi
cantly
dierent from the ARR without transaction cost for MLP,
DBN, and SAE; the ARR under all other transaction cost
structures are signi
cantly smaller than the ARR without
transaction cost. For RNN, LSTM, GRU, CART, RF, LR, and
SVM, the ARR under the transaction cost structures { (s0,
c1), (s0, c2), (s1, c0) } are not signi
cantly dierent from
the ARR without transaction cost; the ARR under all other
transaction cost structures are signi
cantly smaller than the
ARR without transaction cost. For NB and XGB, the ARR
under the transaction cost structures { (s0, c1), (s1, c0) } are
not signi
cantly dierent from the ARR without transaction
cost; the ARR under all other transaction cost structures
are signi
cantly smaller than the ARR without transaction
cost.
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Table 29: 	e ARR of CSICS for daily trading with dierent transaction cost. 	e result that there is no signi
cant dierence between
performance without transaction cost and that with transaction cost is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB

(s0, c0) 0.5728 0.5702 0.5675 0.5246 0.5162 0.5110 0.5531 0.6122 0.484 0.5092 0.5001 0.4935

(s0, c1) 0.5521 0.549 0.5463 0.4522 0.4697 0.4707 0.4490 0.5072 0.4095 0.4494 0.4331 0.4044

(s0, c2) 0.5314 0.5279 0.5251 0.3799 0.4232 0.4305 0.3450 0.4023 0.3351 0.3896 0.3662 0.3154

(s0, c3) 0.5107 0.5068 0.5039 0.3077 0.3767 0.3904 0.2411 0.2976 0.2608 0.3299 0.2994 0.2266

(s0, c4) 0.4901 0.4858 0.4828 0.2356 0.3303 0.3503 0.1374 0.1930 0.1866 0.2703 0.2327 0.1379

(s0, c5) 0.4695 0.4648 0.4617 0.1636 0.2840 0.3102 0.0339 0.0886 0.1125 0.2108 0.1661 0.0493

(s1, c0) 0.5248 0.5216 0.5186 0.3917 0.4250 0.4302 0.3437 0.4210 0.3463 0.3963 0.3746 0.3318

(s1, c1) 0.5042 0.5005 0.4975 0.3195 0.3785 0.3900 0.2399 0.3162 0.2720 0.3366 0.3078 0.2429

(s1, c2) 0.4835 0.4795 0.4764 0.2474 0.3321 0.3499 0.1362 0.2116 0.1978 0.2770 0.2411 0.1542

(s1, c3) 0.463 0.4585 0.4553 0.1754 0.2858 0.3099 0.0327 0.1072 0.1237 0.2174 0.1745 0.0656

(s1, c4) 0.4424 0.4375 0.4342 0.1035 0.2396 0.2699 -0.0707 0.0029 0.0497 0.15800 0.1079 -0.0229

(s1, c5) 0.4219 0.4165 0.4132 0.0317 0.1934 0.2299 -0.174 -0.1013 -0.0242 0.0986 0.0415 -0.1113

(s2, c0) 0.4774 0.4736 0.4704 0.2599 0.3344 0.3501 0.1363 0.2310 0.2095 0.2842 0.2500 0.1711

(s2, c1) 0.4568 0.4526 0.4493 0.1879 0.2881 0.3100 0.0328 0.1265 0.1354 0.2247 0.1834 0.0825

(s2, c2) 0.4363 0.4316 0.4282 0.1159 0.2419 0.2700 -0.0706 0.0222 0.0614 0.1652 0.1168 -0.006

(s2, c3) 0.4158 0.4107 0.4072 0.0441 0.1957 0.2301 -0.1739 -0.0820 -0.0125 0.1058 0.0504 -0.0944

(s2, c4) 0.3953 0.3898 0.3862 -0.0276 0.1495 0.1902 -0.2770 -0.1861 -0.0863 0.0465 -0.0160 -0.1827

(s2, c5) 0.3748 0.3689 0.3653 -0.0992 0.1034 0.1503 -0.3799 -0.2900 -0.1600 -0.0127 -0.0823 -0.2708

(s3, c0) 0.4305 0.4261 0.4226 0.1289 0.2446 0.2706 -0.0694 0.0421 0.0737 0.1729 0.1263 0.0115

(s3, c1) 0.4100 0.4052 0.4016 0.0570 0.1984 0.2306 -0.1726 -0.0621 -0.0003 0.1135 0.0598 -0.0769

(s3, c2) 0.3895 0.3843 0.3806 -0.0147 0.1522 0.1907 -0.2757 -0.1662 -0.0741 0.0542 -0.0066 -0.1652

(s3, c3) 0.3691 0.3634 0.3597 -0.0863 0.1062 0.1509 -0.3787 -0.2701 -0.1478 -0.0050 -0.0729 -0.2533

(s3, c4) 0.3487 0.3426 0.3388 -0.1578 0.0601 0.1111 -0.4815 -0.3739 -0.2214 -0.0642 -0.1391 -0.3414

(s3, c5) 0.3283 0.3217 0.3179 -0.2293 0.0142 0.0713 -0.5842 -0.4775 -0.2949 -0.1233 -0.2052 -0.4293

(s4, c0) 0.3841 0.3791 0.3754 -0.0013 0.1554 0.1917 -0.2734 -0.1457 -0.0614 0.0623 0.0033 -0.1471

(s4, c1) 0.3637 0.3582 0.3544 -0.0729 0.1093 0.1518 -0.3764 -0.2497 -0.1351 0.0031 -0.0630 -0.2353

(s4, c2) 0.3433 0.3374 0.3335 -0.1445 0.0633 0.1120 -0.4792 -0.3535 -0.2087 -0.0561 -0.1292 -0.3233

(s4, c3) 0.3229 0.3166 0.3126 -0.2159 0.0173 0.0723 -0.5819 -0.4572 -0.2823 -0.1152 -0.1953 -0.4113

(s4, c4) 0.3025 0.2958 0.2918 -0.2873 -0.0286 0.0326 -0.6844 -0.5607 -0.3557 -0.1742 -0.2613 -0.4991

(s4, c5) 0.2822 0.2751 0.2710 -0.3585 -0.0744 -0.0071 -0.7868 -0.6641 -0.4290 -0.2331 -0.3273 -0.5868

(3) Analysis of Impact of Transaction Cost on ASR. As can
be seen from Table 30, ASR is decreasing with the increase
of transaction cost for any trading algorithm. Undoubtedly,
when the transaction cost is set to (s, c) = (0.04, 0.005),
the ASR of each algorithm is the smallest. Compared with
the settings without transaction cost, the ASR of MLP, DBN,
and SAE reduce by 48.99%, 50.11%, and 50.70%, respectively,
while the ASR of other trading algorithms decrease by more
than 100% compared with those without transaction cost.
	erefore, excessive transaction cost can lead to serious losses
in the accounts. For a general setting of s and c, i.e., (s, c)
= (0.02, 0.003), ASR of MLP, DBN, and SAE decrease by
26.01%, 26.61%, and 26.94%, respectively, while theASR other
algorithms decrease by more than 50% and that of CART,
NB, RF, and XGB decrease by more than 100%. 	erefore,
MLP, DBN, and SAE are more tolerant to transaction cost.
From single trading algorithm such as LSTM, if we do not
consider slippage, i.e., s=0, the average ASR of LSTM is 1.1129
under the transaction cost structures { (s0, c1), (s0, c2), (s0,
c3), (s0, c4), (s0, c5) }; if we do not consider transparent

transaction cost, i.e., c=0, the average ASR of LSTM is 0.8837
under the transaction cost structures { (s1, c0), (s2, c0), (s3,
c0), (s4, c0) }; so transparent transaction cost has smaller
impact than slippage.	roughmultiple comparative analysis,
the ASR under the transaction cost structures { (s0, c1), (s0,
c2), (s0, c3), (s0, c1), (s1, c1) } are not signi
cantly dierent
from the ASR without transaction cost for MLP, DBN, and
SAE; the ASR under all other transaction cost structures are
signi
cantly smaller than the ASR without transaction cost.
For LSTM and GRU, the ASR under the transaction cost
structures { (s0, c1), (s0, c2), (s1, c0) } are not signi
cantly
dierent from the ASR without transaction cost; the ASR
under all other transaction cost structures are signi
cantly
smaller than the ASR without transaction cost. For RNN,
NB, RF, LR, and SVM, the ASR under the transaction cost
structures { (s0, c1), (s1, c0) } are not signi
cantly dierent
from the ASR without transaction cost; the ASR under all
other transaction cost structures are signi
cantly smaller
than the ASR without transaction cost. For CART and XGB,
the ASR under the transaction cost structure (s0, c1) are
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Table 30: 	e ASR of CSICS for daily trading with dierent transaction cost. 	e result that there is no signi
cant dierence between
performance without transaction cost and that with transaction cost is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB

(s0, c0) 1.4027 1.4003 1.3931 1.4876 1.5418 1.5501 1.2229 1.1119 1.4375 1.5578 1.4227 1.4694

(s0, c1) 1.3525 1.3488 1.3413 1.2736 1.4005 1.4268 0.9763 0.9356 1.2078 1.3697 1.2253 1.1938

(s0, c2) 1.3019 1.2969 1.2890 1.0579 1.2578 1.3023 0.7263 0.7584 0.9763 1.1796 1.0263 0.9161

(s0, c3) 1.2509 1.2445 1.2364 0.8411 1.1139 1.1765 0.4736 0.5804 0.7436 0.9882 0.8263 0.6372

(s0, c4) 1.1996 1.1918 1.1834 0.6237 0.9690 1.0499 0.2191 0.4021 0.5104 0.7958 0.6255 0.3581

(s0, c5) 1.1479 1.1388 1.1301 0.4063 0.8235 0.9224 -0.0364 0.2236 0.2773 0.6029 0.4244 0.0795

(s1, c0) 1.2996 1.2953 1.2872 1.1103 1.2817 1.3133 0.7570 0.7905 1.0278 1.2127 1.0676 0.9843

(s1, c1) 1.2486 1.2430 1.2346 0.8938 1.1379 1.1876 0.5050 0.6126 0.7955 1.0215 0.8678 0.7058

(s1, c2) 1.1972 1.1903 1.1816 0.6766 0.9932 1.0610 0.2511 0.4343 0.5625 0.8293 0.6672 0.4269

(s1, c3) 1.1455 1.1373 1.1282 0.4591 0.8477 0.9336 -0.0040 0.2558 0.3294 0.6365 0.4662 0.1483

(s1, c4) 1.0935 1.0839 1.0746 0.2420 0.7016 0.8056 -0.2594 0.0775 0.0968 0.4436 0.2654 -0.1291

(s1, c5) 1.0413 1.0303 1.0206 0.0257 0.5554 0.6771 -0.5143 -0.1003 -0.1346 0.2510 0.0651 -0.4045

(s2, c0) 1.1936 1.1875 1.1785 0.7293 1.0157 1.0710 0.2851 0.4662 0.6145 0.8624 0.7084 0.4971

(s2, c1) 1.142 1.1345 1.1252 0.5128 0.8708 0.9441 0.0321 0.2883 0.3826 0.6707 0.5083 0.2199

(s2, c2) 1.0901 1.0812 1.0717 0.2964 0.7253 0.8166 -0.2213 0.1105 0.1510 0.4787 0.3083 -0.0564

(s2, c3) 1.0379 1.0277 1.0178 0.0807 0.5794 0.6887 -0.4745 -0.067 -0.0797 0.2870 0.1086 -0.3310

(s2, c4) 0.9854 0.9739 0.9637 -0.1339 0.4335 0.5605 -0.7267 -0.2437 -0.3088 0.0958 -0.0902 -0.6030

(s2, c5) 0.9328 0.9199 0.9094 -0.3469 0.2878 0.4323 -0.9771 -0.4195 -0.5359 -0.0942 -0.2878 -0.8719

(s3, c0) 1.0862 1.0781 1.0683 0.3537 0.7496 0.8304 -0.1751 0.1456 0.2086 0.5184 0.3534 0.0217

(s3, c1) 1.0342 1.0247 1.0147 0.1393 0.6047 0.7033 -0.4254 -0.0309 -0.0204 0.3282 0.1550 -0.2509

(s3, c2) 0.9819 0.9711 0.9607 -0.0742 0.4596 0.5760 -0.6751 -0.2068 -0.2481 0.1384 -0.0426 -0.5214

(s3, c3) 0.9294 0.9172 0.9066 -0.2862 0.3146 0.4485 -0.9232 -0.3818 -0.4741 -0.0504 -0.2392 -0.7891

(s3, c4) 0.8767 0.8632 0.8522 -0.4965 0.1700 0.3211 -1.1693 -0.5558 -0.6978 -0.2380 -0.4343 -1.0534

(s3, c5) 0.8239 0.809 0.7977 -0.7045 0.0258 0.1940 -1.4125 -0.7283 -0.9188 -0.4240 -0.6276 -1.3135

(s4, c0) 0.9785 0.9684 0.9580 -0.0099 0.4878 0.5943 -0.6140 -0.1663 -0.1821 0.1862 0.0089 -0.4325

(s4, c1) 0.9263 0.9148 0.9040 -0.2205 0.3439 0.4679 -0.8592 -0.3403 -0.4063 -0.0010 -0.1862 -0.6982

(s4, c2) 0.8738 0.8609 0.8499 -0.4296 0.2003 0.3415 -1.1027 -0.5132 -0.6285 -0.1871 -0.3800 -0.9608

(s4, c3) 0.8212 0.8070 0.7957 -0.6366 0.0571 0.2153 -1.3437 -0.6849 -0.8482 -0.3718 -0.5722 -1.2198

(s4, c4) 0.7684 0.7528 0.7413 -0.8412 -0.0854 0.0894 -1.5818 -0.8551 -1.0652 -0.5547 -0.7625 -1.4747

(s4, c5) 0.7155 0.6986 0.6868 -1.0431 -0.2271 -0.0359 -1.8162 -1.0236 -1.2788 -0.7356 -0.9505 -1.7248

not signi
cantly dierent from the ASR without transaction
cost; the ASR under all other transaction cost structures
are signi
cantly smaller than the ASR without transaction
cost.

(4) Analysis of Impact of Transaction Cost on MDD. As can
be seen from Table 31, MDD increases with the increase of
transaction cost for any transaction algorithm. Undoubtedly,
when the transaction cost is set to (s, c) = (0.04, 0.005), the
MDD of each algorithm increases to the highest level. In this
case, compared with the setting without transaction cost, the
MDD of MLP, DBN, and SAE increase by 10.31%, 11.35%,
and 10.83%, respectively. 	e MDD of the other transaction
algorithms increases by more than 30% compared with those
without transaction cost. 	erefore, excessive transaction
cost can cause serious potential losses to the account. For a
general setting of s and c, i.e., (s, c) = (0.02, 0.003), the MDD
of MLP, DBN, and SAE increase by 4.31%, 4.81%, and 4.80%,
respectively. While theMDDof the other algorithms increase
bymore than 20%, the MDD of CART, RF, and XGB increase

by more than 60%.	erefore, MLP, DBN, and SAE are more
tolerant to transaction cost. From a single trading algorithm
such as RNN, if we do not consider slippage, i.e., s=0, the
average MDD of RNN is 0.7402 under the transaction cost
structures { (s0, c1), (s0, c2), (s0, c3), (s0, c4), (s0, c5) }; if we
do not consider transparent transaction cost, i.e., c=0, the
average MDD of RNN is 0.7754 under the transaction cost
structures { (s1, c0), (s2, c0), (s3, c0), (s4, c0) }; so transparent
transaction cost has smaller impact than slippage. 	rough
multiple comparative analysis, the MDD under most of the
transaction cost structures are not signi
cantly dierent from
the MDD without transaction cost for MLP, DBN, and SAE.
It shows that the three algorithms have higher tolerance
for transaction cost. For all trading algorithms except for
MLP, DBN, and SAE, the MDD under the transaction cost
structures { (s0, c1), (s0, c2), (s1, c0) } are not signi
cantly
dierent from the MDD without transaction cost; the MDD
under all other transaction cost structures are signi
cantly
greater than the MDD without transaction cost. It is worth
noting that the MDD of GRU under the transaction cost
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Table 31: 	e MDD of CSICS for daily trading with dierent transaction cost. 	e result that there is no signi
cant dierence between
performance without transaction cost and that with transaction cost is in boldface.

MLP DBN SAE RNN LSTM GRU CART NB RF LR SVM XGB

(s0, c0) 0.6082 0.6086 0.6130 0.5648 0.5456 0.5429 0.5694 0.7469 0.5695 0.5410 0.5775 0.5632

(s0, c1) 0.6115 0.6122 0.6168 0.6133 0.5759 0.5665 0.6272 0.7765 0.6317 0.5843 0.6249 0.6419

(s0, c2) 0.6150 0.6163 0.6207 0.6731 0.6098 0.5922 0.6966 0.8088 0.7041 0.6353 0.6820 0.7296

(s0, c3) 0.6188 0.6208 0.6247 0.7426 0.6468 0.6194 0.7674 0.8418 0.7777 0.6901 0.7435 0.8158

(s0, c4) 0.6229 0.6256 0.6289 0.8083 0.6844 0.6471 0.8338 0.8728 0.8426 0.7453 0.8045 0.8858

(s0, c5) 0.6273 0.6305 0.6333 0.8637 0.7200 0.6763 0.8887 0.8986 0.8934 0.7979 0.8563 0.9324

(s1, c0) 0.6137 0.6145 0.6191 0.6577 0.6033 0.5870 0.6847 0.8049 0.6893 0.6265 0.6725 0.7088

(s1, c1) 0.6174 0.6187 0.6230 0.7181 0.6384 0.6135 0.7485 0.8350 0.7556 0.6766 0.7304 0.7848

(s1, c2) 0.6213 0.6234 0.6270 0.7818 0.6746 0.6408 0.8115 0.8641 0.8180 0.7292 0.7859 0.8542

(s1, c3) 0.6255 0.6282 0.6313 0.8413 0.7107 0.6680 0.8670 0.8890 0.8721 0.7797 0.8387 0.9087

(s1, c4) 0.6298 0.6331 0.6359 0.8884 0.7451 0.6964 0.9104 0.9099 0.9134 0.8267 0.8828 0.9455

(s1, c5) 0.6343 0.6382 0.6406 0.9237 0.7776 0.7254 0.9432 0.9269 0.9426 0.8674 0.9169 0.9684

(s2, c0) 0.6214 0.6230 0.6269 0.7549 0.6700 0.6369 0.7815 0.8546 0.7857 0.7131 0.7661 0.8131

(s2, c1) 0.6256 0.6277 0.6312 0.8084 0.7032 0.6627 0.8327 0.8785 0.8387 0.7597 0.8138 0.8688

(s2, c2) 0.6299 0.6327 0.6357 0.8579 0.7350 0.6887 0.8793 0.8998 0.8851 0.8037 0.8576 0.9142

(s2, c3) 0.6344 0.6379 0.6406 0.8991 0.7664 0.7163 0.9174 0.9179 0.9207 0.8449 0.8955 0.9473

(s2, c4) 0.6391 0.6431 0.6456 0.9305 0.7963 0.7444 0.9467 0.9335 0.9468 0.8802 0.9250 0.9690

(s2, c5) 0.6443 0.6487 0.6511 0.9528 0.8230 0.7721 0.9667 0.9457 0.9650 0.9091 0.9471 0.9820

(s3, c0) 0.6299 0.6320 0.6357 0.8218 0.7242 0.6808 0.8419 0.8857 0.8488 0.7794 0.8291 0.8725

(s3, c1) 0.6345 0.6373 0.6406 0.8645 0.7528 0.7063 0.8839 0.9047 0.8891 0.8181 0.8667 0.9131

(s3, c2) 0.6394 0.6427 0.6459 0.9018 0.7812 0.7325 0.9188 0.9216 0.9217 0.8538 0.8998 0.9442

(s3, c3) 0.6446 0.6481 0.6514 0.9313 0.8084 0.7591 0.9461 0.9361 0.9463 0.8857 0.9271 0.9661

(s3, c4) 0.6500 0.6542 0.6572 0.9529 0.8329 0.7859 0.9656 0.9481 0.9642 0.9122 0.9481 0.9801

(s3, c5) 0.6561 0.6610 0.6634 0.9681 0.8555 0.8113 0.9789 0.9576 0.9764 0.9338 0.9633 0.9885

(s4, c0) 0.6399 0.6432 0.6460 0.8670 0.7666 0.7240 0.8832 0.9079 0.8893 0.8270 0.8710 0.9087

(s4, c1) 0.6453 0.6496 0.6519 0.9005 0.7926 0.7490 0.9165 0.9242 0.9197 0.8585 0.9005 0.9388

(s4, c2) 0.6511 0.6561 0.6583 0.9290 0.8169 0.7741 0.9433 0.9382 0.9435 0.8877 0.9262 0.9611

(s4, c3) 0.6573 0.6630 0.6649 0.9508 0.8399 0.7989 0.9629 0.9497 0.9615 0.9128 0.9467 0.9766

(s4, c4) 0.6640 0.6704 0.6719 0.9664 0.8611 0.8225 0.9768 0.9591 0.9744 0.9331 0.9619 0.9863

(s4, c5) 0.6709 0.6777 0.6794 0.9774 0.8804 0.8445 0.9862 0.9665 0.9831 0.9498 0.9730 0.9921

structure (s1, c1) is not signi
cantly dierent from the MDD
without transaction cost.

	rough the Table 31 analysis, we 
nd that trading per-
formance will become worse and worse with the increase
of transaction cost. Moreover, excessive transaction cost
may cause huge losses. Especially, for some traditional ML
algorithm, the ARR andASR of those algorithms will become
negative. MDD of the algorithms will become close to 100%
when transaction cost is increasing. DNN models, especially
MLP, DBN, and SAE, are more tolerant to the changes of
transaction cost and are more suitable for actual trading
activities. Meanwhile, the experimental results indicate that
the impact of slippage on trading performance is greater
than the transparent transaction cost because the prices
of CSICS are generally small. We conclude that a certain
percentage of turnover will generate smaller transaction cost.
	rough multiple comparative analysis, we 
nd that the
performance of these algorithms under most of transaction
cost structures may be signi
cantly worse than those without
considering transaction cost. 	e 
nding shows that the

trading performance of these algorithms is very sensitive to
transaction cost, which needs to be paid enough attention to
in actual trading activities.

7. Discussion

Forecasting the future ups and downs of stock prices and
making trading decisions are always challenging tasks. How-
ever, more and more investors are attracted to participate in
trading activities by high return of stockmarket, and high risk
promotes investors to try their best to construct pro
table
trading strategies. Meanwhile, the fast changing of 
nancial
markets, the explosive growth of big 
nancial data, the
increasing complexity of 
nancial investment instruments,
and the rapid capture of trading opportunities provide more
and more research topics for academic circles. In this paper,
we apply some popular and widely used ML algorithms to do
stock trading. Our purpose is to explore whether there are
signi
cant dierences in stock trading performance among
dierent ML algorithms. Moreover, we study whether we can
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nd highly pro
table trading algorithms in the presence of
transaction cost.

Financial data, which is generated in changing 
nancial
market, are characterized by randomness, low signal-to-noise
ratio, nonlinearity, and high dimensionality. 	erefore, it is
di�cult to 
nd inherent patterns in 
nancial big data by using
algorithms. In this paper, we also prove this point.

When using ML algorithms to predict stock prices, the
directional evaluation indicators are not as good as expected.
For example, the AR, PR, and RR of LSTM and RNN are
about 50%-55%, which are only slightly better than random
guess. On the contrary, some traditional ML algorithms such
as XGB have stronger ability in directional predictions of
stock prices. 	erefore, those simple models are less likely
to cause over
tting when capturing intrinsic patterns of

nancial data and can make better predictions about the
directions of stock price changes. Actually, we assume that
sample data are independent and identically distributedwhen
using ML algorithm to classify tasks. DNN algorithms such
as LSTM and RNN make full use of autocorrelation of

nancial time series data, which is doubtful because of the
characteristics of 
nancial data. 	erefore, the prediction
ability of these algorithms may be weakened because of the
noise of historical lag data.

From the perspective of trading algorithms, traditional
ML models map the feature space to the target space. 	e
parameters of the learning model are quite few. 	erefore,
the learning goal can be better accomplished in the case of
fewer data. 	e DNN models mainly connect some neurons
into multiple layers to form a complex DNN structure.
	rough the complex structure, the mapping relationships
between input and output are established. As the number
of neural network layers increases, the weight parameters
can be automatically adjusted to extract advanced features.
Compared with the traditional ML models, DNN models
havemore parameters. So their performance tends to increase
as the amount of data grows. Complex DNN models need a
lot of data to avoid under
tting and over
tting. However, we
only use the data for 250 trading days (one year) as training
set to construct trading model, and then we predict stock
prices in the next week. So, too few data may lead to poor
performance in the directional and performance predictions.

In the aspect of transaction cost, it is unexpected that
DNN models, especially MLP, DBN, and SAE, have stronger
adaptability to transaction cost than traditional ML models.
In fact, the higher PR of MLP, DBN, and SAE indicate that
they can identify more trading opportunities with higher
positive return. At the same time, DNN model can adapt
to the changes of transaction cost structures well. 	at is,
compared with traditional MLmodels, the reduction of ARR
and ASR of DNN models are very small when transaction
cost increases. 	ere especially is no signi
cant dierence
between theMDDofDNNmodels undermost of transaction
cost structures and that without considering transaction cost.
	is is further proof that DNNmodels can eectively control
downside risk. 	erefore, DNN algorithms are better choices
than traditional ML algorithm in actual transactions. In this
paper, we divide transaction cost into transparent transaction
cost and implicit transaction cost. In dierent markets,

the impact of the two transaction cost on performance is
dierent. We can see that transparent transaction cost is a
larger impact than implicit transaction cost in SPICS while
they are just the opposite in CSICS, because the prices of
SPICS are higher than that of CSICS.While we have taken full
account of the actual situation in real trading, the assumption
of transaction cost in this paper is relatively simple.	erefore,
we can consider the impact of opportunity cost and market
impact cost on trading performance in future research work.

	is paper makes a multiple comparative analysis of
trading performance for dierentML algorithms bymeans of
nonparameter statistical testing. We comprehensively discuss
whether there are signi
cant dierences among the algo-
rithms under dierent evaluation indicators in both cases
of transaction cost and no transaction cost. We show that
the DNN algorithms have better performance in terms of
pro
tability and risk control ability in the actual environment
with transaction cost. 	erefore, DNN algorithms can be
used as choices for algorithmic trading and quantitative
trading.

8. Conclusion

In this paper, we apply 424 SPICS in the US market and
185 CSICS in the Chinese market as research objects, select
data of 2000 trading days before December 31, 2017, and
build 44 technical indicators as the input features for the ML
algorithms, and then predict the trend of each stock price as
trading signal. Further, we formulate trading strategies based
on these trading signals, and we do backtesting. Finally, we
analyze and evaluate the trading performance of these algo-
rithms in both cases of transaction cost and no transaction
cost.

Our contribution is to compare the signi
cant dierences
between the trading performance of the DNN algorithms and
the traditional ML algorithms in the Chinese stock market
and the American stock market. 	e experimental results in
SPICS and CSICS show that some traditional ML algorithms
have a better performance than DNN algorithms in most of
the directional evaluation indicators. DNN algorithms which
have the best performance indicators (WR, ARR, ASR, and
MDD) among all ML algorithms are not signi
cantly better
than those traditional ML algorithms without considering
transaction cost. With the increase of transaction cost, the
transaction performance of all ML algorithms will become
worse and worse. Under the same transaction cost structure,
the DNN algorithms, especially the MLP, DBN, and SAE,
have lower performance degradation than the traditional ML
algorithm, indicating that the DNN algorithms have a strong
tolerance to the changes of transaction cost. Meanwhile, the
transparent transaction cost and implicit transaction cost are
dierent impact for the SPICS and CSICS. 	e experimental
results also reveal that the transaction performance of all ML
algorithms is sensitive to transaction cost, andmore attention
is needed in actual transactions. 	erefore, it is essential to
select the competitive algorithms for stock trading according
to the trading performance, adaptability to transaction cost,
and the risk control ability of the algorithms both in the
American stock market and Chinese A-share market.
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With the rapid development of ML technology and the
convenient access to 
nancial big data, future research work
can be carried out from the following aspects: (1) using
ML algorithms to implement dynamic optimal portfolio
among dierent stocks; (2) using ML algorithms to do high-
frequency trading and statistical arbitrage; (3) considering
the impact of more complex implicit transaction cost such
as opportunity cost and market impact cost on stock trading
performance. 	e solutions of these problems will help to
develop an advanced and pro
table automated trading sys-
tem based on 
nancial big data, including dynamic portfolio
construction, transaction execution, cost control, and risk
management according to the changes of market conditions
and even the changes of investor’s risk preferences of over
time.
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