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Abstract. This paper aims to analyze the GPS traces of 258 volunteers in order
to obtain a better understanding of both the human mobility patterns and the
mechanism. We report the regular and scaling properties of human mobility for
several aspects, and importantly we identify its Levy flight characteristic, which
is consistent with those from previous studies. We further assume two factors that
may govern the Levy flight property: (1) the scaling and hierarchical properties of
the purpose clusters which serve as the underlying spatial structure, and (2) the
individual preferential behaviors. To verify the assumptions, we implement an
agent-based model with the two factors, and the simulated results do indeed
capture the same Levy flight pattern as is observed. In order to enable the model
to reproduce more mobility patterns, we add to the model a third factor: the
jumping factor, which is the probability that one person may cancel their regular
mobility schedule and explore a random place. With this factor, our model can
cover a relatively wide range of human mobility patterns with scaling exponent
values from 1.55 to 2.05.
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1. Introduction

Studies on human mobility have attracted extensive attention from broad research
communities in the past few years. This is because, on one hand, understanding the
behavior and the subsequent pattern of human mobility is very helpful in resolving many
hot issues of our society, such as urban planning [1], traffic design and forecasting [2],
performance evaluation of wireless mobile networks [3], and control and management of
infectious disease spreading [4]. On the other hand, with the increasing advancement of
location tracking technology, say GPS, we can collect mountains of mobility data. These
enormous datasets not only cover the human mobility trajectory for walking with a hand-
held GPS or mobile phone [5]–[7], driving with a car equipped with a GPS receiver [2], or
even taking a flight with land monitoring system [8], but also stretch to the movements of
users of location-based social network applications, such as Flickr [9] and Foursquare [1],
which record detailed information wherever and whenever the users log onto the system.
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Findings from the literature mainly suggested that the human mobility pattern
exhibits a scaling property and, in particular, a Levy flight characteristic. For instance,
Brockmann et al [10] reported the superdiffusive process of human travel, which was
known as the Levy flight characteristic, through the tracking data for bank notes in the
US. Gonzalez et al [5] found that the human displacement distribution could be well fitted
with a truncated power law distribution using cell phone data and further interpreted this
finding as the convolution of both population-based heterogeneity and the individual-
based Levy flight characteristic. Using the taxicab GPS trajectory data, Jiang et al [2]
observed the truncated power law distribution of human travel length and attributed it
to the topological structure of the underlying urban road network. Similar findings were
also reported by [7]: that Levy walks are statistically similar to human walks based on
the GPS traces of 101 volunteers, and the authors further evaluated the performance of
mobile networks using a truncated Levy walk model with the observed patterns. The
above findings on human mobility also conform to the previous studies on the foraging
trajectories of animals, such as albatrosses, spider monkeys and sea turtles [11]–[14].

However, there were other findings which indicated that the human mobility pattern
could not be characterized as a Levy flight. Azevedo et al [15] analyzed, at the city level,
several motion components of pedestrian movement in real scenarios and reported that the
pause time followed a log-normal distribution. Analyzed by the AIC-based model selection
method, the displacements of taxi trajectories were reported to follow an exponential
distribution [16]. Moreover, Jiang and Jia [8] investigated human mobility at a country
level, using US flight location data, and they found that the flight length could be better
fitted with an exponential distribution from the underlying five potential models. From
a pure statistical perspective, Scafetta [17] suggested an N -piece-fit Pareto distribution
with increasing integer exponents instead of the power law with an exponential cutoff
distribution for the human displacement using the datasets from [5] and [7]. With this
new distribution, they were able to interpret the human mobility from the multi-scale cost
model, but there were still not enough tests to support their argument.

Besides this, sophisticated mobility models were proposed for interpreting and
reproducing the observed pattern. Lee et al [3] introduced the self-similar least action
walk model (SLAW) to emulate human walk behavior, and their model adopted the
geometric distance as a determinant factor in choosing the next location of the human
walk. This is a relatively partial approach since some people may prefer to choose the
destination according to its priority. Han et al [18] proposed a hierarchical model based
on a square lattice to examine human mobility. Their model considered the priority of
choosing the next location and captured well the scaling law of human displacement,
and importantly they attributed the scaling property to the hierarchical organization of
the traffic system. Unlike the above researchers, whose models which did not take into
account the geographic space constraints, Jiang et al [2] proposed an agent-based model
to simulate human movement on a large street network. Their model reproduced the
observed scaling property, but they included a variable travel time which was generated
from a power law distribution with the same exponent value as for the observed trail
length distribution. Liu et al [19] also performed Monte Carlo simulations to interpret the
observed trip pattern based on the LandScan population density map, and they suggested
that the human mobility pattern could be influenced by geographical heterogeneity and
distance decay in human travel.

doi:10.1088/1742-5468/2012/11/P11024 3
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Inspired from the animal foraging strategy [20], this research assumes that the
underlying spatial points of interest (POI) might have a strong influence on the pattern
of human mobility. On the other hand, animals in nature have little knowledge of the
spatial distribution of available food [14], but humans have a mental map of the available
resources in the geographical space. In this respect, we come up with another assumption:
that the human preferential selection of available resources might also have a non-negligible
influence on the mobility pattern. Our assumptions seem to be more similar to the
hypotheses given by [2] and [18] than the others [3, 19]. This paper thereby sets up
two steps for verifying these assumptions. We firstly extract the purposive locations
(a substitute for the POI) from the GPS logger dataset which contains the mobility
locations of 258 volunteers for around one month in Borlänge, Sweden. On the basis
of the purposive locations, we subsequently carry out the statistical analysis of human
mobility, and the result agrees well with the literature ones. Secondly, we propose a simple
agent-based model for implementing the two assumptions. Simulation results from the
model suggest that it conforms fairly well to the observed human displacement patterns.
Moreover, by assigning each agent a jumping factor, we can tune the simulated scaling
exponent of human mobility, which covers the range of most empirical observations [1, 5,
7, 10].

We structure the rest of this paper as follows. In section 2, the dataset and the
procedure used to extract purposive locations are elaborated. In section 3, we carry out
the statistical analysis of human mobility, and further construct three levels of purpose
clusters to allow a better understanding of the underlying spatial structure. Then, we
propose an agent-based model to mimic the characteristics of human mobility in section 4.
Extension of the model and the related issues are discussed in section 5. Finally, we draw
a conclusion in section 6.

2. The dataset and purposive location extraction

2.1. The dataset

In this research, we deployed 89 BT-338X, a Bluetooth GPS data logger that is a
combination of a GPS receiver and a data logger with a Bluetooth interface, to volunteers
for recording their daily movement during four periods in three sites of Borlänge, Sweden,
including Domnarvet, Kvarnsveden and StoraTuna. These volunteers were recruited from
four large sports associations, with high compliance and participation rates. BT-338X was
usually attached to the private car by the volunteer for around one week, and the whole
data collecting period lasted from 29 March to 15 May in 2011. In total, we obtained a
dataset that includes 258 GPS logger files corresponding to 262 021 movement recordings
of all volunteers with the removal of 5402 invalid records due to the loss of the GPS signal.
It should be noted that each GPS logger file contains the movement information of one
volunteer, and also that each record in the GPS logger file includes the information when
the GPS signal is received every 5 or 30 s, such as the location in terms of longitude (x) and
latitude (y), the time (t) and the velocity (v). The longitude and latitude are referenced
using the World Geodetic System 84 (WGS 84) and measured with the accuracy of five
meters according to the BT-338X user manual. Although most of the volunteers were
residents of Borlänge County, the spatial extent of their movement covered more than
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Figure 1. Maps for (a) the region covered by the mobility (source: enirio.se) and
(b) the entire GPS location set overlaid on the Sweden highway system (source:
openstreetmap.org).

half of the entire territory of Sweden (cf figure 1). In this respect, our dataset reflects a
picture of human mobility with high spatial resolution in a relatively large geographical
region.

2.2. Purposive location extraction

It is our assumption that purposive locations could be a good proxy for the spatial points
of interest (POI), and that they might play a vital role in shaping the human mobility
pattern. Moreover, it is our belief that purposive locations are hidden in the mobility
data, and thus they can be extracted from the GPS logger dataset. From the perspective
of computer vision, a purposive location resembles the interest point in a video sequence
where a significant local variation occurs in both space and time [21]. Similarly, from the
perspective of the human trajectory, it is characterized as a location with drastic change
in time, distance or angle. This change can be identified from two features: large time
interval and tortuous behavior. The former relates to situations where the time interval
(t) between two consecutive locations exceeds the time threshold (∆T ) and also their
distance apart (d) is less than the distance threshold (v∗t, where v is velocity), whereas
the latter relates to situations where the angle (ϕ) formed by three successive locations is
less than the angle threshold (∆ϕ) and those locations tend to cluster together. In reality,
the two cases mostly occur when people go to the office or a shopping mall where no
GPS signal can be received, or when they are outdoors with a GPS signal but wandered
around something interesting. With the two rules, we illustrate identification of purposive
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Figure 2. Illustration of identifying purposive locations in the human trajectory.

 

 

 

 

 

Figure 3. Log–log plot for the time interval (t) of the GPS logger dataset in a
histogram with 2500 bins.

locations from the human trajectory in figure 2 and present corresponding pseudo-code
in section A.1.

Specifying the values for the two thresholds (∆T and ∆ϕ) is not a trivial task, because
sometimes a small variation in the threshold value might lead to large bias in the result.
In this study, for the time threshold (∆T ), we explore the time interval (t) distribution
of the whole dataset, and fortunately we find that it can be roughly assumed as a power
law distribution (cf figure 3). With this knowledge, we adopt the arithmetic mean value
as the time threshold according to the head/tail division rule [22]. The arithmetic mean
value equals 550 s, which sounds reasonable in reality. As for the second threshold (∆ϕ),
we are not so lucky: it does not approach a heavy tailed distribution. However, common
knowledge from human movement behavior indicates that people tend to walk or drive
in a relatively straightforward way rather than a curved backward way, to save both time
and energy. This information hints that the angle threshold can be set as 90◦, although

doi:10.1088/1742-5468/2012/11/P11024 6
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bias can arise in the case of an extremely curved street. In addition, statistical information
tells us that about 90% of total turning angles are greater than 90◦. With these settings,
we finally extracted 15 423 purposive locations.

3. Empirical analysis of human mobility

In this section, we explore two issues related to the patterns in human mobility. Firstly,
we conduct a closely quantitative analysis of the movement path using measurements of
factors like the home distance, gyration radius, purpose duration, purpose number and
flight length. In particular, we put emphasis on the investigation of the flight length
distribution which plays an important role in characterizing human mobility. Secondly,
we derive the purpose clusters and examine their properties, which may have a strong
influence on forming the pattern of human mobility.

3.1. Characteristics of human mobility

3.1.1. The home distance pattern and gyration radius. Thanks to having the home
addresses of our volunteers, we can explore individual home distance (m) patterns. Home
distance measures the distance from the current location to the home at time t, and
its change with time can reflect the regularity of daily movement. Here we present the
home distance pattern of an anonymous volunteer in figure 4(a), from which we can
clearly observe one long trip accompanied by the majority regular movement pattern
in terms of away from home (at work) during the day time and staying at home at
night. On the other hand, we derive the gyration radius for each volunteer with the
formula r =

√

(
∑

(xt − xmean)2 + (yt − ymean)2)/N , where (xt, yt) is the position at time
t, (xmean, ymean) is the average position of the movement and N is the total number of
positions. It is well known that the gyration radius can measure the extent to which the
volunteer has traveled in geographical space, and thus we present the gyration radius
distribution for all volunteers in figure 4(b). We find that it can be approximated by a
power law distribution with exponent value equal to 1.93 and P value equal to 0.11 ([23];
cf section A.2), which spans almost two decades of magnitudes and explains about 63% of
the empirical data. This finding is roughly consistent with the literature [5, 24] although
with a slightly high exponent value, and importantly it indicates the heterogeneity of
individual movements; for example, most people travel a short distance whereas a few of
them take a long trip.

3.1.2. The daily purpose count and purpose duration. It is assumed that human
movement could be associated with the purposive locations, and two basic questions
about this concern how many purposes one volunteer may have in her/his daily journey
and how long it takes for her/him at each purposive location. The two questions are
helpful for understanding the interaction between human mobility and the underlying
urban structure. To answer the first question, we present the distribution of the daily
purpose count for each volunteer in figure 5(a). From this figure, we clearly observe that
it can be fitted very well with an exponential distribution with λ value equal to 0.13 and
P value equal to 0.45 [25]. In this respect, the number of personal daily purposes can
be better modeled as the Poisson process, which states that on average there are around

doi:10.1088/1742-5468/2012/11/P11024 7
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Figure 4. (a) Semi-log plot of an anonymous home distance pattern and
(b) log–log plot of the gyration radius distribution.

1/λ ≈ 7 purposes that one may have in one day. This finding is in line with [35] which
assumes that individuals arrange their daily agenda independently in a random way.

The second question relates to the personal duration at each purposive location, and
it has also been investigated in other literature with different contexts [7, 15, 16]. This
measurement has a great influence on the diffusion [6, 7] of human mobility, and hence
it plays an important role in infectious disease control and urban planning. We show
the purpose duration distribution in figure 5(b), where a double-power-law distribution
is identified with exponent values equal to 1.51 and 2.85 respectively. This observation
is similar to the distribution of pause time in [7] and interevent time in [16], but is
different from the log-normal distribution of pause time in [15] and the exponential
distribution of elapsed time in [16]. Besides, we notice that the time duration at around
12 h partitions the whole distribution into two power law components. The first component
with small exponent value is likely to reflect the scaling pattern of common human
mobility, such as the daily shopping time, work time or sleep time. On the other hand,
the second component with large exponent value is more likely to indicate the scaling
pattern of uncommon human mobility, such as a long time of travel by train or air
with the device turning off. Furthermore, the double-power-law behavior of the purpose
duration may be explained by a mechanism similar to the multi-scale cost model proposed
in [17].

doi:10.1088/1742-5468/2012/11/P11024 8
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Figure 5. Distribution of (a) daily count of purposes in a semi-log plot and (b)
purpose duration in a log–log plot.

3.1.3. Flight length. In this part, we examine the distribution of flight length, which
characterizes the mobility pattern and has shown many advantages. For instance, previous
research [11, 12, 14] on animal foraging has found the Levy flight characteristic of
animal mobility and suggested that it could drastically increase the chance of finding
food or resources, whereas recent study on human mobility has also reported this
property [7] and found that it could significantly improve the routing performance
of mobile networks. However, it is not a trivial thing to obtain the flight from the
movement path, although it belongs to a part of the movement path. Thanks to
the purposive locations that we elaborated above, we can define the flight as the
path between any two successive purposive locations of one volunteer. Note that the
path can be defined by two forms: the straight line and the shortest street segments.
The former may be coined as ‘air fly’ which is the straight line connected by two
consecutive purposive locations and has been involved in many studies [5, 7, 10], whereas
the latter can be named as ‘street fly’ which is the shortest path along the street
network from the starting purposive location to the ending purposive location and
has recently been investigated by [2]. To make a comparison and understand the role
of the street network on human mobility, we hereby examine both of the definitions
(cf figure 6(a)).

Computation of the street fly distance is harder than that of the air fly distance,
because we have to calculate the shortest path. Moreover, a conventional shortest path
algorithm, like the Dijkstra algorithm, is extremely time-consuming for such a large street
network with 780 512 streets, and we have to resort to the more efficient A∗ search
algorithm which was first proposed by Hart et al [26]. In total, we obtain 15 107 pairs of air
fly and street fly distances from the purposive locations, and we present their distributions
in figure 6(b). From the following table (cf table 1), we notice that both measurements
can be better approximated by a power law with an exponential cutoff distribution, say
p(x) ∝ x−1.93 ∗ e−0.000 004x for the air fly distance distribution and p(x) ∝ x−1.94 ∗ e−0.000 005x

for the street fly distance distribution (cf figure 7(b)). Importantly, in this study, the two

doi:10.1088/1742-5468/2012/11/P11024 9
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Figure 6. (a) Illustration of air fly and street fly and (b) the log–log plot of their
length distribution.

Figure 7. Enlarged maps for three levels of purpose clusters on Google EarthTM:
(a) high level, (b) middle level and (c) low level.

measurements seem to play a similar role in characterizing the human mobility pattern,
and hence we adopt the air fly distance as the flight length due to its simplicity and
constant direction. Consequently, our finding supports the Levy flight property of human
mobility, and it is generally consistent with most of the previous studies [2, 5, 7, 10],
although the exponent value is larger than the ones in a large scale space [5, 10] and is
smaller than the one in a small scale space [2].

doi:10.1088/1742-5468/2012/11/P11024 10
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Table 1. Flight length in terms of street fly and air fly. (Note: VTS stands
for Vuong’s test statistic [23, 34]—the smaller the VTS, the more plausible the
competing model—and p is the significance level.)

Flight
length

Exponential
Log-

normal
Stretched
exponential

Power law with
cutoff

VTS p VTS p VTS p VTS p

Street fly −9.0 0 −137.4 0 −124.4 0 −10 500.1 0
Air fly −3.0 0 −149.6 0 −120.3 0 −8 708.7 0

3.2. Purpose clusters

Purposive locations are assumed to be the product of human interaction with the
underlying spatial structure, and they should be associated with the underlying spatial
points of interest (POI), such as work place, gas station, parking lot, etc. In this respect,
purposive locations may serve as the underlying spatial structure on which human mobility
relies, and hence it is important to investigate the property of the purposive location in
an aggregated way to obtain a better understanding of the human mobility. Here we
adopt the entropy-based hierarchical clustering method [27], which selects the best level
of clustering with the maximum entropy change through an iterative decomposition of
the triangular irregular network (TIN) model of the spatial locations. An advantage of
this method is that no parameter is needed to derive the clusters, and with this method
we firstly classify the entire purposive locations into three levels of clusters (1 = high,
2 = middle and 3 = low). It is supposed that clusters in different levels might represent
different levels of geographical entities—for instance, high level clusters corresponding to
entities of city or town, middle level clusters corresponding to the city districts and low
level clusters corresponding to the city blocks. For a better demonstration, we visualize the
three levels of clusters in Google EarthTM (cf figure 7), where each cluster is symbolized
as a circle whose radius is proportional to the number of purposes.

In addition, a general glance at figure 7 gives an impression of the heterogeneity in
terms of the radii of the circles. This image strengthens our intuition that the clusters in
each level might have a scaling property. As expected, the size of clusters in each level
is indeed found to obey a power law distribution (cf figure 8), and here the size refers to
either the number of volunteers or purposes (note that one volunteer may have multiple
purposes in one cluster). We present the detailed parameters of the power law model in
table 2. This finding suggests that the scaling property of purpose clusters might play
a significant role in shaping the observed pattern of human mobility. Our explanation
is roughly similar to the ones given by [2] and [18], and it also agrees well with the
arguments from [11]. However, to make our point more convincing, we further verify it in
the agent-based simulation of section 4.

4. Agent-based modeling of human mobility

Agent-based modeling has been widely used in many applications [28] and considered as
an effective tool for capturing the emergent collective behavior due to the simple individual
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Figure 8. Log–log plots for the three levels of clusters in terms of both number
of events and number of volunteers ((a) first level, (b) second level and (c) third
level).

Table 2. Table of the power law model for the three levels of clusters. (Note: for
details about the P value, please refer to[23]; cf section A.2.)

Cluster
level

Number of
purposes

Number of
volunteers

Alpha P Alpha P

High 1.92 0.19 2.18 0.9
Middle 1.89 0.89 2.37 0.05
Low 2.26 0.40 2.76 0.32

behavioral rules [29]. To mimic the observed Levy flight characteristic of human mobility,
we illustrate agent-based modeling in this section. Generally, our model is composed of
two components: the hierarchical purpose cluster graph and the agent mobility behavior.
The first component is constructed on the basis of the three levels (high, middle and low)
of purpose clusters and is aimed at setting the spatial structure of the mobility of the
agents. In this graph, two clusters are connected if they have the sibling (belonging to the
same parent) or parent–child relationship, or if they both belong to the high layer clusters.
Specifically, this hierarchical graph resembles our conventional thinking on traveling in a
road network [30] or between different cities [18]. For instance, as shown in figure 9(a),
people traveling from node a to node b have to go through the intermediate node A and
B in the middle level. On the other hand, the agent has two behaviors bestowed on them:
uniform and preferential, to choose the next destination. A uniform agent considers its
neighbors with equal probability of being visited (cf figure 9(b)), while the preferential
agent has a high probability of visiting the neighbors with large numbers of purposes
(cf figure 9(c)). Therefore, it is our belief that two different images will emerge with
respect to the two different behaviors.

Before delving into the simulation to uncover the two different images, it is necessary
to discuss an important characteristic of this model from the perspective of the random
walk [31], namely the probability of the edge being visited. This is because the main
concern of this study is the mobility displacements (flights) between consecutive nodes
visited by the agent. In this respect, the proposed model can be regarded as a random
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Figure 9. Demonstration of a synthetic three-level hierarchical human mobility
model.

walk model in a hierarchical graph [31]. Moreover, it reflects a stochastic process in which
an agent continuously visits the neighboring node based on the current node uniformly
or preferentially. Here, the probability of the graph edge (p(eij)) being visited by the
uniform agent or the preferential agent can be determined roughly, and it is equal to
the probability of the node vi being visited (p(vi)) multiplied by the probability of the
node vj being visited subsequently (p(vj |vi)). For the uniform agent, we can derive the
equation (1) where m is the number of edges in the graph, and hence each edge of the
graph has the same probability of being visited [31], say p(e) = 1/2m:

p(eij) = p(vi) ∗ p(vj |vi) =
d(vi)

∑

v∈V d(v)
∗

1

d(vi)
=

d(vi)

2m
∗

1

d(vi)
=

1

2m
. (1)

On the other hand, for the preferential agent, we can express this as equation (2) below,
where N(v) represents the adjacent neighbors of node v and sv denotes the corresponding
number of purposes. Therefore, we can conclude that each edge has a probability of being
visited proportional to the product value of the number of purposes of two ending nodes,
say p(eij) ∝ si ∗ sj. Through the above analysis, two facts can be obtained. One is that the
random walk of the uniform agent can be considered as a special case of the random walk
of the preferential agent with the number of purposes of each node set as 1, and the other
one is that the edge connecting two nodes with a high number of purposes is much more
often visited by the preferential agent than the uniform one, which conforms well to the
real situation. Consequently, we conjecture that the preferential agent would outperform
the uniform one.

p(eij) = p(vi) ∗ p(vj |vi) =
si ∗

∑

k∈N(i) sk
∑

v∈V sv ∗
∑

k∈N(v) sk

∗
sj

∑

k∈N(i) sk

=
si ∗ sj

∑

v∈V sv ∗
∑

k∈N(v) sk

=
si ∗ sj

C
. (2)
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Figure 10. Simulated displacement length distribution (SN = 258 and ST = 60)
for the (a) random and (b) preferential agents in log–log plots.

To verify the above conjecture, simulations are conducted for both the uniform agents
and the preferential ones. On the basis of the statistical analysis of observed human
mobility, we set the values of the two model parameters, namely the number of agents
(SN) and simulation steps (ST), as the values of the observed number of volunteers (258)
and the average number of purposes per volunteer (total number of purposes/number of
volunteers = 15 423/258 ∼= 60) respectively. It sounds roughly reasonable to set the value of
the second parameter in this way because of every step of agent movement corresponding
to a purpose being achieved. With these settings, we present the simulated displacement
length distribution in figure 10. The plot shown in figure 10(a) does not display a power
law-like property, which might hint that the uniform agent could not mimic the Levy flight
characteristic of human mobility. On the other hand, the plot in figure 10(b) displays a
power law distribution with alpha equal to 2.02, which might suggest that the preferential
agent does indeed capture the Levy flight characteristic of the human mobility. Moreover,
we have verified that the simulation with the empirical settings has reached saturation
(cf section A.3), which means that the simulation result comes to a stable status with
little bias coming from the fluctuation of model parameters, such as ST or SN.

5. Discussion

We have shown that simulated human displacements can be approximated by a power
law distribution with exponent value equal to 2.02, which does not deviate very much
from the observed one: 1.93. This simulation result is based on two ingredients of the
model: the structure of the hierarchical purpose clusters and the individual preferential
behavior. Indeed, the underlying geographical structure has a significant influence on the
mode and/or distance of human travel; for instance, most people would probably like to
travel the short distances to neighboring places by car whereas some people might prefer
to travel long distances to far places by flying, and this argument has also been suggested
by other studies [2, 18]. On the other hand, the individual preferential behavior reflects
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Figure 11. The relationship between the jumping factor (JF) and the exponent
value. (Note: the inset is a log–log plot.)

the strategies adopted by people in the process of making decisions. For example, people
are more likely to visit popular places because their needs can be better satisfied there.
This is also similar to the process of preferential attachment [32] in society, where rich
people get richer and poor people get poorer.

However, in reality, human mobility is so complex or diverse that no simple rule or
model can fully capture its characteristics. This is why different studies have reported
different scaling exponent values based on different mobility datasets, although they have
all identified the Levy flight characteristic. Our model can mimic the observed Levy flight
characteristic of volunteer mobility, but it lacks the power to generate a wide range
of mobility patterns in terms of different exponent values. Given this complexity and
shortcoming, we add another ingredient to the model to allow a better understanding of
the human mobility pattern: the jumping factor (JF), which is similar to the damping
factor in the PageRank algorithm [33]. This factor supposes that in reality one person
might have a probability of canceling the regular mobility schedule and immediately make
a decision to move to another place, and here it refers to the probability of going to a
random low level cluster. To test the influence of the jumping factor on the mobility
pattern, we carry out simulations for each specified jumping factor value and then obtain
the corresponding exponent value.

In figure 11, we illustrate the relationship, and we find that it can be approximated very
well by a power relationship (α = 1.55 × JF−0.084) with an R square value as high as 0.98.
This indicates that the larger the value of the jumping factor, the more heterogeneous the
human mobility. An explanation for this relationship can be given as follows: with a larger
jumping factor, people will be less likely to be constrained to neighboring places and more
likely to explore a random new place; this randomness may increase the probability of
taking long journeys and consequently lead to the entire mobility pattern becoming more
heterogeneous. In the extreme case, where the jumping factor is set to 1, the movement
is a totally random walk on the low level of clusters. In general, our model can cover
a relatively wide range of human mobility patterns with exponent values from 1.55 to
2.05.
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In these respects, the proposed model strengthens the findings reported in [18]
(that the scaling pattern of human mobility is mainly attributable to the hierarchical
organization of the traffic systems) by constraining the human movement to a real
geographic world instead of an ideal square lattice, and it also consolidates the argument
in [2] (that the topological structure of the street network plays a vital role in shaping the
patterns of human mobility) by removing the additional travel time variable following a
power law distribution with the same exponent value as the observed human trail length
distribution. Besides, the introduction of the jumping factor enables it to reproduce the
empirical findings reported in a wide range of studies [5, 7, 10]. Therefore, the results in
this study will not only help the research community by verifying and reproducing the
reported empirical findings, but also be helpful in the fields of urban planning, traffic
management and even infectious disease control.

6. Conclusion

In this paper, we analyze a GPS logger dataset including the movement recordings
of 258 volunteers for a period of one month. We find both the regular and scaling
properties of human mobility from several measurements, and we further report its
Levy flight characteristic which is consistent with most previous studies. An explanation
for the scaling properties of human mobility is given starting from two assumptions:
(1) the scaling and hierarchical properties of the purpose clusters which serve as
the underlying spatial structure, and (2) the preferential individual behavior. We
subsequently implement the two assumptions in an agent-based model for a convincing
confirmation.

We show that the simulated human displacements can be approximated by a power
law distribution with exponent value equal to 2.02, which does not deviate very much
from the observed one: 1.93. Besides, to enable the model to reproduce more mobility
patterns, we add one more ingredient, the jumping factor, to the model. Through several
simulations, we report a power relationship between the jumping factor and the simulated
scaling exponent value. Importantly, with this factor, our model can cover a relatively
wide range of human mobility patterns with different exponent values from 1.55 to 2.05.
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Appendix

In this appendix, we supply the pseudo-code used to calculate the purposive locations
in section A.1, the procedure for testing the power law model in section A.2, and the
agent-based simulation saturation test in section A.3.
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A.1. Calculating the purposive locations from a trajectory

doi:10.1088/1742-5468/2012/11/P11024 17

http://dx.doi.org/10.1088/1742-5468/2012/11/P11024


J
.

S
ta

t.
M

e
c
h

.
(2

0
1

2
)

P
1

1
0

2
4

An empirical study on human mobility and its agent-based modeling

A.2. The procedure used to calculate the P value for testing the power law distribution

Given an observed dataset x, it is straightforward to denote its power law model as

p(x) = cx−α(x ≥ xmin, α > 1) (A.1)

where xmin is the smallest value above which the power law model holds and c and α can be
calculated through the normalization process and by the maximum likelihood estimation
(MLE) method respectively;

c = (α − 1)xα−1
min (A.2)

α = 1 + n

[

n
∑

i=1

ln
xi

xmin

]−1

. (A.3)

However, it cannot be guaranteed that the hypothesized power law distribution is a
plausible fit to the data. In other words, we need to test the power law hypothesis
quantitatively. According to the modified Kolmogorov–Smirnov (KS) test proposed by
Clauset et al [23], a P value is calculated, to measure the plausibility of the power law
model. In total, five steps are involved in this procedure.

(1) Obtain the power law model p(x) for the observed dataset and calculate the KS
statistic which is the maximum distance (D) between the cumulative distribution
functions of the data (G(x)) and the fitted power law model (P (x)):

D = max
x≥xmin

|G(x) − P (x)|. (A.4)

(2) Generate 2500 synthetic datasets with a similar distribution to the observed dataset,
that is the values above xmin are drawn from a pure power law p(x) and the values
below xmin are uniformly selected from the observed dataset with values below xmin.

(3) For each synthetic dataset, obtain its power law model s(x) and calculate its KS
statistic as Di.

(4) The P value is calculated as the probability of synthetic datasets having Di greater
than D:

P =
the number of Di greater than D

2500
. (A.5)

(5) Retain the hypothesized power law model if the P value is greater than or equal to
the criterion or threshold value 0.05; or reject it if the P value is less than the criterion
or threshold value 0.05.

Note that there is a difference between the P value used in the conventional hypothesis
testing and the P value adopted in this study. Generally speaking, the difference is in how
we use it. In the conventional hypothesis testing, the ‘goal’ is to get a small P value so that
one can reject the null hypothesis; whereas in our study, the ‘goal’ is to fail to reject the
null hypothesis, which is that some data can be plausibly fitted by the model suggested in
the null hypothesis, for example, the power law model. Thus, a high P value is interesting
for us, while in the more conventional use of hypothesis testing a low P value is interesting.
Besides, as regards the criterion or the threshold value, the authors [23] argued that most
researchers would like to set it as either 0.1 or 0.05, although they further stressed that
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Figure A.1. Saturation status test for the parameters in agent-based simulation.

it depends on the judgment of the researcher in a particular situation at hand. In this
study, we set it as 0.05, which is similar to the approach of a previous study [2]. In other
words, the threshold value 0.05 means that the null hypothesis can be retained if there is
a probability of 5% or more that the synthetic datasets with the same size drawn from the
hypothesized distribution would have a KS statistic value larger than that of the observed
dataset.

A.3. The agent-based simulation saturation test

In this part, we supply the agent-based simulation saturation test to check whether
the simulation under the empirical settings in section 4 reaches saturation status. Here
saturation means that the simulation result comes to a stable status with little bias coming
from the fluctuation of model parameters, such as ST or SN. Besides this, there are many
ways of measuring the degree of saturation [2, 8], but we adopt a naive exhaustive way to
visualize the effect of parameter change on the simulation result.

We start with the simulation by setting the parameter SN as 50 and ST as 50,
and then the next simulation with an increment of 50 in SN or ST until SN reaches
300 and ST reaches 1000. Thus, the parameter space covers the extent of empirical
values and has a total number of 120 combinations (SN ∈ {50, 100, . . . , 250, 300} and
ST ∈ {50, 100, . . . , 950, 1000}). From figure A.1, we can clearly see that the scaling
exponent values fall within the range from 1.95 to 2.05 for all the combinations, and
consequently, we conclude that the simulation with the empirical settings reaches the
saturation status.
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