An Empirical Study of Regression Testing Techniques
Incorporating Context and Lifetime Factors
and Improved Cost-Benefit Models

Hyunsook Do, Gregg Rothermel
Department of Computer Science and Engineering
University of Nebraska—Lincoln
Lincoln, Nebraska 68588-0115, USA

{dohy, grothery@cse.unl.edu

ABSTRACT

Regression testing is an important but expensive actiaity] a
great deal of research on regression testing methodolbgiebeen
performed. In recent years, much of this research has erzpgldas
empirical studies, including evaluations of the effeatiges and ef-
ficiency of regression testing techniques. To date, howewest
studies have been limited in terms of their consideratiotest-
ing context and system lifetime, and have used cost-benefieta
that omit important factors and render some types of corapasi
between techniques impossible. These limitations canecstusl-
ies to improperly assess the costs and benefits of regreesitng
techniques in practical settings. In this paper, we proiritgoved
cost-benefit models for use in assessing regression tesgtiypd-
ologies, that incorporate context and lifetime factors cansid-
ered in prior studies, and we use these models to compareakeve
common methodologies. Our results show that the factorsome ¢
sider (in particular, time constraints and incrementabuese avail-
ability) can affect assessments of the relative benefitegression
testing techniques, and suggest that particular clasgeshufiques
may compare differently across different types of tesesuit

Categories and Subject Descriptors
D.2.5 [Software Engineering: Testing & Debugging—testing tools

General Terms
Experimentation, Measurement, Verification

Keywords

Regression testing, regression test selection, test casiipation,
evaluation schemes, economic models, empirical studies

1. INTRODUCTION

As software evolves, engineers use various approachesdssas
its quality. One common approach, regression testing,\iego
saving and reusing (and as necessary, incrementally mgglagst
suites created for earlier versions of the software [2, 4,22].

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGSOFT'06/FSE-14ovember 5-11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011%$5.00.

By reusing test cases, this approach amortizes the cosesigfrd
ing and creating test cases across a system’s lifetime. Bogn
reusing and maintaining test suites can be expensive, senous
approaches to reducing or prioritizing regression testictiyities
have been proposed (e.g., [5, 11, 30, 32, 34]). Initiallgesgch
on regression testing — similar to research on testing iregen
— relied primarily on analytical approaches to assess antpace
techniques (e.g. [21, 29]). Testing techniques are hésjdtow-
ever, and to properly evaluate their cost-effectivenegsraatice,
empirical studies are essential.

More recent research on regression testing, therefored[312,
14, 18, 19, 23, 25, 28, 33], has employed empirical studiesom-
mon way to conduct such studies has been to collect one or more
software systems with multiple versions, and for each sysfiad
or create a test suite for, and locate or seed faults in, earstion.
Next, the techniques being studied are applied to eachoreasid
its test suite, and the results are assessed using measuess o
ing effort (humbers of test cases or time required) and &ffetess
(rate of fault detection or numbers of faults revealed).

Empirical studies such as these have allowed researchessto
pare regression testing techniques in terms of costs arefitsen
However, studies to date suffer from several limitationghair
abilities to assess cost-benefit tradeoffs relative totmaldesting
situations. These limitations involve context factor>lme fac-
tors, and cost-benefit models, and can be summarized ag/$ollo

Context factors. Previous studies have considered only a few con-
text factors when assessing techniques. Most studies lwagide
ered differences in programs and regression testing tgebasj but
none have considered costs of other essential testingtasisuch

as test setup and obsolete test identification, or colleetm main-
tenance of resources (e.g. test coverage information)eckefxt
retesting. And only a few studies have considered the affetct
time constraints on testing cost-effectiveness.

Lifetime factors. Previous studies have calculated costs and ben-
efits independently per system version. This “shapshoti\oé
costs and benefits masks the fact that regression testingigees
are applied repeatedly across system lifetimes. The costflt
tradeoffs for techniques across entire lifetimes may beemmele-
vant for choosing a technique than the tradeoffs on singgases.

Cost-benefit models Previous studies have relied on limited cost-
benefit models. Costs are often ignored, or calculatedysatel
terms of time or numbers of faults missed. Benefits are oféén ¢
culated solely in terms of reduced test suite size or inecteste of
fault detection. Costs of missed faults and human time, ekt
offs involving product revenue, have not been consideredreM

over, often different techniques are evaluated using rdiffemet-
rics, rendering their relative performance incomparable.

Limitations such as these can make it difficult to empirigall
compare regression testing techniques, or can lead eialagb
improperly assess the costs and benefits of techniques @ti-pra
cal contexts. Ultimately, this can lead to inaccurate casioins
about the relative cost-effectiveness of techniques, aapigropri-
ate decisions by engineers relying on such conclusions lextse
techniques for particular situations.

It follows that researchers who empirically investigatgression
testing techniques, and practitioners who might act on ¢iselts
of those investigations, would be better served by empinvas-
tigations founded on more comprehensive cost-benefit mddel
those techniques, that incorporate richer context antrfitefac-
tors. In this paper, therefore, we provide such a model, aad w
conduct an empirical study comparing several common regnes
testing techniques using that model.

The results of our study show that the factors we consideatan
fect assessments of the relative benefits of regressiangesth-
niques. In particular, the effects of time constraints isessing
techniques are large, and incremental resource avaiiabiibugh
less pronounced in its effects, can also effect assessmétie
relative benefits of regression testing techniques. Owitsealso
provide insights into the relative strengths and weakrsesstech-
niques, with consequences for their application in practic

Overall, this work makes the following contributions. Ejrgy
providing a cost-benefit model that better captures theesbmatnd
lifetime factors that affect technique cost-effectivenese facili-
tate more accurate interpretation of empirical resultstagfition-
ers and researchers. Second, by providing a mechanismsiessas
ing the costs and benefits of various regression testingnigebs
in terms of a single model using shared units of comparisan, w
enable researchers to directly compare the cost-benefitedffs
between previously incomparable techniques. Third, octiquéar
empirical results add to the growing body of knowledge altbet
tradeoffs between regression testing techniques, withidatpns
for practitioners who might want to use the techniques stldi

In the next section of this paper, we review relevant previou
work. Section 3 presents our cost-benefit model. Sectioedents
our study design, results, and analysis. Section 5 dissuzse
results, and Section 6 presents conclusions.

2. BACKGROUND AND RELATED WORK

We focus on three regression testing methodologies: ratiest
regression test selection, and test case prioritization.

Let P be a program, leP’ be a modified version oP, and let
T be a test suite foP. Regression testing attempts to validate
As a typical common practice [24], often engineers simplysee
all non-obsoletk test cases iff” to testP’ — this is known as the
retest-all techniqueRerunning all of these test cases, however, can
be very expensive; for example, Srivastava et al. [32] citase in
which an office productivity application of 1.8 million lisef code
has a test suite of 3128 test cases that require over fourtdays.

When only small portions of have been modified, a retest-all
technigue can involve unnecessary woRegression test selection
techniquege.g., [5, 25, 28, 30], for a survey and additional ref-
erences see [29]) reduce testing costs by selecting tess thaat

LA test case is obsolete fdP if it can no longer be applied t®

(e.g. due to changes in inputs), is no longer needed tadi€stg.
due to being designed solely for code coverag@pand now on
P’ redundant in coverage) or if its expected output®ndiffers

(e.g. due to specification changes) from its expected owipi.

are necessary to test a modified program. Regression testisal
techniques use information aboft, P’, andT to select a sub-
setT’ of T' with which to testP’. Saferegression test selection
techniques are those that ensure (under certain conditioats’”’
detects the same faults @5 whereas non-safe techniques provide
no such assurance, but rather, trade such assurancestfer fsewv-
ings in testing cost (for an in-depth discussion of safety @asses
of regression testing techniques, see [29]).

While regression test selection techniques focus on radubie
number of test cases that must be executst,case prioritization
techniquege.g., [11, 32, 34]) reorder test cases, scheduling test
cases with the highest priority according to some critegarlier
in the testing process. Test case prioritization techriquam yield
benefits such as providing earlier feedback to testers anigrea
fault detection. To date, most research on prioritizatias focused
on this latter goal, typically described as one of improvingest
suite’srate of fault detectionFurthermore, when organizations cut
testing processes short, prioritization can decrease dhsilplity
that faults will have escaped into the released system.

Many regression test selection and test case prioritizagoh-
niques, including those that we consider in this work, depem
information about the coverage of code achieved by testsh Bu
formation is obtained by inserting probes into (instrumegjtcode,
and this activity, along with the activity associated witilecting
traces (coverage information) about test execution, amngrthe
costs incurred by these techniques.

Empirical evaluations of the foregoing regression testireghod-
ologies to date (as cited in Section 1) have relied, impyiair
explicitly, on relatively simple cost-benefit models. Leguand
White [22] present a model that considers some of the faftess
ing time, technique execution time) that affect regressesting
costs, but their model does not consider benefits. Harrohl. et
[15] present a coverage-based predictor of regressioseésttion
technique effectiveness, but this predictor focuses onlyealuc-
tion in numbers of test cases. Malishevsky et al. [23] extezuthg
and White’s work with cost models for regression test seacnd
test case prioritization that incorporate benefits rel&deamission
of faults and rate of fault detection. As discussed in Sectichow-
ever, each of these models omits many context and lifetictefa
related to the costs and benefits of techniques in practice.

3. MODELLING COSTS AND BENEFITS

We now describe the cost-benefit model that we utilize. Wébeg
our discussion by outlining the regression testing prooesshich
our model is based. Section 3.2 describes the constitusig 0b
regression testing techniques that we model, Section &Septs
our model, and Section 3.4 describes how the model is uliiae
assess and compare techniques.

3.1 Regression Testing Process

Cost-benefit models capture costs and benefits of methddslog
relative to particular processes. In this work, we use a Iinoidbe
regression testing process that corresponds to the moshaoniy
used approach for regression testing at the system tes{2dje—
abatchprocess model — and which, though simple, is sufficient to
allow us to investigate our research questions.

Figure 1 presents a timeline depicting the maintenanceeseg
sion testing, and post-release phases for a single reléassadt-
ware system following a batch process model. Tiheepresents
the time at which maintenance (including all planning, gsial de-
sign, and implementation activities) of the release beghkigime
t2 the release is code-complete, and regression testing aitd fa
correction begin. (These activities may be repeated andavery

scheduled
product release
date

i
t1 ©2 t3 w“
\ \ \ \
phase: ‘ ‘ regression testing éL post-release ‘
fault correction (revenue)

time:

maintenance

Figure 1: Maintenance and regression testing cycle.

lap within time intervalt2-t3, as faults are found and corrected.)
When this phase ends, at tint® product release can occur — at
this time, revenue associated with the release (togethéragso-
ciated increases in the company’s market value) begin touacc
In a perfect world, actual product release coincides wittedaled
release time, following completion of testing and faultreation
activities, and this is the situation depicted in the figure.

This process model relates to the regression testing tgebsi
we wish to investigate as follows. Suppose the timeline shiwe
situation in which the retest-all technique is employedhir case,
regression test selection techniques attempt to reduce ititer-
val t2-t3 by reducing testing time, with, for non-safe techniques, a
possible increase in the number of faults that slip throwgtirig
and are detected in the post-release phase. Test caséizatmmn
techniques attempt to reduce time inten2at3 by allowing greater
portions of the fault correction activities that occur imthperiod
to be performed in parallel with testing, rather than afeadv If
either of these techniques succeeds, the software candzseel
prior to its scheduled release date, and overall revenuscezase.

If prioritization is unsuccessful and fault correctioniaities cause
time intervalt2-t3to increase, then the release will be delayed and
revenue can decrease.

We also use this model to explore one further dimension of re-
gression testing that occurs commonly in practice, invgvihe
interaction between resource availability and processsiters re-
lated to product release and revenue. Organizations teatecr
software for sale regression test it with the goal of impngvits
dependability and attracting greater revenue by redudirgdsts
of post-release fault correction and increasing the peedevalue
of the released software and the market value of the comp@ny [
The cost of this testing activity competes, however, withdlsire
to field the software earlier, which itself can also resulgirater
revenue and company market value. Releasing software at2im
in the timeline can increase revenue due to the benefits @fitim
ness, but potentially increases costs due to missed faults.

In practice, pressure to release software and preservaueve
may cause organizations to terminate testing early. Indhge,
also, revenue may increase but with potential for costs dowam
due to missed faults. An analogous situation occurs whem#ie-
tenance period runs long and the organization terminastsge
early in order to meet scheduled release dates, althougfsindse
the focus is on not losing revenue. Note that in such casgts;dee
prioritization can decrease the degree to which such castg oy
increasing the likelihood that faults are detected prigdhttermi-
nation of testing. In our empirical study we investigate ¢fffects
of “early” regression testing termination.

of benefit, because market value is also important.

There are also many other regression testing process ntbdels
could be considered. For example, some organizations ose-in
mental testing processes, in which test cases are run egichasi
maintenance proceeds.

These differences noted, this process model does allow us to
investigate a cost-benefit model that is much more complar th
those used in research on regression testing to date. M@@arim
tant, we believe that the cost-benefit model we present leerde
adjusted to accommodate relaxations in the foregoing gsoms,
as well as process differences.

3.2 Costs Modelled

We now describe the constituent costs of regression tetgtaig
niques that we consider in this work. In this section we foons
what these costs are, not on methods for measuring or estgnat
them; discussion of measures is provided in Section 4.2.

To model the costs and benefits of regression testing, wédmmns
nine constituent cost components. Here we describe eachazom
nent and some of the factors that cause it to vary.

Test setup (CS). CS includes the cost of activities required to pre-
pare to run tests, such as setting up the testing environ¢thard-
ware and software) and arranging for the use of resourcess, Th
CS varies with characteristics of the system under test, sgch a
whether it exists standalone, in a distributed environmenin an
environment involving special hardware or human intecacti

Identifying obsolete test cases@0;). CO; represents the cost of
determining which of the test cases in a test suite are pflieable
to a new system version to be tested. This cost varies wittyfiee
of test cases (e.g., specification-based, code-baseénsysnit),
the amount of change occurring between consecutive ves,saol
the availability of documentation or engineer experience.

Repairing obsolete test cases({0,). Often, obsolete test cases
are still potentially useful for the current system. For rapée,
when a class interface is changed by one parameter typéingxis
test cases related to that class can not be used directly, $iot-
ple change may repair them. Similarly, a test case for whiphts
remain the same but for which expected output has changegcan
quire edits of oracle information. This cost varies with thenber
of test cases needing repair, and the complexity of the nrggaist
cases, oracle procedures, and system.

Supporting analysis (CA). CA represents the cost of the analysis
needed to support a regression testing technique. Fordheitpies
being considered heré;A can include costs of instrumenting code,
analyzing changes between old and new versions, and déotiect
test execution traces, and thus can vary widely with charatics

of techniques, programs, tests, and executions.

Significantly, CA can also vary with the extent to which data
from previous testing sessions is reused or leveraged ioutrent
testing session. For example, suppose engineers preyiossiu-
mented and collected test execution traces for releaséprogram
P in order to apply a regression testing technique to a sulesgequ
releaser, of P. Whenrs is regression tested, to prepare for the
next releasers, engineers must instrument and collect test execu-
tion traces forrz. As a software system evolves, however, a large

The process model we have just described makes several aspercentage of its code may be shared between consecutsiengr

sumptions. For example, organizations may also createvait
for reasons other than to create revenue. Organizatiohsdna
plete testing early could in theory spend additional timgqren-
ing other forms of verification until the scheduled releaatedar-
rives, and this could lead to increased revenue via redumeld f
cost downstream. Moreover, revenue itself is not the solesome

Thus, engineers can re-instrument a version incremeriigliglen-
tifying code changes between consecutive versions, ang pse-
vious instrumentation in unchanged code. Similarly, eegis can
collect test execution traces for only the subset of tesictsat are
affected by instrumentation changes, reusing prior triaresthers.
If the costs of instrumentation and trace collection arécgahtly

high and the changes between versions are sufficiently sthaii
we would expect lower costs to be associated with this ajgproa

Regression testing technique execution(R). CR represents the
cost of applying a regression testing technique or tool iggres-
sion test selection or test case prioritization), itsdtErasupporting
analyses have been completed. This cost also varies withcha
teristics of techniques, programs, test suites, and clsqigé

Test execution (CE). CE represents the cost of executing tests.

This cost varies with test execution processes (e.g., nhaaua
tomatic, or semi-automatic), as well as with charactexsstf the
system under test and the particular test cases utilizedy Maya-
nizations attempt to run test cases automatically, but noimgrs
continue to use manual or semi-automated testing apprsafdre
example, in human/machine interface testing, test casgspnia
marily involve human interaction [6].

Test result validation (C'V,; and CV;). CVy and C'V; represent
the cost of checking test results to determine whether otesit
cases reveal failures. These two variables represent twip@o
nents of the validation task: (X)V, is the cost of using automated
differencing tools on test outputs to detect output diffiers with
respect to prior testing sessions, and (Z); is the (human time)
cost of inspecting test outputs flagged as different to deter
whether the difference in fact represents a failure. Theseswary
with the number of test cases and the complexity of test augsu
well as with the automated technique used to check outputiiffo
ferences. A regression testing technique that reducesitheer of
test cases to be executed also reducés and C'V;.

Missing faults (CF). CF represents the cost of missing faults.
Regression test selection techniques can miss faults dueission
of existing test cases that could, if executed, have redebkEm. In
this work, we focus on the costs of missing faults that theaggjon
test suite could, if executed in full, have detected. (Initatd, all
regression testing techniques can miss faults that arestettble
by any of the test cases executed; however, these costxarecith
similarly by all techniques so we do not consider them here.)
CF varies with regression testing technique; clearly, nde-sa
techniques incur this cost to a greater extent than safeitpobs.
As discussed in Section 3.CF also varies with the testing organi-
zation’s processes (e.g., with reduced testing time calogearly
test termination). FinallyCF varies with business and financial
characteristics such as market conditions, product $énhstob the
market, and the severity of missed faults.

Delayed fault detection feedback ¢'D). CD captures the cost of
delayed fault detection feedback. When faults are detdatedn

a regression testing cycle, efforts to correct them canydalad-
uct release. Faults detected early in a cycle can potgnballad-
dressed, prior to completion of the cycle. As a simple exampl
suppose a fault requiring five days to correct is discoverethe
last day of a ten day regression testing cycle. In this casglust
delivery is delayed by the four days required to correct tngtf
and also by the time required to (again) regression test dhe c
rected program (another ten days under the retest-all appyolf
this fault is detected prior to the fifth day of the testingleyat
does not add any additional delay to product delivery tinegond
the time required to retest the corrected program.

Other costs not considered.In addition to the costs we have de-
scribed, there are other testing costs, such as initiattesst devel-
opment, initial automation costs, test tool developmesgt suite
maintenance, management overhead, database cost, andtloé c
developing new test cases. In this work we restrict our &tien
to the costs just listed, but our cost-benefit model couldyehe

extended to incorporate these other costs.

3.3 A Cost-Benefit Model

We use the preceding costs to formulate a cost-benefit mialel t
allows us to investigate the research questions we focus tnd
paper. We consider all of the costs just outlined, and fotysisa
costs we consider two analyses on which the specific regressst
selection and test case prioritization techniques we stieghend:
the cost of inserting instrumentation into the system, dedcost
of collecting test traces.

The model that we present is constructed based on the regress
testing process model discussed in Section 3.1, but theotetk
have used to construct the model can be used to constructisnode
for other processes.

Before we describe our cost-benefit model, we define several
terms and coefficients that are used in the model, most ofhwhic
instantiate the general constituent costs outlined ini@e8t2. As-
sume that we are considering regression testing techignee-
leases of software syste®tenotedS;, Sz, . .., S,, andn versions
of test suiteT (one per release &) denotedT’;, T2, ..., Ty.

e iis anindex denoting a particular releageof S.

uis a unit of time (e.g., hours or days).

e REV is an organization’s revenue in dollars per time wnit
relative toS

e ED(i) is the expected time-to-delivery in unitdor release
S; when testing begins (in Figure 3.1, intervait3).

e PS is a measure of the cost (average hourly salary) associ-

ated with employing a programmer per unit of timne

CS(4) is the setup cost for testing releaSe

CO;(1) is the cost of identifying obsolete tests for reledse

CO, (1) is the cost of repairing obsolete tests for relesise

CAqn (i) is the time needed to instrument all units

CA-(i) is the time required to collect traces for test cases in

T;—; for use in analyses needed to regression test relgase

CR(1) is the time required to execuRitself on releases;.

e CE(i)isthe time required to execute test cases on reléase
(either all of the test cases ifi; or some subset df’;).

e CVy(17) is the cost of applying automated differencing tools
to the outputs of test cases run on reledsgll test cases in
T; or some subset df’;).

e CV;(i) is the (human) cost of checking the results of test
cases determined to have produced different outputs when
run on releasé; (all test cases iff; or some subset df’;).

e CF(i) is the cost associated with a missed fault after the
delivery of release;.

e (CD(i) is the cost associated with delayed fault detection
feedback on releass.

e a;, (1) is a coefficient used to capture reductions in costs of
instrumentation required for releaséllowing changes, in
terms of the ratio of the number of units instrumentedtm
total number of units i

numberO fUnitsInstrumented
total NumberO fUnits

ain (i) = (1)
When all units are instrumented, this ratio equals 1.

e a:-(7) is a coefficient used to capture reductions in costs of
the trace collection required fofollowing changes, in terms
of the ratio of the reduced number of traces collected when

2Systems can be incrementally instrumented at variousdeseth
as per file, per class, or per method. We use “unit” geneyidall
account for this; in our studies we consider instrumentasibthe
level of class files.

focusing on changes into the total number of traces that
would need to have been collected otherwise.

numberO fTracesCollected
total NumberO fTraces

atr(i) = (2)
When all traces are collected, this ratio equals 1.

e (i) is a coefficient used to capture reductions in costs of
executing and validating test cases ffowhen only a subset
of Tis rerun:

NumberO fTestsRerun

b(i) =
@) Total NumberO fTestsInT

®)

When all test cases are run, this ratio equals 1.
e ¢(7) is the number of faults that could be detectedTbgn
release but that are missed due to execution of subsef® of

To formulate a cost-benefit model incorporating the foregoi
costs, we must ensure that all costs are measured in idemntits
To do this, we initially record all costs for which the mnerian
take the formCX using a time metric in some unit We then con-
vert these costs into monetary values so that we can contiéne t
in calculations involving revenues. To perform this cosi@n, we
categorize the costs into two groups: costs related to hwefiarts
(CS, CO;, CO,, CV;andCF), and costs related to machine time
(CA;p, CAyr, CR, CV4, andCE).

We then project the cost-benefits of regression testing bgide
ering techniques in light of their business value to orgatiins, in
terms of how much organizations pay for applying the techesq
and how much revenue they gain or lose by doing so. This iegolv
two equations: one that captures costs in terms of saldribs en-
gineers who perform regression testing tasks (usiigo translate
time spent by one or more engineers into monetary valuegor@
that captures revenue gains or losses related to changesdugp
release time (usin@ E'V' to translate times into monetary values).

Further, in keeping with our desire to accountlietime factors
by tracking costs and benefits across entire system lifstiroer
equations calculate costs and beneditsoss entire sequences of
system releasesather than simply on individual system releases.

The two equations that comprise our model are as follows:

Cost = PS * Zn:(csu) + CO;(i) + CO,(4)
- +b(i) * CV;(3) + c(i) * CF(3)) (4)
Benefit = REV x i:(ED(i) — (CS(i) + CO; (i) + CO (i)
+ ain(i— 1) * CAmEi:Q— 1) 4 ar(i — 1) % CApr(i — 1) + CR(i)
+b(i) * (CE(i) + CV;(i) + CVy(i)) + CD(i)) (5)

Relating these formulas to our prior discussions of preeasd
cost-benefits, if an organization does not test their produall be-
fore delivery, then they gain potential revenue by redu@hgf
the cost terms other tha@'F in Equation 4 to zero, and all the
cost terms of formCX in Equation 5 to zero. IfCF is zero, the
resulting revenue increase is proportional to the savedagd de-
livery time ED. When a regression testing technique reduces (in-
creases) testing time, either through selection or pizatibn, the
right hand side of Equation 5 is positive (negative), intiitcgan in-
crease (decrease) in revenue. These revenue changes plexcou
however, with changes in costs captured in Equation 4 irrhéte
ing whether techniques are cost-beneficial overall.

Note that of the costs that we consider in this work, severél, (

CO,, CO,, CA) can potentially be partially offloaded from the
critical testing phase to the maintenance phase; thatéspliase
denotedt1-t2 in Figure 1. For example, test engineers can make
test hardware ready or perform preliminary analyses on hesdn
which maintenance is complete. In this case, costs may awere
they continue to have associated salary and hardware aspett
may be less likely to contribute directly to delays in rekedstes.
Four other costsR, CE, C'V;, CV,) are incurred primarily dur-
ing the regression testing phaséD occurs during the regression
testing and fault correction phase, but may also extendfietpost-
release phase&’'F is incurred during the post-release phase.

In constructing the foregoing model we make several sipplif
ing assumptions. We assume tl&has just one (evolving) test
suite, that tests have equal run times, that instrumentatists per
unit and trace are uniform, and that fault costs are all teesa
We assume that test case execution, analysis, and regréssto
ing technique costs involve only machine time, with no hurmast
component, and we consider test setup and obsolete testidete
to have only human effort cost, (an assumption appropr@atait
experiment objects). In this work, where we consider thatred
efficacy of regression testing techniques that reTusge consider
only fault losses incurred due to execution of subseTs e make
these assumptions for convenience, as they are suitatiie sre-
narios we consider in our empirical study. All of these agstions
can be relaxed, however, given appropriate changes madein t
model and sufficiently accurate measurement instruments.

3.4 Evaluating and Comparing Techniques

The foregoing cost models can be used in cost-benefit asalyse
in various ways. LeA andB be regression testing techniques with
costsCosts and Costp, and benefit8Benefita and Benefitg. We
can determine whethédis beneficial by calculating:

Benefity — Costa (6)
Further, we can determine the difference in value betwéemd
B by calculating:

(Benefita — Costa) — (Benefitg — Costg) (7
with positive values indicating that has greater value thas, and
negative values indicating that has lesser value thas.

4. EMPIRICAL STUDY

The foregoing model captures a richer set of factors thae hav
been considered in prior research on regression testihgitpees,
and allows us to address various questions about thoseideeisn
Our study is designed to address three such questions:

RQ1: What effect does the imposition of time constraints have on
the relative cost-benefits of regression testing techisigue

RQ2: What effect does availability of incremental resourcegha
on the relative cost-benefits of regression testing teclasg

RQ3: What are the relative cost-benefits of regression testsele
tion and test case prioritization techniques?

None of these research questions have been addressediphgvio
in empirical studies of regression testing; In fact, no dwestefit
models previously defined capture the necessary factorgheln
case of RQ1 and RQ2, no prior models consider the relatipnshi
between fault omission or rate of fault detection and teqpinmiex-
ecution costs. In the case of RQ3, no prior models have been ca
pable of expressing the cost-effectiveness of these tvssetaof

techniques in comparable units. All three of these questame
important, however, for practitioners who wish to detereniwhat
technigue might be most cost-effective in their organmai

4.1 Objects of Analysis

We used five Java programs as objects of analyaig; xml-
security jmeter, galileo, andnanoxml The first three objects have
JUnit test suites, and the last two have TSL (Test Specificati
Language) suites [26]Ant is a Java-based build tool; it is simi-
lar to make, but it is extended using Java classes insteadtiof w
shell-based commanddmeteris a Java desktop application used
to load-test functional behavior and measure performantal-
securityimplements security standards for XMGalileois a Java
bytecode analyzeiNanoxmlis a small XML parser for Java. Sev-
eral sequential versions of each of these systems, modifieaty-
ing degrees, were selected for use in this study. These qrgr
versions, and test suites are all available as part of aagtrfrcture
supporting experimentation [8].

Table 1 lists, for each of our objects, its associated “\@1si
(the number of versions of the object program), “Classeleg (t
number of class files in the most recent version of that prayra
“Size (KLOCs)” (the total lines of code in the most recentsien
of that program), and “Test Cases” (the number of test cassk a
able for the most recent version of that program). The rigistm
column is described in Section 4.3.

4.2 Variables and Measures

4.2.1 Independent Variable

Our study manipulated one independent variable, regnessé-
ing technique. We consider the three different regressstirg
methodologies described earlier in Section 2: retestegression
test selection, and test case prioritization. For eachesfdimethod-
ologies, we consider one or more specific techniques, assll

Retest-all (control). The retest-all technique (reusing an entire ex-
isting test suite) together with original test case ordeveseas our
control technique, representing the typical common peaaif run-
ning all non-obsolete test cases on a new version of a system,
whatever order they are presented in.

Regression test selectionFor regression test selection we con-
sider a safe technique, that selects test cases which sxamwile
that has been changed to produce a modified program verggn [3
The technique relies on control flow graphs and program egeer
information at the basic block level to select all test cabasexe-
cute changed code.

Test case prioritization. For test case prioritization we consider
two coverage-based techniques [11]. These techniquesmédipck
coverage information per test case. The first techniquel ibddck
coverage prioritization, simply counts the total numbeblafcks
each test case covers and sorts test cases in terms of thogs.co
This technique has relatively low analysis costs. The sgtech-
nique, additional block coverage prioritization, ordarsttcases in
terms of the numbers of additional blocks they cover by ghged
selecting the test case that covers the most as-yet-urezblércks
until all blocks are covered, then repeating this procesisalhtest
cases have been used. This second technique incorporaiéera n
of feedback not present in the total block coverage priation,
which causes it to have larger analysis costs than that igaaéin

Techniques facing time constraints. We also consider each of
the techniques just described in a manner that reflects thetef
of time constraints, in which regression testing actigitiee termi-
nated early. To do this, for each of the foregoing technigues

Table 1: Experiment Objects and Associated Data

Objects Versions | Classes Size Test | Mutants
(KLOCs) | Cases

ant 9 627 80.4 877 2907

xml-security 4 143 16.3 83 127

jmeter 6 389 43.4 78 295

galileo 16 87 15.2 1533 1923

nanoxml 6 26 7.6 216 132

shorten the test execution process by 50%, simulating faetefof
having the testing process halted half way through.

Techniques using incremental resourcesTo investigate the ef-
fects of incremental resource availability, we considesians of
each of our prioritization techniques and our regressiehdelec-
tion technique that re-use analysis data pertaining toumsnta-
tion from previous testing sessions. In contrast to theinoremental
techniques just discussed, which re-instrument all codeesexecute
all tests under instrumentation, these incremental tectasi re-
instrument only classes that have changed, and re-execlytéest
cases known to have passed through changed classes plgvious

4.2.2 Dependent Variables and Measures

Our dependent variables are the cost and benefit factors pre-
sented in Section 3.3, and calculated by Equations 4 and &seTh
values are measured in dollars, and their calculation dipen
several constituent cost measures, which we collect amfsl!

Cost of test setup(CS). For our objects, the cost of test setup
involves only human resources, not hardware resources.rélhe
evant activities include setting up a working directory festing,
compiling the program version to be tested, configuringdesers
and test scripts, and (in some cases) performing minor txtest
scripts. We measured the costs of these activities dirasthn av-
erage of the time taken by two graduate students (Ph.D. rstside
from our research group) to perform them.

Cost of identifying obsolete test case6CO;). For our objects,
identification of obsolete test cases as versions wereajgzehvould
have required manual inspection of a version and its tesscasd
determination, given modifications made to the system, efiéist
cases that need to be modified for the next version (due t@elsan
in inputs or expected output). Our objects were alreadyigeal/
with test suites, so to measure this cost we asked a gradudens
to perform these activities, working with the given suites.

Cost of repairing obsolete test case§CO,). For our objects the
cost of repairing obsolete test cases includes the costgaofi-e
ining specifications, existing test cases, and test drivasswell

as observing the execution of suspect tests and driverfioddh

all of our objects had obsolete test cases, and the cost ofiide
fying them was measured as described above, on only onetpbjec
nanoxm| were repaired tests present. To measure the cost of re-
pairing tests on this object, we asked two graduate studeht®.
students from our research group) to perform these aetivitiVe
averaged the times taken by these students.

Cost of supporting analysis — non-incrementa(CA). The anal-
ysis costs for the non-incremental regression testingiigakes in-
clude the costs of instrumenting progrants4(;,) and collecting
test execution trace<{4:,). We calculated these values directly
for each version of each object program, by measuring the tim
required to run the Sofya system [20] for instrumentatiodafa
bytecode, and the time required to execute the test casdbdbor
version on that instrumented version.

Cost of supporting analysis — incremental(CA). Incremental
analysis costs consist of the time required to re-instrunoaity
modified classes for a given version (given a version presljou
fully instrumented), and the time required to re-executehat ver-
sion, only those test cases known to have reached modifisskeda
in the prior version. Our code instrumenter does not sugpore-
mental instrumentation, so we partially estimated theseegaby
utilizing the directly measured non-incremental analgsists col-
lected as just described, and (as shown in Equation 5), phyittg
this number by (in the case of re-instrumentation) the ratithe
number of classes requiring re-instrumentation to thd matenber
of classes and (in the case of re-execution) the ratio of tineber
of traces requiring recollection to the total number of éac

Cost of regression testing technique executiofCR). We directly
measured the time required to apply each regression testihg
nique studied, by running it against each version of eackabbj
program using appropriate analysis information.

Cost of test execution(CFE). For cases in which all test cases
were executed, we directly measured execution time of teétss
automatically, by running them against each version of edpbct
program using appropriate analysis information. For casehich

a subset of a test suite was executed, we estimated exetinti®n
by multiplying the cost of executing the entire test suitahmyratio

of the number of test cases being rerun to the total numbezsof t
cases, as shown in Equatior 5.

Cost of test result validation (automatic via differencing (C'V3).
For cases in which all test cases were executed, we direeé m
sured this validation time automatically, by measuring ¢bst of
running a differencing tool on test outputs as test cases wez-
cuted, for each version of each object program. For casegichw
a subset of a test suites was executed, for reasons similaose
discussed immediately above, we estimated this time byiphylt
ing the cost of validating the entire test suite by the rafiche
number of test cases being rerun to the total number of tessca

Cost of test result validation (human via inspection C'V;). To
measure the cost of validating test results, we averagetirtiee
taken by two graduate students (Ph.D. students from ouarese
group) to compare program outputs across versions, forgechf
versions. For cases in which a subset of a test suites wasterec
we estimated this time (for reasons discussed above) byptyirig
the cost thus measured by the ratio of the number of test bagegsg
rerun to the total number of test cases.

Cost of missing faults(CF). For each regression testing technique
that could omit faults, we measured the number of faults tewhit
during a testing session on each version of each object gmogr
Determining the cost of missing faults, however, is mucherdf-
ficult. Given the many factors that can contribute to thesgisco
and the long-term nature of these costs, we could not obiésn t
measure directly. Instead, we rely on data provided in [8131-
tain estimates of the costs of faults. Because fault diffiesirange
widely, we decided to analyze results relative to two clasgéault
importance: one corresponding to costs attributed in [81}e-
vere” faults, and one corresponding to costs attributedtdihary”
faults. These costs, respectively, are 22 and 1.5 hours.

3We used estimation in this case for two reasons: (1) the dost o
executing every test suite subset considered in this stadyavge;
and (2) because the test cases for each of our particulastolge
sions are quite similar to one another in terms of execuiioeg,
and test suite execution time ultimately accounts for a kfred-
tion of overall costs, this estimation could not affect @aleresults.

Cost of delayed fault detection feedback CD). For each pri-
oritization technique applied to each object version ast saite,
we measured the rate of fault detection using the APFD (Ayera
Percentage Faults Detected) metric (a metric introducedhie
purpose in [12]) for that version and test suite. Then, foilg
the approach of [23], we translated APFD scores into the taimu
tive costs (in time) of waiting for each fault to be exposedlgh
executing test cases under a particular order, definddlags

Revenue(REV). A second metric that we cannot measure directly
relative to our object programs involves revenue, and izatour
cost models we required an estimate of this value. To obtath s
an estimate, we utilized revenue values cited in survey filata
software products [7], ranging from $116,000 to $596,000epe-
ployee. Because our object programs are relatively smaipeoed

to many commercial software systems, we utilize the sntakss
enue and a headcount of ten in this study.

Programmer salary (PS). A third metric that we cannot mea-
sure directly on our object programs involves the salarfgzro-
grammers. To obtain an estimate, we rely on a figure of $100 per
person-hour, obtained by adjusting an amount cited in [7&
appropriate cost of living factor.

Expected time-to-delivery (ED). We do not calculateZD, be-
cause the comparisons we need to perform to address ouraesea
questions do not require its calculation. To explain: we Egea-
tion 7 to compare techniques, and this equation subtraetsahefit
value for a second technique from the benefit value for the fins

so doing, because ED is necessarily identical for two tephes
compared on the same version, the value of ED is canceled out.

4.3 Experiment Setup and Analysis Strategy

To perform test case prioritization and regression testcsein
we required two types of data: coverage information and ttath.
We obtained coverage information by running test cases polou
ject programs instrumented using Sofya [20]. The resulitifor-
mation lists which test cases exercised which blocks in tloe p
gram; a previous version's coverage information is therduse
prioritize a current version’s set of test cases, and to cupghe
selection of a subset of test cases for the current version.

To measure rate of fault detection for test case prioritinetech-
niques, and fault omission for non-safe regression test8eh, we
required object programs containing faults. The objecgmms
we obtained had not been supplied with any such faults ot faul
data. Thus we used mutation faults generated using a Jaga byt
code mutant generator [9]Because our focus is regression testing,
however, we use only generated mutants that fall within exdli
areas of code. The number of mutants created for each of ggotob
programs is shown in column five of Table 1.

In actual testing scenarios, programs do not typically @ioras
many faults as the number of mutants we generated. Also, sl wi
to investigate the use of regression testing techniquédatiye to
the lifetime factor) across the entire sequences of vessadrour
object programs. To do this, for each version of each program
randomly selected sevenalutant groupsrom the mutant pool for
that version; each mutant group’s size varied randomly &éetw
one and five. Then, for each program, we obtained feequences

4Although studies involving real faults can be preferablester-

nal validity, real faults are seldom available in numbeffigent to
support controlled experimentation; thus, researchéemgély on
faults created by mutation tools. Recent studies [1, 9] ls&asvn,
moreover, that mutation faults can be representative ofaals.
5These numbers were chosen to maintain consistency witp setu
procedures followed in an earlier experiment [9].

of mutant groupsy randomly selecting a mutant group for each
version of that program.

Given these materials, to collect the data necessary tetigate
our research questions, we considered each object programi
and for each version of that program, applied each regmressst-
ing technique, and collected the appropriate values foeswary
cost variables (as indicated in Section 4.2.2). In this gsscall
times were measured on a PC running SUSE Linux 9.1 with 1G
RAM and with a 3 GHZ processor.

Given these cost variables we calculated, for each objegt pr
gram and each technique, the benefit and cost of that teahajau
plied to the sequence of versions (with their associatedstetes)
of that program for each of its four sequences of mutant gzroup

We then averaged these numbers. These benefit and cost sumber

serve as the data for our subsequent anafysis.

4.4 Threats to Validity

In this section we describe the construct, internal, andrasai
threats to the validity of our study, and the approaches e i3
limit the effects of these threats.

Construct Validity. The dependent measures that we have consid-

ered for costs and benefits are not the only possible measeres
lated to regression testing cost-effectiveness. As destiin Sec-
tion 3.2, other testing costs might be worth measuring fffeidint
testing situations and organizations.

Internal Validity. The inferences we have made about the cost-
benefits of regression testing techniques could have béected
by two factors. The first factor involves potential faultdtie tools
that we used to collect data. To control for this threat, wi va
dated our tools on several simple Java programs. The seaond f
tor involves the actual values we used to calculate costaesuf
which involve estimations. For example, we used code chamge
tios to estimate incremental instrumentation costs, anavarage
test case execution time over the instrumented prograntitoas
incremental trace collection costs. We also measured thies ob
test setup, finding obsolete tests, repairing obsolets, teatl val-
idating outputs by measuring the time taken by graduateestsd
The use of such estimates could confound results. The valaes
used for revenue and costs of correcting and missing fadtesti-
mated based on surveys found in the literature, but suctesaan
be situation-dependent; for example, Perry and Stieg [B&3emt
a different set of fault costs. However, we did choose a iveligt
small revenue figure so as not to inflate results, given thabbu
ject programs are relatively small. In summary, we exetcis@me
in selecting reasonable estimations relevant to our opjegrams,
but larger-scale industrial case studies will be neededltow up
on these results.

External Validity. The Java programs that we study are relatively
small (7K - 80K), and their test suites’ execution times aa-r
tively short. Complex industrial programs with differettacacter-
istics may be subject to different cost-benefit tradeofis|uding
also different amounts of revenue that could yield différemst-
benefit tradeoffs. The testing process we used is not repase
of all processes used in practice, and our results shouldtbe- i
preted in light of this. The tools we use in this study are ggies,
and thus may not reflect tools used in a typical industrialrenvy
ment. Control for these threats can be achieved only thraagh
ditional studies with wider populations of programs, ottesting
processes, and enhanced performance-efficient tools.

5Complete data sets can be obtained by contacting the fitsbraut

Incremental Analysis Resources

No Yes
BOX 1 BOX 2
org original order org original order
n ol mna retest-all rta retest-all
£ Z| rts safereg. test. sel, rs.i safe reg. test. sel
g tot total cov. prio. tot.i total cov. prio.
S add addtlcov. prio. | add.i addt'l cov. prio.
i BOX 3 BOX 4
E org.50 original order | org.50 original order
@ | rta.50 retest-all —
> | rts.50 reg. test. sel. —
tot.50 total cov. prio. | tot.50.i total cov. prio.
add.50 addt'l cov. prio. | add.50.i addt’l cov. prio.

Figure 2: Cost factor scenarios.

4.5 Data and Analysis

In our analysis of results, in keeping with our research tioes,
we organize the data considering two different contexoiacttime
constraints (captured in our process model, and througiousr
factors in our cost-benefit model, through the early tertimeof
testing activities), and availability of incremental aysa$ resources
(captured in our cost-benefit model in terms of incorporatd
differing forms of analysis costs in relation to instrurnegign and
trace collection). The combinations of these context facygeld
four classes of technique applications, as illustratediguie 2.
Each of these classes (each of the four boxes in the figurefeken
a different scenario that an organization could face inngste-
pending on resource availability and time constraints. A&cdbe
each scenario further as follows.

Upper left (Box 1): no time constraints are applied and no incre-
mental analysis resources are available. In this situgfiof the
regression testing techniques we consider apply: threedss pri-
oritization techniques (original test order (“org”), tbtdock cov-
erage (“tot”), and additional block coverage (“add”)), ama re-
gression test selection techniques (retest-all (“rtat) eagression
test selection (“rts”)).

Upper right (Box 2): no time constraints are applied and incre-
mental analysis resources are available. In this situatiercon-
sider the same five techniques considered in Box 1, but three o
the heuristics (“tot”, “add”, and “rts”) use incrementaladysis re-
sources. To identify techniques succinctly we add the tago'i
each technigue’s mnemonic: “tot.i”, “add.i”, and “rts.i.”

Lower left (Box 3): time constraints are applied and no incremen-
tal analysis resources are available. In this situation lse eon-
sider five techniques, representing the case in which teattivi-
ties following the application of techniques in Box 1 arenarated
early. We eliminate the second half of the test suites for &the
techniques (“org.50”, “tot.50”, “add.50”, and “rta.50").For re-
gression test selection, we chose a different approacllonaly
selecting half of the test cases in the test suite, becauseished
all test suites for a given version in Box 3 to have the sane siz

Lower right (Box 4): time constraints are applied and incremen-
tal analysis resources are available. In this situation eresicler
only three techniques, “org.50", “tot.50.i", and “add.BObecause
incremental analysis does not apply to a test suite obtdfoede-
gression test selection) by random reduction.

“In principle test suites are sets, but in practice test case®r-
dered, and thus the notion of using the first half of a suitdiepp

To address each of our research questions, we need to compare

pairs of techniques for cost-benefit tradeoffs, and thenpaoethe
relationships that occur between techniques under onef $at-o
tors to the relationships that occur under another set edrfe.cFor

example, we ask whether the relationship between “org” atsi “
in Box 1 is the same as the relationship between “org” and iints
Box 3, in order to assess whether the effects of early testiner

tion affect the relative cost-benefits of these two techesqu

We first perform technique comparisons within each box. Ta-
bles 2 and 3 summarize the result of this comparison, rejgprti
relative cost-benefit relationships measured for eachgdaiech-
niques within each box, per program, using Equation 7. Table
contains one subtable corresponding to Box 1, one subtable-c
sponding to Box 2 and two subtables for Box 3 — one for the case
in which non-severe faults are utilized in the cost-benefiiiz¢ions,
and another for the case in which severe faults are utiliZedble
3 contains data for both types of faults with respect to BofT4e
use of pairs of tables for Boxes 3 and 4 corresponds to ourtwish
analyze results relative to two classes of faults diffeimgever-
ity. Note, however, that differences between fault selrihave
effects only for cases in which time constraints limit test@ition,
because when constraints are not applied and full tesssaigsex-
ecuted, there are no omitted faults and thus no fault costeis T
these results are reported only for Boxes 3 and 4.)

All of the data in Tables 2 and 3 is represented in dollar \&lue
obtained by converting time measurements using the fosrard
values described in Sections 3.3 and 4.2.2, respectively.

Within each subtable in the tables, columns are labeledpriits
of regression testing techniques compared, and rows aetethb
with object programs considered. If an entry in the table ofC
umn B(T1, T2) and rowfoo contains a positive amount, théry
yields benefit by that amount, in dollars, ovEeg, for programfoo.

If an entry in ColumnB (T, T'2) and rowfoo contains a negative
amount, theril"2 yields benefit by that amount, in dollars, ovEf
for foo. For example, the cell in ColumB (tot, org), row ant, in
the topmost subtable in Table 2, lists the result of appl{oga-
tion 7 treating “tot” as techniqué and “org” as techniqus; the
amount listed, -916, is the dollar-cost advantage (or rattisad-
vantage) of applyind\ rather tharB to ant.

Table 2: Relative Benefits Between Technique Pairs (dollays

No incremental analysis resource & no time constraints (Box
Object B(tot, B(add, B(rts, B(rts, B(rts,
org) org) rta) tot) add)
ant -916 -1083 -1779 -616 -448
jmeter -298 -297 -552 -146 -147
xml -100 -104 -223 -63 -59
nanoxml -70 -41 -188 179 150
galileo -815 -322 -415 2576 2083
Incremental analysis resource & no time constraints (Box 2)
Object B(tot.i, B(add.i, B(rts.i, B(rts.i, B(rts.i,
org) org) rta) tot.i) add.i)
ant -599 148 -1483 -616 -448
jmeter -145 155 -399 -146 -147
xml -25 70 -148 -63 -59
nanoxml -32 66 -150 179 150
galileo -583 729 -182 2576 2079
No incremental analysis resource & time constraints (Boxdi-severe faults)
Object B(tot.50, | B(add.50, | B(rts.50, | B(rts.50, B(rts.50,
org.50) org.50) rta.50) tot.50) add.50)
ant 160 184 656 527 -1069
jmeter -96 -36 145 258 -158
xml 572 461 437 -132 -184
nanoxml 694 559 947 269 156
galileo -668 889 1822 2731 -1722
No incremental analysis resource & time constraints (Boge¥ere faults)
Object B(tot.50, | B(add.50, | B(rts.50, | B(rts.50, B(rts.50,
org.50) org.50) rta.50) tot.50) add.50)
ant 17800 21455 9994 -7773 -13002
jmeter 3016 4114 2221 -778 -2234
xml 10949 9281 6663 -4282 -2778
nanoxml 14183 11973 14436 269 2231
galileo 9707 42393 27762 18295 -17286

Table 3: Relative Benefits Between Technique Pairs (dollays

Incremental analysis resource & time constraints (Box 4)
Object B(tot.50.i, | B(tot.50.i, | B(add.50.i, | B(add.50.i,

org.50) org.50) org.50) org.50)

non-severe| severe non-severe severe

ant 477 18116 500 21771
jmeter 57 3170 117 4267
xml 647 11023 536 9356
nanoxml 732 14221 597 12011
galileo -436 9931 1122 42626

We now use the data in Tables 2 and 3 to address each of our

research questions, in turn.

45.1 RQ1: Effects of time constraints

Our first research question considers whether the impasitfo
time constraints affects the relative cost-benefits ofeggjon test-
ing techniques. To answer this question, we compare teghniq
pairs in Boxes 1 and 2 in Figure 2 to corresponding technigures p
in Boxes 3 and 4, respectively. We restrict our attentiorotojgar-
isons between heuristics and control techniques, defecompar-
isons between regression test selection and test caséipaiton
techniques to our discussion of RQS3.

Columns 2 through 4 in Table 2, in the subtable for Box 1, in-
dicate that heuristic regression testing techniques arbereficial
compared to corresponding control techniques for any obkiject
programs considered. All comparisons yield negative numte-
dicating that the original and retest-all techniques odigpened the
heuristics in all cases. Data in the same columns in the slgbfar

outperform control techniques. Furthermore, even the fages
in which heuristics are not beneficial over control techeijare
altered when we consider the case in which faults are severe.

4.5.2 RQ2: Effects of incremental resource use

Our second research question considers whether the dimgjilab
of incremental resources affects the relative cost-beneffitegres-
sion testing techniques. To answer this question, we cosrtpah-
nique pairs in Boxes 1 and 3 in Figure 2 to corresponding figcien
pairs in Boxes 2 and 4, respectively. Again, we focus on campa
isons between heuristics and control techniques.

As already noted in Section 4.5.1, all three comparisonsngmo
heuristics and control techniques in Box 1 show no benefiteuac
ing to heuristics. When we consider the use of incrementlars
resources (Box 2), however, comparisons do reveal a fewrdiff
ences. First, in all cases, the use of incremental analiaidsyad-
vantages over the use of non-incremental analysis: all eusnib

Box 2 also shows similar trends in the cases of columns 2 and 4 the table are higher than their corresponding numbers in1Box

(“tot” versus “org” and “rts” versus “rta”), but not in the sa of
Column 3 (“add.i” versus “org”).

Comparing this data to that for corresponding technique-com
parisons in Boxes 3 and 4 for non-severe faults revealsrdiffe
trends: in all but three cases in Box 3 and one in Box 4, hacsist

the comparisons of “tot” to “org” and “rts” to “rta”, howeveton-
trol techniques continue to outperform heuristics overakecond
difference, however, is more apparent: in the comparisdiaad”

to “orig”, the use of incremental analysis does render theikgc
beneficial with respect to the control technique.

Comparisons between Box 3 and Box 4 do not reveal many dif- uct). Meanwhile, complete-test but late delivery can leeshhaller

ferences, but here too, overall the benefits associatedhwithistics
increase, and in two cases (“tot.50” versus “orig.50” andt:&0”

versus “orig.50” forjmetel) the use of incremental analysis re-

sources allows heuristics to outperform control techrsque

4.5.3 RQ3: Test selection versus prioritization

Our third research question considers whether the relatve
efits of regression test selection and test case prioitizaech-

numbers of post-release defects, but if the delivery datelsyed
long, the company can lose opportunities to earn revenum tine
product. These inferences are not unexpected, but whanopir-e
ical results suggest is that cost models such as ours careddgas
ascertain the regression testing technique that can bestoein a
particular scenario, based on expected revenues and \ailogser
factors related to testing costs.

Regarding the use of incremental resources, our resuls thtad

niques differ. Columns 5 and 6 in the subtables for Boxes 1 and this factor, too, can affect evaluations of regressioninigstech-
2 show the comparison results between these techniquesmehen niques, but such impact was apparent in only some cases.
time constraints are applied, and when safe regressioseiestion cause of this was the relationship observed, for our ohjdoets
is involved. (Note that Columns 5 and 6 in Box 1 contain values tween instrumentation and trace collection costs. In genere
identical to those in Box 2; this is because the techniqued imsthe expect that if we reduce the number of class files that nee@ to b
two boxes differ only in terms of their use of incremental lgsis instrumented to collect information for a testing sessiea,could

resources, and in the case of these particular technighesewime also reduce the number of trace files to be collected by a propo

One

constraints are not applied, the costs of the activitiefopmed do
not differ across the boxes.)

The results show that the regression test selection tegbifics”)
is more cost-effective than test case prioritization témptes (“tot”
and “add”) for the two object programagnoxmlandgalileo) that
have specification-based test suites. For the other thoggams,
which use JUnit test suites, test case prioritization teghes are
more beneficial than regression test selection. This resintpor-
tant because it suggests that in practice, a preferreditpehmight
vary with test suite type. Further study of this effect is b
however, to determine whether test suite type, techniquéheir
interaction are responsible for this effect.

Turning to the subtable for Box 3, when we compare results be-

tween test case prioritization and regression test seledti the
case in which time constraints apply, we see differentiaiahips
between techniques. For non-severe faults, the seleeabmigue
is better than the “tot” technique in all but one case, but‘tu&l”
technique is better than selection in all but one case. R@mrse
faults, the comparison between random and “add” reveatgltre
similar to that of the non-severe fault case, but the corspari
between selection and “tot” reveals two casast @ndjmetel in
which selection ceases to be better than the “tot” technique

5. DISCUSSION

To further explore the results of our study we consider tws to
ics: (1) the ramifications for practice of the results we oted;
and (2) a comparison of our results with those obtained itieear
work using different cost models.

Where the first topic is concerned, our results support time co

clusion that accounting for different context factors irsessing
regression testing techniques makes a difference whessiisge
the relative benefits of those techniques. In particular aoalysis
shows that the time constraints factor had a large impactiative
benefits. In practice, cases in which time constraints vetez to
affect product release are frequent in the software ingusten-
dricks et al. [16] report that a typical reason for produdagle is
the need for additional testing and debugging. At other $inoe-
ganizations cut back on testing activities in order to emsimely
release of their product.

Further study of our data suggests, in fact, that the priroange
of the impact of time constraints was the tradeoff betweerctsts
of applying additional tests and not missing faults, anddbsts
of reduced (non-safe) testing in which faults are missecd-ti@a
but incomplete-test delivery can lead to revenue increasgsif
the product contains defects after delivery, the orgaitizatan
suffer from post-delivery revenue losses (due to additideéect
removal costs and the loss of customers due to distrust qfrtee

tional amount, because we need to collect only traces tleaafar
fected by instrumentation changes. However, this exgeatatas
often not met on our objects. For example, in the casgaobxm|
incremental instrumentation required only 30% of totatrimsien-
tation time, but incremental trace collection required 98#/4o-
tal trace collection cost. This result occurred becauseesointhe
newly instrumented files are accessed by most test casede§he
son learned from this example, where our study and the usesof ¢
models are concerned, is that it can be important to decéagtiers

in those models, to avoid conflating different effects.

Where our second topic of discussion is concerned, in thi& wo
we evaluated regression testing techniques using a cosrifadt
(1) allows comparisons of previously incomparable clas$ésch-
niques (prioritization and selection) and (2) includescher set of
factors than has been employed in prior evaluations. Oupaom
ison of prioritization and selection (RQ3) illustrates #féects of
considering such factors on the relative cost-effectigssrad these
classes of techniques: not only time constraints, but alsib $ever-
ity and test suite type potentially affect tradeoffs betawvdeem.

To gain further insights into how evaluations of regresgest-
ing techniques differ as cost models vary, we compared cuiltse
with those from a previous empirical study of prioritizatitech-
niques in which three of the same JUnit object programs weed u
(ant, jmeter, andxml-security [10]. The previous study evaluated
a prioritization technique (additional block coverage)hgsa cost
model that considered only two cost components (test casmiex
tion time and prioritization technique cost) and one ber{&itlt
detection rate). The study showed that the additional btader-
age technique was beneficial compared to original test cakes-o
ings for two of the three programpr(eter, andxml-security. This
result is quite different from our results in this study, wlinido not
show benefits for any heuristics over control techniquebércase
in which time constraints do not apply. One lesson suggedsyed
this observation is that evaluations of techniques basaetiffanent
models can result in quite different evaluations of the -testefits
of techniques, and so, efforts to capture richer sets obfadn
models, as we have done in this work, are worthwhile.

6. CONCLUSIONS

Empirical assessments of regression testing techniqueesnde

on cost-benefit models. In this paper we have presented such a

model, that captures a richer set of the factors (includiogtext
and lifetime factors) that affect technique cost-effemtiess than
prior models. Our model facilitates the investigation anthpari-
son of techniques along dimensions that have not previdiesy
possible, and our empirical results indicate that this edpd view
has practical implications for users and researchers bhtquaes.

Although the cost-benefit model that we present captures spe
cific testing-related factors relative to just one (commmgyession
testing process, it can be adapted to include other factarsypply
to other processes, and our future work will consider suctptd
tions. Further, our study results are somewhat explorativéhe
sense that they do not provide data sufficient to suppoiistita
analysis. Such results are important in the early stagessefarch
to show whether value potentially exists in models; howelav-
ing shown this, this work motivates future studies emplgyarger
data sets and statistical analysis.

In the study reported in this paper, we evaluated regressiin
ing techniques using systems of size (7K - 80K) and relatisaiall
revenue estimates. Program size, however, does not agpearat
factor in our results, for the programs that we considers thue
conjecture that similar trends could be expected for larigeius-
trial systems. Such larger systems, however, will also beaated
with higher revenues than those considered here, and wetdkpé
in such cases, the context factors we have considered wil ha
even greater impact on the relative cost-benefits of reigressst-
ing techniques. We hope that through continuing researc¢hisn
area, we can bring the benefits of better cost models and éggdan
empirical understanding to organizations that create systems.

Acknowledgements

This work was supported in part by NSF under Awards CCR-09808
and CCR-0347518 to the University of Nebraska - Lincoln.

7. REFERENCES

[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experimentsmitil. Conf. Softw.
Eng, pages 402-411, May 2005.

[2] B. Beizer. Black-Box TestingJohn Wiley and Sons, New
York, NY, 1995.

[3] J. Bible, G. Rothermel, and D. Rosenblum. Coarse- and fine
grained safe regression test selectd®@M Trans. Softw. Eng.
Meth, 10(2):149-183, Apr. 2001.

[4] R. Binder.Testing Object-Oriented Systemgldison Wesley,
Reading, MA, 2000.

[5] Y. Chen, D. Rosenblum, and K. Vo. TestTube: A system for
selective regression testing. lint'l. Conf. Softw. Eng.pages
211-220, May 1994.

[6] R. D. Craig and S. P. JaskieBystematic Software Testing
Artech House Publishers, Boston, MA, first edition, 2002.

[7] http://www.culpepper.
[8] H. Do, S. Elbaum, and G. Rothermel. Supporting contrblle
experimentation with testing techniques: An infrastroetu
and its potential impactnt’l. J. Emp. Softw. Eng10(4):405—
435, 2005.
H. Do and G. Rothermel. A controlled experiment ass&gsin
test case prioritization techniques via mutation fauh€onf.
Softw. Maint, pages 113-124, Sept. 2005.

H. Do, G. Rothermel, and A. Kinneer. Prioritizing JU st

9]

[10]

cases: An empirical assessment and cost-benefits analysis

Int'l. J. Emp. Softw. Eng11(1):33-70, 2006.

S. Elbaum, A. Malishevsky, and G. Rothermel. Prionitgz

test cases for regression testing.li'l. Symp. Softw. Test.

Anal, pages 102-112, Aug. 2000.

[12] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Tesecas
prioritization: A family of empirical studieslEEE Trans.
Softw. Eng.28(2):159-182, Feb. 2002.

[13] S.Elbaum, G. Rothermel, S. Kanduri, and A. G. Malistgvs
Selecting a cost-effective test case prioritization témine.

[11]

[32] A. Srivastava and J. Thiagarajan.

Softw. Quality J.12(3), 2004.

T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and

G. Rothermel. An empirical study of regression test sepecti

techniguesACM Trans. Softw. Eng. Meth10(2):184-208,

Apr. 2001.

M. J. Harrold, D. Rosenblum, G. Rothermel, and E. Weyuke

Empirical studies of a prediction model for regression sest

lection.|IEEE Trans. Softw. Eng27(3):248-263, Mar. 2001.

K. B. Hendricks and R. V. Singhal. Delays in new prod-

uct introductions and the market value of the firm: The

consequences of being late to the markdgmt. Science

43(4):422-436, Apr. 1997.

[17] C. JonesApplied Software Measurement: Assuring produc-
tivity and quality McGraw-Hill, 1997.

[18] J. Kim and A. Porter. A history-based test prioritizatitech-

nique for regression testing in resource constrained emvir

ments. Inint’l. Conf. Softw. Eng.May 2002.

J. Kim, A. Porter, and G. Rothermel. An empirical studyes

gression test application frequencyliht’l. Conf. Softw. Eng.

pages 126-135, June 2000.

A. Kinneer, M. Dwyer, and G. Rothermel. Sofya: A flexi-

ble framework for development of dynamic program analy-

sis for Java software. Technical Report TR-UNL-CSE-2006-

0006, University of Nebraska—Lincoln, Apr. 2006.

H. Leung and L. White. Insights into regression testihyg

Conf. Softw. Mainf.pages 60-69, Oct. 1989.

[22] H. Leung and L. White. A cost model to compare regression
test strategies. I@onf. Softw. Maint.Oct. 1991.

[23] A. Malishevsky, G. Rothermel, and S. Elbaum. Modelihg t
cost-benefits tradeoffs for regression testing techniglres
Conf. Softw. Maint.pages 204-213, Oct. 2002.

[24] K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma. Re-
gression testing in an industrial environme@bmm. ACM
41(5):81-86, May 1988.

[25] A. Orso, N. Shi, and M. J. Harrold. Scaling regressicsiitey
to large software systems. Found. Softw. EngNov. 2004.

[26] T. Ostrand and M. J. Balcer. The category-partition hodt
for specifying and generating functional testomm. ACM
31(6), June 1988.

[27] D.E.Perryand C. S. Stieg. Software faults in evolvirigrge,
real-time system: A case study. Hur. S.E. Conf.1993.

[28] X.Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Ghiian
A tool for change impact analysis of Java programsOI®.
Prog., Sys., Lang., Appgages 432-448, Oct. 2004.

[29] G.Rothermel and M. J. Harrold. Analyzing regressicst se-
lection techniquedEEE Trans. Softw. Eng22(8):529-551,
Aug. 1996.

[30] G. Rothermel and M. J. Harrold. A safe, efficient regres-
sion test selection techniqu&CM Trans. Softw. Eng. Meth.
6(2):173-210, Apr. 1997.

[31] Shull, F. et al. What we have learned about fighting distec
In Int’l. Softw. Metrics Symp2002.

[14]

[15]

[16]

[19]

[20]

[21]

Effectively priaiitg
tests in development environment.lht'l. Symp. Softw. Test.
Anal, pages 97-106, July 2002.

[33] F. 1. Vokolos and P. G. Frankl. Empirical evaluation loéttex-
tual differencing regression testing techniquelrtil. Conf.
Softw. Maint, pages 44-53, Nov. 1998.

[34] W. Wong, J. Horgan, S. London, and H. Agrawal. A study of
effective regression testing in practice.lht’l. Symp. Softw.
Rel. Engr, pages 230-238, Nov. 1997.

