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Abstract

Nowadays, applications are increasingly deployed as Web services in
the globally distributed cloud computing environment. Multiple services
are normally composed to fulfill complex functionalities. Business Pro-
cess Execution Language for Web Services (WS-BPEL) is an XML-based
service composition language that is used to define a complex business
process by orchestrating multiple services. Compared with traditional
applications, WS-BPEL programs pose many new challenges to the qual-
ity assurance, especially testing, of service compositions. A number of
techniques have been proposed for testing WS-BPEL programs, but only
a few studies have been conducted to systematically evaluate the effective-
ness of these techniques. Mutation testing has been widely acknowledged
as not only a testing method in its own right, but also a popular technique
for measuring the fault-detection effectiveness of other testing methods.
Several previous studies have proposed a family of mutation operators for
generating mutants by seeding various faults into WS-BPEL programs.
In this study, we conduct a series of empirical studies to evaluate the ap-
plicability and effectiveness of various mutation operators for WS-BPEL
programs. The experimental results provide insightful and comprehen-
sive guidance for mutation testing of WS-BPEL programs in practice. In
particular, our work is the systematic study in the selection of effective
mutation operators specifically for WS-BPEL programs.

Keywords: Web service, service composition, Business Process Execu-
tion Language for Web Services, mutation testing
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1 Introduction

Due to the increasing popularity of cloud computing, service-oriented architec-
ture (SOA) has become a major paradigm for developing distributed applica-
tions. Web service is the fundamental unit of SOA, which describes a series
of application interfaces based on the standard Extensible Markup Language
(XML). Normally, a single Web service can only implement simple function-
alities, so it is necessary to compose multiple services for achieving complex
and flexible processes. Business Process Execution Language for Web Services
(WS-BPEL) [29] can help us orchestrate different Web services into business pro-
cesses, which are then provided as composite services. WS-BPEL-based service
compositions have a number of features, such as dynamic interoperability, open
networking environment, loose coupling, etc. These features result in nondeter-
minism in the composition and execution of Web services, which in turn pose
new challenges in the quality assurance of Web services and their compositions.

Testing has been acknowledged as the mainstream approach to quality assur-
ance, validation, and verification. Though there exist a lot of testing techniques
for traditional software systems, many of them are no longer applicable to Web
services and their compositions. For example, white-box testing techniques,
which are based on the source code of the system under test, are not applicable
in the context of service testing, because Web services may be owned by the
third party and deployed in a remote server. Even for the black-box testing
techniques, which are based on the software specifications, some enhancements
are required to fit into the specific SOA context. Various techniques have been
proposed to generate test cases specifically for the testing of Web services and
their compositions [10, 16, 26, 36, 34, 25].

The quality of generated test cases decides the effectiveness of a testing
method. Mutation testing [9], which systematically generates a set of variants
of the base program, namely mutants, by seeding a variety of faults, is a popular
technique to evaluate the fault-detection effectiveness of a set of test cases. It has
been demonstrated that the automatically generated mutants resemble real-life
faults very well [2]. Mutation testing technique has also been used for evaluating
the effectiveness of testing methods for WS-BPEL programs [36]. However, in
these previous studies, most of the mutants were generated manually, that is,
they lacked a systematic way of generating mutants for WS-BPEL programs.

Some research [13] has already been conducted to propose various mutation
operators, which can be applied to generate mutants for WS-BPEL programs.
Such studies make it possible to construct a comprehensive tool for automati-
cally constructing WS-BPEL mutants. In addition, previous studies [14] have
shown significant difference between different types of mutation operators in
terms of the applicability in constructing mutants and the difficulty in killing
the generated mutants. However, more comprehensive empirical studies are
required to evaluate these mutation operators in depth.

In this paper, we report a series of empirical studies on various WS-BPEL
programs, which help us quantitatively measure the applicability and effective-
ness of different types of mutation operators for WS-BPEL. To conduct the ex-
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periments, we propose a comprehensive framework for mutation testing of WS-
BPEL programs, based on which, we develop a tool, namely µBPEL. With the
aid of evaluation results, we can preclude a set of ineffective mutation operators,
reduce the number of mutants, and thus decrease the cost of mutation testing.
Similar studies have been conducted on various types of programs [5, 30, 28],
whereas our work is the systematic study in selecting useful mutation operators
specifically for WS-BPEL programs.

The comprehensive empirical study presented in this paper mainly makes
the following contributions:

- Evaluation of applicabilities for different mutation operators, that is, how
difficult/easy it is to apply a certain mutation operator to generate WS-
BPEL mutants;

- Quantitative measurement of testing effectiveness for various mutation
operators through two metrics, namely the mutation score and the fault
discovery rate; and

- Identification of the hierarchy showing the difficulty in killing mutants
generated by different mutation operators, which can serve as a basis for
the selection of the most “effective” operators in the mutation analysis for
WS-BPEL programs.

The rest of the paper is organized as follows. Section 2 introduces some
background information on WS-BPEL, mutation testing, and mutation opera-
tors for WS-BPEL. The empirical studies and relevant results are reported in
Sections 3 and 4. Section 5 discusses the work related to our study. The paper
is summarized in Section 6.

2 Background

2.1 Business Process Execution Language for Web Ser-
vices (WS-BPEL)

Business Process Execution Language for Web Services (WS-BPEL) [29] is an
XML-based executable language for service orchestration, which can construct
complex business processes through composing multiple independent Web ser-
vices. The composite services implemented in WS-BPEL can provide functional-
ities in the form of basic services, and thus WS-BPEL programs can participate
in higher-level business processes.

WS-BPEL makes use of a number of XML specifications, such as WSDL
(Web Services Description Language), XML Schema, Xpath (XML Path lan-
guage), and XSLT (Extensible Stylesheet Language Transformations). In WS-
BPEL processes, the data model is provided by the WSDL message and XML
Schema’s data type definition; the data operation is supported by Xpath and
XSLT; and the interface for Web services is described by WSDL.
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Figure 1 shows a sample segment of WS-BPEL processes. A WS-BPEL
process is mainly composed of four sections, namely partner link statements,
variables, fault handlers, and interaction steps. The fundamental unit in the
WS-BPEL process is activity, which can be further classified into basic activity
and structural activity. Typical basic activities include assign, invoke, receive,
reply, throw, wait, empty, etc. The structural activity provides the controlling
structure required for process execution, and is normally composed of multi-
ple basic and/or structural activities. Typical controlling structures include
sequence, switch, while, pick, etc. In addition, WS-BPEL programs support
concurrency and synchronization among activities through the flow structure
and link tags within flows. The process receives an “input” message variable and
outputs an “output” message variable, whose message types have been declared
in the variables section.

Although WS-BPEL has standard control structures, such as sequences,
branches, and loops, WS-BPEL programs are significantly different from the
traditional programs in the following aspects [35]: (i) WS-BPEL provides an
explicit integration mechanism to composeWeb services into large-scale systems,
while such integrations in traditional programs are implicit; (ii) Web services
used by WS-BPEL programs may be implemented in different programming
languages, while modules in the traditional programs are usually implemented
in the same programming language; (iii) WS-BPEL programs are represented
as XML files, and the statements are not the same as those in the traditional
programs; (iv) WS-BPEL supports concurrency among activities via flow ac-
tivities and synchronization via link tags within flows, which is not common in
traditional programs. When implementing such WS-BPEL programs, people
may introduce new types of faults that are different from those in traditional
programs due to these new features of WS-BPEL programs.

2.2 Mutation testing

Mutation testing [9] is a fault-based software testing technique. Basically, some
mutation operators are used to seed certain types of faults into the base program.
The faulty versions are called mutants. In mutation testing, test cases are
executed in both the base program and the mutants. Once a test case reveals
different execution behaviors (normally different program outputs) between a
certain mutant and the base program, the test case is said to kill the mutant.

Mutation testing has two basic hypotheses, namely competent programmer
and coupling effect. The competent programmer hypothesis implies that the
programmer can create at least nearly correct programs, which only contain
few subtle faults. The coupling effect hypothesis states that complex faults can
be coupled into a set of simple faults in a way that a test suite detecting all
the simple faults is very likely to detect the complex faults. Based on these two
hypotheses, most studies on mutation testing focus on first-order mutants, that
is, those generated by seeding one single fault by applying one and only one
mutation operator to the base program.

The original purpose of mutation testing was to generate test cases that are
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Figure 1: A sample segment of WS-BPEL process

5



sufficient to kill all mutants. Fraser and Zeller [17] investigated how to construct
unit test cases and oracles based on the mutation technique. In addition, the
basic idea of mutation testing was applied in the testing of SQL injection vulner-
abilities [4]. Recently, mutation testing technique was applied to the evaluation
of different code coverage criteria [19, 20].

Mutation testing has been widely used to evaluate the fault-detection effec-
tiveness of a given test suite, which is normally measured by how many mutants
have been killed by the test suite[33]. In practice, there exist some mutants that
cannot be killed by any possible test case. This type of mutants are called equiv-
alent mutants, which means that they are equivalent to the base program given
any possible program input. Identifying equivalent mutants is an important
issue, because it affects the calculation of mutation metrics. Fortunately, one
recent work reported a novel technique for detecting equivalent mutants, namely
trivial compiler equivalence (TCE) [31], and conducted a large-scale empirical
study to evaluate the effectiveness of TCE. In the ideal case, a good test suite
should be able to kill all the non-equivalent mutants for a given base program.
Andrews et al. [2] have empirically justified that compared with hand-seeded
faults, automatically generated mutants show higher similarity to the real-life
faults. In other words, mutation testing is a good indicator of the testing effec-
tiveness in reality. Numerous studies in software testing have used mutation test-
ing to evaluate the effectiveness of various testing techniques [8, 23, 37, 39, 40].
Researchers in the testing of Web services also used mutation testing to evaluate
the testing techniques proposed by them [36, 34].

A major drawback of mutation testing is its high computation overhead
mainly due to the large number of mutants. Research [5, 30, 28] has been con-
ducted to find the “subsuming” relations between different mutation operators,
remove part of operators that are not strong enough, and thus reduce the cost
of mutation testing.

2.3 Mutation operators for WS-BPEL Programs

In order to mimic the faults programmers may introduce into WS-BPEL pro-
grams, Estero-Botaro et al. [13] have proposed a total of 26 mutation operators
for WS-BPEL, as summarized in Table 1. These operators are classified into
four categories, namely identifier replacement mutation operator, expression
mutation operator, activity mutation operator, exception and event mutation
operator. The activity operator is further classified into two sub-categories, re-
lated to concurrency and non-concurrency, respectively. Since the inception of
these operators, they have been applied to generating mutants as the subject
programs in the experimental studies for evaluating the fault-detection effective-
ness of the testing techniques for WS-BPEL programs [36]. Recently, Garćıa-
Domı́nguez and Medina-Bulo [18] updated mutation operators for WS-BPEL.
They introduced EIN, EIU, EAP and EAN in the “Expression mutation opera-
tor” category and added the “Coverage operator” category, which includes CFA
and CDE.

Figure 2 illustrates a possible ISV fault that may be injected into the WS-
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Table 1: 32 mutation operators for WS-BPEL programs proposed by Estero-
Botaro et al. [13] and by Garćıa-Domı́nguez and Medina-Bulo [18]
Operator Description

Identifier replacement mutation operator

ISV Replace a variable identifier by another variable identifier
Expression mutation operator

EAA Replace an arithmetic operator by another arithmetic operator
EEU Remove the unary minus operator from an expression
ERR Replace a relational operator by another relational operator
ELL Replace a logical operator by another logical operator
ECC Replace a path operator by another path operator
ECN Modify the value of a numeric constant by incrementing/decrementing it by

one, or adding/removing one digit
EMD Modify a duration expression by replacing it by 0 or half of its initial value
EMF Modify a deadline expression by replacing it by 0 or half of its initial value
EIN Insert the XPath negation function (not) in logic expressions
EIU Insert the XPath unary minus operator in aritmethic expressions
EAP Replace a subexpression by its positive absolute value
EAN Replace a subexpression by its negative absolute value

Activity mutation operator – related to concurrency
ACI Change the createInstance attribute from an inbound message activity to no
AFP Replace a sequential forEach activity by a parallel one
ASF Replace a sequence activity by a flow activity
AIS Change the isolated attribute of a scope to no

Activity mutation operator – related to non-concurrency
AEL Delete an activity
AIE Delete an elseif element or the else element from an if activity
AWR Replace a while activity by a replaceUntil activity or vice versa
AJC Remove the joinCondition attribute from an activity
ASI Exchange the order of two sequence child activities
APM Remove an onMessage element from a pick activity
APA Remove the onAlarm element from a pick activity or from an event handler

Exception and event mutation operator

XMF Remove a catch element or the catchAll element from a fault handler
XMC Remove a compensation handler definition
XMT Remove a termination handler definition
XTF Replace the fault thrown by a throw activity
XER Remove a rethrow activity
XEE Remove an onEvent element from an event handler

Coverage operator

CFA Replace an activity by an exit activity
CDE Replace a decision condition with TRUE or FALSE
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BPEL program segment shown in Figure 1. In this example, the correct variable
reference of the reply activity should be “output”, while it is mistakenly imple-
mented as “input”. As a result, the output of mutated program is always equal
to its input.

Figure 2: Illustration of the ISV fault in the WS-BPEL program segment

3 Empirical Study

We have conducted a series of empirical studies to quantitatively evaluate the
applicability and effectiveness of WS-BPEL mutation operators. The design
and settings of the experiments are described in this section.

3.1 Research questions

In this study, we aim to answer three research questions.

RQ1 To what extent is a mutation operator applicable for mutant generation
on a given WS-BPEL program?

Since each mutation operator for WS-BPEL programs actually imitates a
type of fault, it is interesting to know how likely the faults imitated by dif-
ferent mutation operators occur in real-life WS-BPEL programs and their
distribution. If a mutation operator can help us easily generate a large
number of mutants, we can say that it has high applicability in mutation
testing; otherwise, the applicability of the operator is very limited. By
answering RQ1, we can identify a list of applicable mutation operators,
based on which we can generate a sufficient number of WS-BPEL mutants.

RQ2 How difficult/easy is it to kill the mutants that are generated based on a
certain mutation operator?

If almost all test cases can kill any mutant generated by an operator,
we can say that the operator is not very effective in distinguishing the
qualities of different test suites. By answering RQ2, we can identify a set
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of effective mutation operators, and give them higher priority in mutation
testing.

RQ3 Is there any “subsuming” relation between two mutation operators such
that a test suite capable of killing mutants associated with one operator
will definitely also kill the mutants associated with the other operator?

Obviously, if such a “subsuming” relation exists, the subsumed operator
can be simply removed in the mutation testing. By answering RQ3, we
can further reduce mutation operators, and thus improve the efficiency of
mutation testing.

The first question is to evaluate the applicability of WS-BPEL mutation
operators, for which similar results could be found but has not been formally
answered in previous studies [14]. The other two research questions are about
the effectiveness of these operators, which has always been the focus of the
studies on mutation testing [11, 14, 24], but we measured the effectiveness using
slightly different metrics from a different perspective, as detailed in this section.

3.2 Subject programs

To address the above research questions, we conducted our study based on six
WS-BPEL programs in various domains. Table 2 gives the basic information
of these subject programs. In the table, LOC is the abbreviation of Lines of
Code. Since a WS-BPEL program is represented as an XML file, we use the
number of XML lines to represent the size of the WS-BPEL program. In the
SupplyChain program [35], the customer is required to input the name and
number of products, and the retailer will provide feedback based on the order
and the status of warehouse. For the SmartShelf program [35], the input is
some information of commodity, such as name and number, and the output
includes the quantity in warehouse, the location of shelf, and the status of com-
modity. In the SupplyCusomter program [29], the customer inputs the items
and address of the order, and the system replies the validation result. The
LoanApproval [29] examines the personal information and loan amount pro-
vided by the customer, and returns whether the loan application is approved or
rejected. In the CarEstimate program [1], the system provides initial, simple,
complex, or formal assessment reports for repairing cars based on the request
from the customer. The TravelAgency program [32] is composed of hotel book-
ing, agency booking, air-ticket booking, and banking. The selected six WS-
BPEL programs have been well described in the existing literature, and thus
could be regarded as representative. Ideally, including a set of larger subject
programs for evaluation will deliver more convincing results. Unfortunately,
there is not still such a benchmark for evaluation. Although WS-BPEL has
been adopted to implement various complex business processes, it is impossible
to include them for evaluation due to the commercial issue.
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Table 2: WS-BPEL programs as experimental subject programs
Program name Basic functionality No. of services composed Size (LOC)
SupplyChain Management of supply chains 2 50
SmartShelf Management of commodity shelves 14 194
SupplyCustomer Management of project orders 5 122
LoanApproval Examination of loan applications 3 120
CarEstimate Assessment of car repairs 7 121
TravelAgency Booking of travels 9 543

Figure 3: Framework for executing mutation testing of WS-BPEL programs
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3.3 Mutation Testing Framework for WS-BPEL

In this study, we propose a framework for executing WS-BPEL mutation testing,
as given in Figure 3. As mentioned before, a WS-BPEL program is a composite
service derived by orchestratingWeb services and other composite services. Just
like Web services, the description of such a composite service is also specified
by WSDL, from which one can derive its interfaces, including operations, input
and output parameters of each operation.

The basic procedure of this framework is as follows.

(I) Test Case Generation:

(a) Analyze the WS-BPEL program’s service description, and identify
the operations provided by the program;

(b) Analyze the types and constraints of input parameters of the opera-
tion under test;

(c) Generate test suites based on some testing techniques or coverage
criteria.

(II) Mutant Generation:

(a) Analyze the WS-BPEL program, and identify the elements that can
be mutated;

(b) Based on the analysis result, match breakpoints inside the source
code with corresponding mutation operators;

(c) Construct mutants according to the transformation rules specified in
the mutation operators.

(III) Test Execution:

(a) Input test cases, execute the original WS-BPEL program, and record
the output;

(b) Execute mutants using the same test cases, and record their outputs.

(IV) Test Result Analysis:

(a) Calculate the mutation scores and fault discovery rates;

(b) Summarize, analyze, and report test results.

(V) Mutant Reduction:

(a) Find and remove those mutants that can be killed by any test case;

(b) Find mutants that are virtually identical to each other in terms of
their failure behaviors (details can be found later in Section 3.6.2),
and remove redundant mutants.

In order to automate the aforementioned framework as much as possible, we
have implemented a comprehensive system, µBPEL, which supports mutation
testing for WS-BPEL programs in the following ways:
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- Mutant Generation: µBPEL accepts a WS-BPEL program as input,
and outputs a set of mutants for the program. The system first makes
use of the XML files reader to analyze the WS-BPEL program, and finds
the elements that can be mutated. Then, it executes the conversion rules
within the mutation operators. Finally, it makes use of the XML files
writer to seed faults into the original WS-BPEL program according to the
conversion rules.

- Testing Execution: µBPEL receives a set of test cases, the original WS-
BPEL program, and mutants, while its output is the results for the testing
of mutants. The system first reads out the test cases that testers have
defined and stored, then executes both the original WS-BPEL program
and mutants using the test cases, and records the corresponding outputs.
It is implemented by extending an existing WS-BPEL engine, Apache
ODE [3].

- Test Result Analysis: µBPEL receives the test results on mutants,
while its output is a test report. The system compares the outputs of the
mutants with those of the base program, and obtain the basic information
on which test case kills which mutant. It also provides the statistics on
the fault detection rate for each mutant and mutation scores. The gener-
ated report will contain the following information: name of mutant, total
number of test cases, number of test cases that can kill a certain mutant,
etc.

Besides, µBPEL also supports the evaluation of existing testing techniques
for WS-BPEL programs. In the current version of µBPEL, two well-known
testing techniques for WS-BPEL programs are supported. The derived test
suites can be seamlessly used by the test execution.

- Scenario-oriented testing [36]: This technique first converts a WS-
BPEL program into an abstract graph model, which consists of nodes
(corresponding to an activity) and edges (corresponding to a transition
between nodes). From this graph model, we can then derive test scenar-
ios with respect to a specific coverage criterion, and generate a test suite
for each test scenario with the aid of constraint solvers. We particularly
developed an automatic scenario-oriented testing technique, and the tech-
nique has been integrated into µBPEL as a component to aid the test case
generation for mutation testing of WS-BPEL programs.

- Random testing: µBPEL first parses the WSDL file of WS-BPEL pro-
grams, and then randomly generates test data to satisfy the manually
entered constraints over the input parameters.

With the aid of µBPEL, the mutant generation, the test execution, and the
test result analysis in the mutation testing framework for WS-BPEL programs
can be automated. Nevertheless, some manual work is still required. For ex-
ample, in (IV) Test Result Analysis, it is sometimes necessary for testers to
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precisely decide whether an alive mutant is an equivalent one or not. In addi-
tion, it has not been fully automated to identify the mutants that have identical
failure behaviors (in (V) Mutant Reduction). It should be pointed out that
such manual work is quite important, particularly because mutant reduction
can help increase the efficiency of mutation testing. Some WS-BPEL muta-
tion tools [6, 12, 18, 15] have been developed before our µBPEL tool. The
detailed comparison between µBPEL and the existing tools will be presented in
Section 5.

3.4 Generation of mutants

Our µBPEL tool was used to generate mutants for each subject program. Ta-
ble 3 gives the statistics in the mutant generation. To ensure the validity of
our empirical studies, the selection of mutation operators was independent from
that of subject programs, that is, we did not attempt to match the mutation
operators and subject programs on purpose. In our empirical studies, we chose
totally 32 mutation operators for WS-BPEL from the literature [13, 18, 15].
However, as to be shown in Section 4, only part of the operators can be used
for each subject program. Such an observation is consistent with what has been
observed in previous studies [14]. In addition, different mutation operators can
lead to different numbers of mutants for different subject programs. Relevant
details will be given in Section 4. In mutation analysis, there are two ways to
judge whether a mutant is killed. For strong mutation analysis, it requires the
following three conditions to be met: (1) a test must reach the mutated state-
ment; (2) test input data should infect the program state by causing different
program states for the mutant and the original program; (3) the incorrect pro-
gram state must propagate to the program’s output and be checked by the test.
Weak mutation analysis requires that only the first and second conditions are
satisfied. Strong mutation analysis is more powerful, since it ensures that the
test suite can really catch the problems, while weak mutation analysis is closely
related to code coverage methods and thus not widely used in practice. In our
experiment, it is not trivial to catch the program state. Therefore, we used
strong mutation to judge whether a mutant was killed or not, that is, a mutant
was said to be killed when a test case produced different outputs between the
mutant and the base program. To ensure that our evaluation is comprehensive,
we first generated mutants using our µBPEL tool and then appended some
mutants using the other mutant generation system called MuBPEL [18].

3.5 Generation of test cases

We mainly made use of four typical testing techniques, namely equivalence class
partitioning [27], boundary value analysis [27], random testing [27], and sce-
nario oriented testing [36], to generate test cases for the subject programs. The
equivalence class partitioning technique divides the program input space into a
number of partitions. All possible inputs within one partition are expected to
trigger the same execution behavior, so each partition is also called an equiv-
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Table 3: Mutant generation for subject programs

Program name
Number of Number of

generated mutants used operators
SupplyChain 31 10
SmartShelf 159 11
SupplyCustomer 67 11
LoanApproval 69 15
CarEstimate 60 9
TravelAgency 163 16

alence class. At least one test case should be selected from each equivalence
class. The boundary value analysis technique focuses on the boundaries be-
tween different equivalence classes. It specifically selects test cases on or near
the boundaries. The scenario oriented testing first transforms the WS-BPEL
program into a graph model, then derives test scenarios from the model, finally
generates test cases according to different scenarios. The random testing gen-
erates test cases based on the input parameters and the constraints on their
ranges.

In our experiments, we first partitioned the program input space into a num-
ber of equivalence classes. Then, we identified the boundaries between different
classes as well as the critical values on or close to the boundaries. Based on these
classes, boundaries, and values, we constructed a test suite such that (1) each
equivalence class has been covered at least once; and (2) most test cases in the
suite are on or close to the boundaries. In our study, we created five test suites
with different sizes, namely Tx, Ty, Tz, Tu, and Tw, for each subject program.
Table 4 reports the size of each test suite (denoted by |Tx|, |Ty|, |Tz|, |Tu|, and
|Tw|, respectively) for each program. Note that the size of a test suite depends
on the size of program under test and the concrete test case generation method.
On one hand, it is natural to have a smaller test suite for a smaller program.
For example, the programs SupplyChain and SmartShelf have the smallest and
largest numbers of composed services (i.e. 2 and 14, refer to Table 2), respec-
tively, among all six subject programs. Correspondingly, their associated test
suites have the smallest and largest sizes among all suites. On the other hand,
different testing methods can lead to different sizes of test suites. For the first
three test suites (namely Tx, Ty, and Tz), we used a hybrid method of equiv-
alence class partitioning and boundary value analysis. Obviously, the number
of equivalence classes and the number of boundaries between classes also affect
the size of test suites constructed in our experiments. In order to guarantee the
generality of our study, we also used other two test case generation techniques,
namely scenario-oriented testing [36] and random testing, to construct two more
test suites (namely Tu and Tw).
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Table 4: Test case generation for subject programs
Program name |Tx| |Ty| |Tz| |Tu| |Tw|
SupplyChain 6 10 15 19 30
SmartShelf 22 35 50 74 90
SupplyCustomer 7 12 18 24 30
LoanApproval 12 18 25 31 40
CarEstimate 10 20 30 36 40
TravelAgency 4 7 10 14 20

3.6 Variables and measurements

3.6.1 Independent variables

There are two independent variables in our experiments. One is the mutation
operator. During the mutant generation process, we have considered all 32
mutation operators [13][18][15]. However, as have been discussed above and
will be detailed in Section 4, only part of them could be applied to generate
mutants for our subject programs. The other independent variable is the test
case generation technique. As presented above, we used a hybrid technique that
integrates equivalence class partitioning and boundary value analysis.

3.6.2 Dependent variables

For RQ1, we made use of three metrics to evaluate the applicability of a mutation
operator. They are the total number of mutants that can be generated based
on the operator (denoted by No), the percentage of mutants generated by the
operator out of all generated mutants (denoted by Po), and the number of
subject programs the operator can be applied to for generating mutants (denoted
by Np). Obviously, the larger values these metrics have, the more applicable a
mutation operator is for WS-BPEL programs.

For RQ2, we employed two metrics, namely mutation score (MS) and fault
discovery rate (FDR), to measure the effectiveness of a test suite in killing
mutants. MS is defined as

MS(p, TS) =
Nk

Nm −Ne

, (1)

where p refers to the program under test, TS refers to the test suite used for
testing the mutants, Nk refers to the number of mutants killed by TS, Nm

refers to the total number of generated mutants, and Ne refers to the number of
equivalent mutants. The identification of equivalent mutants is an undecidable
problem. In theory, there is no way of fully automatic identification of equivalent
mutants. In our study, we paid much attention to the mutants that were still
alive after executing all test cases and manually checked them to decide whether
they are equivalent to the base program or not. This kind of manual effort
is feasible due to the relatively small number of surviving mutants [38]. MS
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intuitively indicates the capability of a test suite killing mutants. The larger
the MS is, the more effective a test suite is in killing mutants for the given
program.

FDR is defined as

FDR(m,TS) =
Nf

Nts

, (2)

where m refers to a certain mutant, TS refers to the test suite, Nf refers to the
number of test cases that can kill m, and Nts refers to the total number of test
cases in TS. Intuitively speaking, FDR indicates how effective a test suite is in
killing a certain mutant. The larger the FDR is, the more effective a test suite
is to kill the given mutant.

For RQ3, we introduced the subsumption relation to reduce the mutation
operators. We compared two mutation operators based on each test case and in-
volved mutants, and observed their failure behaviors. Suppose that there are two
mutation operators MOA and MOB. For a given subject program, MOA can
generate a set of mutants, denoted byMUA = {MUA

1
,MUA

2
, · · · ,MUA

i }, while
the set of mutants generated byMOB is denoted byMUB = {MUB

1 ,MUB
2 , · · · ,MUB

j }.

We can say that MOB is subsumed by MOA, if ∀ MUB
l ∈ MUB, ∃ MUA

k ∈
MUA such that ∀ test case tc that can kill MUA

k , MUB
l must also be killed by

tc. In other words, MOB is subsumed by MOA when ∃ MU′

A
⊆ MUA such

that MU′

A
and MUB are virtually identical to each other in terms of failure

behaviors.

3.7 Threats to validity

The threat to the internal validity is mainly concerned with the implementation
of experiments, which require moderate amount of programming work. Most of
the programming was conducted by one co-author, under the supervision and
management of another co-author. The source code was further cross-checked
by different individuals, who confirmed that both the µBPEL tool and our ex-
periments were correctly implemented. In our experiments, some equivalent
mutants were manually identified. All of them were checked by different indi-
viduals, and the reasons why they are equivalent to the base programs was also
investigated and justified. Therefore, we are confident that the threats to the
internal validity have been minimized in our study.

The major threat to the external validity relates to the selection of subject
programs. Though we have chosen six WS-BPEL programs as the experimental
subject programs, we cannot say that our conclusion will be valid for any other
program without further study. Such a limitation is applicable to any empirical
study. One solution for the problem is a comprehensive theoretical study to
justify our conclusions, especially those with regard to the “subsuming” relation
between different mutation operators. Another threat to the external validity is
about the faults seeded in the subject programs: These faults may not be able
to fully represent the defects in practice.

There is little threat to the construct validity, which is regarding the mea-
surements employed in the empirical studies. Most of the metrics, especially
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MS and FDR, are very straightforward to understand and easy to use.
The threat to the conclusion validity is due to the limited number of exper-

imental data. Tens of mutants were automatically constructed based on each
subject program using our µBPEL tool. Two typical testing techniques were
employed to generate three test suites for each program. Common observations
were made across different programs and different test suites. However, we
cannot guarantee that our conclusion is valid in a more general sense.

4 Experimental Results

4.1 Answer to RQ1

Table 5 summarizes the values of No, Po, and Np (the definitions of which have
been given in Section 3.6.2) for each mutation operator.

From Table 5, we can observe that seven mutation operators (AFP, AIS,
AWR, XMT, XTF, XER, and XEE) have not been used for any of the six sub-
ject programs. An in-depth investigation showed that these operators require
very specific structures of WS-BPEL programs. For example, the XER opera-
tor will be applicable only when there exists a rethrow activity in the program
under test, which may not be a common case in reality. There exist another
nine mutation operators (EAA, EEU, EMD, EMF, AJC, APM, APA, XMF
and XMC), each of which can only generate one mutant from only one subject
program. We found that they have similar features to the previous seven oper-
ators: They also have very specific requirements in the structures of WS-BPEL
programs. For instance, there must be a catch or catchAll element in a fault

handler for XMF to be applicable.
Different from the above 16 mutation operators (which are “not so appli-

cable”), some operators can be widely used across different subject programs.
The AEL and CFA operators helped generate the largest number of mutants
among all operators, and they can be applied to all six programs. Each of the
five operators ACI, ASF, AEL, ASI, and CFA, is applicable to all six subject
programs. By examining the definitions of these five operators, we found that
none of them requires specific structures in the program under test. In other
words, the more general the mutation operator is, the more applicable it is to
generate mutants.

In summary, different mutation operators have different applicability for
the mutant generation of WS-BPEL programs. On one hand, the operators
ACI, AEL, CFA, ASF, ASI, and ERR could be widely applied to generate a
large number of mutants for many subject programs. On the other hand, the
operators AFP, AIS, AWR, XMT, XTF, XER, XEE, EAA, EEU, EMD, EMF,
AJC, APM, APA, XMF and XMC have very limited applicability. Note that it is
not surprising to observe the variation in the applicability of different operators
on various programs. Similar observations have been made in previous studies
for WS-BPEL mutation testing [5, 14] and even for other types of programs
such as Java [24].
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Table 5: Measurements of applicabilities of WS-BPEL mutation operators
Operator No Po Np

ISV 7 1.28% 2
EAA 4 0.73% 1
EEU 1 0.18% 1
ERR 75 13.66% 5
ELL 2 0.36% 2
ECC 6 1.09% 2
ECN 24 4.37% 2
EMD 2 0.36% 1
EMF 2 0.36% 1
EIN 15 2.73% 5
EIU 6 1.09% 2
EAN 6 1.09% 2
EAP 6 1.09% 2
ACI 6 1.09% 6
AFP 0 0.00% 0
ASF 34 6.19% 6
AIS 0 0.00% 0
AEL 118 21.49% 6
AIE 11 2.00% 4
AWR 0 0.00% 0
AJC 1 0.18% 1
ASI 71 12.93% 6
APM 1 0.18% 1
APA 1 0.18% 1
XMF 1 0.18% 1
XMC 1 0.18% 1
XMT 0 0.00% 0
XTF 0 0.00% 0
XER 0 0.00% 0
XEE 0 0.00% 0
CDE 30 5.46% 5
CFA 118 21.49% 6
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4.2 Answer to RQ2

Table 6 gives the value of MS on each subject program. Note that for each
subject program, all five test suites (Tx, Ty, Tz, Tu, and Tw) always had the
same value of MS, so we do not distinguish different test suites in Table 6. In
addition, equivalent mutants existed for some subject programs. For ease of
presentation, Table 6 also includes the number of equivalent mutants (denoted
by Ne, as defined in previous Section 3.6.2) and the mutation operators that
generated these equivalent mutants.

In our experiments, several operators could lead to equivalent mutants. ASF
replaces a sequence activity by a flow activity. If the flow activity and the
sequence activity have the same structure, we may not be able to distinguish
the resulting mutant from the base program. ASI exchanges the order of two
sequence child activities. If these two activities are not sensitive to time, the
resulting mutant may be equivalent to the base program. ECC replaces a path
operator by another path operator. If the original path is the root of a path,
and the path operator “\” is replaced with “\\”, then the resulting mutant
is an equivalent one. EAP replaces a subexpression by its positive absolute
value. When the value of replaced subexpression is positive, we may not be
able to distinguish the resulting mutant from the base program. AEL deletes
an activity, which may produce equivalent mutants. For instance, if an “assign”
activity is deleted, and the assigned variable does not affect the subsequent
activities, it is impossible to distinguish the resulting mutant from the base
program. CDE replaces a decision condition with TRUE or FALSE. When the
decision is always TRUE and it is replaced with TRUE, an equivalent mutant
is generated.

Though Table 6 shows that the value of MS is constantly high across different
subject programs, there still exist some mutants that could not be killed by
our test suites. The “alive” mutants include two mutants generated by the
ERR operator from SmartShelf, three mutants generated by ERR, one mutant
by ELL, and one by AJC from SupplyCustomer, and one mutant generated
by the XMC operator from TravelAgency. In other words, these mutation
operators can produce “stubborn” mutants that would be quite effective in
the experiments for evaluating the effectiveness of a testing method. Such an
observation implies that we should pay special attention to these operators in
the mutation testing of WS-BPEL programs.

Table 7 summarizes some basic statistics on the values of FDR. For each sub-
ject program and every possible mutation operator, we give the value range of
FDR, represented by their minimum and maximum values in the square brack-
ets. Note that the operators ECC and EAP only produced equivalent mutants,
so the FDR for them is not available, denoted by “NA” in Table 7. Based on
Table 7, we have observed that mutants generated by the ACI operators are
normally very “weak”, that is, it is very easy to kill these mutants. Since al-
most every test suite can achieve high FDR on these weak mutants, we cannot
distinguish different test suites with respect to the fault-detection effectiveness.
Thus, the ACI operator may not be very effective for the mutation analysis in
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Table 6: MS on subject programs
Program name MS Ne Mutant operators

resulting in
equivalent mutants

SupplyChain 100% 0
SmartShelf 99.3% 11 ASI, ASF
SupplyCustomer 96.8% 5 ASF
LoanApproval 95.3% 5 ECC, EAP, CDE
CarEstimate 100% 7 ASI, AEL
TravelAgency 99.3% 11 ASF, ECC, EAP

practice.
Compared with ACI, some other operators are associated with varying FDR

values. In other words, for some mutation operators (for example, ERR), it is
difficult to anticipate how likely their associated mutants can be killed. Such
operators would be quite effective in distinguishing different testing methods
with respect to their fault-detection capabilities.

4.3 Answer to RQ3

We examined the detailed results and found two pairs of mutation operators
that have the “subsuming” relations:

• AIE is subsumed by AEL.

• ASI is subsumed by ASF.

Tables 8 and 9 show some typical results of FDR for these operators, which
can partially reflect their “subsuming” relations. As shown in Table 5, there
were 11 and 71 mutants associated with AIE and ASI, respectively. Among
them, only those AIE mutants associated with the AIE and AEL pairs and ASI
mutants associated with the ASI and ASF pairs can be discarded for mutation
testing, as summarized in Table 10. As a result, 11 AIE mutants and 61 ASI
mutants were reduced in our experiment resulting to a reduction rate of 14.1%
(i.e. (11+61)/(549-39)*100%). Reduction in the mutants can largely improve
the efficiency of WS-BPEL mutation testing in practice.

Based on the above empirical evaluation, we further summarize some guide-
lines for mutation testing of WS-BPEL programs, especially when testing re-
sources are limited. First, one should avoid employing mutants associated with
those “subsumed” mutation operators. For instance, if ASF is used, then ASI is
not necessary. Second, one should carefully check whether those “not so appli-
cable” mutation operators can be applied. On one hand, selectively discarding
some specific operators may help us improve the efficiency of mutation testing.
On the other hand, it may also miss some mutants that might be quite useful in
distinguishing the effectiveness of different test suites. Tester’s experience may
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Table 7: FDR on each subject program
(a) SupplyChain

Operator
Value range of FDR

Tx Ty Tz Tu Tw

ACI [100%, 100%] [100%, 100%] [100%, 100%] [100%,100%] [100%, 100%]
AEL [50%, 100%] [40%, 100%] [40%, 100%] [42.1%, 100%] [36.7%, 100%]
AIE [50%, 50%] [60%, 60%] [60%, 60%] [57.9%, 57.9%] [63.3%, 63.3%]
ASI [50%, 100%] [40%, 100%] [40%, 100%] [42.1%, 100%] [36.7%, 100%]
ASF [50%, 100%] [40%, 100%] [40%, 100%] [42.1%, 100%] [36.7%, 100%]
ERR [16.7%, 100%] [10%, 100%] [6.7%, 100%] [5.3%, 100%] [3.3%, 100%]
EIN [100%, 100%] [100%, 100%] [100%, 100%] [100%,100%] [100%, 100%]
ELL [16.7%,16.7%] [20%, 20%] [20%, 20%] [21.1%,21.1%] [26.7%, 26.7%]
CFA [50%, 100%] [40%, 100%] [40%, 100%] [42.1%, 100%] [36.7%, 100%]
CDE [50%, 50%] [40%, 60%] [40%, 60%] [42.1%, 57.9%] [36.7%, 63.3%]

(b) SmartShelf

Operator
Value range of FDR

Tx Ty Tz Tu Tw

ACI [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%]
AEL [18.2%, 100%] [20%, 100%] [20%, 100%] [21.6%, 100%] [24.4%, 100%]
AIE [40.9%, 81.8%] [37.1%, 80%] [36%, 80%] [33.8%, 82.4%] [30%, 75.6%]
ASI [18.2%, 100%] [20%, 100%] [20%, 100%] [21.6%, 100%] [24.4%, 100%]
ASF [18.2%, 100%] [20%, 100%] [20%, 100%] [21.6%, 100%] [24.4%, 100%]
ERR [0%, 100%] [0%, 100%] [0%, 100%] [0%, 100%] [0%, 100%]
EIN [59.1%, 100%] [60%, 100%] [64%, 100%] [63.5%, 100%] [66.7%, 100%]
EAA [63.6%, 63.6%] [62.9%,62.9%] [68%, 68%] [56.8%,56.8%] [55.6%, 55.6%]
EEU [63.6%, 63.6%] [62.9%,62.9%] [68%, 68%] [56.8%,56.8%] [55.6%, 55.6%]
CFA [18.2%, 100%] [20%, 100%] [20%, 100%] [21.6%, 100%] [24.4%, 100%]
CDE [18.2%, 81.8%] [20%, 80%] [20%, 80%] [21.6%, 78.4%] [24.4%, 75.6%]

(c) SupplyCustomer

Operator
Value range of FDR

Tx Ty Tz Tu Tw

ACI [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%]
AEL [14.3%, 100%] [8.3%, 100%] [11.1%, 100%] [12.5%, 100%] [13.3%, 100%]
AIE [42.9%, 42.9%] [50%, 50%] [50%, 50%] [50%, 50%] [53.3%, 53.3%]
ASI [14.3%, 100%] [8.3%, 100%] [11.1%, 100%] [12.5%, 100%] [13.3%, 100%]
ASF [57.1%, 100%] [50%, 100%] [50%, 100%] [50%, 100%] [46.7%, 100%]
AJC [0%, 0%] [0%, 0%] [0%, 0%] [0%, 0%] [0%, 0%]
ERR [14.3%, 100%] [8.3%, 100%] [11.1%, 100%] [12.5%, 100%] [13.3%, 100%]
EIN [57.1%, 100%] [50%, 100%] [50%, 100%] [50%, 100%] [46.7%, 100%]
CFA [14.3%, 100%] [8.3%, 100%] [11.1%, 100%] [12.5%, 100%] [13.3%, 100%]
CDE [14.3%, 85.7%] [8.3%, 91.7%] [11.1%, 88.9%] [12.5%, 87.5%] [13.3%, 86.7%]
ELL [0%, 0%] [0%, 0%] [0%, 0%] [0%, 0%] [0%, 0%]
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Table 7: FDR on each subject program (continued)
(d) LoanApproval

Operator
Value range of FDR

Tx Ty Tz Tu Tw

ISV [8.3%,8.3%] [11.1%, 11.1%] [12%, 12%] [12.9%, 12.9%] [12.5%, 12.5%]
ACI [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%]
AEL [0%, 100%] [0%, 100%] [0%, 100%] [0%, 100%] [0%, 100%]
ASI [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%]
ASF [8.3%, 8.3%] [11.1%, 11.1%] [12%,12%] [12.9%, 12.9%] [12.5%,12.5%]
ECN [8.3%, 50%] [5.6%, 50%] [4%,48%] [3.2%, 38.7%] [2.5%,32.5%]
ERR [8.3%, 83.3%] [5.6%, 77.8%] [4%, 72%] [3.2%, 71%] [2.5%, 65%]
EIU [25%, 75%] [22.2%, 66.7%] [20%, 50%] [19.4%, 58.1%] [17.5%, 52.5%]
EIN [8.3%, 83.3%] [11.1%, 77.8%] [12%, 72%] [12.9%, 71%] [12.5%, 65%]
EAN [25%, 75%] [22.2%, 66.7%] [20%, 50%] [19.4%, 58.1%] [17.5%, 52.5%]
ECC NA NA NA NA NA
EAP NA NA NA NA NA
XMF [0%, 0%] [0%, 0%] [0%, 0%] [0%, 0%] [0%, 0%]
CFA [0%, 100%] [0%, 100%] [0%, 100%] [0%, 100%] [0%, 100%]
CDE [8.3%, 75%] [11.1%, 66.7%] [12%, 60%] [12.9%, 58.1%] [12.5%, 52.5%]

(e) CarEstimate

Operator
Value range of FDR

Tx Ty Tz Tu Tw

ACI [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%]
AEL [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%]
ASI [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%]
ASF [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%]
APM [100%, 100%] [100%, 100%] [100%, 100%] [100%,100%] [100%, 100%]
APA [40%, 40%] [35%, 35%] [46.7%, 46.7%] [47.2%,47.2%] [47.5%, 47.5%]
EMD [40%, 100%] [45%, 100%] [33.3%, 100%] [30.6%,100%] [27.5%, 100%]
EMF [60%, 100%] [65%, 100%] [53.3%, 100%] [52.8%,100%] [52.5%, 100%]
CFA [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%]

(f) TravelAgency

Operator
Value range of FDR

Tx Ty Tz Tu Tw

ISV [50%, 50%] [42.9%, 57.1%] [50%, 50%] [50%, 50%] [45%, 55%]
ACI [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%]
AEL [50%, 100%] [42.9%, 100%] [50%, 100%] [50%, 100%] [45%, 100%]
AIE [50%, 50%] [42.9%, 57.1%] [50%, 50%] [50%, 50%] [45%, 55%]
ASI [50%, 100%] [42.9%, 100%] [50%, 100%] [50%, 100%] [45%, 100%]
ASF [50%, 100%] [42.9%, 100%] [50%, 100%] [50%, 100%] [45%, 100%]
ERR [25%, 100%] [14.3%, 100%] [10%, 100%] [7.1%, 100%] [5%,100%]
ECN [25%, 50%] [14.3%, 57.1%] [10%, 50%] [7.1%, 50%] [5%, 50%]
EAN [50%, 50%] [42.9%, 42.9%] [50%, 50%] [50%,50%] [55%, 55%]
EIU [50%, 50%] [42.9%, 42.9%] [50%, 50%] [50%,50%] [55%, 55%]
EIN [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%] [100%, 100%]
ECC NA NA NA NA NA
EAP NA NA NA NA NA
XMC [0%, 0%] [0%, 0%] [0%, 0%] [0%, 0%] [0%, 0%]
CFA [50%, 100%] [42.9%, 100%] [50%, 100%] [50%, 100%] [45%, 100%]
CDE [50%, 50%] [42.9%, 57.1%] [50%, 50%] [50%, 50%] [45%, 55%]
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Table 8: AIE vs. AEL on SupplyCustomer

Oper
Mutant

Value of FDR
-ator Tx Ty Tz Tu Tw

AIE MUAIE
1

42.9% 50% 50% 50% 53.3%

AEL
MUAEL

1
42.9% 50% 50% 50% 53.3%

MUAEL
2

42.9% 50% 50% 50% 53.3%

Table 9: ASI vs. ASF on SupplyChain

Oper
Mutant

Value of FDR
-ator Tx Ty Tz Tu Tw

ASI

MUASI
1

100% 100% 100% 100% 100%
MUASI

2 100% 100% 100% 100% 100%
MUASI

3 100% 100% 100% 100% 100%
MUASI

4
50% 40% 40% 42.1% 36.7%

ASF
MUASF

1
100% 100% 100% 100% 100%

MUASF
2

50% 40% 40% 42.1% 36.7%

Table 10: A summary of mutant reduction in the experiment
Program name Number of Number of

AIE and AEL ASI and ASF
mutant pairs mutant pairs

SupplyChain 1 4
SmartShelf 4 19
SupplyCustomer 1 6
LoanApproval 0 1
CarEstimate 0 15
TravelAgency 5 16
Total 11 61
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be critical when selecting or discarding a specific operator. Third, one should
give the higher priorities to mutants associated with mutation operators who
have relatively lower FDR values, as shown in Table 7. For instance, muta-
tion operators such as ERR, ELL, ECN, XMC, and XMF should have higher
priorities, while mutation operators such as ACI, AMP, and ASF should have
lower priorities. The µBPEL tool developed by us supports the identification,
selection, and prioritization of mutation operators for a given WS-BPEL pro-
gram such that the proper and effective operators will be applied as early as
possible to generate a sufficient number of useful mutants. In summary, the
work presented in this paper not only explores mutation testing of WS-BPEL
programs through presenting a mutation testing framework, but also enhances
its efficiency through developing a mutation tool and conducting an empirical
study.

5 Related Work

In this section, we discuss the closely related work and provide a comparison
between our work and them.

It is well known that different mutation operators are associated with differ-
ent applicabilities and effectiveness. For example, Ma et al. [24] have examined
various mutation operators for Java programs. They found that it was easy to
generate mutants based on some operators, while for other operators, it was
impossible to construct any mutant for the given programs. Estero-Botaro et
al. [14] conducted empirical studies to evaluate the WS-BPEL mutation opera-
tors based on three BPEL compositions. They observed that (1) some operators
could be used to generate mutants for all three programs, while other operators
were only applicable to specific programs; (2) several operators could generate
the so-called “stillborn” mutants, which are syntactically incorrect and thus
cannot be executed; (3) a large number (12) of operators could produce equiva-
lent mutants; and (4) only two operators (AEL and ASI) could result in “weak”
mutants, which were killed by any test case. In addition, Boubeta-Puig et al. [7]
compared the mutation operators between WS-BPEL and other traditional pro-
gramming languages, based on the analysis of their specific program structures.
It was observed that due to the unique features of WS-BPEL, for only half of
the 26 operators, we can find similar counterparts in other traditional languages,
that is, half of the mutation operators are specific to WS-BPEL. On the other
hand, some mutation operators that can be used for other languages are not
applicable to WS-BPEL programs. It was also suggested that the WS-BPEL
mutation operators could be further improved.

To evaluate the quality of the WS-BPELmutation operators, Estero-Botaro [15]
proposed a set of metrics. Among these metrics, the core is the mutant quality
metric (Qm), whose calculation equation is based on the total number of test
cases in a test suite (T), the total number of mutant killed by the test set which
can kill the mutant (denoted as X), and the number of non-equivalent mutants
(|M |− |E|). For a given mutant set and a test suite, the larger X is, the smaller
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Qm is. This means that for the test set that can kill the mutant with a smaller
value of Qm must have a bigger value of X (that is to say, it can also kill many
other mutants), indicating the mutant is harder to kill. Unlike Qm, FDR (Fault
Discovery Rate) is used to measure the difficulty of killing a mutant, which is
defined as the ratio of the number of test cases that can kill the mutant (de-
noted as Y ) to the total number of test cases (|T |). For a given mutant set
and a test suite, the smaller Y is, the smaller FDR is, indicating its quality
is better. For the mutant with a smaller value of FDR (i.e. better quality),
it means that a smaller size of test set can kill this mutant, which in general
indicates a smaller value of X, thus we have a larger Qm (i.e. better quality).
After comparing Qm and FDR, we can have the following observations: (1) on
one hand, mutant quality metrics proposed in [15] can provide somehow more
accurate measurement on the quality of mutation operators than FDR used in
our paper; on the other hand, their computational costs are much more heavy
than that of FDR, which accordingly results in a low practicability; (2) these
metrics and FDR hold the similar intuition and accordingly their measurement
will deliver the similar evaluation results. Based on the above analysis and the
fact that FDR and mutation scores are commonly used in mutation analysis,
we did not use Qm and other related metrics in [15] in our experiment.

In our study, we conduct a series of in-depth empirical studies based on six
WS-BPEL programs to quantitatively evaluate the existing mutation operators.
To our best knowledge, this empirical evaluation is the most comprehensive one,
not only because of the largest scale and number of subject programs, but also
due to the concrete conclusions (to be given in Section 4) that provide insightful
and comprehensive guidance for WS-BPEL mutation testing in practice. More
specifically, our study helps identify (i) a set of mutation operators that have
very limited applicability to WS-BPEL programs; (ii) some “weak” operators
that can only generate easy-to-kill mutants; and (iii) certain “subsuming” re-
lations between some mutation operators. With the aid of these results, we
can preclude a set of ineffective mutation operators, reduce the number of mu-
tants, and thus decrease the cost of mutation testing. Similarly, a recent study
revealed that a large proportion of mutants are duplicated (i.e. mutants have
identical behaviours to each other rather than to the original program) [31].
Such identical mutants imply some subsumption relationship among individual
mutants, which are fundamentally different from the subsumption of mutation
operators proposed in our work. Though similar studies have been conducted
on various types of programs [5, 30, 28, 21, 22], our work is the systematic study
in selecting useful mutation operators for WS-BPEL programs.

There exist several tools to support the automatic generation of mutants for
WS-BPEL programs. Domı́nguez-Jiménez et al. [12] developed a tool, namely
GAmera, based on the 26 mutation operators proposed in [13]. GAmera first
analyzes the WS-BPEL program under test to help users decide which mu-
tation operators to be used in mutant generation. Though it is possible to
generate all possible mutants, GAmera also makes use of the generic algorithm
to select part of mutants to be generated. In addition, GAmera automatically
executes the generated mutants for a given test suite, and identify whether a
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mutant is killed, still alive, or syntactically incorrect. Another tool, namely
WeMuTe, was developed by Boonyakulsrirung and Suwannasart [6] to imple-
ment the similar functionalities to GAmera. More recently, Garćıa-Domı́nguez
and Medina-Bulo developed a more comprehensively mutant generation system
called MuBPEL [18]. MuBPEL has the following features: (i) automatic mutant
generation; (ii) execution of mutants with test cases; (iii) statistical results on
killed mutants, alive mutants and invalid mutants; (iv) statement/branch/path
coverage statistics via other plug-in tools. Compared with these existing tools,
our µBPEL tool not only implements the automatic generation of mutants for
WS-BPEL, but also provides the quantitative measurements of the effectiveness
for any given test suite. Furthermore, µBPEL has the following new features: (i)
an integrated environment that facilitates the integration and/or evaluation of
a test case generation technique; (ii) a more comprehensive report for mutation
testing results, i.e. including not only mutation scores, but also fault discovery
rates; and (iii) a new component that is helpful for reducing the number of
mutants.

6 Conclusion

WS-BPEL is an XML-based language that orchestrates multiple Web services to
fulfill complex business processes. Due to the loose coupling and open environ-
ment for Web services, it is challenging to test WS-BPEL programs. Mutation
testing, a fault-based testing technique, has been widely used to evaluate the
fault-detection effectiveness of a test suite. In this paper, we reported a series
of empirical studies on a family of mutation operators for WS-BPEL programs.
Our experiments were conducted based on a framework and a tool that we pro-
posed and developed for implementing the mutation testing of WS-BPEL pro-
grams. The experimental results on six WS-BPEL programs helped us identify
which mutation operators would be applicable (or inapplicable) for generating
mutants. It was also observed that some operators are very ineffective in terms
of always generating weak mutants, and thus could be eliminated from the WS-
BPEL mutation testing. In addition, we found some mutation operators that
have subsuming relations, and part of them could be ignored for increasing the
efficiency of mutation testing. Our research has resulted in comprehensive and
insightful guidance for WS-BPEL mutation testing in practice.

For our future work, we are interested in continuing our efforts in the follow-
ing aspects. First, we will explore optimization techniques for mutation testing
of WS-BPEL programs, such as high order mutation testing. Second, we intend
to include more complex and larger WS-BPEL programs for evaluation. Such
work will benefit the broader area of the WS-BPEL service testing, as there does
not exist a benchmark for evaluation in this area. Third, we are interested in
extending the evaluation to report the time needed to apply mutation analysis
and saved due to the subsumption of mutation operators. Finally, it is worth-
while to investigate the practical usefulness of mutation analysis in the context
of WS-BPEL programs. One possible experiment is to compare mutation anal-
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ysis and some coverage criteria, such as “branch” or “statement” coverage, in
terms of their fault detection effectiveness and costs.
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Jiménez, and A. Garćıa-Domı́nguez. Quality metrics for mutation testing
with applications to ws-bpel compositions. Software Testing, Verification
and Reliability, 25:536–571, 2015.

[16] M. Fisher II, S. Elbaum, and G. Rothermel. An automated analysis
methodology to detect inconsistencies in web services with WSDL inter-
faces. Software Testing, Verification and Reliability, 23(1):27–51, 2013.

[17] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. In Proceedings of the 19th International Symposium on Software
Testing and Analysis (ISSTA’10), pages 147–158, Trento, Italy, 12-16 July
2010. ACM.
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