
An empirical study of the impact of team size on software
development effort

Parag C. Pendharkar Æ James A. Rodger

Published online: 2 February 2007
� Springer Science+Business Media, LLC 2007

Abstract In this paper, we investigate the impact of

team size on the software development effort. Using

field data of over 200 software projects from various

industries, we empirically test the impact of team size

and other variables—such as software size in function

points, ICASE tool and programming language

type—on software development effort. Our results

indicate that software size in function points signifi-

cantly impacts the software development effort. The

two-way interactions between function points and use

of ICASE tool, and function points and language type

are significant as well. Additionally, the interactions

between team size and programming language type,

and team size and use of ICASE tool were all signifi-

cant.

Keywords Software engineering � Cost estimation �
CASE tools � Programming teams

1 Introduction

Software cost estimation is one of the challenging

problems faced by IS managers [7, 28, 31]. A common

approach to estimate software cost is to estimate soft-

ware development effort in man-hours, and then mul-

tiply the software development effort by the average

hourly rate [11, 12]. Predicting software development

effort, however, is a daunting task as it requires

understanding of various factors involved in software

development process. A few researchers have pro-

posed some causal models for predicting software

development effort, and a popular software estimation

model is the Wrigley and Dexter’s [31] software effort

estimation model. Wrigley and Dexter’s [31] model

consists of three independent variables that can be

used to predict software development effort. These

three independent variables are: system requirements

size, personnel experience, and method and tools.

Team size as a variable has been used in several

studies that have used non-parametric data mining

techniques for predicting software development effort

[9, 17, 20, 29], but most theoretical models for pre-

dicting software development effort do not consider

team size as a predictor of software development effort

[30, 31]. Given that the team size variable appears to

impact software development effort in real-world

empirical software engineering datasets, there is a need

to extend existing theoretical software effort prediction

models to include the team size variable.

In the current research, we use Wrigley and Dexter’s

[31] theoretical model for predicting software devel-

opment effort and extended it to incorporate team size

as a software development effort predictor. Then, using

publicly available multi-organizational and multi-pro-

ject data, we empirically evaluate the direct and

interaction effects of the independent variables. Spe-

cifically, we empirically validate the impact of software

size in function points, type of programming language
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used, use of ICASE tools, and team size on software

development effort. We study the interaction effects of

software size (function points) with the type of lan-

guage used; software size and ICASE tool; software

size and team size; team size and type of programming

language; and team size and ICASE tool. For the rest

of our paper, we use the term software effort to refer to

software development effort.

The rest of the article is organized as follows. First,

using the relevant models from software engineering

literature, we develop a set of hypotheses and identify

the factors that may impact software effort. Second, we

describe our data and empirical results. In the end, we

provide a summary, limitations and implications of our

research.

2 Relevant models and hypotheses

There are several software effort estimation models

available in the software engineering literature.

Among the popular software effort estimation models

are Constructive Cost (COCOMO/COCOMO II)

models, Software Lifecycle Management (SLIM)

model, and the Select estimator [12, 13]. Most of these

software effort estimating models are criticized for

incorporating subjective estimates, and assuming nor-

mal data distributions and specific type of business

application and programming language [12]. These

subjective estimates, assumptions of parametric data

distributions, and data related to one programming

language and one business application limits the gen-

eralizability of software effort estimating models.

A few researchers have focused on developing

models to understand the primary antecedents of

software effort. Wrigley and Dexter [31] proposed a

general model that causally predicts the software effort

throughout the systems development life cycle. Wrig-

ley and Dexter’s [31] model consists of three inde-

pendent variables: system requirements size, personnel

experience, and method and tools. Wrigley and Dexter

[31] argue that the independent variables in their

model capture the concepts of problem space, labor

and capital, respectively. Noting the direct effects of

independent variables on the software effort, Wrigley

and Dexter [31] write:

‘‘The model suggests that these variables are

independent; however, there may well be inter-

action effects between requirement types, per-

sonnel skills, and tools used. For example, more

experienced personnel likely would be assigned

to the more difficult projects. Because of the

possibility of such interaction effects, the model

presents only the main effects.’’

As mentioned before, several software effort esti-

mation studies have considered team size as an inde-

pendent variable for prediction of software effort.

Among the researchers who have considered team size

as a predictor of software effort are Blackburn et al.

[9], Finnie et al. [17], and Smith et al. [29]. Most of

these studies, using team size as an input, have used

non-parametric machine learning models for forecast-

ing software effort. A causal relationship between team

size and software effort has not been well established

yet. The team size variable represents the labor factor

in Wrigley and Dexter’s [31] model and we believe that

Wrigley and Dexter’s [31] software effort model can be

extended to include team size as a predictor of

software effort.

While we include the team size variable in Wrigley

and Dexter’s [31] model, we do not include personnel

experience in our model. The exclusion of the per-

sonnel experience variable is due to lack of informa-

tion on this variable in our data set. For the

independent variables considered in our research, we

study both the direct and the interaction effects.

2.1 System requirements size

The appropriate measure of system requirements size/

software size has been debated in the literature.

Among the popular approaches to measure software

size are source lines of code (SLOC) and function

points (FPs) methods [1]. There is no agreement

among the researchers as to which approach provides

better measurement of software size. FP approach is

favored by several empirical studies [26], but is criti-

cized as being labor intensive and incapable of lending

itself to automation [26]. The SLOC approach provides

simple easy to use and easy to understand metric, but it

is criticized for not addressing the issue of language

difficulty [26]. Some researchers recommend using

both approaches: SLOC for measuring software size,

and FP for measuring software complexity [4]. Subra-

manian and Zarnich [30] argue that for an integrated

CASE (ICASE) environment, FP is a good estimator

of software effort.

There are two major types of FPs: the international

function point users group (IFPUG) function points;

and the Mark II function points. The IFPUG FPs

measure the functionality of an application and are

independent of the technology being used [29]. The

computation of the number of function points is based
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on an algorithm that computes a weighted sum of in-

puts, outputs, and interfaces to other programs. FPs

measure the following five software characteristics:

1. The number of external input types

2. The number of external output types

3. The number of master/logical file types

4. The number of inquiries

5. The number of interface file types

The final FP count is computed as a weighted sum

of the aforementioned five software factors where the

weights reflect the value of each factor to the customer

[29].

The Mark II Function Points (MK II FP) approach

was developed to overcome some of the difficulties

found in the IFPUG function point approach [20]. The

IFPUG function point approach was developed for

transaction processing systems. The Mark II Function

Point model views the system as a set of logical trans-

actions. Each logical transaction consists of inputs,

processes and outputs. For every transaction, the FPs

are calculated. The FP in MK II FP is the measure of

the information of the processing size factor. The total

FPs of the system are the sum of FPs of its transactions.

The advantage of MK II FP is that the measure of

software size is based on logical transactions of the

system.

Most studies note a high degree of positive corre-

lation between FP and software effort for both non-

CASE and ICASE projects written in 3GL, 4GL, and

object-oriented programming languages [2, 14, 30]. We

validate this relationship by proposing the following

hypothesis:

Hypothesis 1: Software size in function points is

positively associated with the software development

effort.

2.2 Methods and tools

Programming methods and tools are known to have an

impact on software effort [29, 31]. Programming

methods consist of programming language and devel-

opment methodology [29–31]. In this research, we

consider programming language as a variable that

might have an impact on software effort.

Programming, project management and design

tools—hereafter called development tools—do have an

impact on software effort. Development tools have

been used to improve analyst and programmer pro-

ductivity, improve software quality and reduce main-

tenance, and increase management control over the

software development process [30]. Automated soft-

ware development tools fall into three categories:

programming support tools, design technique tools and

project management tools [19]. One qualitative study

suggests that the development tool type may have an

impact on the software effort [15]. In our research, we

consider ICASE tool as a variable that impacts soft-

ware effort. We now develop hypotheses related to the

impact of programming language and ICASE tools on

software effort.

2.2.1 Programming languages

Programming languages are the primary methods for

creating software. The basic challenge for business

software builders is to build reliable software as

quickly as possible. Fourth generation languages

(4GLs) automate much of the work normally associ-

ated with developing software applications [27]. How-

ever, Blackburn et al. [10] reported that language type

does not have an impact on software effort because

some of the programming languages, such as C++,

might be more complex than some of the other third

generation languages (3GLs). This leads to the fol-

lowing hypothesis:

Hypothesis 2: The type of a programming

language (4GL vs. 3 GL) will not have any impact on

software development effort.

4GLs and recent object-oriented programming lan-

guages are not only complex, but these languages also

require programmers to learn several new functional-

ities that might lead to increased software effort. For

example, Microsoft Foundation Classes (MFC) in Vi-

sual C++ and JAVA Swing classes in Java program-

ming provide several reusable classes that might be

used to design graphical user interfaces efficiently. A

programmer is required to understand prewritten

classes and frameworks to reuse code. 3GL languages

don’t provide such extensive capabilities and relative

easy to learn. The reused code increases the software

size in function points, but FPs don’t use a metric for

code reuse. Thus, it is likely that the interaction of FPs

and language type might have an impact on software

effort. Given the paucity of the studies in this area, we

propose the following hypothesis:

Hypothesis 3: The interaction between FP and

4GL programming language type is positively

associated with the software development effort.

2.2.2 ICASE tools

Integrated CASE (ICASE) tools are designed to pro-

vide support for all phases of the systems development

life cycle [30]. The capabilities of ICASE tools include

the following:
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1. Graphical capabilities for modeling user require-

ments, and error and consistency checking

2. Prototyping and system simulation capabilities

3. Code generating capabilities

4. Code testing, code validation, and code reuse

capabilities

5. Reengineering, reverse engineering, data dictio-

nary and database interface capabilities

6. Management information acquisition, storing,

managing and reporting capabilities

Subramanian and Zarnich [30] argue that ICASE

tools by themselves do not always lower software

effort. Most of the ICASE tools are complex to learn

and sometimes increase software effort. The use of

ICASE tools require extensive training to see signifi-

cant software effort reduction. Blackburn et al. [10],

speculating on the impact of CASE tools, mentioned

the following.

‘‘...that increasing project complexity and size are

obscuring the advantages that CASE tools

bring...’’

Blackburn et al. [10] believed that the interaction of

ICASE tools and project size might have an impact on

software effort. For example, ICASE tools, due to their

coordination capabilities, allow programmers to coor-

dinate activities for large size projects leading to re-

duced software effort [10]. Thus, we have following

two hypotheses:

Hypothesis 4: The use of ICASE tools will not

have an impact on the software development effort.1

Hypothesis 5: The interaction between function

points and use of ICASE tools is negatively associated

with the software development effort.2

2.3 Team size

Team size, as a factor impacting software effort and

productivity, has been used in several studies [6, 17,

21, 29]. While team size seems to play a role, its

impact on software effort is not clearly established.

Microsoft used a strategy of employing small teams

of star developers and found that the strategy, when

confronted with the market realities of marketing,

developing, and maintaining large mass-market

applications, does not work well [23]. Among the

problems of using small teams at Microsoft were

[16]:

1. The overlapping responsibilities of software

developers resulted in ‘‘reinvention of the wheel’’

and biases in software testing.

2. Program manager’s close connection with the

market and developers made it difficult for him/her

to make trade-off decisions. For example, some

program managers were more concerned with the

views of developers than average users.

3. Program managers did not give detailed specifica-

tions to small teams.

4. Small teams did not manage error backlog effec-

tively.

Large team size increase software effort due to

inefficiencies created by the problems of coordination

and communication between the members of the team.

However, larger team size represents better distribu-

tion of skills and software projects might benefit from

larger team size [5]. The better distribution of skills of

large teams typically improves software quality, but

increases the overall software effort [16]. In an open

source project GNOME, Koch and Schneider [24]

observed that increasing the number of programmers

working on a project leads to higher software effort.

We write the impact of team size on software effort in

the following hypothesis:

Hypothesis 6: Team size is positively associated

with the software development effort.

Fried [18] mentions that the interaction between

team size and type of programming language; and team

size and use of CASE tools, might have an impact on

software effort. For example, Fried [18] argues that the

use of 4GLs has reduced software effort by vastly

accelerating the turnaround of program testing and

eliminating the complex communication requirements

between programmers. By the same token, Fried [18]

argues that CASE tools (that allow coordination) can

reduce software effort by significantly reducing the

number of interactions between team members. Fried

[18] did not provide any empirical evidence for his

claims. We test his claims by proposing the following

hypotheses to test the interactions effects between

team size and ICASE tools, and team size and

programming languages.

Hypothesis 7: The interaction of team size and use

of ICASE tools will have no effect on software

development effort.

1 Our data did not contain the team member skills. The team
with better skills in using ICASE tools is likely to see a reduction
in software development effort. We assume that our data con-
tains team skills that are uniformly distributed and effort
reduction by experienced programmers will be cancelled by the
higher effort of inexperienced programmers leading to no overall
change in the software development effort.
2 Since complex large size projects typically have more experi-
enced programmers and clear specifications, we assume that
software size and use of ICASE tools will reduce effort.
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Hypothesis 8: The interaction between team size

and 4GL is negatively associated with the software

development effort.

Fried [18] mentions the positive impact of team size

on software quality. According to him, larger team si-

zes might lead to well-documented and quality systems.

Biffl and Gutjahr [8], noting the interaction between

software size and team size, note that project managers

have to manage team size so that some members of the

team can inspect the software for errors, and other

members can do their usual work in software devel-

opment. Thus, for larger projects, it is more likely that

the projects team members will be divided into two

different roles—development and inspection. Dual

role of project personnel will lead to decreased soft-

ware effort due to clear specifications and non-over-

lapping responsibilities [16]. This leads to the following

hypothesis:

Hypothesis 9: The interaction between team size

and software size (FP) is negatively associated with the

software development effort.

3 Data and experiments

We obtained the data on 1,238 software projects from

International Software Benchmarking Standards

Group (ISBSG). The ISBSG (release 7) data are used

by several companies for benchmarking software pro-

jects and are available in the public domain. The

ISBSG procedures encourage software development

teams to submit their project data to the repository in

return for a free report that graphically benchmarks

their projects against similarly profiled projects in the

ISBSG repository [3]. The software project data are

typically submitted by the software project manager,

who completes a series of special ISBSG data valida-

tion forms to report the confidence he/she has in the

information he/she provides. ISBSG has developed a

special mutually exclusive data quality rating that

reflects the quality of data related to any given project.

Each project is assigned a data quality rating of A, B,

or C to denote the following:

• A = The project data satisfies all the criteria for

seemingly sound data.

• B = The project data appears fundamentally sound,

but some data attributes might not be fundamen-

tally sound.

• C = The project data has some fundamental

shortcomings.

Companies participating in ISBSG benchmarking

acquired project data in several different ways. FP data

on the projects were acquired mostly by an automated

process (about 40%) or obtained from the develop-

ment tools (about 21%). The software effort data were

mostly recorded (about 59%). In certain cases, the

software effort data were derived from the actual

project cost (about 13%). In many cases, the data

acquisition procedures were missing or unknown.

The software projects in ISBSG release 7 data came

from 20 different countries. The top three known

contributing countries were the United States,

Australia and Canada. Over 97% of the projects were

completed between the years 1989 and 2001. Most of

the projects (about 50%) were completed between the

years 1999 and 2001. Approximately 57% of the pro-

jects had a data quality rating of A, 33% had a data

quality rating of B and about 10% had a data quality

rating of C. ISBSG endorses data quality rating of A &

B as good data with high reliability. Figure 1 illustrates

the industry type distribution for the 1,238 projects.

Table 1 details the descriptive statistics of a few

variables for the original 1,238 projects data.

The ISBSG data set included data on software size

in FP, integrated CASE tools, programming languages,

software effort and team size. Of the total 1,238 soft-

ware projects, only 217 projects had complete data on

all five independent and dependent variables. We used

all 217 projects in our analysis. Table 2 illustrates the

descriptive statistics of some of the variables used in
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our analysis. The common methods for measuring

function point are International Function Point Users

Group (IFPUG) FPA and Mark II FPA. While most of

the projects (57%) used IFPUG or Mark II FPA to

record software size, about 32% of the projects did not

mention FPA recording approach, and the remaining

11% used other methods. Comparing the mean, stan-

dard deviation, minimum and maximum values for FP

in Tables 1 and 2 indicates that the 217 projects used in

our analysis did not contain very large and very small

size projects from the original 1,238 projects. Further,

our sample had a lower variance for software size in FP

than the original 1,238 projects.

We draw similar conclusions for the software effort.

The team size variable in the data set is the maximum

(peak) team size. A comparison of the team size

descriptive statistics from Table 2 with the team size

statistics from Table 1 reveals that team size in the

sample of 217 projects has higher variance.

A majority of the projects used in our analysis,

about 52%, used a fourth generation programming

language. ICASE tools were used in only about 9.2%

of the projects. All other projects used upper CASE

tools, no CASE tools or lower CASE tools. The

ICASE tool distribution in the original data set is

shown in Fig. 2. Only about 4% of the projects in the

original ISBSG data set used ICASE tools.

Figure 3 illustrates project distribution by industry

type. The data quality ratings for the 217 projects were

about 52% A grade, about 30% B grade and about

18% C grade. Majority of projects, about 19%, were

from banking industry. When comparing the industry

distribution and data quality of the 217 projects with

the original set of 1,238 projects, we see that the data

quality distribution of the 217 projects is very similar to

the data quality distribution of the original 1,238 pro-

jects. On the other hand, the industry type distribution

for the 217 is different from that of the 1,238 projects.

We used the principle of relative entropy3 for formally

comparing the data quality and industry type distri-

butions for the 217 projects with respect to the original

data set of 1,238 projects [25]. According to the prin-

ciple of relative entropy [25], given two discrete

probability mass functions, say p ¼ ðp1; p2; . . . ; pnÞ and

q ¼ ðq1; q2; . . . ; qnÞ, the relative entropy of q with

respect to p is defined by

Xn

i¼1

pk ln
pk

qk
:

When p and q are exactly same, the value of relative

entropy is zero. Values close to zero are indicative of

similar distribution [25]. If p, for n = 3, denotes the

data quality distribution for 217 projects used in data

analysis, and if q denotes the data quality distribution

for the original 1,238 projects, then p = (0.51, 0.31,

0.18) and q = (0.57, 0.33, 0.10). The elements of p and

q are percentages of projects that belonged to data

quality ratings A, B and C, respectively. Using the

relative entropy formula, the relative entropies of the

217 projects with respect to the 1,238 projects for data

quality and industry distribution were 0.03 and 0.41,

respectively. The relative entropy numbers indicate

that the data quality distribution between the 217

projects was more similar to that of the 1,238 projects

than the industry distribution between the two sets of

projects.

Several researchers have used previous versions of

the ISBSG data set. For example, Angelis et al. [3]

used the ISBSG release 6 data for generating a multi-

organizational software cost estimation model. Jeffery

et al. [22] used ISBSG release 5 multi-organizational

Table 1 Descriptive statistics of variables in ISBSG release 7
project data

Variable Mean Std. Dev. Minimum Maximum

Function points 642.59
counts

1,264.60 8 19,050

Software effort 8,414.80
man-hours

32,698.70 10 645,694

Team size 8.16 persons 20.16 1 468

Table 2 Descriptive statistics of variables

Variable Mean Std. Dev. Minimum Maximum

Function points 533.21
counts

615.17 11 4,932

Software effort 5,086.60
man-hours

11,386.30 17 138,883

Team size 6.97 persons 31.92 1 468
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3 We use entropy because these variables take discrete values (A,
B, and C) and continuous value tests such as t-test are not suit-
able for testing difference in means for discrete variables.
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data and company-specific data to compare two soft-

ware development cost modeling techniques. Their

results indicated that the use of ISBSG multi-organi-

zational data provides significantly more accurate

results than analogy-based estimates.

A few variables that are used in our study overlap the

variables used in previous studies. These variables are

function points, software effort and team size. The cost

models used by Jeffery et al. [22] and Angelis et al. [3]

used function points and team size as independent

variables and software effort as a dependent variable,

among others. Our study enhances the Jeffery et al. [22]

and Angelis et al. [3] studies by including more vari-

ables (development tools and development language)

and several interaction effects. The data set used in our

study—release 7—has several additional projects.

We use Ordinary Least Squares (OLS) analysis to

test all the hypotheses. Since our data have some var-

iance in data quality, which reflects errors in mea-

surement of variables, we consider data quality

(DataQ) as an interaction factor in our OLS. ISBSG

considers data quality labels A & B data as high reli-

ability data. However, data quality label C data is

generally considered low quality data. For our OLS, we

consider data quality variable taking binary values of

high quality (A&B labels) and low quality (label C)

data. Table 3 illustrates the results of the overall model

fit. The results indicate that the overall model fit was

satisfactory. The F-value is 52.49, and the model fit was

significant. The R-square for the model was 0.784. This

indicates that model-independent variables explain

about 78.4% of the variance in the dependent variable.

Table 4 illustrates the coefficients and significances

of factors, covariates and interactions effects. The

results provide support for hypothesis one, two and

three. Further, the results indicate a very weak support

for hypothesis four. Hypothesis four was supported at

1% and 5% level of statistical significance. However, at

a 10% level of statistical significance hypothesis four

was rejected. At this level of statistical significance, the

negative coefficient in the results indicates that the use

of ICASE tool will actually lower the software effort.

Hypothesis five was supported by the results indicat-

ing that the interaction between FP and ICASE tools

lowers software effort. No support was found for

hypothesis six indicating that increasing team size does

not lead to higher software effort. The results did not

provide any support for hypothesis seven indicating that

the interaction between team size and the use of ICASE

tools will increase the software effort. The results sup-

ported hypothesis eight and did not support hypothesis

nine, which indicated that interaction between team size

and 4GL reduces software effort and interaction between

team size and FP does not lower software effort.
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Table 3 The overall model fit statistics

Source DF Sum of squares Mean square F-value

Model 14 21,966,311,312 1,569,022,236.5 52.49**
Error 202 6,037,683,848 29,889,524.0
Corrected total 216 28,003,995,160

** 1% significance; R-square = 0.784

Table 4 Model parameter estimates and their significance

Parameter Coefficient Std. error | t |-
value

Significance

Team –611.27 371.82 1.644 0.102
ICASE –7680.82 4,115.36 1.866 0.063***
Language 427.61 2,147.42 0.199 0.842
FP 12.656 1.857 6.814 0.000**
Team*ICASE 730.45 284.45 2.57 0.011*
Team*Language –600.48 187.85 3.197 0.002**
Team*FP –0.034 0.112 0.300 0.764
Language*FP 10.196 1.635 6.235 0.000**
ICASE*FP –7.307 1.72 4.249 0.000**
DataQ*ICASE 366.89 1,981.41 0.185 0.853
DataQ*Language 678.46 2,026.23 0.335 0.738
DataQ*FP –3.837 1.802 2.13 0.034*
DataQ*Team 605.89 167.31 3.621 0.000**
Intercept 6,525.93 4,510.63 1.447 0.150

* 5% significance; ** 1% significance; *** 10% significance
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We tested whether the interaction of data quality

rating and different independent variables had an im-

pact on the software effort. The interactions of data

quality and ICASE tool, and data quality and language

type were not significant. Since ICASE tools and lan-

guage type are categorical variables, it is less likely to

have measurement errors for these variables. The

interaction effects of data quality and FP, and data

quality and team size were significant.

Since team size measurement errors were more

likely in our dataset, the results of hypotheses related

to team size should be considered preliminary and care

should be exercised in using the results of team size

hypotheses.

4 Summary and limitations

We have investigated the factors impacting the soft-

ware effort. Using the existing literature, we identified

several variables that might impact the software effort.

Further, using a data set of over 200 projects, we

empirically tested the impact of several factors on the

software effort. The results of our experiments indicate

that higher software size in FPs lead to higher software

effort. We did not observe any significant relationship

between ICASE tools and software effort. Further, we

observed that the interaction of ICASE tools and

function points decreases the software effort.

ICASE tools have been known to have significant

impact on software effort [30]. In our case, weak sig-

nificant relationship was observed for the impact of

ICASE tools on reduction of software effort. Our data

on ICASE tool was biased as over 90% of our data set

did not contain ICASE tools, and the limited number

of ICASE tools might have jeopardized the statistical

significance.

The type of programming language did not have an

impact on software effort. The descriptive statistics of

the data indicate that about 51% of the projects were

developed in 4GL languages, and 49% of the projects

were developed in 3GL programming languages. Thus,

we believe that our data was not very biased for any

particular generation of programming languages. The

insignificance of programming language on software

effort could be due to several reasons. The first reason

may be that the programmers’ experience in pro-

gramming language might play a role in determining

software effort as a few languages are more difficult to

learn than others. Second, the complexity of a lan-

guage, such as code and design reuse, may compensate

for any other advantages that it might offer and negate

any significant impact on software effort.

We found that the interaction between 4GL and

software size in FP leads to increase in software effort.

We observed very interesting results in regards to team

size. We noticed that an increase in team size does not

increase the software effort. When team size increases,

it is likely that both the team expertise and the com-

munication requirements increase and no significant

software effort improvements are seen. The interaction

between team size and language type decreases the

software effort. The 4GL languages and larger team

sizes have a lower software effort than 3GL languages

and smaller team sizes. The interaction between team

size and ICASE tools was significant indicating that

increase in team size and use of ICASE tools increases

the software effort.

We found that the data quality and its interactions

with team size and FP were significant. Lower quality

data on team size tended to increase software effort

and lower quality data on FP tended to decrease the

software effort. Thus, data quality appears to impact

the results of our study. In addition to the data quality,

there are a few other limitations of our study. We were

restricted in terms of variables available in our data

sets. For example, we did not have any information on

team expertise and project schedules. In the lack of

team expertise information, we made a restrictive

assumption that the team skills are uniformly distrib-

uted. The team expertise information, if available, may

have allowed us to better assess the impact of team size

on software effort. Project schedules and pressures

associated with tight schedules are known to impact

software effort [28]. Since our data set did not contain

information of project schedules, we assumed that

project schedules do not impact software effort. We

believe that this is also a restrictive assumption and

may have limited the generalizability of our study.

5 Implications and future work

Software development costs can be predicted and

managed effectively. In our study, we developed a

theoretical model that can allow researchers and

practitioners to understand the factors that impact

software development costs. The results of our study

indicate that project managers can effectively manage

software product development costs by controlling

three factors. First, they can choose an appropriate

programming language for a software project size.

Another choice would be to select appropriate ICASE

tools to improve productivity and coordination of the

programmers. Finally, they can appropriately select a

software development team size.
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Given three primary choices to manage software

development costs, the results of our study indicate

that the use of ICASE tools with large teams should be

avoided particularly if a software project manager does

not have sufficient information on whether program-

mers have sufficient prior experience in using ICASE

tools. The use of ICASE tools, however, does reduce

the software development cost for large size projects.

Since more often than not large size projects may

contain large team sizes, the biggest challenge for

software project managers in these projects would be

to assess the impact of ICASE tools on software

development cost. Based on our preliminary results, it

appears that if software programmers do not have

sufficient ICASE tool experience, it is best not to use

ICASE tools for large size software projects. A similar

contradictory effect was observed for the use of 4GL in

large size projects. The use of 4GL in large size pro-

jects increases the software effort, but the use of 4GL

with large team sizes decreases the software effort.

Given that large size projects are complex and may

contain large team sizes, the team member expertise in

the use of ICASE tools and 4GL programming lan-

guage may be the most important determinant of

software development cost. One of the limitations of

our study was that we did not have any information on

the team member expertise on the prior use of ICASE

tools and 4GL programming language experience. We

believe that this was a primary limitation of our study

and we suggest that future studies should capture this

variable for appropriate prediction of software devel-

opment cost. Among other limitations of our study

were the data bias of non-CASE and ICASE tools

(about 90:10) and measurement errors in terms of data

quality. Thus, our model needs to be validated by

acquiring more reliable unbiased data with information

on team member expertise.
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