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ABSTRACT
Configuration errors (i.e., misconfigurations) are among the
dominant causes of system failures. Their importance has
inspired many research efforts on detecting, diagnosing, and
fixing misconfigurations; such research would benefit greatly
from a real-world characteristic study on misconfigurations.
Unfortunately, few such studies have been conducted in the
past, primarily because historical misconfigurations usually
have not been recorded rigorously in databases.

In this work, we undertake one of the first attempts to
conduct a real-world misconfiguration characteristic study.
We study a total of 546 real world misconfigurations, in-
cluding 309 misconfigurations from a commercial storage
system deployed at thousands of customers, and 237 from
four widely used open source systems (CentOS, MySQL,
Apache HTTP Server, and OpenLDAP). Some of our ma-
jor findings include: (1) A majority of misconfigurations
(70.0%∼85.5%) are due to mistakes in setting configuration
parameters; however, a significant number of misconfigura-
tions are due to compatibility issues or component config-
urations (i.e., not parameter-related). (2) 38.1%∼53.7% of
parameter mistakes are caused by illegal parameters that
clearly violate some format or rules, motivating the use of
an automatic configuration checker to detect these miscon-
figurations. (3) A significant percentage (12.2%∼29.7%) of
parameter-based mistakes are due to inconsistencies between
different parameter values. (4) 21.7%∼57.3% of the miscon-
figurations involve configurations external to the examined
system, some even on entirely different hosts. (5) A signifi-
cant portion of misconfigurations can cause hard-to-diagnose
failures, such as crashes, hangs, or severe performance degra-
dation, indicating that systems should be better-equipped to
handle misconfigurations.

Categories and Subject Descriptors: D.4.5 [Operating
Systems]: Reliability

General Terms: Reliability, Management

Keywords: Misconfigurations, characteristic study

1. INTRODUCTION
1.1 Motivation
Configuration errors (i.e., misconfigurations) have a great
impact on system availability. For example, a recent mis-
configuration at Facebook prevented its 500 million users
from accessing the website for several hours [15]. Last year,
a misconfiguration brought down the entire “.se” domain for
more than an hour [6], affecting almost 1 million hosts.

Not only do misconfigurations have high impact, they are
also prevalent. Gray’s pioneering paper on system faults [11]
stated that administrator errors were responsible for 42%
of system failures in high-end mainframes. Similarly, Pat-
terson et al. [30] observed that more than 50% of failures
were due to operator errors in telephone networks and In-
ternet systems. Studies have also observed that a majority
of operator errors (or administrator errors) are misconfigura-
tions [23, 29]. Further, of the issues reported in COMP-A’s1

customer-support database (used in this study), around 27%
are labeled as configuration-related (as shown later in Fig-
ure 1(a) in Section 3). This percentage is second only to
hardware failures and is much bigger than that of software
bugs.

Moreover, configuration errors are also expensive to trou-
bleshoot. Kappor [16] found that 17% of the total cost of
ownership of today’s desktop computers goes toward tech-
nical support, and a large fraction of that is troubleshooting
misconfigurations.

Given the data on the prevalence and impact of misconfigu-
rations, several recent research efforts [3, 17, 18, 35, 38, 41]
have proposed ideas to detect, diagnose, and automatically
fix misconfigurations. For example, PeerPressure [38] uses
statistics methods on a large set of configurations to identify
single configuration parameter errors. Chronus [41] period-
ically checkpoints disk state and automatically searches for
configuration changes that may have caused the misconfig-
uration. ConfAid [3] uses data flow analysis to trace the
configuration error back to a particular configuration entry.
AutoBash [35] leverages a speculative OS kernel to automat-
ically try out fixes from a solution database in order to find
a proper solution for a configuration problem. Further, Con-
fErr [17] provides a useful framework with which users can
inject configuration errors of three types: typos, structural
mistakes, and semantic mistakes. In addition to research
efforts, various tools are available to aid users in managing
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Major Findings on Prevalence and Severity of Configuration Issues (Section 3)
Similar to results from previous studies [11, 29, 30], data from COMP-A shows that a significant portion (27%) of customer cases
are related to configuration issues.
Configuration issues cause the largest percentage (31%) of high-severity support requests.

Major Findings on Misconfiguration Types (Section 4)
Configuration-parameter mistakes account for the majority (70.0%∼85.5%) of the examined misconfigurations.
However, a significant portion (14.5%∼30.0%) of the examined misconfigurations are caused by software compatibility issues and
component configuration, which are not well addressed in literature.
38.1%∼53.7% of parameter misconfigurations are caused by illegal parameters that violate formats or semantic rules defined by the
system, and can be potentially detected by checkers that inspect against these rules.
A significant portion (12.2%∼29.7%) of parameter mistakes are due to value-based inconsistency, calling for an inconsistency checker
or a better configuration design that does not require users to worry about such error-prone consistency constraints.
Although most misconfigurations are located within each examined system, still a significant portion (21.7%∼57.3%) involve con-
figurations beyond the system itself or span over multiple hosts.

Major Findings on System Reactions to Misconfigurations (Section 5)
Only 7.2%∼15.5% of the studied misconfiguration problems provide explicit messages that pinpoint the configuration error.
Some misconfigurations have caused the systems to crash, hang or have severe performance degradation, making failure diagnosis
a challenging task.
Messages that pinpoint configuration errors can shorten the diagnosis time by 3 to 13 times as compared to the cases with ambiguous
messages or by 1.2 to 14.5 times as compared to cases with no messages.

Major Findings on Causes of Misconfigurations (Section 6)
The majority of misconfigurations are related to first-time use of desired functionality. For more complex systems, a significant
percentage (16.7%∼32.4%) of misconfigurations were introduced into systems that used to work.
By looking into the 100 used-to-work cases (32.4% of the total) at COMP-A, 46% of them are attributed to configuration parameter
changes due to routine maintenance, configuring for new functionality, system outages, etc, and can benefit from tracking configu-
ration changes. The remainder are caused by non-parameter related issues such as hardware changes (18%), external environmental
changes (8%), resource exhaustion (14%), and software upgrades(14%).

Major Findings on Impact of Misconfigurations (Section 7)
Although most studied misconfiguration cases only lead to partial unavailability of the system, 16.1%∼47.3% of them make the
systems to be fully unavailable or cause severe performance degradation.

Table 1: Major findings on misconfiguration characteristics. Please take our methodology into consideration when

you interpret and draw any conclusions.

system configuration; for example, storage systems have pro-
visioning tools [13, 14, 25, 26], misconfiguration-detection
tools [24], and upgrade assistants that check for compatibil-
ity issues [24]. The above research directions and tools would
benefit greatly from a characteristic study of real-world mis-
configurations. Moreover, understanding the major types
and root causes of misconfigurations may help guide devel-
opers to better design configuration logic and requirements,
and testers to better verify user interfaces, thereby reducing
the likelihood of configuration mistakes by users.

Unfortunately, in comparison to software bugs that have
well-maintained bug databases and have benefited from many
software bug characteristic studies [5, 19, 36, 37], a mis-
configuration characteristic study is much harder, mainly
because historical misconfigurations usually have not been
recorded rigorously in databases. For example, developers
record information about the context in the code for bugs,
the causes of bugs, and how they were fixed; they also fo-
cus on eliminating or coalescing duplicate bug reports. On
the other hand, the description of misconfigurations is user-
driven, the fixes may be recorded simply as pointers to man-
uals and best-practice documents, and there is no duplicate
elimination. As a result, analyzing and understanding mis-
configurations is a much harder, and more importantly, man-
ual task.

1.2 Our Contributions
In this paper, we perform one of the first characteristic stud-
ies of real-world misconfigurations in both commercial and
open-source systems, using a total of 546 misconfiguration
cases. The commercial system is a storage system from

COMP-A deployed at thousands of customers. It has a well-
maintained customer-issues database. The open-source sys-
tems include widely used system software: CentOS, MySQL,
Apache, and OpenLDAP. The misconfiguration issues we ex-
amine are primarily user-reported. Therefore, our study is
a manual analysis of user descriptions of misconfigurations,
aided by discussions with developers, support engineers, and
system architects of these systems to ensure correct un-
derstanding of these cases. Our study was approximately
21 person-months of effort, excluding the help from several
COMP-A engineers and open-source developers.

We study the types, patterns, causes, system reactions, and
impact of misconfigurations:

• We examine the prevalence and reported severity of
configuration issues (includes, but not limited to mis-
configurations) as compared to other support issues in
COMP-A’s customer-issues database.

• We develop a simple taxonomy of misconfiguration
types: parameter, compatibility, and component, and
identify the prevalence of each type. Given the preva-
lence of parameter-based misconfigurations, we further
analyze its types and observable patterns.

• We identify how systems react to misconfigurations:
whether error messages are provided, whether systems
experience failures or severe performance issues, etc.
Given that error messages are important for diagnosis
and fixes, we also investigate the relationship between
message clarity and diagnosis time.

160



• We study the frequency of different causes of miscon-
figurations such as first-time use, software upgrades,
hardware changes, etc.

• Finally, we examine the impact of misconfigurations,
including the impact on system availability and per-
formance.

The major findings of the study are summarized in Table 1.
While we believe that the misconfiguration cases we exam-
ined are fairly representative of misconfigurations in large
system software, we do not intend to draw any general con-
clusions about all applications. In particular, we remind
readers that all of the characteristics and findings in this
study should be taken with the specific system types and
our methodology in mind (discussed in Section 2).

We will release our open-source misconfiguration cases to
share with the research community.

2. METHODOLOGY
This section describes our methodology for analyzing mis-
configurations. There are unique challenges in obtaining and
analyzing a large set of real-world misconfigurations. Histor-
ically, unlike bugs that usually have Bugzillas as repositories,
misconfigurations are not recorded rigorously. Much of the
information is in the form of unstructured textual descrip-
tions and there is no systematic way to report misconfigura-
tion cases. Therefore, in order to overcome these challenges,
we manually analyzed reported misconfiguration cases by
studying manuals, instructions, source code, and knowledge
bases of each system. For some hard cases, we contacted
the corresponding engineers through emails or phone calls
to understand them thoroughly.

2.1 Data Sets
We examine misconfiguration data for one commercial sys-
tem and four open-source systems. The commercial sys-
tem is a storage system from COMP-A. The core software
running in such system is proprietary to COMP-A. The
four open-source systems include CentOS, MySQL, Apache
HTTP server, and OpenLDAP. We select these software sys-
tems for two reasons: (1) they are mature and widely used,
and (2) they have a large set of misconfiguration cases re-
ported by users. While we cannot draw conclusions about
any general system, our examined systems are representative
of large, server-based systems. We focus only on software
misconfigurations; we do not have sufficient data for hard-
ware misconfigurations on systems running the open-source
software.

COMP-A storage systems consist of multiple components
including storage controllers, disk shelves, and interconnec-
tions between them (e.g., switches). These systems can be
configured in a variety of ways for customers with different
degrees of expertise. For instance, COMP-A offers tools that
simplify system configuration. We cannot ascertain from the
data whether users configured the systems directly or used
tools for configuration.

The misconfiguration cases we study are from COMP-A’s
customer-issues database, which records problems reported

System Total Cases Sampled Cases Used Cases
COMP-A confidential 1000 309
CentOS 4338 521 60
MySQL 3340 720 55
Apache 8513 616 60

OpenLDAP 1447 472 62
Total N/A 3329 546

Table 2: The systems we studied and the number of

misconfiguration cases we identified for each of them.

by customers. For accuracy, we considered only closed cases,
i.e. cases that COMP-A has provided a solution to the users.
Also, to be as relevant as possible, we focused on only cases
over the last two years. COMP-A’s support process is rig-
orous, especially in comparison to open-source projects. For
example, when a customer case is closed, the support en-
gineer needs to record information about the root cause as
well as resolution. Such information is very valuable for
our study. There are many cases labeled as “Configuration-
related” by support engineers and it is prohibitively difficult
to study all of them. Therefore, we randomly sampled 1,000
cases labeled as related to configuration. Not all 1,000 cases
are misconfigurations because more than half of them are
simply customer questions related to how the system should
be configured. Hence, we did not consider them as miscon-
figurations. We also pruned out a few cases for which we
cannot determine whether a configuration error occurred.
After careful manual examination, we identified 309 cases
as misconfigurations, as shown in Table 2.

Besides COMP-A storage systems, we also study four open-
source systems: CentOS, MySQL, Apache HTTP server,
and OpenLDAP. All of them are mature software systems,
well-maintained and widely used. CentOS is an enterprise-
class Linux distribution, MySQL is a database server, Apache
is a web server, and OpenLDAP is a directory server.

For open-source software, the misconfiguration cases come
from three sources: official user-support forums, mailing
lists, and ServerFault.com (a large question-answering web-
site focusing on system administration). Whenever neces-
sary, scripts were used to identify cases related to systems of
interest, as well as to remove those that were not confirmed
by users. We then randomly sampled from all the remain-
ing candidate cases (the candidate set sizes and the sample
set sizes are also shown in Table 2) and manually examined
each case to check if it is a misconfiguration. Our manual
examination yielded a total of 237 misconfiguration cases
from these four open-source systems. The yield ratio (used
cases/sampled cases) is low for these open-source projects
because we observe a higher ratio of cases that are customer
questions among the samples from open source projects as
compared to the commercial data.

2.2 Threats to Validity and Limitations
Many characteristic studies suffer from limitations such as
the systems or workloads not being representative of the
entire population, the semantics of events such as failures
differing across different systems, and so on. Given that
misconfiguration cases have considerably less information
than ideal to work with, and that we need to perform all
of the analysis manually, our study has a few more limita-
tions. We believe that these limitations do not invalidate
our results; at the same time, we urge the reader to focus on
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System Parameter Compatibility Component Total
COMP-A 246 (79.6±2.4%) 31 (10.0±1.8%) 32 (10.4±1.8%) 309
CentOS 42 (70.0±3.7%) 11 (18.3±3.1%) 7 (11.7±2.6%) 60
MySQL 47 (85.5±2.3%) 0 8 (14.5±2.3%) 55
Apache 50 (83.4±2.8%) 5 (8.3±2.1%) 5 (8.3±2.1%) 60

OpenLDAP 49 (79.0±3.0%) 7 (11.2±2.3%) 6 (9.7±2.2%) 62

Table 3: The numbers of misconfigurations of each type. Their percentages and the sampling errors are also shown.

overall trends and not on precise numbers. We expect that
most systems and processes for configuration errors would
have similar limitations to the ones we face. Therefore, we
hope that the limitations of our methodology would inspire
techniques and processes that can be used to record mis-
configurations more rigorously and in a format amenable to
automated analysis.

Sampling: To make the time and effort manageable, we sam-
pled the data sets. As shown in Table 2, our sample rates
are statistically significant and our collections are also large
enough to be statistically meaningful [10]. In our result ta-
bles, we also show the confidence interval on ratios with a
95% confidence level based on our sampling rates.

Users: The sources from which we sample contain only user-
reported cases. Users may choose not to report trivial mis-
configurations. Also, it is more likely that novice users may
report more misconfiguration problems. We do not have suf-
ficient data to judge whether a user is a novice or an expert.
But, with new systems or major revisions of an existing sys-
tem deployed to the field, there will always be new users.
Therefore, our findings are still valid.

User environment: Some misconfigurations may have been
prevented, or detected and resolved automatically by the
system or other tools. This scenario is particularly true for
COMP-A systems. At the same time, some, but not all,
COMP-A customers use the tools provided by COMP-A and
we cannot distinguish the two in the data.

System versions: We do not differentiate between system
versions. Given that software is constantly evolving, it is
possible that some of the reported configuration issues may
not apply to some versions, or have already been addressed
in system development (e.g., automatically correcting con-
figuration mistakes, providing better error messages, etc.).

Overall, our study is representative of user-reported miscon-
figurations that are more challenging, urgent, or important.

3. IMPORTANCE OF CONFIGURATION
ISSUES

We first examine how prevalent configuration issues are in
the field and how severely they impact users using data
from the last two years from COMP-A’s customer-issues
database. There are five root causes classified by COMP-A
engineers after resolving each customer-reported problem:
configuration (configuration-related), hardware failure, bug,
customer environment (cases caused by power supplies, cool-
ing systems, or other environmental issues), and user knowl-
edge (cases where customers request information about the
system). Each case is also labeled with a severity level by
customer-support engineers – from “1” to “4,” based on how
severe the problem is in the field; cases with severity level of

“1” or “2” are usually considered as high-severity cases that
require prompt responses.

(a) Categorization of problem causes on all 
the cases

Configuration
27%

Hardware
Failure

42%

Bug
5%

Customer 
Environment

14%

User 
Knowledge

12% Configuration
31%

Hardware 
Failure

20%

Bug
15%

Customer 
Environment

25%

User 
Knowledge

9%

(b) Categorization of problem causes on 
cases with high severity

Figure 1: Root cause distribution among the customer

problems reported to COMP-A

Figure 1(a) shows the distribution of customer cases based
on different root causes. Figure 1(b) further shows the dis-
tribution of high-severity cases. We do not have the results
for the open source systems due to unavailability of such
labeled data (i.e., customer issues caused by hardware, soft-
ware bugs, configurations, etc.).

Among all five categories, configuration-related issues con-
tribute to 27% of the cases and are the second-most perva-
sive root cause of customer problems. While this number is
potentially inflated by customer requests for information on
configuration (as seen in our manual analysis), it shows that
system configuration is nontrivial and of particular concern
for customers. Furthermore, considering only high-severity
cases, configuration-related issues become the most signifi-
cant contributor to support cases; they contribute to 31% of
high-severity cases. We expect that hardware issues are not
as severe (smaller percentage of high-severity cases than of
all cases) due to availability of redundancy and ease of fixes
– the hardware can be replaced easily.

Finding 1.1: Similar to the results from previous stud-
ies [11, 30, 29], data from COMP-A shows that a significant
percentage (27%) of customer cases are related to configura-
tion issues.

Finding 1.2: Configuration issues cause the largest percent-
age (31%) of high-severity support requests.

4. MISCONFIGURATION TYPES
4.1 Distribution among Different Types
To examine misconfigurations in detail, we first look at the
different types of misconfigurations that occur in the real
world and their distributions. We classify the examined
misconfiguration cases into three categories (as shown in
Table 3). Parameter refers to configuration parameter mis-
takes; a parameter could be either an entry in a configuration
file or a console command for configuring certain function-
ality. Compatibility refers to misconfigurations related to
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System Legal

Illegal
Format Value

Lexical Syntax
Typo

Value Inconsistent Value Inconsistent
Others

Mistakes Mistakes w/ Other Values w/ Environment
COMP-A 114(46.3±6.1%) 10(4.1±2.4%) 5(2.0±1.7%) 3(1.2±1.3%) 73 (29.7±5.6%) 32(13.0±4.1%) 9(3.7±2.3%)
CentOS 26 (61.9±13.8%) 1(2.4±4.4%) 0 2(4.8±6.0%) 6 (14.3±10.0%) 6(14.3±10.0%) 1(2.4±6.0%)
MySQL 24(51.1±12.7%) 1(2.1±3.6%) 0 0 7(14.9%±9.0%) 8(17.0%±9.5%) 7(14.9±9.0%)
Apache 27(54.0±13.3%) 3(6.0±6.3%) 3(6.0±6.3%) 1(2.0±3.7%) 7(14.0±9.3%) 5(10.0±8.0%) 4(8.0±7.3%)
OpenLDAP 23(46.9±11.5%) 7(14.3±8.0%) 11(22.4±9.6%) 0 6(12.2±7.5%) 1(2.0±3.2%) 1(2.0±3.2%)

Table 4: The distribution of different types of parameter mistakes for each application.

InitiatorName: iqn:DEV_domain

(a) Illegal 1 – Format – Lexical                       from COMP-A

Description: for COMP-A's iscsi device, the name 
of initiator (InitiatorName) can only allow 
lowercase letters, while the user set the name with 
some capital letters �DEV�.

This entry is missing

(b) Illegal 2 – Format – Syntax                    from OpenLDAP

include schema/ppolicy.schema
overlay ppolicy

Description: to use the password policy (i.e. ppolicy) 
overlay, user needs to first include the related 
schema in the configuration file. But the user did not 
do that. 

 AutoCommit = True

(i) Legal 1                                                          from MySQL

Description: the parameter AutoCommit controls if 
updates are written to disk automatically after every 
insert. Either �True� or �False� is a legal value. 
However, the user was experiencing an �insert�
intensive workload, so setting the value as �True� will 
hurt performance dramatically.  But when the user set 
this parameter to be �True�, she was not aware of the 
performance impact. 

Impact: �too many connections� error generated.

The max allowed 
persistent connections 
specified in php is 
larger than the max 
connection specified 
in mysql

Description: when using persistent connections,  the 
mysql.max_persistent in PHP should be no larger 
than the max_connections in MySQL. User did not 
conform to this constraint.

(g) Illegal 7 – Value –  Value Inconsistency      from MySQL

mysql's config
max_connections = 300
…... 
php's config 
mysql.max_persistent = 400

Impact: the performance of MySQL is very bad.

(h) Illegal 8 –  Value  –  Value Inconsistency    from Apache

Description: when setting name based virtual host, 
the parameter VirtualHost should be set to the same
host as NameVirtualHost does. However, the user 
set NameVirtualHost to be �*.80� while set 
VirtualHost to be �*�.

Impact: a storage share cannot be recognized.

"*.80" does not 
match  with the "*" 
in <VirtualHost ...>

Impact: Apache loads virtual host in a wrong order.

NameVirtualHost *:80

<VirtualHost *>
    …...
</VirtualHost>

Impact: the LDAP server fails to work.

extension = mysql.so
 …...
extension = recode.so

(c) Illegal 3 – Format – Syntax           from Apache with PHP 

Description: When using PHP in Apache, the 
extension �mysql.so� depends on �recode.so�. 
Therefore the order between them matters. The 
user configured the order in a wrong way.
Impact: Apache cannot start due to seg fault.

"recode.so" must 
be put before 
"mysql.so"

(d) Illegal 4 – Value – Env Inconsistency          from MySQL

datadir = /some/old/path 

Description: the parameter �datadir� specifies the 
directory that stores the data files. After the data files 
were moved to other directory during migration, the 
user did not update datadir to the new directory.

    The path does not contain data files any more

(e) Illegal 5 – Value – Env Inconsistency        from COMP-A

192.168.x.x  system-e0 

Description: In the hosts file of COMP-A's system, 
The mapping from ip address to interface name needs 
to be specified. However, the user mapped the ip  
�192.168.x.x� to a non-existed interface �system-e0�.

There is no interface
named "system-e0"

Impact: MySQL cannot start. Impact: The host cannot be accessed.

log_output="Table"

log=query.log

"log=" contradicts 
with "log_ouput="

Impact: log is written to table rather than file.

(f) Illegal 6 – Value – Value Inconsistency      from MySQL

Description: The parameter �log_output� controls 
how log is stored (in file or database table). The user 
wanted to store log in file query.log, but �log_output�
was incorrectly set to store log in database table.

Figure 2: Examples of different types of configuration parameter related mistakes. (legal vs. illegal, lexical error, syntax

error and inconsistency error)

software compatibility (i.e. whether different components
or modules are compatible with each other). Component
refers to other remaining software misconfigurations (e.g., a
module is missing).

Finding 2.1: Configuration parameter mistakes account for
the majority (70.0%∼85.5%) of the examined misconfigura-
tions.

Finding 2.2: However, a significant portion (14.5%∼30.0%)
of the examined misconfigurations are caused by software
compatibility and component configuration, which are not
well addressed in literature.

First, Finding 2.1 supports recent research efforts [3, 35, 38,
41] on detecting, diagnosing, or fixing parameter-based mis-
configurations. Second, this finding perhaps indicates that
system designers should have fewer “knobs” (i.e. parame-
ters) for users to configure and tune. Whenever possible,
auto-configuration [44] should be preferred because in many
cases users may not be experienced enough to set the knobs
appropriately.

While parameter-based misconfigurations are the most com-
mon, Finding 2.2 calls for attention to investigating solu-

tions dealing with non-parameter-based configurations such
as software incompatibility, etc. For example, software may
need to be shipped as a complete package, deployed as an
appliance (either virtual or physical), or delivered as a ser-
vice (SaaS) to reduce these incompatibilities and general
configuration issues.

4.2 Parameter Misconfigurations

Given the prevalence of parameter-based mistakes, we study
the different types of such mistakes (as shown in Table 4),
the number of parameters needed for diagnosing or fixing
a parameter misconfiguration, and the problem domain of
these mistakes.

Types of mistakes in parameter configuration. First, we
look at parameter mistakes that clearly violate some im-
plicit or explicit configuration rules related to format, syn-
tax, or semantics. We call them illegal misconfigurations
because they are unacceptable to the examined system. Fig-
ures 2(a)∼(h) show eight such examples. These types of
misconfigurations may be detected automatically by check-
ing against configuration rules.
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In contrast, some other parameter mistakes are perfectly
legal, but they are incorrect simply because they do not
deliver the functionality or performance desired by users,
like the example in Figure 2(i). These kinds of mistakes
are difficult to detect unless users’ expectation and intent
can be specified separately and checked against configura-
tion settings. More user training may reduce these kinds of
mistakes, as can simplified system configuration logic, espe-
cially for things that can be auto-configured by the system.

Finding 3.1: 38.1%∼53.7% of parameter misconfigurations
are caused by illegal parameters that clearly violate some for-
mat or semantic rules defined by the system, and can be po-
tentially detected by checkers that inspect against these rules.

Finding 3.2: However, a large portion (46.3% ∼61.9%) of
the parameter misconfigurations have perfectly legal param-
eters but do not deliver the functionality intended by users.
These cases are more difficult to detect by automatic check-
ers and may require more user training or better configura-
tion design.

We subcategorize illegal parameter misconfigurations into
illegal format, in which some parameters do not obey for-
mat rules such as lower case, field separators, etc.; and il-
legal value, in which the parameter format is correct but
the value violates some constraints, e.g., the value of a pa-
rameter should be smaller than some threshold. We find
that illegal-value misconfigurations are more common than
illegal-format misconfigurations in most systems, perhaps
because format is easier to test against and thereby avoid.

Illegal format misconfigurations include both lexical and syn-
tax mistakes. Similar to lexical and syntax errors in program
languages, a lexical mistake violates the grammar of a single
parameter, like the example shown in Figure 2(a); a syntax
mistake violates structural or order constraints of the for-
mat, like the example shown in Figure 2(b) and 2(c). As
shown in Table 4, up to 14.3% of the parameter misconfig-
urations are lexical mistakes, and up to 22.4% are syntax
mistakes.

Illegal value misconfigurations mainly consist of two type of
mistakes, “value inconsistency” and “environment inconsis-
tency”. Value inconsistency means that some parameter set-
tings violate some relationship constraints with some other
parameters, while environment inconsistency means that
some parameter’s setting is inconsistent with the system
environment (i.e., physical configuration). Figure 2(d) and
2(e) are two environment inconsistency examples. As shown
in Table 4, value inconsistency accounts for 12.2%∼29.7% of
the parameter misconfigurations, while environment incon-
sistency contributes 2.0%∼17.0%. Both can be detected by
some well-designed checkers as long as the constraints are
known and enforceable.

Figure 2(f), 2(g), and 2(h) present three value-inconsistency
examples. In the first example, the name of the log file is
specified while the log output is chosen to be database table.
In the second example, two parameters from two different
but related configuration files contradict each other. In the
third example, two parameters, NameVirtualHost and Vir-
tualHost, have unmatched values (“*.80” v.s. “*”).

Finding 4: A significant portion (12.2%∼29.7%) of param-
eter mistakes are due to value-based inconsistency, calling
for an inconsistency checker or a better configuration design
that does not require users to worry about such error-prone
consistency constraints.

Number of erroneous parameters. As some previous work
on detecting or diagnosing misconfiguration focuses on only
single configuration parameter mistakes, we look into what
percentages of parameter mistakes involve only a single pa-
rameter.

System
Number of Involved Parameters

One Multiple Unknown
COMP-A 117(47.6%±6.1%) 117(47.6%±6.1%) 12(4.8%±2.6%)
CentOS 30(71.4%±12.8%) 10(23.8%±12.1%) 2(4.8%±6.0%)
MySQL 35(74.5%±11.0%) 11(23.4%±10.7%) 1(2.1%±3.6%)
Apache 31(62.0%±13.0%) 16(32.0%±12.4%) 3(6.0%±6.3%)

OpenLDAP 18(36.7%±11.1%) 30(61.2%±11.2%) 1(2.0%±3.2%)

System
Number of Fixed Parameters

One Multiple Unknown
COMP-A 189(76.8%±5.1%) 44(17.9%±4.7%) 13(5.3%±2.7%)
CentOS 33(78.6%±11.7%) 7(16.7%±10.6%) 2(4.8%±6.1%)
MySQL 39(83.0%±9.5%) 7(14.9%±9.0%) 1(2.1%±3.6%)
Apache 33(66.0%±12.7%) 14(28.0%±12.0%) 3(6.0%±6.3%)

OpenLDAP 29(59.2%±11.3%) 17(34.7%±11.0%) 3(6.1%±5.5%)

Table 5: The number of parameters in the configuration

parameter mistakes.

Table 5 shows the number of parameters involved in con-
figuration as well as the number of parameters that were
changed to fix the misconfiguration. These numbers may
not be the same because a mistake may involve two param-
eters, but can be fixed by changing only one parameter. Our
analysis indicates that about 23.4%∼61.2% of the parame-
ter mistakes involve multiple parameters. Examples of cases
where multiple parameters are involved are cases with value
inconsistencies (see above).

In comparison, about 14.9%∼34.7% of the examined miscon-
figurations require fixing multiple parameters. For example,
the performance of a system could be influenced by several
parameters. To achieve the expected level of performance,
all these parameters need to be considered and set correctly.

Finding 5.1: The majority (36.7%∼74.5%) of parameter
mistakes can be diagnosed by considering only one parame-
ter, and an even higher percentage(59.2%∼83.0%) of them
can be fixed by changing the value of only one parameter.

Finding 5.2: However, a significant portion (23.4%∼61.2%)
of parameter mistakes involve more than one parameter, and
14.9%∼34.7% require fixing more than one parameter.

Problem domains of parameter mistakes. We also study
what problem domains each parameter mistake falls un-
der. We decide the domain based on the functionality of
the involved parameter. Four major problem domains –
network, permission/privilege, performance, and devices –
are observed. Overall, 18.3% of examined parameter mis-
takes relate to how the network is configured; 16.8% relate
to permission/privilege; 7.1% relate to performance adjust-
ment. For the COMP-A systems and CentOs (the OSes),
8.5%∼26.2% of examined parameter mistakes are about de-
vice configurations.
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4.3 Software Incompatibility
Besides parameter-related mistakes, software incompatibil-
ity is another major cause of misconfigurations (up to 18.3%,
see Table 3). Software-incompatibility issues refer to im-
proper combinations of components or their versions. They
could be caused by incompatible libraries, applications, or
even operating system kernels.

One may think that system upgrades are more likely to
cause software-incompatibility issues, but we find that only
18.5% of the software-incompatibility issues are caused by
upgrades. One possible reason is that both developers and
users already put significant effort into the process of up-
grades. For example, COMP-A provides a tool to help with
upgrades that creates an easy-to-understand report of all
known compatibility issues, and recommends ways to resolve
them.

Some of the misconfiguration cases we analyze show that
package-management systems (e.g., RPM [34] and Debian
dpkg [8]) can help address many software-incompatibility
issues. For example, in one of the studied cases, the user
failed to install the mod proxy html module because the ex-
isting libxml2 library was not compatible with this module.

Package-management systems may work well for systems
with a standard set of packages. For systems that require
multiple applications from different vendors to work together,
it is more challenging. An alternative to package manage-
ment systems is to use self-contained packaging, i.e. inte-
grating dependent components into one installation package
and minimizing the requirements on the target system. To
further reduce dependencies, one could deliver a system as
virtual machine images (e.g., Amazon Machine Image) or
appliances (e.g., COMP-A’s storage systems). The latter
may even eliminate hardware-compatibility issues.

4.4 Component Misconfiguration

Subtype Number of Cases
Missing component 15(25.9%)

Placement 13(22.4%)
File format 3(5.2%)

Insufficient resource 15(25.7%)
Stale data 3(5.2%)

Others 9(15.5%)

Table 6: Subtypes of component misconfigurations.

Component misconfigurations are configuration errors that
are neither parameter mistakes nor compatibility problems.
They are more related to how the system is organized and
how resources are supplied. A sizable portion (8.3%∼14.5%)
of our examined misconfigurations are of this category. Here,
we further classify them into the following five subtypes
based on root causes: (1) Missing component : certain com-
ponents (modules or libraries) are missing; (2) Placement :
certain files or components are not in the place expected by
the system; (3) File format : the format of a certain file is
not acceptable to the system. For example, an Apache web
server on a Linux host cannot load a configuration file be-
cause it is in the MS-DOS format with unrecognized new line
characters. (4) Insufficient resource: the available resources
are not enough to support the system functionality (e.g., not
enough disk space); (5) Stale data: stale data in the system

prevents the new configuration. Table 6 shows the distribu-
tion of the subtypes of component misconfigurations. Miss-
ing components, placement issues, and insufficient resources
are equally prominent.

4.5 Mistake Location
Table 7 shows the distribution of configuration error loca-
tions. Naturally, most misconfigurations are contained in
the target application itself. However, many misconfigura-
tions also span to places beyond the application. The admin-
istrators also need to consider other parts of the system, in-
cluding file-system permissions/capacities, operating-system
modules, other applications running in the system, network
configuration, etc. So looking at only the application itself
is not enough to diagnose and fix many configuration errors.

Finding 6: Although most misconfigurations are located
within each examined application, still a significant portion
(21.7%∼57.3%) of cases involve configurations beyond the
application itself or span across multiple hosts.

5. SYSTEM REACTION TO MISCONFIG-
URATIONS

In this section, we examine system reactions to misconfigu-
rations, focusing on whether the system detects the miscon-
figuration and on the error messages issued by the system.

5.1 Do Systems Detect and Report Configura-
tion Errors?

Proactive detection and informative reporting can help di-
agnose misconfigurations more easily. Therefore, we wish to
understand whether systems detect and report configuration
errors. We divide the examined cases into three categories
based on how well the system handles configuration errors
(Table 8). Cases where the systems and associated tools
detect, report, recover from (or help the user correct) mis-
configurations may not be reported by users. Therefore, the
results in this section may be especially skewed by the avail-
able data. Nevertheless, there are interesting findings that
arise from this analysis.
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[COMP-A – dir.size.max:warning]:
Directory /vol/vol1/xxx/data/ reached 
the maxdirsize Limit. Reduce the number 
of files or use the vol options command 
to increase this limit
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Figure 3: A misconfiguration case where the error mes-

sage pinpoints the root cause and tells the user how to

fix it.

We classify system reactions into pinpoint reaction, indeter-
minate reaction, and quiet failure.

A pinpoint reaction is one of the best system reactions to
misconfigurations. The system not only detects a configura-
tion error but also pinpoints the exact root cause in the error
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System Inside FS OS-Module Network Other App Environment Others
COMP-A 132(42.7±3.0%) 23(7.4±1.6%) 3(1.0±0.6%) 53(17.2±2.3%) 82(26.5±2.7%) 5(1.6±0.8%) 11(3.6±1.1%)
CentOS 26(43.3±4.0%) 2(3.3±1.4%) 12(20.0±3.2%) 4(6.7±2.0%) 11(18.3±3.1%) 2(3.3±1.4%) 3(5.0±1.8%)
MySQL 27(49.1±3.2%) 10(18.2±2.5%) 6(10.9±2.0%) 1(1.8±0.9%) 6(10.9±2.0%) 4(7.3±1.7%) 1(1.8±0.9%)
Apache 47(78.3±3.1%) 3(5.0±1.7%) 3(5.0±1.7%) 3(5.0±1.7%) 3(5.0±1.7%) 0 1(1.7±1.0%)

OpenLDAP 39(62.9±3.4%) 2(3.2±1.3%) 1(1.6±0.9%) 0 17(27.4±3.3%) 1(1.6±0.9%) 2(3.2±1.3%)

Table 7: The location of errors. “Inside”: inside the target application. “FS”: in file system. “OS-Module”: in some

OS modules like SELinux. “Network”: in network settings. “Other App”: in other applications. “Environment”: other

environment like DNS service.

System
Pinpoint Indeterminate Quiet

Unknown
Reaction Reaction Failure

COMP-A 48(15.5±2.2%) 153(49.5±3.0%) 74(23.9±2.6%) 34(11.0±1.9%)
CentOS 7(11.7±2.4%) 33(55.0±3.7%) 16(26.7±3.3%) 4(6.7±1.9%)
MySQL 4(7.2±1.7%) 26(47.3±3.2%) 13(23.6±2.8%) 12(21.8±2.7%)
Apache 8(13.3±2.6%) 28(46.7±3.8%) 16(26.7±3.4%) 8(13.3±2.6%)

OpenLDAP 9(14.5±2.6%) 28(45.2%±3.7%) 14(22.6±3.1%) 11(17.7±2.8%)

(a)

System
Mysterious Symptoms

w/o Message
COMP-A 26(8.4±1.7%)
CentOS 4(6.7±1.9%)
MySQL 9(16.4±2.4%)
Apache 3(5.0±1.7%)

OpenLDAP 3(4.8±1.5%)

(b)

Table 8: How do systems react to misconfigurations? Table (a) presents the number of cases in each category of

system reaction. Table (b) presents the number of cases that cause mysterious crashes, hangs, etc. but do not provide

any messages.

message (see a COMP-A example in Figure 3). As shown
in Table 8 (a), more than 85% of the cases do not belong
to this category, indicating that systems may not react in
a user-friendly way to misconfigurations. As previously dis-
cussed, the study includes only reported cases. Therefore,
some misconfigurations with good error messages may have
already been solved by users themselves and thus not re-
ported. So in reality, the percentage of pinpoint reaction to
misconfiguration may be higher. However, considering the
total number of misconfigurations in the sources we selected
is very large, there are still a significant number of miscon-
figurations for which the examined systems do not pinpoint
the misconfigurations.

An indeterminate reaction is a reaction that a system does
provide some information about the failure symptoms (i.e.,
manifestation of the misconfiguration), but does not pin-
point the root cause or guide the user on how to fix the
problem. 45.2%∼55.0% of our studied cases belong to this
category.

A quiet failure refers to cases where the system does not
function properly, and it further does not provide any infor-
mation regarding the failure or the root cause. 22.6%∼26.7%
of the cases belong to this category. Diagnosing them is very
difficult.

Finding 7: Only 7.2%∼15.5% of the studied misconfigu-
ration problems provide explicit messages that pinpoint the
configuration error.

Quiet failures can be even worse when the misconfiguration
causes the system to misbehave in a mysterious way (crash,
hang, etc.) just like software bugs. We find that such be-
havior occurred in 5%∼8% of the cases (Table 8 (b)).

Why would misconfigurations cause a system to crash or
hang unexpectedly? The reason is intuitive: since configu-
ration parameters can also be considered as a form of input,
if a system does not perform validity checking and prepare
for illegal configurations, it may lead to system misbehavior.
We describe two such scenarios below.

Crash example: A web application used both mod python
and mod wsgi modules in an Apache httpd server. These
two modules used two different versions of Python, which
caused segmentation fault errors when trying to access the
web page.

Hang example: A server was configured to authenticate
via LDAP with the hard bind policy, which made it keep
connecting to the LDAP server until it succeeded. However,
the LDAP server was not working, so the server hung when
the user added new accounts.

Such misbehavior is very challenging to diagnose because
users and support engineers may suspect these unexpected
failures to have been caused by a bug in the system in-
stead of a configuration issue (of course, one may argue
that, in a way it can also be considered to be a bug). If
the system is built to perform more thorough configuration
validity-checking and avoid misconfiguration-caused misbe-
havior, both the cost of support and the diagnosis time can
be reduced.

Finding 8: Some misconfigurations have caused the sys-
tems to crash, hang, or have severe performance degrada-
tion, making failure diagnosis a challenging task.

We further study if there is a correlation between the type
of misconfiguration and the difficulty for systems to react.
We find that it is more difficult to have an appropriate re-
action for software-incompatibility issues. Only 9.3% of all
the incompatibility issues have pinpoint reaction, while the
same ratio for parameter mistakes and component miscon-
figurations is 14.3% and 15.5% respectively. This result is
reasonable since global knowledge (e.g., the configuration of
different applications) is often required to decide if there are
incompatibility issues.

5.2 System Reaction to Illegal Parameters
Cases with illegal configuration parameters (defined in Sec-
tion 4.2) are usually easier to be checked and pinpointed au-
tomatically. For example, Figure 4 is a patch from MySQL
that prints a warning message when the user sets illegal (in-
consistent) parameters.
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System
Pinpoint Indeterminate Quiet

Unknown
Reaction Reaction Failure

COMP-A 25(18.9%) 57(43.2%) 27(20.5%) 23(17.4%)
CentOS 4(25.0%) 7(43.8%) 5(31.3%) 0
MySQL 1(4.3%) 13(56.5%) 3(13.0%) 6(26.1%)
Apache 5(21.7%) 9(39.1%) 4(17.4%) 5(21.7%)

OpenLDAP 7(26.9%) 11(42.3%) 4(15.4%) 4(15.4%)

Table 9: How do systems react to illegal parameters? The reaction category is the same as in Table 8 (a).

+if (opt_logname && !(log_output_options & LOG_FILE) 
+ && !(log_output_options & LOG_NONE))
+  sql_print_warning("Although a path was specified 
+  for the --log option, log tables are used. To enable 
+  logging to files use the --log-output option.");

�������	
� ��������

Figure 4: A patch from MySQL that adds an explicit

warning message when an illegal configuration is de-

tected. If parameter log output (value stored in variable

log_output_options) is set as neither “FILE” (i.e. output

logs to files) nor “NONE” (i.e. not output logs) but pa-

rameter log (value stored in variable opt_logname) is spec-

ified with the name of a log file, a warning will be issued

because these two parameters contradict each other.

Unfortunately, systems do not detect and pinpoint a major-
ity of these configuration mistakes, as shown in Table 9.

Finding 9: Among 220 cases with illegal parameters that
could be easily detected and fixed, only 4.3%∼26.9% of them
provide explicit messages. Up to 31.3% of them do not pro-
vide any message at all, unnecessarily complicating the di-
agnosis process.

5.3 Impact of Messages on Diagnosis Time
Do good error messages help engineers diagnose misconfig-
uration problems more efficiently? To answer this question,
we calculate the diagnosis time, in hours, from the time when
a misconfiguration problem was posted to the time when the
correct answer was provided.

System
Explicit Ambiguous

No Message
Message Message

COMP-A 1x 13x 14.5x
CentOS 1x 3x 5.5x
MySQL 1x 3.4x 1.2x
Apache 1x 10x 3x

OpenLDAP 1x 5.3x 2.5x

Table 10: The median of diagnosis time for cases with

and without messages (time is normalized for confiden-

tiality reasons). Explicit message means that the error

message directly pinpoints the location of the misconfig-

uration. The median diagnosis time of the cases with

explicit messages is used as base. Ambiguous message

means there are messages, but they do not directly iden-

tify the misconfiguration. No message is for cases where

no messages are provided.

Table 10 shows that the misconfiguration cases with explicit
messages are diagnosed much faster. Otherwise, engineers
have to spend much more time on diagnosis, where the me-
dian of the diagnosis time is up to 14.5 times longer.

Finding 10: Messages that pinpoint configuration errors
can shorten the diagnosis time 3 to 13 times as compared to
the cases with ambiguous messages or 1.2 to 14.5 times as
compared to the cases with no messages.

To improve error reporting, two types of approaches can be
adopted. A white-box approach [43] uses program analysis
to identify the state that should be captured at each logging
statement in source code to minimize ambiguity in error
messages. When source code is not available, a black-box
approach, such as Clarify [12], can be taken instead. Clar-
ify associates the program’s runtime profile with ambiguous
error report, which enables improved error reporting.

Interestingly, for some of the systems (Apache, MySQL, and
OpenLDAP), engineers seem to spend more time (2∼4 times
longer) diagnosing cases with ambiguous messages than cases
with no messages at all. There are several potential reasons.
First, incorrect or irrelevant messages can sometimes mis-
lead engineers, directing them down a wrong path. Figure 5
shows such an example. Based on the message provided
by the client, both the support engineers and the customers
thought the problem was on the client end, so they made sev-
eral attempts to set certificates, but the root cause turned
out to be a problem in the configuration on the server side.
This indicates that the accuracy of messages is critical to
the diagnosis process. Providing misleading messages may
be worse than providing nothing at all.
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Figure 5: A misconfiguration case where the error mes-

sage misled the customer and the support engineers.

Second, in some cases, symptoms and configuration-file con-
tent are already sufficient for support engineers or experts to
resolve the problem. For these cases, whether there are er-
ror messages is less important. For example, many cases
from MySQL related to performance degradation do not
have error messages, but it was relatively easy for experts
to solve those problems by looking only at the configura-
tion file. However, even for these cases, if the system could
give good-quality messages, users may be able to solve these
problems themselves.

Finding 11: Giving an irrelevant message may be worse
than not giving message at all for diagnosing misconfigura-
tion. Some irrelevant messages could mislead users to chase
down the wrong path. In three of the five studied systems,
statistical data shows that ambiguous messages may lead to
longer diagnosis time compared to not having any message.

167



We further performed a preliminary study on what kind of
error messages are more useful in reducing diagnosis time.
Specifically, we read through the misconfiguration cases that
have explicit messages and are parameter mistakes (a to-
tal of 62 cases). Besides that all these cases pinpoint the
root cause of the failure (which is our definition of explicit),
69.4% of them further mention the parameter name in the
message; 6.5% of even further point out the parameter’s lo-
cation within the configuration file. However, we do not find
strong correlation between the diagnosis time and this extra
information (e.g., parameter name) in the explicit messages.
A more comprehensive study on this topic is a good avenue
for future work.

6. CAUSES OF MISCONFIGURATIONS

6.1 When Do Misconfigurations Happen?
There are many ways to look at the reasons that cause a
misconfiguration. Here, we examine only a couple. First,
when a misconfiguration happens, i.e. whether it happens
at the user’s first attempt to access certain functionality,
or the system used to work but does not work any more
due to various changes. Based on this, we categorize the
misconfiguration cases into two categories (Table 11): (1)
Used-to-work and (2) First-time use.

System Used-to-Work First-Time Use Unknown
COMP-A 100(32.4±2.8%) 165(53.4±3.0%) 44(14.2±2.1%)
CentOS 10(16.7±3.0%) 40(66.6±3.8%) 10(16.7±3.0%)
MySQL 3(5.5±1.5%) 45(81.8±2.5%) 7(12.7±2.2%)
Apache 2(3.3±1.4%) 40(66.7±3.6%) 18(30.0±3.5%)

OpenLDAP 2(3.2±1.3%) 57(91.9±1.6%) 3(4.8±1.6%)

Table 11: The number of misconfigurations categorized

by used-to-work and first-time use.

One may think that most misconfigurations happen when
users configure a system for the first time. As our results
show, it is indeed the case, especially for relatively simple
systems (MySQL, Apache, and OpenLDAP). The causes for
the misconfigurations during first-time use can be the inad-
equate knowledge of personnel, flawed design of the system,
or even inconsistent user manuals [33].

However, for more complex systems, COMP-A and Cen-
tOS, a significant portion (16.7%∼32.4%) of the misconfigu-
rations happen in the middle of the system’s lifetime. There
could be two major reasons. First, these systems have more
frequent changes (upgrades, reconfiguration, etc.) in their
lifetime. Second, the configuration is more complicated, so
it takes a long time for users to master.

Finding 12: The majority of misconfigurations are related
to first-time use of desired functionality. For more complex
systems, a significant percentage (16.7%∼32.4%) of miscon-
figurations were introduced into systems that used to work.

6.2 Why Do Systems Stop Working?
To further examine the causes of used-to-work cases, we cat-
egorize the 100 cases of this category from COMP-A based
on their root causes (Figure 6).

Collateral damage refers to cases when users made configu-
ration changes for some new functionality but accidentally

Software 
Upgrade

16%

Collateral Damage
29%

Incomplete 
Maintenace

12%

Hardware
Change

18%

Exhaustion 
Resource

14%

External 
Environment

8%

Configuration Corrupted 
   by Outage

Configuration Syntax
Changed

Configuration Modified

Incompatible
      Upgrade

5%

9%

2%

(The Subcategories of Software Upgrade)

3%

Figure 6: The cause distribution for the used-to-work

misconfigurations at COMP-A (we also subcategorize

the cases caused by software upgrade).

broke existing functionality. It accounts for 29.0% of the
used-to-work cases from COMP-A. To avoid such collat-
eral damages, it might be useful if users can be warned by
the configuration management/change tool about the side-
effects of their changes.

Incomplete maintenance refers to cases when some regu-
lar maintenance tasks introduced incomplete configuration
changes. 12.0% of the used-to-work cases from COMP-A be-
long to this category. For example, when an administrator
does a routine periodic password change to certain accounts
but forgets to propagate it to all affected systems, some sys-
tems would not be able to authenticate these accounts.

In addition, configuration could also be corrupted by outage
(3.0%) or be modified accidentally by some (2.0%) software
upgrades (Figure 6). To sum up, 46% of the examined used-
to-work misconfiguration cases from COMP-A are caused
by configuration-parameter changes due to various reasons,
including configuring other features, routine maintenance,
system outages, or software upgrades. To diagnose and fix
these cases, it is useful for systems to automatically keep
track of configuration changes [24], and even better, help
users to pinpoint which change is the culprit [41].

Another major cause is hardware change (18.0%). When
customers upgrade, replace or reorganize hardware (e.g.,
moving a disk from one server to another), it can cause
problems if they forget to change related configuration pa-
rameters accordingly.

Resource exhaustion (14.0%) can also affect a previously
working system. For example, in one of the studied cases, a
database system hung and did not work properly even after
rebooting because the data disks became full.

Finally, external environment changes could also be harm-
ful to previously working systems. They account for 8.0% of
used-to-work cases from COMP-A. For example, in one of
the studied cases, a system suffered from severe performance
degradation because its primary DNS server went offline ac-
cidentally. Such changes are error prone and problematic,
because different systems may be managed by different ad-
ministrators who may not communicate with each other in
a timely manner about their changes.
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Figure 7: A misconfiguration example where the syntax

of configuration files has changed after upgrade. A previ-

ously working NFS mounting configuration is no longer

valid, because the option actual became deprecated after

upgrade.

Software upgrades, as one may expect, is another major
cause of misconfigurations that break a previously work-
ing system. It accounts for 16% of the “used-to-work” cases
from COMP-A. We further subcategorize it into three types.
First, a new software release may have changed the con-
figuration file syntax or format requirements, making the
old configuration file invalid. Figure 7 gives such an exam-
ple. Second, some automatic upgrade processes may silently
modify certain configuration parameters (e.g. set them to
default values) without users’ awareness. Third, software
upgrades may cause incompatibilities among components.

In order to prevent misconfigurations caused by software
upgrades, systems should provide automatic upgrade tools
or at least detailed upgrade instructions [24, 7]. The upgrade
process should also take users’ existing configurations into
consideration.

Finding 13: By looking into the 100 used-to-work cases
(32.4% of the total) at COMP-A, 46% of them are attributed
to configuration parameter changes due to routine mainte-
nance, configuring for new functionality, system outages,
etc, and can benefit from tracking configuration changes.
The remainder are caused by non-parameter related issues
such as hardware changes (18%), external environmental
changes (8%), resource exhaustion (14%), and software up-
grades(14%).

7. IMPACT OF MISCONFIGURATIONS
We analyzed the severity of customer-reported issues from
COMP-A (Section 3) and found that a large percentage
(31%) of high-impact issues were related to system configu-
ration. In this section, we analyze the severity of the specific
misconfiguration cases used in our study, particularly from
the viewpoint of system availability and performance. We
divide the misconfiguration cases into three categories, as
shown in Table 12: (1) the system becomes fully unavail-
able; (2) the system becomes partially unavailable, i.e. it
cannot deliver certain desired features; and (3) the system
suffers from severe performance degradation. We do expect
the results to be skewed towards the more severe, causing
users to report them as issues more than simpler cases.

We find 9.7%∼27.3% of the misconfigurations cause the sys-
tem to become fully unavailable. This shows again that mis-
configurations can be a severe threat to system availability.

System
Fully Partially Performance

Unavailable Unavailable Degradation
COMP-A 41 (13.3±2.1%) 247 (79.9±2.4%) 21 (6.8±1.5%)
CentOS 12 (20.0±3.2%) 47 (78.3±3.3%) 1 (1.7±1.0%)
MySQL 15 (27.3±2.9%) 29 (52.7±3.2%) 11 (20.0±2.6%)
Apache 15 (25.0±3.3%) 44 (73.3±3.4%) 1 (1.7±1.0%)

OpenLDAP 6 (9.7±2.2%) 52 (83.9±2.7%) 4 (6.4±1.8%)

Table 12: The impact distribution of the misconfigura-

tion cases from all the studied systems.

Moreover, up to 20.0% of the misconfigurations cause se-
vere performance degradation, especially for systems such as
database servers that are performance-sensitive and require
some nontrivial tuning based on users’ particular workloads,
infrastructure, and data sizes. For example, the official per-
formance tuning guides for MySQL and Oracle have more
than 400 pages, and mention tens, even hundreds of con-
figuration parameters that are related to performance. The
percentage of misconfigurations causing performance issues
here might be an underestimate of performance problems in
the field, since some trivial performance issues introduced
by misconfigurations may not be reported by the user.

Finding 14: Although most studied misconfiguration cases
only lead to partial unavailability of the system, 16.1%∼47.3%
of them make the systems fully unavailable or cause severe
performance degradation.

The next question is whether different types of misconfigu-
rations have different impact characteristics. Therefore, we
also examine the impact of each type of misconfiguration;
the results are shown in Table 13.

Misconfig Fully Partially Performance
Type Unavailable Unavailable Degradation

Parameters 59 (13.6%) 342 (78.8%) 33 (7.6%)
Compatibility 14 (25.9%) 38 (70.4%) 2 (3.7%)
Component 16 (27.6%) 39 (67.2%) 3 (5.2%)

Table 13: The impact on different types of misconfigura-

tion cases. The data is aggregated for all the examined

systems. The percentage shows the ratio of a specific

type of misconfiguration (e.g., parameter mistake) that

leads to a specific impact level (e.g., full unavailability).

We find that, compared to configuration parameter mis-
takes, software compatibility and component configuration
errors are more likely to cause full unavailability of the sys-
tem. 25.9% of the software compatibility issues and 27.6%
of the component configuration errors make systems fully
unavailable, whereas this ratio is only 13.6% for parameter-
related misconfigurations.

The above results are not surprising because what compo-
nents are used and whether they are compatible can easily
prevent systems from even being able to start. In contrast,
configuration-parameter mistakes, especially if the param-
eter is only for certain functionality, tend to have a much
more localized impact.

In addition to having a more severe impact, compatibility
and component configuration mistakes can be more difficult
to fix. They usually require greater expertise from users. For
example, in one of the misconfiguration cases of CentOS, the
user could not mount a newly created ReiserFS file system,
because the kernel support for this ReiserFS file system was
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missing. The user needed to install a set of libraries and
kernel modules and also modify configuration parameters in
several places to get it to work.

8. RELATED WORK
Characteristic studies on operator errors: Several
previous studies have examined the contribution of opera-
tion errors or administrator mistakes [11, 22, 23, 27, 29, 30].
For example, Jim Gray found that 42% of system failures
are due to administration errors [11]. Patterson et al. [30]
also observed a similar trend in telephone networks. Mur-
phy et al. [22] found that the percentage of failures due to
system management is increasing over time. Oppenheimer
et al. [29] studied the failures of the Internet services and
found that configuration errors are the largest category of
operator errors. Nagaraja et al. [23] also had similar findings
from a user study.

To the best of our knowledge, very few studies have analyzed
misconfigurations in detail and examined the subtypes, root
causes, impacts and system reactions to misconfigurations,
especially in both commercial and open source systems with
a large set of real-world misconfigurations.

Detection of misconfigurations: A series of efforts [9,
21, 24, 38, 40] in recent years have focused on detecting
misconfigurations. The techniques used in PeerPressure [38]
and its predecessor Strider [40] have been discussed in the In-
troduction. Microsoft Baseline Security Analyzer (MBSA)
[21] detects common security-related misconfigurations by
checking configuration files against predefined rules; security
is one of the important impact categories we have not fo-
cused on in our study. NetApp’s AutoSupport-based health
management system [24] checks the validity of configura-
tions against “golden templates”, focusing on compatibility
and component issues (which are likelier to cause full avail-
ability according to our study).

Diagnosis of misconfigurations: Besides detection, an-
other series of research efforts [41, 35, 2, 3] focus on diagnos-
ing problems after the errors happen. We have already dis-
cussed AutoBash [35], ConfAid [3], and Chronus [41] in the
Introduction. The applicability of Chronus depends on how
many misconfigurations belong to the “used-to-work” cate-
gory; according to our study, it is a significant percentage
for more complex systems. A follow-up work to AutoBash
by Attariyan et al. [2] leverages system call information to
track the causality relation, which overcomes the limitations
of the Hamming distance comparison used in AutoBash to
further enhance accuracy. Similar to [2], Yuan et al. [42] use
machine learning techniques to correlate system call infor-
mation to problem causes in order to diagnose configuration
errors. Most of these works focused on parameter-related
misconfigurations.

Tolerance of misconfigurations: Some research work [35,
4] can help fix or tolerate misconfigurations. In addition to
AutoBash [35], Undo [4] uses checkpoints to allow admin-
istrators to have a chance to roll back if they made some
misconfigurations. Obviously, it assumes that the system
used to work fine, thus addressing a significant number of
cases for more complex systems.

Avoidance of misconfigurations: One approach to avoid
misconfiguration is to develop tools to configure the system
automatically. SmartFrog [1] uses a declarative language
to describe software components and configuration param-
eters, and how they should connect to each other. Con-
figurations can then be automatically generated to greatly
mitigate human errors. Similarly, Zheng et al. [44] lever-
age custom-specified templates to automatically generate
the correct configuration for a system. Kardo [18] adopts
machine learning techniques to automatically extract the
solution operations out of the user’s UI sequence and ap-
ply them automatically. The significant percentage of “ille-
gal configuration parameters” provides some supporting ev-
idence and also shows the benefits of the above approaches.

A more fundamental approach is to design better configu-
ration logic/interface to avoid misconfigurations. Maxion et
al. [20] discovered that many misconfigurations for NTFS
permissions are due to the configuration interfaces not pro-
viding adequate information to users. Therefore, they pro-
posed a new design of the interface with subgoal support
that can effectively reduce the configuration errors on NTFS
permissions by 94%.

Misconfiguration injection: As mentioned in the Intro-
duction, a misconfiguration-injection framework like Con-
fErr [17] is very useful for evaluating techniques for detect-
ing, diagnosing, and fixing misconfigurations. Our study
can be beneficial for such framework to construct a more
accurate misconfiguration model.

Online validation: Another avenue of work [7, 23, 27,
28] focus on validating the system for detecting operator
mistakes. Nagaraja et al. [23] developed a validation frame-
work which can detect operator mistakes before deployment
by comparing against the comparator functions provided by
users. A follow-up work by Oliveira et al. [27] validates
database system administrations. Another follow-up work
by Oliveira et al. [28] addresses the limitation of the previous
validation system, which does not protect against human er-
rors directly performed on the production system. Mirage [7]
also has a subsystem for validating system upgrades.

Miscellaneous: Wang et al. [39] used reverse engineer-
ing to extract the security-related configuration parameters
automatically. Users can leverage the approach to slice the
configuration file and see if the security-related parameters
are correct. Ramachandran et al. [32] extracted the cor-
relations between parameters, which can be used to detect
some of the inconsistent-parameter misconfigurations in our
study. Rabkin et al. [31] found that the configuration space
after canonicalization is not very big after having analyzed
seven open source applications. Therefore a thorough test
of different configuration parameters might be possible for
certain applications if input is generated in a smart way.

As we discussed in the Introduction, our characteristic study
of real-world misconfigurations would be useful in providing
some guidelines to evaluate, improve, and extend some of the
above work on detecting, diagnosing, fixing, and injecting
misconfigurations.
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9. CONCLUSIONS
System configuration lies in the gray zone between the de-
velopers of a system and its users. The responsibility for
creating correct configurations lies with both parties; the
developer should create intuitive configuration logic, build
logic that detects errors, and convey configuration knowl-
edge to users effectively; the user should imbibe the knowl-
edge and manage cross-application or cross-vendor configu-
rations. This shared responsibility is non-trivial to efficiently
achieve. For example, there is no obviously “correct” way to
build configuration logic; also, unlike fixing a bug once, ev-
ery user of the system has to be educated on the right way to
configure the system. Perhaps as a result, misconfigurations
have been one of the dominant causes of system issues and
is likely to continue so.

We have performed a comprehensive characteristic study
on 546 randomly-sampled real-world misconfiguration cases
from both a commercial system that is deployed to thou-
sands of customers, and four widely used open-source sys-
tems, namely CentOS, MySQL, Apache, and OpenLDAP.
Our study covers several dimensions of misconfigurations,
including types, causes, impact, and system reactions. We
hope that our study helps extend and improve tools that in-
ject, detect, diagnose, or fix misconfigurations. Further, we
hope that the study provides system architects, developers,
and testers insights into configuration-logic design and test-
ing, and also encourages support personnel to record field
configuration problems more rigorously so that vendors can
learn from historical mistakes.
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